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ABSTRACT

Continual learning (CL) has garnered significant attention because of its ability
to adapt to new tasks that arrive over time. Catastrophic forgetting (of old tasks)
has been identified as a major issue in CL, as the model adapts to new tasks.
The Mixture-of-Experts (MoE) model has recently been shown to effectively
mitigate catastrophic forgetting in CL, by employing a gating network to sparsify
and distribute diverse tasks among multiple experts. However, there is a lack of
theoretical analysis of MoE and its impact on the learning performance in CL. This
paper provides the first theoretical results to characterize the impact of MoE in
CL via the lens of overparameterized linear regression tasks. We establish the
benefit of MoE over a single expert by proving that the MoE model can diversify
its experts to specialize in different tasks, while its router learns to select the right
expert for each task and balance the loads across all experts. Our study further
suggests an intriguing fact that the MoE in CL needs to terminate the update of the
gating network after sufficient training rounds to attain system convergence, which
is not needed in the existing MoE studies that do not consider the continual task
arrival. Furthermore, we provide explicit expressions for the expected forgetting
and overall generalization error to characterize the benefit of MoE in the learning
performance in CL. Interestingly, adding more experts requires additional rounds
before convergence, which may not enhance the learning performance. Finally, we
conduct experiments on both synthetic and real datasets to extend these insights
from linear models to deep neural networks (DNNs), which also shed light on the
practical algorithm design for MoE in CL.

1 INTRODUCTION

Continual Learning (CL) has emerged as an important paradigm in machine learning (Parisi et al.
(2019); Wang et al. (2024)), in which an expert aims to learn a sequence of tasks one by one over time.
The expert is anticipated to leverage the knowledge gained from old tasks to facilitate learning new
tasks, while simultaneously enhancing the performance of old tasks via the knowledge obtained from
new ones. Given the dynamic nature of CL, one major challenge herein is known as catastrophic
forgetting (McCloskey & Cohen (1989); Kirkpatrick et al. (2017)), where the expert can perform
poorly on (i.e., easily forget) the previous tasks when learning new tasks if data distributions change
largely across tasks. This becomes a more serious issue if a single expert continues to serve an
increasing number of tasks.

Recently, the sparsely-gated Mixture-of-Experts (MoE) model has achieved astonishing successes in
deep learning, especially in the development of large language models (LLMs) (e.g., Du et al. (2022);
Li et al. (2024); Lin et al. (2024); Xue et al. (2024)). By adaptively routing different input data to one
of the multiple experts through a gating network (Eigen et al. (2013); Shazeer et al. (2016)), different
experts in the MoE model will be specialized to grasp different knowledge in the data. Thus inspired,
there have emerged several attempts to leverage MoE in mitigating the forgetting issue in CL (e.g.,
Hihn & Braun (2021); Wang et al. (2022); Doan et al. (2023); Rypeść et al. (2023); Yu et al. (2024))
by training each expert to handle a particular set of tasks. However, these studies have primarily
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focused on experimental investigations, whereas the theoretical understanding of MoE and its impact
on the learning performance in CL is still lacking. In this paper, we aim to fill this gap by providing
the first explicit theoretical results to comprehensively understand MoE in CL.

To this end, we study the sparsely-gated MoE model with M experts in CL through the lens of
overparameterized linear regression tasks (Viele & Tong (2002); Anandkumar et al. (2014); Zhong
et al. (2016)). In our setting of CL, one learning task arrives in each round and its dataset is generated
with the ground truth randomly drawn from a shared pool encompassing N unknown linear models.
Subsequently, the data is fed into a parameterized gating network, guided by which a softmax-based
router will route the task to one of the M experts for model training. The trained MoE model then
further updates the gating network by gradient descent (GD). After that, a new task arrives and
the above process repeats until the end of CL. It is worth noting that analyzing linear models is an
important first step towards understanding the performance of deep neural networks (DNNs), as
shown in many recent studies (e.g., Evron et al. (2022); Lin et al. (2023); Chen et al. (2022)).

Our main contributions are summarized as follows.

We provide the first theoretical analysis to understand the behavior of MoE in CL, through the lens of
overparameterized linear regression tasks. By updating the gating network with a carefully designed
loss function, we show that after sufficient training rounds (on the order of O(M)) in CL for expert
exploration and router learning, the MoE model will diversify and move into a balanced system state:
Each expert will specialize either in a specific task (if M > N ) or in a cluster of similar tasks (if
M < N ), and the router will consistently select the right expert for each task. Another interesting
finding is that, unlike existing studies in MoE (e.g., Fedus et al. (2022); Chen et al. (2022); Li et al.
(2024)), it is necessary to terminate the update of the gating network for MoE due to the dynamics of
task arrival in CL. This will ensure that the learning system eventually converges to a stable state
with balanced loads among all experts.

We provide explicit expressions of the expected forgetting and generalization error to characterize
the benefit of MoE on the performance of CL. 1) Compared to the single expert case (M = 1), where
tasks are learned by a single diverged model, the MoE model with diversified experts significantly
enhances the learning performance, especially with large changes in data distributions across tasks. 2)
Regardless of whether there are more experts (M > N ) or fewer experts (M < N ), both forgetting
and generalization error converge to a small constant. This occurs because the router consistently
selects the right expert for each task after the MoE model converges, efficiently minimizing model
errors caused by switching tasks. 3) In MoE, initially adding more experts requires additional
exploration rounds before convergence, which does not necessarily improve learning performance.

Finally, we conduct extensive experiments to verify our theoretical results. Specifically, our experi-
mental results on synthetic data with linear models not only support our above-mentioned theoretical
findings, but also show that load balancing reduces the average generalization error. This effectively
improves the capacity of the MoE model compared to the unbalanced case. More importantly, the
experiments on real datasets suggest that our theoretical findings can be further carried over beyond
linear models to DNNs, which also provides insights on practical algorithm design for MoE in CL.

2 RELATED WORK

Continual learning. In the past decade, various empirical approaches have been proposed to tackle
catastrophic forgetting in CL, which generally fall into three categories: 1) Regularization-based
approaches (e.g., Kirkpatrick et al. (2017); Ritter et al. (2018); Gou et al. (2021); Liu & Liu (2021)),
which introduce explicit regularization terms on key model parameters trained by previous tasks to
balance old and new tasks. 2) Parameter-isolation-based approaches (e.g., Chaudhry et al. (2018);
Serra et al. (2018); Jerfel et al. (2019); Yoon et al. (2019); Konishi et al. (2023)), which isolate
parameters associated with different tasks to prevent interference between parameters. 3) Memory-
based approaches (e.g., Farajtabar et al. (2020); Jin et al. (2021); Lin et al. (2021); Saha et al. (2020);
Tang et al. (2021); Gao & Liu (2023)), which store data or gradient information from old tasks and
replay them during training of new tasks.

On the other hand, theoretical studies on CL are very limited. Among them, Doan et al. (2021)
and Bennani et al. (2020) introduce NTK overlap matrix to measure the task similarity and propose
variants of the orthogonal gradient descent approach to address catastrophic forgetting. Lee et al.
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(2021) consider a teacher-student framework to examine the impact of task similarity on learning
performance. Peng et al. (2023) propose an ideal CL framework that can achieve no forgetting by
assuming i.i.d. data distributions for all tasks. Evron et al. (2022) provide forgetting bounds in
overparameterized linear models on different task orders. Further, Lin et al. (2023) provide explicit
forms of forgetting and overall generalization error based on the testing error. These works collectively
suggest that learning performance with a single expert tends to deteriorate when subsequent tasks
exhibit significant diversification. In contrast, our work is the first to conduct theoretical analysis to
understand the benefit of multiple experts on CL.

Mixture-of-Experts model. The MoE model has been extensively studied over the years for
enhancing model capacity in deep learning (e.g., Eigen et al. (2013); Riquelme et al. (2021); Wang &
Van Hoof (2022); Zhou et al. (2022); Chi et al. (2022); Zadouri et al. (2023)). Recently, it has found
widespread applications in emerging fields such as LLMs (e.g., Du et al. (2022); Li et al. (2024);
Lin et al. (2024); Xue et al. (2024)). To improve training stability and simplify the MoE structure,
Shazeer et al. (2016) propose to sparsify the output of the gating network. Subsequently, Fedus et al.
(2022) suggest routing each data sample to a single expert instead of multiple experts. For theoretical
studies, Nguyen & Chamroukhi (2018) propose a maximum quasi-likelihood method for estimating
MoE parameters, while Chen et al. (2022) analyze MoE mechanisms in deep learning for single-task
classification. Unlike these works, which do not address sequential task training in CL, our study
focuses on MoE in CL, introducing distinct training phases for the gating network. Additionally, we
derive explicit expressions for forgetting and generalization errors.

MoE in CL. Recently, the MoE model has been applied to reducing catastrophic forgetting in CL
(Lee et al. (2020); Hihn & Braun (2021); Wang et al. (2022); Doan et al. (2023); Rypeść et al. (2023);
Yu et al. (2024)). For example, Lee et al. (2020) expand the number of experts using the Bayesian
nonparametric framework to address task-free CL. Rypeść et al. (2023) propose to diverse experts by
routing data with minimal distribution overlap to each expert and then combine experts’ knowledge
during task predictions to enhance learning stability. Additionally, Yu et al. (2024) apply MoE to
expand the capacity of vision-language models, alleviating forgetting in CL. However, these works
solely focus on empirical methods, lacking theoretical analysis of how the MoE performs in CL.

3 PROBLEM SETTING AND MOE MODEL DESIGN

Notations. For a vector w, let ∥w∥2 and ∥w∥∞ denote its ℓ-2 and ℓ-∞ norms, respectively. For
some positive constant c1 and c2, we define x = Ω(y) if x > c2|y|, x = Θ(y) if c1|y| < x < c2|y|,
and x = O(y) if x < c1|y|. We also denote by x = o(y) if x/y → 0.

3.1 CL IN LINEAR MODELS

General setting. We consider the CL setting with T training rounds. In each round t ∈ [T ], one
out of N tasks randomly arrives to be learned by the MoE model with M experts. For each task,
we follow most theoretical work on CL by fitting a linear model f(X) = X⊤w with ground truth
w ∈ Rd (e.g., Evron et al. (2022); Lin et al. (2023)), which serves as a foundation for understanding
DNN generalization performance (Belkin et al. (2018); Ju et al. (2020)). Then, for the task arrival in
the t-th training round, it corresponds to a linear regression problem, where the training dataset is
denoted by Dt = (Xt,yt). Here Xt ∈ Rd×st is the feature matrix with st samples of d-dimensional
vectors, and yt ∈ Rst is the output vector. In this study, we focus on the overparameterized regime,
where st < d. Consequently, there exist numerous linear models that can perfectly fit the data.

Ground truth and dataset. Let W = {w1, · · · ,wN} represent the collection of ground truth
vectors of all N tasks. For any two tasks n, n′ ∈ [N ], we assume ∥wn −wn′∥∞ = O(σ0), where
σ0 ∈ (0, 1) denotes the variance. Moreover, we assume that task n possesses a unique feature signal
vn ∈ Rd with ∥vn∥∞ = O(1) (Chen et al. (2022); Huang et al. (2024)).

In each training round t ∈ [T ], let nt ∈ [N ] denote the index of the current task arrival with ground
truth wnt

∈ W . In the following, we formally define the generation of dataset per training round.

Definition 1. At the beginning of each training round t ∈ [T ], the dataset Dt = (Xt,yt) of the new
task arrival nt is generated by the following steps:

1) Uniformly draw a ground truth wn from ground-truth pool W and let wnt = wn.
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2) Independently generate a random variable βt ∈ (0, C], where C is a constant satisfying C = O(1).

3) Generate Xt as a collection of st samples, where one sample is given by βtvnt
and the rest of the

st − 1 samples are drawn from normal distribution N (0, σ2
t Id), where σt ≥ 0 is the noise level.

4) Generate the output to be yt = X⊤
t wnt

.

In any training round t ∈ [T ], the actual ground truth wnt
of task arrival nt is unknown. However,

according to Definition 1, task nt can be classified into one of N clusters based on its feature signal
vnt . Although the position of vnt in feature matrix Xt is not specified for each task nt, we can
address this binary classification sub-problem over Xt using a single gating network in MoE (Shazeer
et al. (2016); Fedus et al. (2022); Chen et al. (2022)). In this context, we aim to investigate whether the
MoE model can enhance the learning performance in CL. For ease of exposition, we assume st = s
for all t ∈ [T ] in this paper. Then we will introduce the MoE model in the following subsections.

3.2 STRUCTURE OF THE MOE MODEL
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Figure 1: An illustration of the
MoE model.

As shown in Figure 1, an MoE model comprises a collection
of M experts, a router, and a gating network which is typically
set to be linear (Shazeer et al. (2016); Fedus et al. (2022); Chen
et al. (2022)). In the t-th round, upon the arrival of task nt

and input of its data Dt = (Xt,yt), the gating network com-
putes its linear output hm(Xt,θ

(m)
t ) for each expert m ∈ [M ],

where θ
(m)
t ∈ Rd is gating network parameter for expert m.

Define h(Xt,Θt) := [h1(Xt,θ
(1)
t ) · · · hM (Xt,θ

(M)
t )] and

Θt := [θ
(1)
t · · · θ(M)

t ] as the outputs and the parameters of the
gating network for all experts, respectively. Then we obtain
h(Xt,Θt) =

∑
i∈[st]

Θ⊤
t Xt,i, where Xt,i is the i-th sample

of the feature matrix Xt.

To sparsify the gating network and reduce the computation cost, we employ top-1 “switch routing",
which maintains model quality while lowering routing computation, as demonstrated by Fedus et al.
(2022); Chen et al. (2022); Yang et al. (2021). Although this top-1 gating model is simple, it is
fundamental gaining a theoretical understanding of the behavior of MoE in CL, and its theoretical
analysis is already non-trivial. Extending to the top-k routing strategy (as introduced by Shazeer et al.
(2016)) is nontrivial and falls outside the scope of this work. However, we still provide a discussion
on the learning performance of the top-k routing strategy later in Section 5.2.

In each round t, as depicted in Figure 1, for task nt, the router selects the expert with the maximum
gate output hm(Xt,θ

(m)
t ), denoted as mt, from the M experts (Chen et al. (2022); Nguyen et al.

(2024)). In practice, to encourage exploration across experts and stabilize MoE training, we add
perturbations to the router (Shazeer et al. (2016); Fedus et al. (2022); Chen et al. (2022)). Specifically,
task nt will be routed to the expert that satisfies

mt = argmaxm{hm(Xt,θ
(m)
t ) + r

(m)
t }, (1)

where r
(m)
t for any m ∈ [M ] is drawn independently from the uniform distribution Unif[0, λ]. We

analyze in Appendix B that this routing strategy Eq. (1) ensures continuous and stable transitions for
tasks. Additionally, the router calculates the softmax gate outputs, derived by

πm(Xt,Θt) =
exp(hm(Xt,θ

(m)
t ))∑M

m′=1
exp(hm′ (Xt,θ

(m)
t ))

, ∀m ∈ [M ], (2)

for the MoE to update the gating network parameter Θt+1 for all experts.

3.3 TRAINING OF THE MOE MODEL WITH KEY DESIGNS

Expert model. Let w(m)
t denote the model of expert m in the t-th training round, where each model

is initialized from zero, i.e., w(m)
0 = 0 for any m ∈ [M ]. After the router determines the expert mt

by Eq. (1), it transfers the dataset Dt = (Xt, yt) to this expert for updating w
(mt)
t . For any other

expert m ∈ [M ] not selected ( i.e., m ̸= mt), its model w(m)
t remains unchanged from w

(m)
t−1 . In
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each round t, the training loss is defined by the mean-squared error (MSE) relative to dataset Dt:
Ltr
t (w

(mt)
t ,Dt) =

1
st
∥(Xt)

⊤w
(mt)
t − yt∥22. (3)

Since we focus on the overparameterized regime, there exist infinitely many solutions that perfectly
satisfy Ltr

t (w
(mt)
t ,Dt) = 0 in Eq. (3). Among these solutions, gradient descent (GD) starting from

the previous expert model w(mt)
t−1 at the convergent point provides a unique solution for minimizing

Ltr
t (w

(mt)
t ,Dt) in Eq. (3), which is determined by the following optimization problem (Evron et al.

(2022); Gunasekar et al. (2018); Lin et al. (2023)):
min
wt

∥wt −w
(mt)
t−1 ∥2, s.t. X⊤

t wt = yt. (4)

Solving Eq. (4), we update the selected expert in the MoE model for the current task arrival nt as
follows, while keeping the other experts unchanged:

w
(mt)
t = w

(mt)
t−1 +Xt(X

⊤
t Xt)

−1(yt −X⊤
t w

(mt)
t−1 ). (5)

Gating network parameters. After obtaining w
(mt)
t in Eq. (5), the MoE updates the gating network

parameter from Θt to Θt+1 using GD for the next training round. On one hand, we aim for θ(m)
t+1

of each expert m to specialize in a specific task, which helps mitigate learning loss caused by the
incorrect routing of distinct tasks. On the other hand, the router needs to balance the load among
all experts (Fedus et al. (2022); Shazeer et al. (2016); Li et al. (2024)) to reduce the risk of model
overfitting and enhance the learning performance in CL. To achieve this, we introduce our first key
design of multi-objective training loss for gating network updates.

Key design I: Multi-objective training loss. First, based on the updated expert model w(mt)
t in Eq. (5),

we propose the following locality loss function for updating Θt:
Lloc
t (Θt,Dt) =

∑
m∈[M ] πm(Xt,Θt)∥w(m)

t −w
(m)
t−1∥2, (6)

where πm(Xt,Θt) is the softmax output defined in Eq. (2). Since our designed locality loss in
Eq. (6) is minimized when the tasks with similar ground truths are routed to the same expert m (e.g.,
w

(m)
t = w

(m)
t−1), it enjoys several benefits as shown later in our theoretical results: each expert will

specialize in a particular set of tasks which leads to fast convergence of expert model w(m)
t , and the

performance of CL in terms of forgetting and generalization error will be improved. Note that in
Eq. (6), we only need to calculate the locality loss for the single expert mt, as ∥w(m)

t −w
(m)
t−1∥2 = 0

for any expert m ̸= mt that has not updated its model, leading to low computational complexity.

In addition to the novel locality loss in Eq. (6), we follow the existing MoE literature (e.g., Fedus
et al. (2022); Shazeer et al. (2016); Li et al. (2024)) where an auxiliary loss is typically defined to
characterize load balance among the experts:

Laux
t (Θt,Dt) = α ·M ·

∑
m∈[M ] f

(m)
t · P (m)

t , (7)

Algorithm 1 Training of the MoE model for CL
1: Input: T, σ0,Γ = O(σ1.25

0 ), λ = Θ(σ1.25
0 ), I(m) =

0, α = O(σ0.5
0 ), η = O(σ0.5

0 ), T1 = ⌈η−1M⌉;
2: Initialize θ

(m)
0 = 0 and w

(m)
0 = 0, ∀m ∈ [M ];

3: for t = 1, · · · , T do
4: Generate r

(m)
t for any m ∈ [M ];

5: Select mt in Eq. (1) and update w
(mt)
t in Eq. (5);

6: if t > T1 then
7: for ∀m ∈ [M ] with |hm − hmt | < Γ do
8: I(m) = 1; // Convergence flag
9: end for

10: end if
11: if ∃m, s.t. I(m) = 0 then
12: Update θ

(m)
t as in Eq. (9) for any m ∈ [M ];

13: end if
14: end for

where α is constant, f
(m)
t =

1
t

∑t
τ=1 1{mτ = m} is the fraction of tasks

dispatched to expert m since t = 1, and
P

(m)
t = 1

t

∑t
τ=1 πm(Xτ ,Θτ ) · 1{mτ =

m} is the average probability that the router
chooses expert m since t = 1. The auxiliary
loss in Eq. (7) encourages exploration
across all experts since it is minimized
under a uniform routing with f

(m)
t = 1

M

and P
(m)
t = 1

M . Although the definition
of auxiliary loss in Eq. (7) is not new, it
is necessary and plays a crucial role for
balancing the load across experts in the MoE
model for CL.

Based on Eq. (3), Eq. (6) and Eq. (7), we fi-
nally define the task loss for each task arrival
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nt as follows:
Ltask
t (Θt,w

(mt)
t ,Dt) = Ltr

t (w
(mt)
t ,Dt) + Lloc

t (Θt,Dt) + Laux
t (Θt,Dt). (8)

Commencing from the initialization Θ0, the gating network is updated based on GD:
θ
(m)
t+1 = θ

(m)
t − η · ∇

θ
(m)
t

Ltask
t (Θt,w

(mt)
t ,Dt), ∀m ∈ [M ], (9)

where η > 0 is the learning rate. Note that w(mt)
t in Eq. (5) is also the optimal solution for minimizing

Ltask
t (Θt,w

(mt)
t ,Dt) in Eq. (8). This is because both Lloc

t (Θt,Dt) and Laux
t (Θt,Dt) are derived

after updating w
(mt)
t , making Ltr

t (w
(mt)
t ,Dt) the sole objective for w(mt)

t in Eq. (8).

Key design II: Early termination. To ensure the stable convergence of the system with balanced
loads among experts (which we will theoretically justify in Section 4), after training sufficient (i.e.,
T1) rounds for expert exploration, we introduce an early termination strategy in Algorithm 1 by
evaluating a convergence flag I(m) for each expert m. This flag assesses the output gap, defined as
|hm(Xt,θt)− hmt

(Xt,θt)|, between the expert itself and any selected expert mt for t > T1. If this
gap exceeds threshold Γ for expert m, which indicates that gating network parameter θ(m)

t has not
converged, then the MoE model continues updating Θt for all experts based on Eq. (9). Otherwise,
the update of Θt is permanently terminated.

4 THEORETICAL RESULTS ON MOE TRAINING FOR CL

In this section, we provide theoretical analysis for the training of expert models and the gating
network in Algorithm 1, which further justifies our key designs in Section 3. Specifically, (i) we
first support our key design I by proving that the expert model converges fast via updating Θt under
our designed locality loss in Eq. (6). (ii) We then show that our key design II, early termination in
updating Θt, is necessary to ensure a stable convergence system state with experts’ balanced loads.
For clarity, we study the case with M > N in this section (labeled as M > N version), and further
extend the results to the M < N version in appendices. To characterize expert specialization, we
first show that each expert’s gate output is determined by the input feature signal vn of Xt.

Lemma 1 (M > N version). For any two feature matrices X and X̃ with the same feature signal
vn, with probability at least 1− o(1), their corresponding gate outputs of the same expert m satisfy∣∣hm(X,θ

(m)
t )− hm(X̃,θ

(m)
t )

∣∣ = O(σ1.5
0 ). (10)

The full version containing M < N case and the proof of Lemma 1 are given in Appendix C.
According to Lemma 1, the router decides expert mt for task nt based primarily on its feature signal
vnt . Consequently, given N tasks, all experts can be grouped into N sets according to their specialty,
i.e., their gating parameter θ(m)

t ’s to identify feature signal vn, where each expert set is defined as:
Mn =

{
m ∈ [M ]

∣∣n = argmaxj∈[N ](θ
(m)
t )⊤vj

}
. (11)

The following proposition indicates the convergence of the expert model after sufficient training
rounds under Algorithm 1.
Proposition 1 (M > N version). Under Algorithm 1, with probability at least 1 − o(1), for any
t > T1, where T1 = ⌈η−1M⌉, each expert m ∈ [M ] stabilizes within an expert set Mn, and its
expert model remains unchanged beyond time T1, satisfying w

(m)
T1+1 = · · · = w

(m)
T .

The full version and the proof of Proposition 1 are given in Appendix E. Proposition 1 demonstrates
that after T1 rounds of expert exploration, each expert will specialize in a specific task, enforced by
minimizing locality loss in Eq. (6). After that, expert models remain unchanged until the end of T .

Next, the following proposition characterizes the dynamics of gate outputs if there is no termination
of updating gating network parameters Θt in Algorithm 1.
Proposition 2 (M > N version). If the MoE keeps updating Θt by Eq. (9) at any round t ∈ [T ], we
obtain: 1) At round t1 = ⌈η−1σ−0.25

0 M⌉, the following property holds∣∣hm(Xt1 ,θ
(m)
t1 )− hm′(Xt1 ,θ

(m′)
t1 )

∣∣ = {
O(σ1.75

0 ), if m,m′ ∈ Mn,

Θ(σ0.75
0 ), otherwise.

(12)

2) At round t2 = ⌈η−1σ−0.75
0 M⌉, the following property holds∣∣hm(Xt2 ,θ

(m)
t2 )− hm′(Xt2 ,θ

(m′)
t2 )

∣∣ = O(σ1.75
0 ), ∀m,m′ ∈ [M ]. (13)
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The full version and the proof of Proposition 2 are given in Appendix F. According to Proposition 2,
if the MoE updates Θt at any round t, the gap between gate outputs of experts within the same expert
set converges to O(σ1.75

0 ) by round t1 (Eq. (12)). In contrast, the gap between experts in different sets
is sufficiently large, i.e., Θ(σ0.75

0 ), indicating that the MoE has successfully diversified experts into
different sets at round t1 as in Eq. (11). However, unlike MoE in single-task learning that can stop
training at any time after the expert models converge (e.g., Celik et al. (2022); Li et al. (2024)), MoE
in CL requires both the gating network and the experts to be suitably updated with the continuous
arrival of new tasks. This is necessary to balance the load on each expert and maximize the system
capacity utilization. However, continuing updating Θt according to Eq. (9) will eventually reduce the
output gap between any two experts to O(σ1.75

0 ) in Eq. (13) at training round t2, causing the router to
select wrong experts for subsequent task arrivals and incurring additional training errors.

Based on Proposition 2, it is necessary to terminate the update of Θt to preserve a sufficiently large
output gap between any two experts in different sets, ensuring expert diversity as in Eq. (12) at round
t1. This motivates our design of early termination in Algorithm 1, outlined from Line 7 to Line 13.
In the next proposition, we prove the benefit of terminating updating Θt in Algorithm 1.

Proposition 3 (M > N version). Under Algorithm 1, the MoE terminates updating Θt since round
T2 = O(η−1σ−0.25

0 M). Then for any task arrival nt at t > T2, the router selects any expert
m ∈ Mnt with an identical probability of 1

|Mnt |
, where |Mnt | is the number of experts in set Mn.

The full version and the proof of Proposition 3 are given in Appendix G. According to Algorithm 1,
once the MoE terminates updating Θt, the random noise r(m)

t in Eq. (1) will guide the router to select
experts in the same expert set with identical probability, effectively balancing the loads across experts
therein. Our theoretical analysis will be further corroborated by the experiments later in Section 6.

5 THEORETICAL RESULTS ON FORGETTING AND GENERALIZATION

For the MoE model described in Section 3, we define Et(w(mt)
t ) as the model error in the t-th round:

Et(w(mt)
t ) = ∥w(mt)

t −wnt
∥22, (14)

which characterizes the generalization performance of the selected expert mt with model w(mt)
t

for task nt at round t. Following the existing literature on CL (e.g., Lin et al. (2023); Chaudhry
et al. (2018)), we assess the performance of MoE in CL using the metrics of forgetting and overall
generalization error, defined as follows:

(1) Forgetting: Define Ft as the forgetting of old tasks after learning task nt for t ∈ {2, · · · , T}:

Ft =
1

t− 1

t−1∑
τ=1

(Eτ (w(mτ )
t )− Eτ (w(mτ )

τ )). (15)

(2) Overall generalization error: We evaluate the generalization performance of the model w(m)
T

from the last training round T by computing the average model error across all tasks:

GT =
1

T

T∑
τ=1

Eτ (w(mτ )
T ). (16)

In the following, we present explicit forms of the above two metrics for learning with a single
expert (i.e., M = 1) as a benchmark (cf. Lin et al. (2023)). Here we define r := 1 − s

d as the
overparameterization ratio.

Proposition 4. If M = 1, for any training round t ∈ {2, · · · , T}, we have

E[Ft] =
1

t−1

∑t−1
τ=1

{
rt−rτ

N

∑N
n=1 ∥wn∥2 + rτ−rt

N2

∑
n̸=n′ ∥wn′ −wn∥2

}
, (17)

E[GT ] =
rT

N

∑N
n=1 ∥wn∥2 + 1−rT

N2

∑
n̸=n′ ∥wn −w′

n∥2. (18)

Note that the setting here (with M = 1) differs slightly from Lin et al. (2023) as we have N tasks in
total. Hence a proof of Proposition 4 is provided in Appendix H. Proposition 4 implies that distinct
tasks with large model gap

∑
n̸=n′ ∥wn −w′

n∥2 lead to poor performance of both E[Ft] in Eq. (17)
and E[Gt] in Eq. (18), which is missing in the existing CL literature (e.g., Lesort et al. (2023)).
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Next, we investigate the impact of MoE on CL under two cases: (I) when there are more experts than
tasks (M > N ), and (II) when there are fewer experts than tasks (M < N ). The benefit of MoE will
be characterized by comparing our results with the single-expert baseline in Proposition 4.

5.1 CASE I: MORE EXPERTS THAN TASKS

Based on Proposition 1, we derive the explicit upper bounds for both forgetting and overall gener-
alization error in the following theorem. To simplify notations, we define L

(m)
t := t · f (m)

t as the
cumulative number of task arrivals routed to expert m up to round t, where f

(m)
t is given in Eq. (7).

Theorem 1. If M = Ω(N ln(N)), for each round t ∈ {2, · · · , T1}, the expected forgetting satisfies

E[Ft] <
1

t−1

∑t−1
τ=1

{
rL

(mτ )
t −rL

(mτ )
τ

N

∑N
n=1 ∥wn∥2 + rL

(mτ )
τ −rL

(mτ )
t

N2

∑
n̸=n′ ∥wn′ −wn∥2

}
.

(19)
For each t ∈ {T1 + 1, · · · , T}, we have E[Ft] =

T1−1
t−1 E[FT1

]. Further, after training task nT in the
last round T , the overall generalization error satisfies

E[GT ] <
1
T

∑T
τ=1

{
r
L
(mτ )
T1

N

∑N
n=1 ∥wn∥2 + 1−r

L
(mτ )
T1

N2

∑
n̸=n′ ∥wn′ −wn∥2

}
. (20)

The proof of Theorem 1 is given in Appendix I, and we have the following insights.

1) Forgetting. If t ≤ T1, in Eq. (19), the coefficient rL
(mτ )
t − rL

(mτ )
τ of the term

∑N
n=1 ∥wn∥2 is

smaller than 0 because L
(mτ )
t ≥ L

(mτ )
τ and r < 1, indicating that the training of new tasks enhances

the performance of old tasks due to the repeated task arrivals in this phase. Meanwhile, the coefficient
of model gap

∑
n̸=n′ ∥wn′ −wn∥2 is greater than 0, indicating that the forgetting is due to experts’

exploration of distinct tasks. However, as stated in Proposition 1, once the expert models converge at
t = T1, training on newly arriving tasks with correct routing no longer causes forgetting of previous
tasks. Consequently, for t ∈ {T1 + 1, · · · , T}, E[Ft] =

T1−1
t−1 E[FT1 ] decreases with t and converges

to zero as T → ∞. This result highlights that, unlike the oscillatory forgetting observed in Eq. (17)
for a single expert, the MoE model effectively minimizes expected forgetting in CL through its
correct routing mechanism. Furthermore, a decrease in task similarity, i.e., larger model gaps, further
amplifies the learning benefit of the MoE model.

2) Generalization error. Note that the second term
∑N

n̸=n′ ∥wn′ −wn∥2 dominates the generalization

error when tasks are less similar with large model gaps. In Eq. (20), the coefficient 1− rL
(mτ )
T1 of

the model gaps
∑N

n̸=n′ ∥wn′ −wn∥2 is smaller than 1− rT in Eq. (18), due to the convergence of
expert models after round T1. Therefore, the generalization error under MoE is reduced compared to
that of a single expert, especially as T increases (where 1− rT approaches 1 in Eq. (18)).

3) Expert number. According to Theorem 1, for t > T1, E[Ft] increases with T1 as additional rounds
of expert exploration accumulate more model errors in Eq. (19). Regarding E[GT ] in Eq. (20), a

longer exploration period T1 for experts increases the coefficient 1 − rL
(mτ )
T1 of the model gaps,

leading to an increase in E[GT ] when the model gaps across tasks are large. Since T1 increases
with expert number M , adding more experts does not enhance learning performance but delays
convergence. Note that if M = 1 in Theorem 1, L(mτ )

t becomes t for the single expert, causing
Eq. (19) and Eq. (20) to specialize to Eq. (17) and Eq. (18), respectively.

5.2 CASE II: FEWER EXPERTS THAN TASKS

Next, we consider a more general case with fewer experts than tasks, i.e., M < N , where Algorithm 1
still works efficiently. In particular, we assume that the N ground truths in W can be classified into
K clusters, where K < M , based on the task similarity. Let Wk denote the k-th task cluster. For any
two tasks n, n′ ∈ [N ] in the same cluster with wn,wn′ ∈ Wk, we assume ∥wn−wn′∥∞ = O(σ1.5

0 ).
Then we let set Mk include all experts that specialize in tasks within the k-th task cluster.

Recall Proposition 1 indicates that expert models converge after T1 rounds of exploration if M > N .
However, in the case of fewer experts than tasks (M < N ), each expert has to specialize in learning
a cluster of similar tasks. Consequently, as similar tasks within the same cluster are continuously
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routed to each expert, the expert models keep updating after round T1, behaving differently from the
M > N case in Proposition 1. Given the above understanding, we have the following theorem.
Theorem 2. If M < N and M = Ω(K ln(K)), for any t ∈ {1, · · · , T1}, the expected forgetting
E[Ft] is the same as Eq. (19). While for any t ∈ {T1 + 1, · · · , T}, the expected forgetting satisfies

E[Ft] <
1

t−1

∑t−1
τ=1

rL
(mτ )
t −rL

(mτ )
τ

N

∑N
n=1 ∥wn∥2 + 1

t−1

∑T1

τ=1
rL

(mτ )
i −r

L
(mτ )
T1

N2

∑
n̸=n′ ∥wn′ −wn∥2

+ Ψ1

t−1

∑t
τ=T1+1(1− rL

(mτ )
t −L(mτ )

τ )rL
(mτ )
t −L

(mτ )
T1

−1, (21)

where Ψ1 = 1
N

∑N
n=1

∑
n,n′∈Wk

∥wn′−wn∥2

|Wk| is the expected model gap between any two tasks in
the same task cluster. After training task nT in round T , the overall generalization error satisfies

E[GT ] <
1
T

∑T
τ=1

rL
(mτ )
T

N

∑N
n=1 ∥wn∥2 + 1

T

∑T1

τ=1
r
L
(mτ )
T

−L
(mτ )
T1 (1−r

L
(mτ )
T1 )

N2

∑
n̸=n′ ∥wn′ −wn∥2

+ Ψ2

T

{∑T1

τ=1(1− rL
(mτ )
T −L

(mτ )
T1 ) +

∑T
τ=T1+1 r

L
(mτ )
T −L

(mτ )
T1 (1− rL

(mτ )
T1 )

}
+ Ψ1

T

∑T
τ=T1+1(1− rL

(mτ )
T −L

(mτ )
T1 ), (22)

where Ψ2 = 1
N

∑N
n=1

1
K

∑K
k=1

1
|Wk|

∑
n′∈Wk

∥wn′ −wn∥2 is the expected model gap between a
randomly chosen task in W and any task in a fixed ground-truth cluster Wk.

The proof of Theorem 2 is given in Appendix J, and we provide the following insights.

1) Forgetting. Compared to Theorem 1, E[Ft] in Eq. (21) introduces an additional term Ψ1, which
measures the forgetting of task arrivals during {T1 + 1, · · · , τ} caused by updating expert models
for new task arrival in round τ ∈ {T1 + 1, · · · , T}. However, since tasks routed to the same expert
during {T1+1, · · · , T} belong to the same cluster, their small model gaps lead to minimal forgetting.
If there is only one task in each cluster, Ψ becomes 0 and E[Ft] becomes the same as Eq. (19).

2) Generalization error. As expert models continuously update at any t, E[GT ] in Eq. (22) comprises
three terms: a) the expected model gap 1

N2

∑N
n̸=n′ ∥wn′ − wn∥2 between any two random task

arrivals for t < T1, b) the expected model gap Ψ1 between two tasks in the same cluster for t > T1,
and c) the expected model gap Ψ2 between a random task arrival for t < T1 and any task arrival in a
fixed ground-truth cluster Wk for t > T1. If each cluster contains only one task, the coefficient of

Ψ2 simplifies to
∑T

τ=T1+1(1− rL
(mτ )
T1 ), given L

(mτ )
T = L

(mτ )
T1

without updates after T1. Moreover,
Ψ2 = 1

N2

∑N
n̸=n′ ∥wn′ −wn∥2 and Ψ1 = 0, resulting in Eq. (22) specializing to Eq. (20).

Note that under our assumption ∥wn −wn′∥∞ = O(σ1.5
0 ), the router cannot distinguish between

similar tasks n and n′ within the same cluster. Consequently, adding more experts cannot avoid
the errors Ψ1 and Ψ2 in Eq. (21) and Eq. (22). Therefore, similar to our insights of Theorem 1,
when there are enough experts than clusters (i.e., M = Ω(K ln(K))), adding more experts does not
enhance learning performance but delays convergence. Although the learning performance degrades
compared to Theorem 1, it still benefits from MoE compared to the single expert in Proposition 4.

Note that if we extend to the top-k routing strategy in Eq. (1), the router will select k experts to train
the same data at a time. In this case, the forgetting described in Eq. (21) may decrease, as each expert
may handle a smaller cluster of tasks compared to the case with top-1 routing strategy. However,
similar tasks that belong to the same cluster in the top-1 case now may be divided into different
clusters and handled by different expert, which may reduce the potential positive knowledge transfer
among these tasks. Consequently, the generalization error in Eq. (22) may not be smaller for the
top-k case.

6 EXPERIMENTS

In this section, we present extensive experiments on both linear models and DNNs to validate our
theoretical analysis. Due to space constraints, we include detailed experimental setups and additional
results on datasets such as MNIST LeCun et al. (1989), CIFAR-100 Krizhevsky et al. (2009) and
Tiny ImageNet Le & Yang (2015) in Appendix A.

Key design of early termination. In the first experiment, we aim to check the necessity of terminating
the update of Θt in Line 11 of Algorithm 1. Here we set T = 2000, N = 6,K = 3 and vary
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expert number M ∈ {1, 5, 10, 20}. As depicted in Figure 2(a) and Figure 2(c), both forgetting and
generalization error first increase due to the expert exploration and then converge to almost zero for
all MoE models with termination of update, verifying Theorem 1 and Theorem 2. In stark contrast,
learning without termination leads to poor performance with large oscillations in Figure 2(b) and
Figure 2(d), as the router selects the wrong expert for a new task arrival after the continual update
of Θt. In addition, in both Figure 2(a) and Figure 2(c), the MoE model significantly improves the
performance of CL compared to a single model. The comparison between M = 10 and M = 20
also indicates that adding extra experts delays the convergence if M > N , which does not improve
learning performance, verifying our analysis in Theorem 1 and Theorem 2.
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Figure 2: The dynamics of forgetting and overall generalization errors with and without termination
of updating Θt in Algorithm 1. Here we set N = 6 with K = 3 clusters and vary M ∈ {1, 5, 10, 20}.

Real-data validation. Finally, we extend our Algorithm 1 and insights from linear models to DNNs
by conducting experiments on the CIFAR-10 dataset (Krizhevsky et al. (2009)). The details of our
experiment setup is given in Appendix A.3. We set K = 4, N = 300 and vary M ∈ {1, 4, 12}. In
each training round, to diversify the model gaps of different tasks, we transform the d× d matrix into
a d× d dimensional normalized vector to serve as input for the gating network. Then we calculate the
variance σ0 of each element across all tasks from the input vector, which is then used for parameter
setting in Algorithm 1. Figure 3 illustrates that our theoretical insights from linear models also hold
for DNNs, in terms of the impact of MoE and early termination on the performance of CL in practice.
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Figure 3: The dynamics of overall generalization error and test accuracy under the CIFAR-10 dataset
(Krizhevsky et al. (2009)). Here we set K = 4, N = 300 and M ∈ {1, 4, 12}.

7 CONCLUSION

In this work, we conducted the first theoretical analysis of MoE and its impact on learning performance
in CL, focusing on an overparameterized linear regression problem. We establish the benefit of
MoE over a single expert by proving that the MoE model can diversify its experts to specialize in
different tasks, while its router learns to select the right expert for each task and balance the loads
across all experts. Then we demonstrated that, under CL, terminating the updating of gating network
parameters after sufficient training rounds is necessary for system convergence. Furthermore, we
provided explicit forms of the expected forgetting and overall generalization error to assess the impact
of MoE. Interestingly, adding more experts requires additional rounds before convergence, which
may not enhance the learning performance. Finally, we conducted experiments on real datasets using
DNNs to show that certain insights can extend beyond linear models.
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A EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

A.1 EXPERIMENTS COMPUTE RESOURCES

Operating system: Red Hat Enterprise Linux Server 7.9 (Maipo)

Type of CPU: 2.9 GHz 48-Core Intel Xeon 8268s

Type of GPU: NVIDIA Volta V100 w/32 GB GPU memory

A.2 EXPERIMENTAL DETAILS OF FIGURE 2

Synthetic data generation. We first generate N ground truths and their corresponding feature signals.
For each ground truth wn ∈ Rd, where n ∈ [N ], we randomly generate d elements by a normal
distribution N (0, σ0). These ground truths are then scaled by a constant to obtain their feature signals
vn. In each training round t, we generate (Xt,yt) according to Definition 1 based on ground-truth
pool W and feature signals. Specifically, after drawing wnt from W , for Xt ∈ Rd×s, we randomly
select one out of s samples to fill with vnt . The other s− 1 samples are generated from N (0, σ2

t Id).
Finally, we compute the output yt = X⊤

t wnt . Here we set σ0 = 0.4, σt = 0.1, d = 10 and s = 6.
In Figure 2, we set η = 0.5, α = 0.5 and λ = 0.3.

A.3 EXPERIMENTAL DETAILS OF FIGURE 3

Datasets. We use the CIFAR-10 (Krizhevsky et al. (2009)) dataset, selecting 512 samples randomly
for training and 2000 samples for testing at each training round.

DNN architecture and training details. We employ a non-pretrained ResNet-18 as our base model.
Each task is learned using Adam with a learning rate governed by a cosine annealing schedule for
5 epoches, with a minibatch size of 32, a weight decay of 0.005. The initial learning rate is set to
0.0005, and it is reduced to a minimum value of 10−6 over a total of 300 rounds.

Task setups. We define the ground truth pool as W = {(0), (4), (5), (9)}, representing K = 4 clusters
of tasks for recognizing the image classes airplane, deer, dog, truck, respectively. The experiment
spans T = 300 training rounds with N = 300 tasks. We randomly generate the task arrival sequence
[nt]t∈[T ], where each nt is drawn from (0), (4), (5), (9) with equal probability 1

4 . We then conduct
two experiments (with and without termination) using the same task arrival order. For each task
t ∈ [T ], we randomly select its type (e.g., task (0) for recognizing the airplane class image) and 512
corresponding samples, ensuring that tasks have distinct distributions and features.
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Figure 4: The dynamics of forgetting under the CIFAR-10 dataset. Here we set N = 4 and
M ∈ {1, 4}.

A.4 EXPERIMENTS ON THE MNIST DATASET

Datasets. We use the MNIST dataset LeCun et al. (1989), selecting 100 samples randomly for
training and 1000 samples for testing at each training round.

DNN architecture and training details. We use a five-layer neural network, consisting of two
convolutional layers and three fully connected layers. ReLU activation is applied to the first four
layers, while Sigmoid is used for the final layer. The first convolutional layer is followed by a 2D
max-pooling operation with a stride of 2. Each task is learned using SGD with a learning rate of
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0.2 for 600 epochs. The forgetting and overall generalization error are evaluated as described in
Eq. (15) and Eq. (16), respectively. Here, Et(w(mt)

t ) is defined as the mean-squared test error instead
of Eq. (14).

Task setups. We define the ground truth pool as W = {(1), (4), (7)}, representing K = 3 clusters of
tasks for recognizing the numbers 1, 4, and 7, respectively. The experiment spans T = 60 training
rounds with N = 60 tasks. Before the experiments in Figure 5, we randomly generate the task
arrival sequence [nt]t∈[T ], where each nt is drawn from (1), (4), (7) with equal probability 1

3 . We
then conduct two experiments (with and without termination) using the same task arrival order. For
each task t ∈ [T ], we randomly select its type (e.g., task (1) for recognizing the number 1) and 100
corresponding samples, ensuring that tasks have distinct distributions and features.
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Figure 5: Learning performance under the MNIST dataset (LeCun et al. (1989)). Here we set
K = 3, N = 60 and M ∈ {1, 4, 7}.

A.5 EXPERIMENTS ON THE CIFAR-100 DATASET

Datasets. We use the CIFAR-100 (Krizhevsky et al. (2009)) dataset, selecting 192 samples randomly
for training and 600 samples for testing at each training round.

DNN architecture and training details. They are the same as the experiments on the CIFAR-10
dataset in Appendix A.3.

Task setups. We define the ground truth pool as W = {(28), (40), (52), (72), (79), (99)}, rep-
resenting K = 6 clusters of tasks for recognizing the image classes telephone, bee, mountain,
bear, turtle, tractor respectively. The experiment spans T = 350 training rounds with N = 350
tasks. We randomly generate the task arrival sequence [nt]t∈[T ], where each nt is drawn from
(28), (40), (52), (72), (79), (99) with equal probability 1

6 . We then conduct two experiments (with
and without termination) using the same task arrival order. For each task t ∈ [T ], we randomly select
its type (e.g., task (28) for recognizing the telephone class image) and 192 corresponding samples,
ensuring that tasks have distinct distributions and features.
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Figure 6: Learning performance under the CIFAR-100 dataset. Here we set N = 6 and M ∈
{1, 8, 10}.

A.6 EXPERIMENTS ON THE TINY IMAGENET DATASET

Datasets. We use the Tiny ImageNet (Le & Yang (2015)) dataset, selecting 192 samples randomly
for training and 300 samples for testing at each training round.
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Table 1: The average incremental accuracy under the CIFAR-100 dataset.

Expert number Test accuracy (%)

M = 1 17.1
M = 8 25.5
M = 8 w/o ET 10.3
M = 10 32.9
M = 10 w/o ET 9.1

DNN architecture and training details. They are the same as the experiments on the CIFAR-10
dataset in Appendix A.3.

Task setups. We define the ground truth pool as W = {(20), (50), (83), (145), (168), (179)}, repre-
senting K = 6 clusters of tasks for recognizing six disjoint image classes from Tiny Imagenet respec-
tively. The experiment spans T = 300 training rounds with N = 300 tasks. We randomly generate
the task arrival sequence [nt]t∈[T ], where each nt is drawn from (20), (50), (83), (145), (168), (179)

with equal probability 1
6 . We then conduct two experiments (with and without termination) using the

same task arrival order. For each task t ∈ [T ], we randomly select its type (e.g., task (20)) and 192
corresponding samples, ensuring that tasks have distinct distributions and features.
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Figure 7: Learning performance under the Tiny ImageNet dataset. Here we set N = 6 and M ∈
{1, 8, 10}.

Table 2: The average incremental accuracy under the Tiny ImageNet dataset.

Expert number Test accuracy (%)

M = 1 17.4
M = 8 37.6
M = 8 w/o ET 10.5
M = 10 28.3
M = 10 w/o ET 10.3

A.7 EXPERIMENTS ON TERMINATION THRESHOLD AND LOAD BALANCE

In additional experiments, we vary termination threshold Γ ∈ {σ0.75
0 , σ0, σ

1.25
0 , σ1.5

0 } in Line 7 of
Algorithm 1 to investigate its effect on load balance and learning performance, under the same
synthetic data generation as Figure 2 in Appendix A.2.

Initially, we set σ0 = 0.4, λ = σ1.25
0 , M = 5, and N = 6 with K = 3 task clusters: W1 =

{1, 4},W2 = {2, 5}, and W3 = {3, 6}. Figure 8 illustrates the recorded task arrivals per round and
their routed experts. Figure 8(a) and Figure 8(b) depict that if the MoE model terminates the update
based on Γ > λ, the small noise r

(m)
t cannot alter the router’s decision from the expert with the

maximum gate output for each task cluster (e.g., expert 5 for W2 = {2, 5} in Figure 8(a)) in Eq. (1),
leading to imbalanced expert load. While for Γ ≤ λ in Figure 8(c) and Figure 8(d), the random
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noise r
(m)
t in Eq. (1) can mitigate the gaps of gate outputs among experts within the same expert set,

ensuring load balance (e.g., experts 3 and 4 for W2 = {2, 5} in Figure 8(c)).
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Figure 8: The records of task arrivals and their selected experts under different termination thresholds
in Line 7 of Algorithm 1: Γ ∈ {σ0.75

0 , σ0, σ
1.25
0 , σ1.5

0 }. Here we set M = 5, N = 6 and K = 3.

To further examine how load balance affects learning performance, we increase the task number to
N = 30. We repeat the experiment 100 times and plot the average forgetting and generalization
errors in Figure 9. Figure 9(a) illustrates that the forgetting is robust to a wide range of Γ, due to the
convergence of expert models after T1 rounds’ exploration. However, Figure 9(b) shows that balanced
loads under Γ ∈ {σ1.25

0 , σ1.5
0 } lead to smaller generalization errors compared to imbalanced loads

under Γ ∈ {σ0.75
0 , σ1

0}. This is because diverse expert models help mitigate model errors compared
to a single overfitted model.
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Figure 9: We run the experiment for 100 times to take the average learning performance under four
termination thresholds: Γ ∈ {σ0.75

0 , σ0, σ
1.25
0 , σ1.5

0 }. Here we set M = 5, N = 30 and K = 3.

B SMOOTH ROUTER

We first prove that Eq. (1) ensures a smooth transition between different routing behaviors, which
makes the router more stable. Suppose that there are two different datasets (X,y) and (X̂, ŷ)

simultaneously acting as input of the MoE. Let h and ĥ denote the corresponding output of the gating
network, respectively. Denote the probability vectors by p and p̂, which tell the probabilities that each
expert gets routed for the two datasets. For example, pm = P(argmaxm′∈[M ]{hm′ + r(m

′)} = m)

and p̂m = P(argmaxm′∈[M ]{ĥm′ + r(m
′)} = m) according to Eq. (1). Then we propose the

following lemma to prove the smooth router.

Lemma 2. The two probability vectors satisfy ∥p− p̂∥∞ ≤ λM2∥h− ĥ∥∞.

Proof. Let m1 = argmaxm{hm + r(m)} and m2 = argmaxm{ĥm + r(m)}. We first consider the
event that m1 ̸= m2. In this case, we have

hm1
+ r(m1) ≥ hm2

+ r(m2), ĥm2
+ r(m2) ≥ ĥm1

+ r(m1),
which implies that

ĥm2
− ĥm1

> r(m1) − r(m2) ≥ hm2
− hm1

. (23)

Define C(m1,m2) =
ĥm2−ĥm1+hm2−hm1

2 . Based on Eq. (23), we obtain

|r(m1) − r(m2) − C(m1,m2)| ≤
ĥm2

− ĥm1
− hm2

+ hm1

2
≤ ∥ĥ− h∥∞. (24)
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Therefore, we calculate that m1 ̸= m2 below
P(argmax

m
{hm + r(m)} ̸= argmax

m
{ĥm + r(m)})

≤P(∃ m1 ̸= m2 ∈ [M ], s.t. |r(m1) − r(m2) − C(m1,m2)| ≤ ∥ĥ− h∥∞)

≤
∑

m1<m2

P
(
|r(m1) − r(m2) − C(m1,m2)| ≤ ∥ĥ− h∥∞

)
=

∑
m1<m2

E
[
P(r(m2) + C(m1,m2)− ∥ĥ− h∥∞ ≤ r(m1) ≤ r(m2) + C(m1,m2) + ∥ĥ− h∥∞)|r(m2)

]
≤λM2∥ĥ− h∥∞,
where the first inequality is derived by Eq. (24), the second inequality is because of union bound, and
the last inequality is due to the fact that r(m) is drawn from Unif [0, λ].

Then for any j ∈ [M ], we have

|p̂i − pi| ≤
∣∣∣E [

1(argmax
m

{ĥm + r(m) = i})− 1(argmax
m

{ĥm + r(m) = i})
]∣∣∣

≤E
[∣∣∣1(argmax

m
{ĥm + r(m) = i})− 1(argmax

m
{ĥm + r(m) = i})

∣∣∣]
≤P(argmax

m
{hm + r(m)} ̸= argmax

m
{ĥm + r(m)})

≤M2∥ĥ− h∥∞.
This completes the proof of Lemma 2.

Intuitively, Lemma 2 tells that if the outputs h and ĥ of the gating network are similar for two tasks,
their data sets (X,y) and (X̂, ŷ) will be routed to the same expert with a high probability. It means
that the router transitions are smooth and continuous.

C FULL VERSION AND PROOF OF LEMMA 1

Lemma 1 (Full version). For any two feature matrices X and X̃ with feature signals vn and v′
n,

if wn = wn′ under M > N or wn,wn′ ∈ Wk under M < N , with probability at least 1 − o(1),
their corresponding gate outputs of the same expert m satisfy∣∣hm(X,θ

(m)
t )− hm(X̃,θ

(m)
t )

∣∣ = O(σ1.5
0 ). (25)

Proof. We first focus on the M > N case to prove Lemma 1. Then we consider the M < N case
to prove Lemma 1. For dataset (Xt,yt) generated in Definition 1 per round t, we can assume that
the first sample of Xt is the signal vector. Therefore, we rewrite Xt = [βtvn Xt,2 · · · Xt,s]. Let
X̃t = [βtvnt

0 · · · 0] represents the matrix that only keeps the feature signal.

Based on the definition of the gating network in Section 3, we have hm(Xt,θ
(m)
t ) =∑s

i=1(θ
(m)
t )⊤Xt,i. Then we calculate∣∣∣hm(Xt,θ

(m)
t )− hm(X̃t,θ

(m)
t )

∣∣∣ = ∣∣∣∣∣(θ(m)
t )⊤

s∑
i=2

Xt,i

∣∣∣∣∣
=

∣∣∣∣∣∣
s∑

i=2

d∑
j=1

(θ
(m)
t,j )⊤Xt,(i,j)

∣∣∣∣∣∣
≤

∣∣∣max
t,j

{θ(m)
t,j }

∣∣∣ · ∣∣∣ s∑
i=2

d∑
j=1

Xt,(i,j)

∣∣∣,
where θ

(m)
t,j is the j-th element of vector θ(m)

t and Xt,(i,j) is the (i, j)-th element of matrix Xt.
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Then we apply Hoeffding’s inequality to obtain

P
(
|

s∑
i=2

d∑
j=1

Xt,(i,j)| < s · d · σ0

)
≥ 1− 2 exp (− σ2

0s
2d2

∥Xt,i∥∞
).

As Xt,(i,j) ∼ N (0, σ2
t ), we have ∥Xt,i∥∞ = O(σt), indicating exp (− σ2

0s
2d2

∥Xt,i∥∞
) = o(1). Therefore,

with probability at least 1−o(1), we have
∣∣∑s

i=2

∑d
j=1 Xt,(i,j)

∣∣ = O(σ0). Consequently, we obtain∣∣hm(Xt,θ
(m)
t ) − hm(X̃t,θ

(m)
t )

∣∣ = O(σ1.5
0 ) due to the fact that

∣∣∑s
i=2

∑d
j=1 Xt,(i,j)

∣∣ = O(σ0)

and θ
(m)
t,j = O(σ0.5

0 ) proven in Lemma 6 later.

If M < N , we calculate∣∣∣hm(Xt,θ
(m)
t )− hm(X̃t,θ

(m)
t )

∣∣∣ = ∣∣∣(θ(m)
t )⊤

s∑
i=1

Xt,i

∣∣∣
≤

∣∣∣(θ(m)
t )⊤

s∑
i=2

Xt,i

∣∣∣+ ∣∣∣(θ(m)
t )⊤(vn − vn′)

∣∣∣
≤

∣∣∣max
t,j

{θ(m)
t,j }

∣∣∣ · ∣∣∣ s∑
i=2

d∑
j=1

Xt,(i,j)

∣∣∣+O(σ2
0)

= O(σ1.5
0 ),

where the second inequality is based on the union bound, the third inequality is because of θ(m)
t,j =

O(σ0.5
0 ) and our assumption ∥vn − vn′∥∞ = O(σ1.5

0 ), and the last inequality is based on our proof
of the M > N case above. This completes the proof of the full version of Lemma 1.

Based on Lemma 1, we revisit Lemma 2 to obtain the following conclusion for the smooth router.

Corollary 1. If datasets (X,y) and (X̂, ŷ) are generated by the same ground truth, then the two
probability vectors in Lemma 2 satisfy ∥p− p̂∥∞ = O

(
λM2σ1.5

0

)
.

D ANALYSIS OF LOSS FUNCTION

In this section, we analyze the loss function for both gating network parameters and expert models
before analyzing MoE.

Lemma 3. Under update rule Eq. (5), if the current task nt routed to expert mt have the same
ground truth with the last task nτ , where τ < t, routed to expert mt, i.e., wnt = wnτ , then the model
of expert mt satisfies w(mt)

t = w
(mt)
t−1 = · · · = w

(mt)
τ .

It is easy to prove Lemma 3 by the updating rule Eq. (5) such that we skip the proof here.

Next, we examine the training of the gating network parameter.

Lemma 4. For any training round t ≥ 1, we have that
∑M

m=1 ∇θ
(m)
t

Ltask
t = 0.

Proof. As the training loss ∇θ(m)Ltr
t = 0, we obtain

∇θ(m)Ltask
t = ∇θ(m)Lloc

t +∇θ(m)Laux
t . (26)

Next, we will prove
∑M

m=1 ∇θ
(m)
t

Lloc
t = 0 and

∑M
m=1 ∇θ

(m)
t

Lloc
t = 0, respectively. Based on the

two equations, we can prove Lemma 4.

According to the definition of locality loss in Eq. (6), we calculate

∇
θ
(m)
t

Lloc
t =

∂πmt(Xt,Θt)

∂θ
(m)
t

∥w(mt)
t −w

(mt)
t−1 ∥2. (27)
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If m = mt, we obtain
∂πmt(Xt,Θt)

∂θ
(m)
t

= πmt(Xt,Θt) ·
( ∑

m′ ̸=mt

πm′(Xt,Θt)
)
· ∂hm(Xt,θ

(m)
t )

∂θ
(m)
t

= πmt
(Xt,Θt) ·

( ∑
m′ ̸=mt

πm′(Xt,Θt)
)
·
∑
i∈[st]

Xt,i. (28)

If m ̸= mt, we obtain
∂πmt(Xt,Θt)

∂θ
(m)
t

= −πmt
(Xt,Θt) · πm(Xt,Θt) ·

∑
i∈[st]

Xt,i. (29)

Based on Eq. (27), Eq. (28) and Eq. (29), we obtain
M∑

m=1

∇
θ
(m)
t

Lloc
t = ∥w(mt)

t −w
(mt)
t−1 ∥2

M∑
m=1

∂πmt
(Xt,Θt)

∂θ
(m)
t

= 0.

According to the definition of auxiliary loss in Eq. (7), we calculate

∇
θ
(m)
t

Laux
t = αM

M∑
m′=1

f
(m′)
t · ∂P

(m′)
t

∂θ
(m)
t

=
αM

t
f
(mt)
t · ∂πmt(Xt,Θt)

∂θ
(m)
t

, (30)

where the second equality is due to the fact that ∂P
(mt)
t

∂θ
(m)
t

= 1
t ·

∂πmt (Xt,Θt)

∂θ
(m)
t

and ∂P
(m′)
t

∂θ
(m)
t

= 0 for any

m′ ̸= mt by Eq. (7). Then based on Eq. (28) and Eq. (29), we similarly obtain
M∑

m=1

∇
θ
(m)
t

Laux
t =

αM

t
f
(mt)
t

M∑
m=1

∂πmt
(Xt,Θt)

∂θ
(m)
t

= 0.

In summary, we finally prove
∑M

m=1 ∇θ
(m)
t

Ltask
t = 0 in Eq. (26).

In the following lemma, we analyze the gradient of loss function with respect to each expert.

Lemma 5. For any training round t ∈ {1, · · · , T}, the following property holds

∥∇
θ
(m)
t

Ltask
t ∥∞ =

{
Ω(σ0), if t ∈ {1, · · · , T1},
O(σ0), if t ∈ {T1 + 1, · · · , T} (31)

for any expert m ∈ [M ], where T1 = ⌈η−1M⌉ is the length of the exploration stage.

Proof. We prove Eq. (31) by analyzing ∇θ(m)Lloc
t = O(σ0) and ∇θ(m)Laux

t = O(αMt ) in Eq. (26),
respectively.

First, we calculate ∥∇
θ
(m)
t

Lloc
t ∥∞. Based on Eq. (27), we have

∇
θ
(m)
t

Lloc
t =

∂πmt
(Xt,Θt)

∂θ
(m)
t

∥w(mt)
t −w

(mt)
t−1 ∥2

= 1{wnτ
= wnt

} · 0 + 1{wnτ
̸= wnt

} · ∥w(mt)
t −w

(mt)
t−1 ∥2

∂πmt
(Xt,Θt)

∂θ
(m)
t

≤ ∥w(mt)
t −w

(mt)
t−1 ∥2

∂πmt
(Xt,Θt)

∂θ
(m)
t

,

where τ is the index of the last task that routed to expert mt, the second equality is derived by
Lemma 3. As ∂πmt (Xt,Θt)

∂θ
(m)
t

= O(1) and wn ∼ N (0,σ2
0), we finally obtain

∥∇
θ
(m)
t

Lloc
t ∥∞ = O(σ0).

Next, we further calculate ∥∇
θ
(m)
t

Laux
t ∥∞, which contains the following two cases.

22



Published as a conference paper at ICLR 2025

If t ∈ {1, · · · , T1}, by Eq. (30), we have

∥∇
θ
(m)
t

Laux
t ∥∞ ≥ ∥αM

T1
f
(mt)
t · ∂πmt(Xt,Θt)

∂θ
(m)
t

∥∞

≥ ∥σ0f
(mt)
t · ∂πmt(Xt,Θt)

∂θ
(m)
t

∥∞ = Ω(σ0),

where the second inequality is derived by setting η = Ω(σ0.5
0 ) to make T1 = ⌈σ−0.5

0 M⌉.

If t ∈ {T1 + 1, · · · , T}, we calculate

∥∇
θ
(m)
t

Laux
t ∥∞ ≤ ∥αM

T1
f
(mt)
t · ∂πmt

(Xt,Θt)

∂θ
(m)
t

∥∞

= O(σ0).

Based on the derived ∥∇
θ
(m)
t

Lloc
t ∥∞ and ∥∇

θ
(m)
t

Laux
t ∥∞ above, we can finally calculate

∥∇
θ
(m)
t

Ltask
t ∥∞ based on Eq. (26).

For t ∈ {1, · · · , T1}, if m ̸= mt, we have
∥∇

θ
(m)
t

Ltask
t ∥∞ = ∥∇

θ
(m)
t

Lloc
t +∇

θ
(m)
t

Laux
t ∥∞

≤ ∥O(σ0) +
αM

T1
f
(mt)
t · ∂πmt

(Xt,Θt)

∂θ
(m)
t

∥∞

= Ω(σ0).

Similarly, for any t ∈ {T1 + 1, · · · , T}, we can can obtain
∥∇

θ
(m)
t

Ltask
t ∥∞ = ∥∇

θ
(m)
t

Lloc
t +∇

θ
(m)
t

Laux
t ∥∞

≥ ∥O(σ0) +
αM

T1
f
(mt)
t · ∂πmt

(Xt,Θt)

∂θ
(m)
t

∥∞

= O(σ0).
This completes the proof of Eq. (31).

Given θ
(m)
0 = 0 for any expert m ∈ [M ], in the next lemma, we obtain the upper bound of θ(m)

t at
any round t ∈ {1, · · · , T}.

Lemma 6. For any training round t ∈ {1, · · · , T}, the gating network parameter of any expert m
satisfies ∥θ(m)

t ∥∞ = O(σ0.5
0 ).

Proof. Based on Lemma 5, for any t ∈ {1, · · · , T1} the accumulated update of θ(m)
t throughout the

exploration stage satisfies
∥θ(m)

t ∥∞ ≤ η · T1 · αM = O(σ0.5
0 ).

For any t ∈ {T1 + 1, · · · , T}, the accumulated update of θ(m)
t throughout the router learning phase

satisfies

∥θ(m)
t ∥∞ ≤ ∥θ(m)

T1
∥∞ + η · (T − T1) ·

αM

T1

= O(σ0.5
0 ) +O(σ0.5

0 − σ0) = O(σ0.5
0 ).

In summary, ∥θ(m)
t ∥∞ = O(σ0.5

0 ) for any round t ∈ {1, · · · , T}.

E FULL VERSION AND PROOF OF PROPOSITION 1

Proposition 1 (Full version). Under Algorithm 1, with probability at least 1− o(1), for any t > T1,
where T1 = ⌈η−1M⌉, each expert m ∈ [M ] satisfies the following properties:

1) If M > N , expert m stabilizes within an expert set Mn, and its expert model remains unchanged
beyond time T1, satisfying w

(m)
T1+1 = · · · = w

(m)
T .
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2) If M < N , expert m stabilizes within an expert set Mk, and its expert model satisfies ∥w(m)
t −

w
(m)
T1+1∥∞ = O(σ1.5

0 ) for any t ∈ {T1 + 2, · · · , T}.

We first propose the following lemmas before formally proving Proposition 1. Then we prove
Proposition 1 in Appendix E.8.

Lemma 7. At any training round t ∈ {1, · · · , T1}, for any feature signal vn, the gating network
parameter of expert m ∈ [M ] satisfies

⟨θ(m)
t+1 − θ

(m)
t ,vn⟩ =

{
−O(σ0), if m = mt,

O(M−1σ0), if m ̸= mt.

Lemma 7 tells that for any expert mt being selected by the router, its softmax value under the updated
θmt
t+1 is reduced since the next task t. While for any expert m without being selected, its softmax

value is increased. This is to ensure fair exploration of each expert m under the auxiliary loss function
in Eq. (7). In addition, for any expert m without being selected, its gating network parameter θ(m)

t is
updated at the same speed with others for any signal vector vn.

Lemma 8. At the end of the exploration stage, with probability at least 1− δ, the fraction of tasks
dispatched to any expert m ∈ [M ] satisfies∣∣∣f (m)

T1
− 1

M

∣∣∣ = O(η0.5M−1). (32)

Lemma 8 tells that during the exploration stage, all the M experts are expected to be evenly explored
by all tasks. Therefore, the gating network parameter θ(m)

t of expert m is updated similarly to all the
others.

Lemma 9. At the end of the exploration stage, i.e., t = T1, the following property holds∥∥∥θ(m)
T1

− θ
(m′)
T1

∥∥∥
∞

= O(η−0.5σ0),

for any m,m′ ∈ [M ] and m ̸= m′.

Define δΘ = |hm(Xt,θ
(m)
t )− hm′(Xt,θ

(m)
t )|. Then we obtain the following lemma.

Lemma 10. At any round t, if δΘt
is close to 0, it satisfies |πm(Xt,Θt)− πm′(Xt,Θt)| = O(δΘ).

Otherwise, |πm(Xt,Θt)− πm′(Xt,Θt)| = Ω(δΘ).

Lemma 11. If M = Ω(N ln(N)), we have |Mn| ≥ 1 for all n ∈ [N ] with probability at least
1− o(1). If M < N , given M = Ω(K ln(K)), we have |Mk| ≥ 1 for all k ∈ [K] with probability
at least 1− o(1).

Lemma 12. At any round t, we have the following properties:

1) for task arrival nt with ground truth wnt
= wn under M > N , if it is routed to a correct expert

mt ∈ Mn, then ∇
θ
(m)
t

Lloc
t = 0 for any expert m ∈ [M ].

2) for task arrival nt with ground truth wnt ∈ Wk under M < N , if it is routed to a correct expert
mt ∈ Mk, then ∥∇

θ
(m)
t

Lloc
t ∥∞ = O(σ1.5

0 ) for any expert m ∈ [M ].

Let Xn and Xn′ denote two feature matrices containing feature signals vn and vn′ , respectively.

Lemma 13. If n and n′ satisfy: 1) n ̸= n′ under M > N or 2) wn ∈ Wk and wn′ ∈ Wk′ with
k ̸= k′ under M < N , then if expert m satisfies 1) m ∈ Mn under M > N or 2) m ∈ Mk under
M < N , at the beginning of the router learning stage t = T1 + 1, then the following property holds
at any round t ∈ {T1 + 2, · · · , T}:

πm(Xn,Θt) > πm(Xn′ ,Θt), ∀m ∈ [M ]. (33)

Based on these lemmas, the proof of Proposition 1 is given in Appendix E.8.

E.1 PROOF OF LEMMA 7

Proof. According to Lemma 5, for any round t ∈ {1, · · · , T1}, the auxiliary loss is the primary loss
to update Θt of the gating network. Then based on the update rule of θ(m)

t in Eq. (9) and the gradient
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of ∇
θ
(mt)
t

L(aux)
t in Eq. (30), we obtain

∥θ(mt)
t+1 − θ

(mt)
t ∥∞ =∥η · ∇

θ
(mt)
t

L(aux)
t ∥∞

=O(σ0.5
0 η) ·

∥∥∥πmt(Xt,Θt) ·
∑

m′ ̸=mt

πm′(Xt,Θt) ·
∑
i∈[st]

Xt,i

∥∥∥
∞

=O(σ0),

based on the fact that πmt
(Xt,Θt)·

∑
m′ ̸=mt

πm′(Xt,Θt) = πmt
(Xt,Θt)·(1−πmt

(Xt,Θt)) ≤ 1
4

and ∥Xt∥∞ = O(1).

While for any m ̸= mt, we calculate
∥θ(m)

t+1 − θ
(m)
t ∥∞ =∥η · ∇

θ
(m)
t

L(aux)
t ∥∞

=O(σ0.5
0 η) ·

∥∥∥πmt
(Xt,Θt) · πm(Xt,Θt) ·

∑
i∈[st]

Xt,i

∥∥∥
∞

=O(M−1σ0),

due to the fact that πmt
(Xt,Θt) · πm(Xt,Θt) = O(M−1).

Note that by Eq. (30), we have ∇
θ
(mt)
t

L(aux)
t > 0 and ∇

θ
(m)
t

L(aux)
t < 0 for any m ̸= mt. Conse-

quently, for expert mt, its corresponding output hmt at the gating network will be reduced by O(σ0)
for the same feature signal vn since task t + 1. While for any expert m ̸= mt, its corresponding
output hm is increased by O(M−1σ0).

E.2 PROOF OF LEMMA 8

Proof. By the symmetric property, we have that for any m ∈ [M ], E[f (m)
T1

] = 1
M .

By Hoeffding’s inequality, we obtain

P(|f (m)
T1

− 1

M
| ≤ ϵ) ≥ 1− 2 exp (−2ϵ2T1).

Then we further obtain

P(|f (m)
T1

− 1

M
| ≤ ϵ, ∀m ∈ [M ]) ≥(1− 2 exp (−2ϵ2T1))

M

≥1− 2M exp (−2ϵ2T1)).

Let δ = 1 − 2M exp (−2ϵ2T1)). Then we obtain ϵ = O(η0.5M−1). Subsequently, there is a
probability of at least 1− δ that

∣∣f (m)
T1

− 1
M

∣∣ = O(η0.5M−1).

E.3 PROOF OF LEMMA 9

Proof. Based on Lemma 7 and Lemma 8 and their corresponding proofs above, we can prove
Lemma 9 below.

For experts m and m′, they are selected by the router for T1 · f (m)
T1

and T1 · f (m′)
T1

times during the
exploration stage, respectively. Therefore, we obtain

∥θ(m)
T1

∥∞ = f
(m)
T1

· T1 · O(σ0)− (1− f
(m)
T1

) · T1 · O(M−1σ0),

∥θ(m′)
T1

∥∞ = f
(m′)
T1

· T1 · O(σ0)− (1− f
(m′)
T1

) · T1 · O(M−1σ0).

Then by Eq. (9) and Lemma 7, we calculate∥∥∥θ(m)
T1

− θ
(m′)
T1

∥∥
∞ =

∣∣∣(f (m)
T1

− f
(m′)
T1

)
· T1 · O(σ0)−

(
(1− f

(m)
T1

)− (1− f
(m′)
T1

)
)
· T1 · O(M−1σ0)

∣∣
= |f (m)

T1
− f

(m′)
T1

| · T1 · O(σ0)

= O(η−0.5σ0),
where the first equality is derived based on the update steps in Lemma 7, and the last equality is
because of T1 · |f (m)

T1
− f

(m′)
T1

| = O(η−0.5) by Eq. (32) in Lemma 8.
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E.4 PROOF OF LEMMA 10

Proof. At any round t, we calculate

|πm(Xt,Θt)− πm′(Xt,Θt)| =
∣∣∣πm′(Xt,Θt) exp (hm(Xt,θ

(m)
t )− hm′(Xt,θ

(m′)
t ))− πm′(Xt,Θt)

∣∣∣
= πm′(Xt,Θt)

∣∣∣ exp (hm(Xt,θ
(m)
t )− hm′(Xt,θ

(m′)
t ))− 1

∣∣∣,
where the first equality is by solving Eq. (2). Then if δΘt is close to 0, by applying Taylor series with
sufficiently small δΘ, we obtain

|πm(Xt,Θt)− πm′(Xt,Θt)| ≈ πm′(Xt,Θt)|hm(Xt,θ
(m)
t )− hm′(Xt,θ

(m′)
t )|

= O(δΘ),

where the last equality is because of πm(X̃t,Θt) ≤ 1.

While if δΘt
is not sufficiently small, we obtain

|πm(Xt,Θt)− πm′(Xt,Θt)| > πm′(Xt,Θt)|hm(Xt,θ
(m)
t )− hm′(Xt,θ

(m′)
t )|

= Ω(δΘ).
This completes the proof.

E.5 PROOF OF LEMMA 11

Proof. If M > N , by the symmetric property, we have that for all n ∈ [N ],m ∈ [M ],

P(m ∈ Mn) =
1

N
.

Therefore, the probability that |Mn| at least includes one expert is

P(|Mn| ≥ 1) ≥ 1−
(
1− 1

N

)M

.

By applying union bound, we obtain

P(|Mn| ≥ 1, ∀n) ≥
(
1−

(
1− 1

N

)M)N

≥ 1−N
(
1− 1

N

)M

≥ 1−N exp
(
− M

N

)
≥ 1− δ,

where the second inequality is because (1 − N−1)M is small enough, and the last inequality is
because of M = Ω

(
N ln

(
N
δ

))
.

While if M < N , we can use the same method to prove that P(|Mk| ≥ 1, ∀k) ≥ 1 − δ, given
M = Ω

(
K ln

(
K
δ

))
and P(m ∈ Mk) =

1
K by the symmetric property.

E.6 PROOF OF LEMMA 12

Proof. In the case of M > N , as |Mn| = 1, if task nt with nt = n is routed to the correct
expert mt ∈ Mn, we have wmt

t = wmt
t−1 by Eq. (5). Consequently, the caused locality loss

Lloc
t (Θt,Dt) = 0, based on its definition in Eq. (6).

In the case of M < N , as |Mk| ≥ 1 for each cluster k, if task nt with wnt
∈ Wk is routed to the

correct expert mt ∈ Mk, we have
∥w(mt)

t −w
(mt)
t−1 ∥∞ = ∥Xt(X

⊤
t Xt)

−1(yt −X⊤
t w

(mt)
t−1 )∥∞

= ∥Xt(X
⊤
t Xt)

−1X⊤
t (wnt

−w
(mt)
t−1 )∥∞

= O(∥wt −w
(mt)
t−1 ∥∞)

= O(σ1.5
0 ),

where the second equality is because of yt = X⊤
t wt, and the third equality is because of ∥Xt∥∞ =

O(1). Therefore, we obtain ∇
θ
(m)
t

Lloc
t = O(σ1.5

0 ) by solving Eq. (27), for any m ∈ [M ].

E.7 PROOF OF LEMMA 13

Proof. We first focus on the M > N case to prove Lemma 13. Based on Eq. (35), we obtain
πm(Xn,ΘT1) − πm(Xn′ ,ΘT1) = Ω(σ0.5

0 ) for m ∈ Mn, given ∥θ(m)
t ∥∞ = O(σ0.5

0 ) derived in
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Lemma 6. To prove Eq. (33), we will prove that πm(Xn,Θt)− πm(Xn′ ,Θt) = Ω(σ0.5
0 ) holds for

any t ≥ T1 + 1.

Based on Lemma 5, we have ∥∇
θ
(m)
t

Ltask
t ∥∞ = O(σ0), leading to ⟨θ(mt)

t+1 −θ
(mt)
t ,vn⟩ = −O(σ1.5

0 )

for expert mt and ⟨θ(m)
t+1 − θ

(m)
t ,vn⟩ = O(σ1.5

0 ) for any other expert m ̸= mt. As T2 =

⌈σ−0.5
0 η−1M⌉, we calculate

∥θ(m)
T2

∥∞ < O(σ0.5
0 )− ∥∇

θ
(m)
T1

Ltask
T1

∥∞ · η · (T2 − T1)

≤ O(σ0.5
0 )−O(σ0) · O(σ−0.25

0 )

= O(σ0.5
0 ).

Therefore, ∥θ(m)
t ∥∞ = O(σ0.5

0 ) is always true for t ∈ {T1 + 1, · · · , T2}, and thus πm(Xn,Θt)−
πm(Xn′ ,Θt) = Ω(σ0.5

0 ) holds, meaning πm(Xn,Θt) > πm(Xn′ ,Θt), ∀m ∈ [M ].

For the case of M < N , we can use the same method to prove Eq. (33). This completes the proof.

E.8 FINAL PROOF OF PROPOSITION 1

Proof. In the case of M > N , to prove Proposition 1, we equivalently prove that at the end of
the exploration stage with t = T1, for any two experts m ∈ Mn and m′ ∈ Mn′ with n ̸= n′, the
following properties hold:

πm(Xn,Θt) > πm′(Xn,Θt), πm′(Xn′ ,Θt) > πm(Xn′ ,Θt), (34)
where Xn and Xn′ contain feature signals vn and vn′ , respectively. Based on Eq. (34), we have each
expert m ∈ [M ] stabilizes within an expert set Mn.

According to Lemma 1, the gating network only focuses on feature signals. Then for each expert m,
we calculate

|hm(Xn,θ
(m)
t )− hm(Xn′ ,θ

(m)
t )| = |⟨θ(m)

t ,vn − vn′⟩|

= ∥θ(m)
t ∥∞ · ∥vn − vn′∥∞

= O(σ0.5
0 ),

where the last equality is because of ∥θ(m)
t ∥∞ = O(σ0.5

0 ) in Lemma 6 and ∥vn − vn′∥∞ = O(1).

Then based on Lemma 10, we obtain
|πm(Xn,Θt)− πm(Xn′ ,Θt)| = Ω(σ0.5

0 ). (35)

Next, we prove Eq. (34) by contradiction. Assume there exist two experts m ∈ Mn and m′ ∈ Mn′

such that
πm(Xn,Θt) > πm′(Xn,Θt), πm(Xn′ ,Θt) > πm′(Xn′ ,Θt),

which is equivalent to
πm(Xn,Θt) > πm(Xn′ ,Θt) > πm′(Xn′ ,Θt) > πm′(Xn,Θt), (36)

because of πm(Xn,Θt) > πm(Xn′ ,Θt) and πm′(Xn′ ,Θt) > πm′(Xn,Θt) based on the definition
of expert set Mn in Eq. (11). Then we prove Eq. (36) does not exist at t = T1.

For task t = T1, we calculate
|hm(Xn,θ

(m)
T1

)− hm′(Xn,θ
(m)
T1

)| ≤ ∥θ(m)
T1

− θ
(m′)
T1

∥∞∥vn∥∞
= O(σ0η

−0.5), (37)
where the first inequality is derived by union bound, and the second equality is because of ∥vn∥∞ =

O(1) and ∥θ(m)
T1

− θ
(m′)
T1

∥∞ = O(σ0η
−0.5) derived in Lemma 9 at the end of the exploration phase.

Then according to Lemma 10 and Eq. (37), we obtain
|πm(Xn,ΘT1)− πm′(Xn,ΘT1)| = O(σ0η

−0.5). (38)

Based on Eq. (36), we further calculate
|πm(Xn,ΘT1)− πm′(Xn,ΘT1)| ≥ |πm(Xn,ΘT1)− πm(Xn′ ,ΘT1)|

= Ω(σ0.5
0 ),
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where the first inequality is derived by Eq. (36), and the last equality is derived in Eq. (35). This
contradicts with Eq. (38) as σ0η

−0.5 < σ0.5
0 given η = O(σ0.5

0 ). Therefore, Eq. (36) does not exist
for t = T1, and Eq. (34) is true for t = T1.

Based on Lemma 13, we obtain that each expert set Mn is stable during the router learning stage.
Therefore, at any round t ∈ {T1 + 1, · · · , T}, task nt with ground truth wnt will be routed to one of
its best experts in Mnt . Then based on Lemma 12, we have that ∇

θ
(m)
t

Lloc
t = 0 holds in the router

learning stage. Subsequently, w(m)
t of any expert m remains unchanged, based on Lemma 3.

In the case of M < N , we similarly obtain that at the end of the exploration phase with t = T1, for
any two experts m ∈ Mk and m′ ∈ Mk′ with k ̸= k′, the following property holds

πm(Xk,Θt) > πm′(Xk,Θt), πm′(Xk′ ,Θt) > πm(Xk′ ,Θt),
where Xk and Xk′ contain feature signals vk and vk′ , respectively.

Then during the router learning stage with t > T1, any task nt with wnt
∈ Wk will be routed to

the correct expert m ∈ Mk. Let w(m) denote the minimum ℓ2-norm offline solution for expert m.
Based on the update rule of w(mt)

t in Eq. (5), we calculate
w

(mt)
t −w(mt) = w

(mt)
t−1 +Xt(X

⊤
t Xt)

−1(yt −X⊤
t w

(mt)
t−1 )−w(mt)

= (I −Xt(X
⊤
t Xt)

−1X⊤
t )w

(mt)
t−1 +Xt(X

⊤
t Xt)

−1X⊤
t w

(mt) −w(mt)

= (I −Xt(X
⊤
t Xt)

−1X⊤
t )(w

(mt)
t−1 −w(mt)),

where the second equality is because of yt = X⊤
t w

(mt). Define Pt = Xt(X
⊤
t Xt)

−1X⊤
t for task

nt, which is the projection operator on the solution space wnt
. Then we obtain

w
(m)
t −w(m) = (I − Pt) · · · (I − PT1+1)(w

(m)
T1

−w(m))

for each expert m ∈ [M ].

Since orthogonal projections Pt’s are non-expansive operators, it also follows that
∀t ∈ {T1 + 1, · · · , T}, ∥w(m)

t −w(m)∥ ≤ ∥w(m)
t−1 −w(m)∥ ≤ · · · ≤ ∥w(m)

T1
−w(m)∥.

As the solution spaces Wk is fixed for each expert m ∈ Mk, we further obtain
∥w(m)

t −w
(m)
T1+1∥∞ = ∥w(m)

t −w(m) +w(m) −w
(m)
T1+1∥∞

≤ ∥w(m)
t −w(m)∥∞ + ∥w(m)

T1+1 −w(m)∥∞
≤ max

wn,wn′∈Wk

∥wn −wn′∥∞

= O(σ1.5
0 ),

where the first inequality is derived by the union bound, the second inequality is because of the
orthogonal projections for the update of w(m)

t per task, and the last equality is because of ∥wn −
wn′∥∞ = O(σ1.5

0 ) for any two ground truths in the same set Wk.

F FULL VERSION AND PROOF OF PROPOSITION 2

Proposition 2 (Full version). If the MoE keeps updating Θt by Eq. (9) at any round t ∈ [T ], we
obtain: 1) At round t1 = ⌈η−1σ−0.25

0 M⌉, the following property holds∣∣hm(Xt1 ,θ
(m)
t1 )− hm′(Xt1 ,θ

(m′)
t1 )

∣∣ =

O(σ1.75

0 ), if m,m′ ∈ Mn under M > N

or m,m′ ∈ Mk under M < N,

Θ(σ0.75
0 ), otherwise.

2) At round t2 = ⌈η−1σ−0.75
0 M⌉, the following property holds∣∣hm(Xt2 ,θ

(m)
t2 )− hm′(Xt2 ,θ

(m′)
t2 )

∣∣ = O(σ1.75
0 ), ∀m,m′ ∈ [M ].

We first propose the following lemmas as preliminaries to prove Proposition 2. Then we prove
Proposition 2 in Appendix F.3.

For any two experts m,m′, define ∆Θ = |πm(Xt,Θt)− πm′(Xt,Θt)|.
Lemma 14. At any round t ∈ {T1 + 1, · · · , t1}, ∀m ̸= mt, the following property holds∥∥∇

θ
(m)
t

Ltask
t −∇

θ
(mt)
t

Ltask
t

∥∥
∞ = O

(
σ0

)
. (39)
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Let Xn and Xn′ denote two feature matrices containing feature signals vn and vn′ , respectively.

Lemma 15. In the router learning stage with t ∈ {T1 + 1, · · · , t1}, for any two experts satisfying
1) m ∈ Mn and m′ ∈ Mn′ with n ̸= n′ under M > N , or 2) m ∈ Mk and m′ ∈ Mk′ with
wn ∈ Wk,wn′ ∈ Wk′ and k ̸= k′ under M < N , the following properties hold:

πm(Xn,Θt) > πm′(Xn,Θt), πm′(Xn′ ,Θt) > πm(Xn′ ,Θt). (40)

F.1 PROOF OF LEMMA 14

Proof. Based on the proof of Lemma 5, for any m ̸= mt, we calculate∥∥∇
θ
(m)
t

Ltask
t −∇

θ
(mt)
t

Ltask
t

∥∥
∞ =

∥∥(∥w(mt)
t −w

(mt)
t−1 ∥2 +

αM

t
fmt
t )

( ∂πmt

∂θ
(m)
t

− ∂πmt

∂θ
(mt)
t

)∥∥
∞

= O
(
σ0 +

αM

t

)
·
∥∥ ∂πmt

∂θ
(m)
t

− ∂πmt

∂θ
(mt)
t

∥∥
∞

= O(σ0),

where the last equality is because of πmt(Xt,Θt) < 1, ∥Xt∥∞ = O(1) and αM
t ≤ σ0 for any

t ∈ {T1 + 1, · · · , t1}.

F.2 PROOF OF LEMMA 15

Proof. We will use the same method as in Appendix E.8 to prove Lemma 15 by contradiction. Here,
we only prove the case of M > N . The proof for the case of M < N is similar.

Recall Proposition 1 that Eq. (40) is true at t = T1 + 1. Based on Lemma 13, we have
|πm(Xn,Θt)−πm(Xn′ ,Θt)| = Ω(σ0.5

0 ). Then in the following, we aim to prove |πm(Xn,ΘT1
)−

πm′(Xn,ΘT1
)| = O(σ0η

−0.5) in Eq. (38) is always true for any m ∈ Mn and m′ ∈ Mn′ during
the router learning stage. Then according to the proof of Proposition 1 in Appendix E.8, Eq. (40) is
also true.

Under Eq. (40) at t = T1 + 1, the router will route task t to its best expert mt ∈ Mnt
, leading

to ∇∗
θ
(m)
t

Lloc
t = 0 by Lemma 12. Therefore, ∇∗

θ
(m)
t

Ltask
t = O(σ0) makes ⟨θ(mt)

t+1 − θ
(mt)
t ,vn⟩ =

−O(σ1.5
0 ) for expert mt and ⟨θ(m)

t+1 − θ
(m)
t ,vn⟩ = O(σ1.5

0 ) any other expert m ̸= mt at task
t = T1 + 1.

Subsequently, for any two experts m ∈ Mn and m′ ∈ Mn′ , we calculate

∥θ(m)
t1 − θ

(m′)
t1 ∥∞ ≤ ∥θ(m)

T1+2 − θ
(m′)
T1+2∥∞ + (t1 − T1) · O(σ1.5

0 )

≤ O(σ0η
−0.5) +O(η−1σ−0.25

0 ) · O(σ1.5
0 )

= O(σ0η
−0.5),

where the first inequality is because of ⟨θ(m)
t+1 − θ

(m)
t ,vn⟩ = O(σ1.5

0 ), and the second inequality is
because of t1 − T1 ≤ t1.

As ∥θ(m)
t1 −θ

(m′)
t1 ∥∞ = O(σ0η

−0.5) and |πm(Xn,Θt)−πm(Xn′ ,Θt)| = Ω(σ0.5
0 ), Eq. (40) is true

for any t ∈ {T1 + 2, · · · , t1}, based on our proof of Proposition 1.

F.3 FINAL PROOF OF PROPOSITION 2

Proof. We first focus on the M > N case to prove |hm(Xt1 ,θ
(m)
t1 )− hm′(Xt1 ,θ

(m′)
t1 )| = O(σ1.75

0 )
for any two different experts m,m′ ∈ Mn in the same expert set in Eq. (12). Then we prove
|hm(Xt1 ,θ

(m)
t1 ) − hm′(Xt1 ,θ

(m′)
t1 )| = Θ(σ0.75

0 ) for any two experts m ∈ Mn and m ∈ Mn′ in
different expert sets in Eq. (12). After that, we prove Eq. (13) at round t2 = ⌈η−1σ−0.75

0 M⌉. Finally,
we prove that the above analysis can be generalized to the case of M < N .

In the case of M > N , let M ′ and m′ denote the two experts within set Mn with the maximum and
minimum softmax values, respectively. In other words, we have

M ′ = arg max
m∈Mn

{πm(Xt,Θt)}, m′ = arg min
m∈Mn

{πm(Xt,Θt)}, (41)
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where vn ∈ Xt. If the two experts satisfies |hM ′(Xt1 ,θ
(M ′)
t1 )− hm′(Xt1 ,θ

(m′)
t1 )| = O(σ1.75

0 ), then
this equation holds for any two experts in Mt.

At the beginning of the router learning stage, we have
|πM ′(XT1

,ΘT1
)− πm′(XT1

,ΘT1
)| = O(σ0η

−0.5) = O(σ0.75
0 ),

based on Proposition 1.

According to the routing strategy in Eq. (1), if the new task t has ground truth wn, it is always routed
to expert M ′ until its softmax value is reduced to smaller than others. Therefore, we calculate the
reduced output of gating network for expert M ′ in the router learning stage:

⟨θ(M ′)
T1+1 − θ

(M ′)
t1 ,vn⟩ ≤ O(σ0) · η · (t1 − T1)

= O(σ0.75
0 ).

While for expert m′, it will not be routed until its softmax value increased to the maximum. Therefore,
we similarly calculate the increased gating output ⟨θ(m′)

t1 − θ
(m′)
T1+1,vn⟩ = O(σ0.75

0 ) for expert m′.

Based on Lemma 4 and Lemma 14, the gating network parameters of experts m′ and M ′ will
converge to the same value, with an error smaller than the update step of Θt. Therefore, we obtain

∥θ(M ′)
t1 − θ

(m′)
t1 ∥∞ = ∥∇

θ
(mt1−1)

t1−1

Ltask
t1−1 · η∥∞

= ∥∇
θ
(mt1−1)

t1−1

Laux
t1−1 · η∥∞

= O(σ1.75
0 ),

based on the fact that ∇
θ
(mt1−1)

t1−1

Laux
t1−1 = O(σ1.25

0 ) and η = O(σ0.5
0 ). Then according to Lemma 10,

we obtain |hM ′(Xt1 ,θ
(M ′)
t1 )− hm′(Xt1 ,θ

(m′)
t1 )| = O(σ1.75

0 ), which also holds for any two experts
in the same expert set Mn.

Next, we prove |hm(Xt1 ,θ
(m)
t1 )−hm′(Xt1 ,θ

(m′)
t1 )| = Θ(σ0.75

0 ) in Eq. (12) for expert m′ in Eq. (41)
and another expert m /∈ Mn.

Let m̄ ∈ Mn′ denote the index of the expert in other expert sets with the maximum softmax value
of dataset Xn, where vn ∈ Xt. In other words, m̄ = argmaxm/∈Mn

{πm(Xt,Θt)}. According to
the proof of Proposition 1, we obtain πm′(XT1

,ΘT1
)− πm̄(XT1

,ΘT1
) = O(σ0.75

0 ). This equation
indicates that during the router learning stage with t ∈ {T1 + 1, · · · , t1}, any task arrival nt with
ground truth wnt

= wn will not be routed to expert m̄. Therefore, πm̄(Xt,Θt) keeps increasing
with t. Then we calculate the difference between the parameter gradient of expert m̄ and expert m′

per round t:
∇

θ
(m̄)
t

Ltask
t −∇

θ
(m′)
t

Ltask
t = αM

t fmt
t πmt

(Xt,Θt)(πm′(Xt,Θt)− πm̄(Xt,Θt)) ·
∑

i∈[st]
Xt,i

≥ 0,

based on the fact that πm′(Xt,Θt)− πm̄(Xt,Θt) > 0 under Lemma 13. As ∇
θ
(m̄)
t

Ltask
t < 0 and

∇
θ
(m′)
t

Ltask
t < 0, we obtain that hm′(Xt,θ

(m′)
t )− hm̄(Xt,θ

(m̄)
t ) increases with t during the router

learning stage. According to our former analysis of hm′(Xt,θ
(m′)
t ), we obtain

|hm′(Xt1 ,θ
(m′)
t1 )− hm̄(Xt1 ,θ

(m̄)
t1 )|

=|hm′(XT1
,θ

(m′)
T1

)− hm̄(XT1
,θ

(m̄)
T1

)|+ ∥∇
θ
(m̄)
t

Ltask
t −∇

θ
(m′)
t

Ltask
t ∥∞ · η · (t1 − T1)

=O(σ0.75
0 ) + Θ(σ0.75

0 ) = Θ(σ0.75
0 ),

where the first equality is because of ∥∇
θ
(m̄)
t

Ltask
t −∇

θ
(m′)
t

Ltask
t ∥∞ = O(σ0). This completes the

proof of Eq. (12).

Subsequently, we prove
∣∣hm(Xt2 ,θ

(m)
t2 )−hm′(Xt2 ,θ

(m′)
t2 )

∣∣ = O(σ1.75
0 ), ∀m,m′ ∈ [M ] in Eq. (13)

by proving |hM ′(Xt2 ,θ
(M ′)
t2 )− hm(Xt2 ,θ

(m)
t2 )| = O(σ1.75

0 ) between expert M ′ ∈ Mn in Eq. (41)
and any other expert m /∈ Mn.
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Based on Lemma 7, we obtain

⟨θ(m)
t+1 − θ

(m)
t ,vn⟩ =

{
−O(σ1.25

0 ), if m = mt,

O(M−1σ1.25
0 ), if m ̸= mt.

According to our analysis above, expert M ′ ∈ Mn is periodically selected by the router for training
task arrivals nt = n during t ∈ {t1, · · · , t2}. After each training of task n at expert M ′, its gate
output hM ′(Xt,θ

(M ′)
t ) is reduced by O(σ1.25

0 ). While at other rounds without being selected, its
gate output is increased by O(M−1σ1.25

0 ). Under such training behavior, we obtain∣∣hM ′(Xt1 ,θ
(M ′)
t1 )− hM ′(Xt2 ,θ

(M ′)
t2 )

∣∣ = O(σ1.75
0 ),

by assuming vn ∈ Xt1 and vn ∈ Xt2 .

While for expert m /∈ Mn, its gate output hm(Xt,θ
(m)
t ) keeps increasing for any data Xt of task n.

For any t ∈ {t1, · · · , t2}, we have ∥∇
θ
(m)
t

Laux
t ∥∞ = O(σ1.25

0 ) for expert m. Assuming that expert
m is never selected by the router for training task nt = n in the period, we obtain

|hm(Xt2 ,θ
(m)
t2 )− hm(Xt1 ,θ

(m)
t1 )| = ∥∇

θ
(m)
t

Laux
t ∥∞ · (t2 − t1) · η

> |hM ′(Xt1 ,θ
(M ′)
t1 )− hm(Xt1 ,θ

(m)
t1 )|

where the inequality is because of ∥∇
θ
(m)
t

Laux
t ∥∞ · (t2− t1) · η = O(σ0.5

0 ) and |hM ′(Xt1 ,θ
(M ′)
t1 )−

hm(Xt1 ,θ
(m)
t1 )| = Θ(σ0.75

0 ). This inequality indicates that there exists a training round t′ ∈
{t1, · · · , t2} such that hm(Xt′ ,θ

(m)
t′ ) > hM ′(Xt′ ,θ

(M ′)
t′ ) for task arrival nt′ = n. Consequently,

expert m′ is selected to train task n again, meaning that m′ ∈ Mn at round t′. Then the gating
network parameters of experts m and M ′ will converge to the same value, with an error of O(σ1.75

0 ),
based on Lemma 4 and Lemma 14. This completes the proof of Eq. (13) in the case of M > N .

In the case of M < N , let M ′ and m′ denote the experts of set Mk with the maximum and minimum
softmax values, respectively. In other words, we have

M ′ = arg max
m∈Mk

{πm(Xt,Θt)}, m′ = arg min
m∈Mk

{πm(Xt,Θt)},

where the ground truth of task t satisfies wn ∈ Wk.

According to the proof of Proposition 2 in Appendix F.3, the gating network parameters of experts m′

and M ′ will converge to the same value at the end of the router learning stage, with an error smaller
than the update step of Θt. Therefore, we obtain

∥θ(M ′)
t1 − θ

(m′)
t1 ∥∞ = ∥∇

θ
(mt1−1)

t1−1

Ltask
t1−1 · η∥∞

= ∥(∇
θ
(mt1−1)

t1−1

Lloc
t1−1 +∇

θ
(mt1−1)

t1−1

Laux
t1−1) · η∥∞

= O(σ1.75
0 ),

based on the fact that ∇
θ
(mt1−1)

t1−1

Laux
t1−1 = O(σ1.25

0 ) and ∇
θ
(mt1−1)

t1−1

Lloc
t1−1 = O(σ1.5

0 ) derived in

Lemma 12. Then we obtain |hM ′(Xt1 ,θ
(M ′)
t1 ) − hm′(Xt1 ,θ

(m′)
t1 )| = O(σ1.75

0 ), which also holds
for any two experts in the same expert set Mk.

Similarly, for any two experts in different expert sets, we can derive
∣∣∣hm(Xt1 ,θ

(m)
t1 ) −

hm′(Xt1 ,θ
(m′)
t−1 )

∣∣∣ = Θ(σ0.75
0 ). For training round t2, the proof for the case of M < N is the

same as the case of M > N above, and thus we skip it here.

G FULL VERSION AND PROOF OF PROPOSITION 3

Proposition 3 (Full version). Under Algorithm 1, the MoE terminates updating Θt since round
T2 = O(η−1σ−0.25

0 M). Then for any task arrival nt at t > T2, the following property holds:

1) If M > N , the router selects any expert m ∈ Mnt with an identical probability of 1
|Mnt |

, where
|Mnt | is the number of experts in set Mn.
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2) If M < N and wnt
∈ Wk, the router selects any expert m ∈ Mk, with an identical probability of

1
|Mk| , where |Mk| is the number of experts in set Mk.

Proof. In the case of M > N , according to Algorithm 1 and Proposition 2, after the termination
of gating network update, the following properties hold: 1) |hm(Xt,θ

(m)
t ) − hm′(Xt,θ

(m′)
t )| =

Θ(σ0.75
0 ) for any m ∈ Mn and m′ ∈ Mn′ and 2) |hm(Xt,θ

(m)
t ) − hm′(Xt,θ

(m′)
t )| = O(Γ) for

any m,m′ ∈ Mn, where Γ = O(σ1.25
0 ).

If the ground truth of task arrival nt satisfies wnt = wn, for any experts m ∈ Mn and m′ /∈ Mn,
we have
hm(Xt,θ

(m)
t ) + r

(m)
t − (hm′(Xt,θ

(m′)
t ) + r

(m′)
t ) ≥ hm(Xt,θ

(m)
t )− hm′(Xt,θ

(m′)
t ) + r

(m′)
t

= Θ(σ0.75
0 ),

given r
(m′)
t = Θ(σ1.25

0 ) and hm(Xt,θ
(m)
t ) − hm′(Xt,θ

(m′)
t ) = Θ(σ0.75

0 ). Therefore, any expert
m′ /∈ Mn will not be selected to learn task t, and only experts in set Mn will be selected.

For any experts m ∈ Mn, we calculate

P
(
mt = m|m ∈ Mn

)
= P

(
m = arg max

m′∈Mn

{
hm′(Xt,θ

(m′)
t ) + r

(m′)
t

})
= P

(
hm(Xt,θ

(m)
t ) + r

(m)
t − (hm′(Xt,θ

(m′)
t ) + r

(m′)
t ) > 0, ∀m′ ∈ Mn

)
= P

(
r
(m)
t > r

(m′)
t , ∀m′ ∈ Mn

)
=

1

|Mn|
,

where the third equality is because of r(m)
t = Θ(σ1.25

0 ) and |hm(Xt,θ
(m)
t ) − hm′(Xt,θ

(m′)
t )| =

O(σ1.25
0 ) derived under Algorithm 1, and the last equality is due to the fact that r(m)

t satisfies a
uniform distribution Unif[0, λ].

In the case of M < N , we similarly derive the following properties: 1) |hm(Xt,θ
(m)
t ) −

hm′(Xt,θ
(m′)
t )| = Θ(σ0.75

0 ) for any m ∈ Mk and m′ ∈ Mk′ and 2) |hm(Xt,θ
(m)
t ) −

hm′(Xt,θ
(m′)
t )| = O(Γ) for any m,m′ ∈ Mk. Based on the two properties, hm(Xt,θ

(m)
t ) +

r
(m)
t − (hm′(Xt,θ

(m′)
t ) + r

(m′)
t ) = Θ(σ0.75

0 ) is always true for any two experts m and m′ not in
the same expert set Mk. Furthermore, we can similarly calculate

P
(
mt = m|m ∈ Mk

)
= P

(
r
(m)
t > r

(m′)
t , ∀m′ ∈ Mk

)
=

1

|Mk|
.

This completes the proof of Proposition 3.

H PROOF OF PROPOSITION 4

Proof. In the single-expert system, based on the definition of forgetting in Eq. (15) and Eq. (42) in
Lemma 16, for any training rounds t ∈ [T ] and i ∈ {1, · · · , t}, we calculate:

E[Ft] =
1

t− 1

t−1∑
i=1

E
[
∥w(mi)

t −wni
∥2 − ∥w(mi)

ni
−wni

∥2
]

=
1

t− 1

t−1∑
i=1

{
(rt − ri)E[∥wni

∥2] +
t∑

l=1

(1− r)rt−lE[∥wnl
−wni

∥2]

−
i∑

j=1

(1− r)ri−jE[∥wnj −wni∥2]
}

=
1

t− 1

t−1∑
i=1

{rT − ri

N

N∑
n=1

∥wn∥2 +
ri − rt

N2

N∑
n̸=n′

∥wn′ −wn∥2
}
,
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where we let wni
denote the ground truth of the task arrival at round i. Here the last equality is

derived by E[∥wni
∥2] = 1

N

∑N
n=1 ∥wn∥2 and

E[∥wnj
−wni

∥2] = E[ 1N
∑N

n=1 ∥wnj
−wn∥2] = 1

N2

∑
n̸=n′ ∥wn′ −wn∥2

when there is only a single expert.

Similarly, we can calculate the generalization error
E[GT ] =

1
T

∑T
i=1 E[∥w

(mi)
T −wni∥2]

= 1
T

∑T
i=1

(
rTE[∥wni

∥2] +
∑T

l=1(1− r)rT−lE[∥wnl
−wni

∥2]
)

= rT

N

∑N
n=1 ∥wn∥2 + 1−rT

N2

∑
n̸=n′ ∥wn −w′

n∥2,
where the second equality is because of Eq. (42) in Lemma 16. This completes the proof of
Proposition 4.

I PROOF OF THEOREM 1

Before proving Theorem 1, we first propose the following lemma. Then we formally prove Theorem 1
in Appendix I.2.

For expert m, let τ (m)(l) ∈ {1, · · · , T1} represent the training round of the l-th time that the router
selects expert m during the exploration stage. For instance, τ (1)(2) = 5 indicates that round t = 5 is
the second time the router selects expert 1.

Lemma 16. At any round t ∈ {T1 + 1, · · · , T}, for i ∈ {T1 + 1, · · · , t}, we have

∥w(mi)
t −wni

∥2 = ∥w(mi)
T1

−wni
∥2.

While at any round t ∈ {1, · · · , T1}, for any i ∈ {1, · · · , t}, we have

E[∥w(mi)
t −wni∥2] = rL

(mi)
t E[∥wni∥2] +

L
(mi)
t∑
l=1

(1− r)rL
(mi)
t −lE[∥wτ (mi)(l) −wni∥2], (42)

where L
(mi)
t = t · f (mi)

t and r = 1− s
d .

I.1 PROOF OF LEMMA 16

Proof. At any round t ∈ {T1 + 1, · · · , T}, we have w
(m)
t = w

(m)
T1

, based on Proposition 1 and

Proposition 2. Therefore, ∥w(mi)
t − wni

∥2 = ∥w(mi)
T1

− wni
∥2 is true for any round t ∈ {T1 +

1, · · · , T} and i ∈ {T1 + 1, . . . , t}.

Next, we prove Eq. (42) for round t ∈ {1, · · · , T1}. Define Pt = Xt(X
⊤
t Xt)

−1X⊤
t for task t. At

current task t, there are totally L
(m)
t = t · f (m)

t tasks routed to expert m, where f
(m)
t is in Eq. (7).

Based on the update rule of w(m)
t in Eq. (5), we calculate

∥w(mi)
t −wni

∥2 = ∥w(mi)

τ (mi)(L
(mi)
t )

−wni
∥2

= ∥(I−Pt)w
(mi)

τ (mi)(L
(mi)
t −1)

+Ptwτmi (L
(mi)
t )

−wni∥2

= ∥(I−Pt)(w
(mi)

τ (mi)(L
(mi)
t −1)

−wni
) +Pt(wτmi (L

(mi)
t )

−wni
)∥2,

where the first equality is because there is no update of w(mi)
t for t ∈ {τ (mi)(L

(mi)
t ), · · · , t}, and

the second equality is by Eq. (5).

As Pt is the orthogonal projection matrix for the row space of Xt, based on the rotational symmetry
of the standard normal distribution, it follows that E∥Pt(wτmi (L

(mi)
t )

−wni)∥ = s
d∥wτmi (L

(mi)
t )

−
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wni
∥2. Then we further calculate

E[∥w(mi)
t −wni∥2] = (1− s

d
)E[∥w(mi)

τ (mi)(L
(mi)
t −1)

−wni∥2] +
s

d
E[∥w

τ (mi)(L
(mi)
t )

−wni∥2]

= (1− s

d
)L

(mi)
t E[∥w(mi)

0 −wni∥2]

+

L
(mi)
t∑
l=1

(1− s

d
)L

(mi)
t −l s

d
E[∥w

τ (mi)(L
(mi)
t )

−wni∥2]

= rL
(mi)
t E[∥wni∥2] +

L
(mi)
t∑
l=1

(1− r)rL
(mi)
t −lE[∥wτ (mi)(l) −wni∥2],

where the second equality is derived by iterative calculation, and the last equality is because of
w

(m)
0 = 0 for any expert m. Here we denote by r = 1− s

d to simplify notations.

I.2 FINAL PROOF OF THEOREM 1

Proof. Based on Eq. (42) in Lemma 16, we obtain

E[∥w(mi)
i −wni

∥2] = rL
(mi)

i E[∥wni
∥2] +

L
(mi)

i∑
l=1

(1− r)rL
(mi)

i −lE[∥wτ (mi)(l) −wni
∥2],

where τ (mi)(L
(mi)
i ) = i.

Then at any round t ∈ {2, · · · , T1}, we calculate the expected forgetting as:

E[Ft] =
1

t− 1

t−1∑
i=1

E
[
∥w(mi)

t −wni
∥2 − ∥w(mi)

i −wni
∥2
]

=
1

t− 1

t−1∑
i=1

{
(rL

(mi)
t − rL

(mi)

i )E[∥wni∥2] +
L

(mi)
t∑
l=1

(1− r)rL
(mi)
t −lE[∥wτ (mi)(l) −wni∥2]

−
L

(mi)

i∑
j=1

(1− r)rL
(mi)

i −jE[∥wτ (mi)(j) −wni∥2]
}

where ci,j = (1− r)(rL
(mi)
t −L

(mi)

i + rL
(mi)
t −j − rj−L

(mi)

i ).

As task i’s ground truth wni
is randomly drawn from ground truth pool W with identical probability

1
N , we have

E[∥wni
∥2] = 1

N

N∑
n=1

∥wn∥2.

According to Lemma 8 and Proposition 1, each expert m will converge to an expert set Mn before
t = T1. Therefore, we obtain

E[∥wτ (mi)(l) −wni∥2] = E[
1

N

N∑
n=1

∥wτ (mi)(l) −wn∥2]

<
1

N

N∑
n=1

1

N

N∑
n′=1

∥wn′ −wn∥2

=
1

N2

N∑
n̸=n′

∥wn′ −wn∥2, (43)

where the inequality is because the expected error E[∥wτ (mi)(l) − wn∥2] per round for t < T1 is
smaller than the uniformly random routing strategy with expected error E[∥wτ (mi)(l) −wn∥2] =
1
N

∑N
n′=1 ∥wn′ −wn∥2, and the last equality is because of ∥wn −wn′∥2 = 0 for n′ = n.

34



Published as a conference paper at ICLR 2025

Therefore, we finally obtain

E[Ft] <
1

t−1

∑t−1
i=1

{
rL

(mi)
t −rL

(mi)
i

N

∑N
n=1 ∥wn∥2 + 1−r

N2

∑L
(mi)
t

l=1 rL
(mi)
t −l

∑N
n̸=n′ ∥wn′ −wn∥2

− 1−r
N2

∑L
(mi)

i
j=1 rL

(mi)

i −j
∑N

n̸=n′ ∥wn′ −wn∥2
}

= 1
t−1

∑t−1
i=1

{
rL

(mi)
t −rL

(mi)
i

N

∑N
n=1 ∥wn∥2 + 1−rL

(mi)
t

N2

∑N
n̸=n′ ∥wn′ −wn∥2

}
− 1−rL

(mi)
i

N2

∑N
n̸=n′ ∥wn′ −wn∥2

}
=

1

t− 1

t−1∑
i=1

{rL
(mi)
t − rL

(mi)

i

N

N∑
n=1

∥wn∥2 +
rL

(mi)

i − rL
(mi)
t

N2

N∑
n̸=n′

∥wn′ −wn∥2
}
.

For any t ∈ {T1 +1, · · · , T}, based on Proposition 2, the expert model w(m)
t = w

(m)
T1

for any expert
m ∈ [M ]. Therefore, we calculate the caused forgetting

E[Ft] =
1

t− 1

t−1∑
i=1

E
[
∥w(mi)

t −wni∥2 − ∥w(mi)
i −wni∥2

]
=

1

t− 1

T1∑
i=1

E
[
∥w(mi)

T1
−wni

∥2 − ∥w(mi)
i −wni

∥2
]

=
T1 − 1

t− 1
E[Ft].

Based on Eq. (42), we can also calculate the close form of the generalization error:

E[GT ] =
1

T

T∑
i=1

E[∥w(mi)
T −wni

∥2]

=
1

T

T∑
i=1

E[∥w(mi)
T1

−wni
∥2]

=
1

T

T∑
i=1

(
rL

(mi)

T1 E[∥wni
∥2] +

L
(mi)

T1∑
l=1

(1− r)rL
(mi)

T1
−lE[∥wτ (mi)(l) −wni

∥2]
)

<

∑T
i=1 r

L
(mi)

T1

NT

N∑
n=1

∥wn∥2 +
1− r

N2T

T∑
i=1

L
(mi)

T1∑
l=1

rL
(mi)

T1
−l

N∑
n̸=n′

∥wn′ −wn∥2

=

∑T
i=1 r

L
(mi)

T1

NT

N∑
n=1

∥wn∥2 +
∑T

i=1(1− rL
(mi)

T1 )

N2T

N∑
n̸=n′

∥wn′ −wn∥2,

where the inequality is because of Eq. (43).

J PROOF OF THEOREM 2

Proof. For any round t ∈ {1, · · · , T1}, the forgetting is the same as the case of M > N in Theorem 1,
as tasks randomly arrive and are routed to different experts. Therefore, we skip the proof for t < T1.

For t ∈ {T1 + 1, · · · , T}, the router will route tasks in the same cluster to each expert per round.
Therefore, we divide the t rounds into two subintervals: i ∈ {1, · · · , T1} and i ∈ {T1 + 1, · · · , t} to
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calculate the forgetting as

E[Ft] =
1

t−1

∑t
i=1 E

[
∥w(mi)

t −wni
∥2 − ∥w(mi)

i −wni
∥2
]

= 1
t−1

∑T1

i=1

{
(rL

(mi)
t − rL

(mi)

i )E[∥wni
∥2] +

∑L
(mi)
t

l=1 (1− r)rL
(mi)
t −lE[∥wτ (mi)(l) −wni

∥2]

−
∑L

(mi)

i
j=1 (1− r)rL

(mi)

i −jE[∥wτ (mi)(j) −wni
∥2]

}
+

1
t−1

∑T
i=T1+1

{
(rL

(mi)
t − rL

(mi)

i )E[∥wni
∥2] +

L
(mi)
t∑

l=L
(mi)

T1
+1

(1− r)rL
(mi)
t −lE[∥wτ (mi)(l) −wni

∥2]

︸ ︷︷ ︸
term a

−
L

(mi)

i∑
j=L

(mi)

T1
+1

(1− r)rL
(mi)

i −jE[∥wτ (mi)(j) −wni
∥2]

︸ ︷︷ ︸
term b

}

where the first term in the second equality is similarly derived as forgetting in Eq. (19). For the
term a − term b in the second equality, we calculate

term a − term b

=

L
(mi)
t −L

(mi)

i +L
(mi)

T1
+1∑

l=L
(mi)

T1
+1

(1− r)rL
(mi)
t −lE[∥wτ (mi)(l) −wni∥2]

=rL
(mi)
t −L

(mi)

T1 (1− rL
(mi)
t −L

(mi)

i )E[∥wτ (mi)(l) −wni∥2]

=
rL

(mi)
t −L

(mi)

T1
−1(1− rL

(mi)
t −L

(mi)

i )

N

N∑
n=1

E[∥wτ (mi)(l) −wn∥2]

=
rL

(mi)
t −L

(mi)

T1
−1(1− rL

(mi)
t −L

(mi)

i )

N

N∑
n=1

∑
n,n′∈Wk

∥wn′ −wn∥2

|Wk|
,

where the third equality is derived by E[∥wτ (mi)(l) − wni
∥2] = 1

N

∑N
n=1 E[∥wτ (mi)(l) − wn∥2],

and the last equality is because the router always routes task wτ (mi)(l) = wn′ within the same cluster
Wk to expert mi. Taking the result of term a − term b into E[Ft], we obtain

E[Ft] <
1

t− 1

t−1∑
i=1

rL
(mi)
t − rL

(mi)

i

N

N∑
n=1

∥wn∥2 +
1

t− 1

T1∑
i=1

rL
(mi)

i − rL
(mi)

T1

N2

N∑
n̸=n′

∥wn′ −wn∥2

+
1

t− 1

t∑
i=T1+1

rL
(mi)
t −L

(mi)

T1
−1(1− rL

(mi)
t −L

(mi)

i )

N

N∑
n=1

∑
n,n′∈Wk

∥wn′ −wn∥2

|Wk|
.
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Similarly, we can calculate the overall generalization error as

E[GT ] =
1

T

T∑
i=1

E[∥w(mi)
T −wni∥2]

=
1

T

T∑
i=1

(
rL

(mi)

T E[∥wni∥2] +
L

(mi)

T∑
l=1

(1− r)rL
(mi)

T −lE[∥wτ (mi)(l) −wni∥2]
)

=
1

T

T∑
i=1

rL
(mi)

T E[∥wni
∥2] + 1

T

T1∑
i=1

{ L
(mi)

T1∑
l=1

(1− r)rL
(mi)

T −l E[∥wτ (mi)(l) −wni
∥2]︸ ︷︷ ︸

term 1

+

L
(mi)

T∑
l=L

(mi)

T1
+1

(1− r)rL
(mi)

T −l E[∥wτ (mi)(l) −wni
∥2]︸ ︷︷ ︸

term 2

}

+
1

T

T∑
i=T1+1

{ L
(mi)

T1∑
l=1

(1− r)rL
(mi)

T −l E[∥wτ (mi)(l) −wni
∥2]︸ ︷︷ ︸

term 2

+

L
(mi)

T∑
l=L

(mi)

T1
+1

(1− r)rL
(mi)

T −l E[∥wτ (mi)(l) −wni∥2]︸ ︷︷ ︸
term 3

}
,

where the second equality is derived by Eq. (42), and the third equality is derived by dividing T
rounds into two subintervals {1, · · · , T1} and {T1 + 1, · · · , T}.

In the above equation, term 1 means both wni and wτ (mi)(l) are randomly drawn from the N ground
truths, due to the fact that i ≤ T1 and τ (mi)(l) ≤ T1. Term 2 means one of wni

and wτ (mi)(l) is
randomly drawn from the N ground truths before the T1-th round, while the other one has fixed to
a cluster Mk after the T1-th round (i.e., i ≤ T1 and τ (mi)(l) > T1 or i > T1 and τ (mi)(l) ≤ T1).
Term 3 means wni

and wτ (mi)(l) are in the same cluster Mk, as i > T1 and τ (mi)(l) > T1.

For i ∈ {1, · · · , T1}, based on the proof of Theorem 1 in Appendix I, we obtain term 1:

E[∥wτ (mi)(l) −wni
∥2] < 1

N2

∑
n̸=n′

∥wn −wn′∥2.

While for i ∈ {T1 + 1, · · · , t}, we calculate term 3 as:

E[∥wτ (mi)(l) −wni
∥2] = 1

N

N∑
n=1

E[∥wτ (mi)(l) −wn∥2]

=
1

N

N∑
n=1

∑
n,n′∈Wk

∥wn′ −wn∥2

|Wk|
.

Finally, we calculate term 2:

E[∥wτ (mi)(l) −wni
∥2] = 1

N

N∑
n=1

E[∥wτ (mi)(l) −wn∥2]

<
1

N

N∑
n=1

1

K

K∑
k=1

1

|Wk|
∑

n′∈Wk

∥wn′ −wn∥2.
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Based on the expressions of the three terms above, we obtain

E[GT ] <
1

T

T∑
i=1

rL
(mi)

T

N

N∑
n=1

∥wn∥2 +
1

T

T1∑
i=1

rL
(mi)

T −L
(mi)

T1 (1− rL
(mi)

T1 )

N2

N∑
n̸=n′

∥wn′ −wn∥2

+
1

T

T1∑
i=1

1− rL
(mi)

T −L
(mi)

T1
−1

N

N∑
n=1

1

K

K∑
k=1

1

|Wk|
∑

n′∈Wk

∥wn′ −wn∥2

+
1

T

T∑
i=T1+1

rL
(mi)

T −L
(mi)

T1 (1− rL
(mi)

T1 )

N

N∑
n=1

1

K

K∑
k=1

1

|Wk|
∑

n′∈Wk

∥wn′ −wn∥2

+
1

T

T∑
i=T1+1

1− rL
(mi)

T −L
(mi)

T1
−1

N

N∑
n=1

∑
n,n′∈Wk

∥wn′ −wn∥2

|Wk|
,

which completes the proof.
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