AdaProx: A Novel Method for Bilevel Optimization
under Pessimistic Framework

Ziwei Guan'?} Daouda Sow!, Sen Lin!?, Yingbin Liang!
!Ohio State University, 2Meta Platform Inc., *University of Houston
guanziwei@meta.com, sow.53Q@osu.edu, slinbOQ@central.uh.edu, liang.889Q@osu.edu

As a powerful framework for various machine learning problems, bilevel optimiza-
tion has attracted significant attention recently. While many modern gradient-
based algorithms have been devised for optimistic bilevel optimization (OBO), pes-
simistic bilevel optimization (PBO) is much less explored and there is almost no
formally designed algorithms for nonlinear PBO with provable convergence guar-
antee. To fill this gap, we investigate PBO with nonlinear inner- and outer-level ob-
jective functions in this work. By leveraging an existing reformulation of PBO into
a single-level constrained optimization problem, we propose an Adaptive Proximal
(AdaProx) method which features novel designs of adaptive constraint relaxation
and accuracy level in order to guarantee an efficient and provable convergence. We
further show that AdaProx converges sublinearly to an e-KKT point, and charac-
terize the corresponding computational complexity. Our experiments on an illus-
trative example and the robust hyper-representation learning problem validate our
algorithmic design and theoretical analysis. To the best of our knowledge, this is
the first work that develops principled gradient-based algorithms and characterizes
the convergence rate for PBO under nonlinear settings.

1. Introduction

Originated from the economic and operation research studies [1, 2], bilevel optimization has at-
tracted extensive attention recently in the machine learning community. Many machine learning
problems can be naturally captured by the bilevel optimization framework such as meta-learning
[3, 4], reinforcement learning [5, 6], network architecture searching [7], etc. Bilevel optimization
typically takes the following form

(OBO problem) min min f(x,y), where S(z) = argming(z,y), (1)

2€X yeS(x) yeRm

where f(z,y) and g(z,y) are the outer- and inner-level objective functions, respectively, and the
supportset X C RP is typically convex. For a fixed z € X, the inner optimization finds a set S(z) that
collects all points y that minimize the inner function g(x, -). Then, the outer-level function f(x,y) is
minimized over y in the set S(z) jointly with € X'. The above problem is referred to as optimistic
bilevel optimization (OBO), because the outer-level minimizes over y € S(z), which allows the
minimization over x to be over a beneficial loss value. Such OBO problems have been extensively
studied in the past, e.g., Harker and Pang [8], Outrata [9], Lignola and Morgan [10], Dempe et al.
[11] and Sinha et al. [12], Liu et al. [13]. More recently, many studies have developed various fast
and scalable algorithms and provided the convergence rate guarantee for these algorithms [14-21].
Readers can refer to Section 1.2 for more detailed discussion of the related work.

As an equally important class of bilevel problems, pessimistic bilevel optimization (PBO) takes
the following formulation

(PBO probelm) min max f(z,y), where S(z) = arg min g(z,y). (2)
zeX yeS(x) yERm

For each given z, the inner optimization also collects all minima of the inner function g(z, -) into a
set-value function S(x). Then the outer-level function f(x,y) is first maximized over y € S(z), and
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then minimized over the outer variable z. Intuitively, the maximization finds the worst case of the
outer-level function over y € S(x), and is hence called the pessimistic problem.

PBO can capture many real-world machine learning applications. For example, consider a robust
hyperparameter learning problem where we seek to learn the best hyperparameters that are robust
to the model learning. Specifically, given a hyperparameter « € X, the inner problem aims to find
the optimal model on the training datasets for a training loss function g(z,y) as minyecr= g(z,y),
where multiple optimal y may exist and are collected into a set S(z). However, due to the ran-
domness of the training dataset and the algorithm design, the validation loss of the learned model
on a different validation dataset could be as large as max,cs(,) f(z,y). To guarantee a more ro-
bust learning performance, we aim to learn the hyperparameter = that excels in the worst case as
mingey maxyes(q) f(z,y). Clearly, such a robust hyperparameter learning problem falls under the
PBO framework. Another PBO example of the hyper-representation problem is in Section 5.2.

In contrast to OBO, PBO is more challenging to solve due to its min-max nature in the outer op-
timization, and still remains much less studied in the literature. Particularly, the previous studies
of PBO mainly focused on the existence of optimal solutions and the characterization of optimality
condition [22-24], which have shown that the optimality condition of PBO is more strict than that of
OBO. In particular, [22, 23] reformulated PBO into constrained optimization via the KKT conditions,
which facilitates the characterization of the optimality conditions. Besides, the design of algorithms
therein was mainly restricted to linear bilevel optimization [25-27] and lacked convergence guaran-
tees. For more general PBO problems, a recent work [28] proposed a Scholtes relaxation scheme
for PBO and proved its convergence asymptotically. To the best of our knowledge, no prior work
developed the non-asymptotic convergence rate for PBO for the general function class.

In fact, although the reformulated PBO problem as in [22, 23] falls into the general framework of
constrained optimization, several challenges still need to be addressed in order to design efficient
algorithms with provable convergence guarantees. (a) Studies on nonconvex constrained optimiza-
tion such as [29, 30] typically make assumptions of uniform Slater condition and strong feasibility,
which are not satisfied by reformulated PBO problems in general. (b) Reformulation typically in-
troduces bias errors for estimating gradients, which are not present for standard constrained op-
timization. Such bias errors can significantly affect the convergence of gradient-based algorithms.
(c) Reformulation typically introduces relaxation to smooth the objective function and facilitate
easy implementation of gradient-based methods. The relaxation parameters need to be selected in
a principled way to guarantee the equivalence of the reformulation to the original PBO problem.

In this paper, we address the aforementioned challenges and develop the first-known principled
gradient-based algorithms for PBO that enjoy convergence guarantees and are easy to implement.

1.1. Main Contributions

We summarize our main contributions as follows.

Algorithmic design. We propose a novel Adaptive Proximal (AdaProx) method for PBO problems,
which is the first-known provably convergent first-order algorithm for PBO. Although AdaProx
takes standard constrained convex optimization solvers such as switching gradient (5G) [29, 31,
32] and primal-dual (PD) [30, 33] as subroutines, it further features the following new designs:
(a) a novel relaxation on the constraint that is adaptive to the iteration k in order to guarantee the
Slater condition and strong feasibility for the constraints; and (b) simple yet efficient estimators to
approximate function values and gradients of the constraints to control the bias errors.

Convergence rate analysis. We first establish the connection between the value functions of the
original PBO and that of the reformulated problem, which shows that the reformulation introduces
controllable deviations from the original PBO. We then show that AdaProx converges to an e-KKT
point of the reformulated problem with a sublinear rate, where the KKT condition serves as a nec-
essary condition for the local optimality.



Technically, beyond the standard analysis for constrained optimization, we need to devise a few new
techniques to deal with the specific challenges here due to the nature of bilevel optimization. (a)
We need to characterize the impact of the adaptive relaxation of the constraints on the convergence
error of the proximal point iterations. (b) Our analysis needs to upper-bound the bias error in
the gradient estimation due to the inner-level problem and control such a bias error to a desirable
accuracy level.

Numerical verification. We evaluate the numerical performance of AdaProx that takes SG and
PD as subproblem solvers, which we respectively refer to as AdaProx-SG and AdaProx-PD. Our
experimental results show that AdaProx can converge to the global optima of the studied problems
with fast rate, which validate our algorithmic design and theoretical analysis. Further, compared
to AdaProx-PD, AdaProx-SG has a better track of the constraint violation and, as a tradeoff, the
convergence of its outer-level objective appears to be less stable.

1.2. Related Works

Pessimistic Bilevel Optimization: On the theoretical side, previous studies focused on identify-
ing the existence of solution [34-36], and characterizing the conditions of optimality [22, 37, 38].
Different reformulations have been suggested to make PBO more tractable, such as changing PBO
to constrained optimization via the KKT conditions [22, 23], incorporating the inner-loop problem
into the outer-loop problem as an additional penalty term [36, 39] and expressing pessimism in the
form of two-player game at the inner-level [36]. From a numerical perspective, algorithms were only
designed under restrictive settings such as linear PBO [27] and quadratic-linear PBO [40]. For the
general PBO, Wiesemann et al. [25] proposed a finite-dimensional approximation method, which
restricted the support of inner-level problems to be a finite subset of R”, i.e., Y3, C R™ and |Y;| < oo,
and enlarged the cardinality of Y}, to approximate the original problem gradually. In contrast to the
above studies, this paper provides a novel proximal method for general PBO functions and provides
the first-known convergence analysis. Zeng [26] studied the general PBO problem and gave a tight
relaxation which has the same global solution of the original PBO and could be reduced to OBO
in specific settings, including linear PBO, mixed-integer PBO, and coupled pessimistic constrained
PBO. A recent work [28] proposed a Scholtes relaxation scheme for PBO with inner-level problem
having a functional constraint and showed that the stationary points of a sequence of relaxed prob-
lems converge to the stationary point of the original PBO problem. We further refer the readers to
the survey work [12, 24], which provided a comprehensive summary of the literature on PBO.

Recent Advances in OBO: The gradient-based algorithms have become popular for solving the
bilevel optimization problem with unique inner-minimum, due to their simplicity and scalability.
For example, to compute the gradient of the outer-level optimization efficiently, both approximated
implicit differentiation (AID) [41-43] and iterative differentiation (ITD) approaches [41, 44, 45]
have been widely studied. Asymptotic convergence analysis was studied in, e.g., Franceschi et al.
[3], Shaban et al. [46], and recently Ji et al. [4], Ji and Liang [43], Grazzi et al. [47], Ji et al. [48]
provided the non-asymptotic convergence rate analysis. Another line of studies [14, 16, 49] utilized
the gradient sequential averaging method to solve the optimistic bilevel optimization with single
inner-optimum. More recently, there has been substantial interest in OBO problems with multiple
inner minimal points. Specifically, a recent work [15] proposed a gradient-based and hessian-free
algorithm for solving such OBO problems, and provided the non-asymptotic analysis therein. The
work [50] provided a dynamic barrier gradient method. Later, the work [51] proposed a new con-
vergence metric for the case where inner problem does not have the strongly convex assumption,
and then designed a zeroth-order method for the suggested metric. The work [52] developed a new
convergent method with the inner-level problem being constrained optimization. The PBO problem
we consider here is more challenging than OBO, due to the minimax nature in the outer problem.

Generic Nonconvex Constrained Optimization: The convex constrained optimization problem
has been extensively studied in the literature [53-57]. The constrained optimization with noncon-
vex functional constraints has recently attracted increasing attention. Several algorithms have been
proposed and shown to converge efficiently, including proximal method [29, 30, 58], sequentially



quadratic programming [59], and augmented primal-dual method [60]. In this paper, although
we adopt an approach that formulates PBO into constrained optimization with nonconvex objective
and constraint functions, several challenges arise due to the special structure of PBO. Our contribu-
tions here lie in new algorithm design components as well as the convergence analysis that handles
those new design components.

2. Problem Formulation

We study the PBO problem in eq. (2) in this paper. We assume that the constraint set A" is convex
and closed set. Usually X has a simple structure, e.g., simplex or closed interval, and the orthogonal
projections onto X is easy to compute. We make the necessary assumptions on f and g as follow:

Assumption 1. For any given x € X, f(z, y) is a concave function on y, and g(z, y) is a convex func-
tionony. Let 0 = (z,y) and ¢ = (2/,y'). f(z,y) and g(x,y) are twice continuously differentiable
with Lipschitz continuous gradient and Hessian, i.e., there exist constants Ly, Ly, py and pg, such
that for any z,2’ € X, y,y’ € R™, we have

IVF(0) = VF(O)ll2 < Ly |0 — 60", IVg(0) = Vg(0')ll2 < Lgl6 = 6']]2,
IV2£0) = V2(0)llr < psll6 = 0ll2, IV2g(0) = V2g(0") | < pgll0 — 0’12,

where Vh and V2h denote the gradient and the Hessian matrix of a function i with respect to
(w.r.t.) 6, respectively, and | - | r denotes the Frobenius norm of matrices. Moreover, for all x € X
and y € R™, there exists a constant £ > 0 such that i (V3 9(z,y)) > & for all V,g(z,y) # 0,
where \,,i,, () denotes the minimum eigenvalue of a matrix.

2.1. Single-level Reformulation

In this section, we introduce the reformulation of PBO in eq. (2) to a constrained optimization prob-
lem [22, 23] (see also the survey work [12, 24]).

In order to solve the PBO problem in eq. (2), let g*(x) := min,crm g(x,y) and replace the set S(x)
by its equivalent form S(z) = {y € R™ : g(z,y) — ¢*(z) < 0}. In this way, PBO problem can be
reformulated equivalently as:

i t. —g*(z) <0.
min max  f(z,y), st g(z,y) - g"(@) <0 3)

In order to solve eq. (3) efficiently, we introduce constraint relaxation. For any small positive con-
stants aand &, an («, £)-relaxation of the problem in eq. (3) is typically introduced as follows [15, 61]
i .t —gi(x)—¢< 4

min max flzy), st g(z,y) —go(z) £ <0, (4)
where g7 (z) = mingerm ga(z,y) = g(z,y) + $[lyl|3. The lo-regularization ensures g, (z,y) to be
strongly convex on y, and hence the solution y;, (z) := arg min,cgm go(z,y) is unique for any given
x € X. The regularization also ensures that g () is differentiable, and its gradient takes the form
of Vg5 (%) = (Vaga (2, 9))|ly=y: (2)- Besides, the positive constant { in the constraint guarantees that
the relaxed problem eq. (4) has at least one strictly feasible point for any given x € X', which is vital
for solving the problem efficiently.

The “max" over y in eq. (4) can be further removed via the KKT conditions which serve as the
constraints that the optimal y should satisfy. This simplifies the min-max problem in eq. (4) to an
equivalent single-level constrained minimization problem as follows [12, 62].

flz,y) st g(z,y) —gh(x) —£ <0
-V, f(z,y) + wVyg(z,y) =0,
w(g(z,y) — ga(z) — &) =0, (5)

where w is the slackness variable introduced by the KKT-conditions. Compared to eq. (4), we have
two additional inequality constraints in eq. (5) corresponding to the KKT conditions for y attaining

min
rzeX, yeR™ weR



the maximum of f(z, y) given g(z, y)—g (z)—& < 0. To further simplify the notation, let z = (z, y, w)
and Z = X x Y xW. Here, we require y and w to belong to bounded sets ) and W for the ease of the
algorithm design later on. We further change each equality constraint in eq. (5) into two equivalent
inequality constraints, and then obtain

( Y
min f(z) st. h(z) =] V, —wVyg(z,y) | <O0. (6)

z€EZ

Although the reformulation in eq. (6) of original PBO takes several relaxations, we will show in
Section 4.1 that their change of the problem can be made as small as possible by choosing the relevant
parameters properly. Hence, in this paper, we will develop an algorithm to solve the reformulated
problem in eq. (6), which will solve the original PBO in eq. (2) to any desired target accuracy.

3. Adaptive Proximal Method

In this section, our aim is to solve the problem in eq. (6). Since the objective and constraint functions
are both possibly nonconvex, we propose a novel adaptive proximal point method called AdaProx
(see Algorithm 1). Due to the specific structure that PBO problems have, our method differentiates
from the generic method for solving nonconvex optimization with nonconvex constraints [29, 30]
in several aspects as we elaborate below.

Algorithm 1 Adaptive Proximal (AdaProx) Method

: Input: Number of iterations K, T', relaxation level 3, regularization parameter ¢, and initial point Z;.
fork=1,...,Kdo

Set the kth subproblem (P ) as in eq. (7)

Call a standard solver such as SG and PD (see appendix A) to solve P to a %—accurate solution
end for
: Pick k from {1,..., K} uniformly at random
: Output: z;

At each iteration k, we construct a subproblem P, from eq. (6) by adding regularizers centered at
the current solution (Zj) in both the objective and constrained functions as follows:

min fi(2) = f(2) + gz - Z3 st hi(2) = h(z) + §llz — 23 - 2 <0, )

By setting the o large enough, both the objective and the constrained functions are strongly convex.

Challenge and novel designs: Note that the proximal method for generic constrained nonconvex
problems [29, 30] made assumptions of uniform Slater condition and strong feasibility for the con-
straints. However, the constraints in eq. (6) do not satisfy these conditions. The inequality con-
straints corresponding to the KKT conditions cannot be strictly satisfied simultaneously because
they are exactly opposite to each other (e.g., the second and third terms, and the fourth and fifth
termsineq. (6)). To address this, we introduce two novel ingredients in our design of the algorithm.

e Adaptive constraint relaxation: We devise a relaxation term of —% in the constraints in
eq. (7) that is adaptive to the subproblem index k. By gradually increasing such a relaxation
by % in each iteration, .1 (as the solution of Py) is still % strictly feasible for constraints
in the next subproblem Py, even if it may violate the current constraints by % This
design guarantees that each subproblem P, has a strict feasible point.

o Accuracy level design: To apply a standard solver for constrained convex optimization (line
4 in Algorithm 1) to solve P;, we design a specific accuracy level of %, and obtain a solution
of Z;4+1, which will serve as the center point of the regularizers for the next subproblem



Pj+1. Such an accuracy level of % ensures that ;. can violate the constraints of Py, by no
more than %, which together with the adaptive constraint relaxation guarantees that the
subproblems are solved with provable error controls.

After K iterations, the algorithm picks one of the Z;, uniformly at random as the output.

4. Theoretical Results

4.1. Connection to Original PBO

In the reformulation of PBO in Section 2.1, several relaxation steps were taken including the /-
regularization and constraint relaxation in eq. (4), the bounded set W for the variable w in eq. (6)
and the bounded set ). We require that ) is large enough to include all feasible points of the relaxed
problem in eq. (4).

Assumption 2. Forallz € X, S, ¢(x) C Y, with Sq ¢(z) = {y € R™ : g(z,y) — gi(x) — £ <0}

In the following result, we show that the change of the problem due to those relaxations can be
made as small as possible by choosing the relevant parameters properly.

Proposition 1. Suppose Assumption 1 holds. For any fixed x € X, define the value function for the original
problem in eq. (2) as ®(x) = maxycrm{f(z,y) : y € S(x)}, Moreover, let the value function for our
reformulated problem in eq. (6) as @ ¢(x) = maxyey ew{f(z,y) : h(z,y,z) < 0}. Weset W := {w :
0<w< Af} with Ay = maxy gex .y ey |f(@,y) — f(&',y")]. Then for every x € X, we have

3
|B(z) — ae(7)] < O(Va) + O(F).

Proposition 1 indicates that the solution to eq. (6) can be arbitrarily close to that of the original PBO
problem. Thus, solving eq. (6) will provide a desirable solution to the PBO problem in eq. (2). The
proof of Proposition 1 is provided in Appendix C.2.

4.2. Convergence of Solvers for Subproblems

Since the convergence of AdaProx depends on the solvers that we adopt for solving the subproblems,
in this subsection we analyze the convergence of the two popular solvers SG and PD as described
in Appendix A.

Technical challenge: Compared to the standard analysis for constrained optimization [29, 30]
which has exact access of the function value and gradient oracles, our analysis here needs to care-
fully deal with the bias error of the function estimation /y (z; ) and the bias error of the Jocobian
matrix estimation Vhy (z; g% ). This is because ¢, is only an approximation of a minimum point of
the inner function of PBO. Furthermore, the Lipschitz smoothness of both objective and constraint
functions in PBO need to be established by exploiting the bilevel problem structure.

Proposition 2. Suppose Assumption 1 holds. Each entry of h(z) in eq. (6) is L.-gradient Lipschitz for some
constant L. > 0.

The above proposition ensures that if we let o = max{2L,2L.}, both the objective and constrained
functions of the subproblems in eq. (7) in AdaProx are §-strongly convex function, for which we
introduce the following criterion to characterize its convergence.

Definition 1. Let 2} be the solution to the constrained optimizationineq. (7) and ¢ > 0 be a constant.
We say that z € Z is an e-accurate solution if f(z) < fix(z*) + e and hy(z) <e.

We characterize the convergence performance of the SG and PD solvers (see Algorithms 2 and 3 in
appendix A) used for solving the subproblems in eq. (7) in AdaProx in the following two theorems.

Theorem 1. Suppose that Assumption 1 holds. Let o = max{2L;,2L.}. And set the parameters y, =
O(3),T=0(%)and N =0 (log (L)). Then the output Z1 of SG (i.e., Algorithm 2 in appendix A) is



first-order orcale | second-order orcale
SG [ O(tlog (7)) O (72)
PD | O(Zlog (L)) oL

Table 1: Comparison between SG and PD solvers on the first- and second-order oracle computation

e-accurate for solving the subproblem Py, in eq. (7) in AdaProx, which satisfies fi,(Zx4+1) — fu(z}) < €, and
man{(hk(2k+1))j} S €.

Theorem 1 shows that SG can solve the kth subproblem in eq. (7) to any arbitrary accuracy level
e with a gradient computation complexity of TN = O (2 log(1)). Furthermore, the computational
complexity of the second order Jacobian matrix is upper-bounded by T'/(2m + 3) = O(-1-), since at
each iteration SG at most computes one row of the matrix in line 10 of Algorithm 2.

Theorem 2. Suppose that Assumption 1 holds. Let o = max{2Ly,2L.}. And set parameters v, = O(t),
m =01, n=0(1),6 =212T=0 (ﬁ), and N = O (log (1)). Then the output Z.1 of

ve !
PD (Algorithm 3 in Appendix A) is e-accurate for solving the subproblem Py, in eq. (7) in AdaProx, which
satisfies fr(Zr+1) — fu(2}) < €, and max;{(hx(Zk+1));} < € which indicates that Zj,1 is an e-accurate

solution of the kth-subproblem in eq. (7).

Theorem 2 shows that PD can solve the kth-subproblem in eq. (7) to any prescribed e with a gradient
1
%
entire Jacobian matrix at line 5 of Algorithm 3 (i.e., eq. (14)), the computation complexity of its

computation complexity of TN = O ( log (%)) . Moreover, since PD needs the information of the

second order oracle equals ' = O (ﬁ)

We provide the comparison of SG and PD in Table 1. It can be seen that PD has a lower complexity
on the first-order oracle compared to SG. Their complexity comparison of the second-order compu-
tation depends on the dimension m and the accuracy level e. If m /e > 1, SG has a lower complexity;
and otherwise PD outperforms SG.

4.3. Analysis of AdaProx

Since the problem in eq. (6) generally has a nonconvex objective function and nonconvex constraints,
we aim to provide the convergence guarantee for AdaProx to an e-KKT point [29, 30] as below.

Definition 2. Consider the constrained optimization problem in eq. (6). Let ¢ be the dimension of
h(z) and N (z; Z) be the normal cone to Z at z. Denote dist(z, ') := min, en{|z — 2’||2}. A point
2 € Zis an -KKT point if and only if there exist z € Z and A € R, such that h(z) <, ||z — 2|3 <,

9 INhi(2)] < e and dist (Vf(2) + (Vh(2),\), =N (2; Z))* < e. Further, a random 2 € Z is a
stochastic e-KKT point if there exist z € Z and A > 0 such that the same requirements of e-KKT
hold in expectation.

The KKT condition is the necessary condition for local optimality [63, 64] for constrained optimiza-
tion. Here, we will show that AdaProx in Algorithm 1 converges to an e-KKT point in expectation
taken over the randomness of the algorithm (the random generation of index &) for constrained
nonconvex optimization problems. Before the analysis, we make the following boundedness as-
sumption on the optimal dual variable, which is standard in the literature [30, 65].

Assumption 3. For each subproblem Py, the optimal dual variable A} is uniformly bounded, i.e.,
there exists a constant B > 0 such that ||A}|[; < Bholdsforallk=1,..., K.

Theorem 3. Suppose Assumptions 1 and 3 holds. Given Z; that is Qﬁ strictly feasible of (P1). Let 0 =
2max{Ly, L.}, where L. is determined in Proposition 2. Set K = O(+) and 8 = O(€?). Then we have Z;,
is an e-KKT point of eq. (6) in expectation that takes over randomness of k.

Theorem 3 shows that Algorithm 1 is guaranteed to solve problem in eq. (6) to arbitrary accuracy e
with O(1) calls of the subproblem solver. Since all the requirements of theorems 1 and 2 hold, the
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first- and second-order oracle complexity immediately follows by applying those theorems. Com-
pared with results in standard constrained optimization [29, 30], since our algorithm here features
a novel adaptive relaxation on the constraint, we need to develop new analysis to characterize the
impact of such adaptive relaxation on convergence error of the proximal point iterations.

5. Experiments

In this section, we conduct experimental studies on two specific problems to verify that the proposed
AdaProx with SG and PD as subproblem solvers achieves desirable performance. Since there was
not any well developed algorithms in the literature for general PBO, our focus here is on whether
AdaProx returns an optimal solution and how the subsolvers of SG and PD compare with each other
in their performance.

5.1. Illustrative Example

Consider the following example:

i — 1o 2 +y?—1<0, 8
mip By, o ol w byt o1s ®
where S(z) is the set of solutions to the following inner-level optimization with a fixed z € R,
minger g(z,y), with g(z,y) = |y — |z||*>, when |y| > |z|, otherwise, g(z,y) = 0. It is clear that
S(z) ={y € R: |y| < |z|} and ¢g*(z) = 0. For any fixed «, ¢} (z) = 0. More details about the KKT
reformulation and the exact forms of gradients could be found in Appendix H.

Figure 1 shows the performance of both AdaProx-SG (Algorithms 1 and 2) and AdaProx-PD (Al-
gorithms 1 and 3) in solving the problem eq. (8), where the x-axis denotes the iteration number. It
is clear that both algorithms solve the objective function to its global minimum efficiently. Besides,
as illustrated in the left figure in Figure 1, AdaProx-SG converges at a faster rate than AdaProx-PD.
This is because AdaProx-SG enforces the constraints only when the threshold e is violated and will
focus solely in minimizing the outer objective f when all the constraints are less than e. Whereas
AdaProx-PD will always minimize the Lagrangian, which may result in unnecessary delays in min-
imizing f when all the constraints are satisfied. Moreover, the left figure of Figure 1 indicates that
the constraint violation in AdaProx-SG decreases much faster than that in AdaProx-PD. Recall that
the update direction of AdaProx-PD is V fi(z:) + (Vhi(2t), Ae+1), where the i-th constraint gets pe-
nalized when the i-th entry of X is large enough. Since AdaProx-PD updates the primal variables
based on the constraints’ value after observing the updates of ), it is not hard to tell that the decrease
of constraint violation would be slow if the stepsize for updating X is small.

5.2. Learning Robust Hyper-representation

In the hyper-representation (HR) [47, 66] problem, the goal is to find good representations of the
data that can be used for subsequent regression/classification problem by following a two-phase
optimization process. The PBO framework can be used to robustly learn such representations. More
specifically, we consider the following formulation:

min  max L (ha(X1)w*, Y1) with Sj = argmin L(hy(X2)w,Y3) 9)
AeRAXm w*eSp weER™



where h,(+) is the embedding model (linear transformation in this case) parameterized by the ma-
trix A, and the vector w corresponds to the parameters of a linear regression/classification model.
X; € Rm*d and X, € R™*4 are the matrices of outer (validation) and inner (training) data.
Y1 € R™ and Y, € R™ are the corresponding label vectors, respectively.

Intuitively, the inner problem in eq. (9) finds the set S of best model parameters w*, and the upper
problem optimizes A so that the worst performing w* in Sy yields minimal validation error. Repre-
sentations learned this way are robust as they allow all minimizers in Sj to achieve low validation
error. Note that this problem is intrinsically hard because one needs to compute the set S5, which
can be intractable. Fortunately, our proposed algorithms AdaProx-SG and AdaProx-PD provide a
way to solve problem eq. (9) without having to explicitly find the set Sx.

In our experiments, we consider regression problems where the loss function £(-,-) corresponds
to the squared ¢;-norm. We conduct the experiments on synthetic random data as in [47]. The
input matrices X; and X, are well conditioned and Gaussian with zero mean and unit variance.
We generate the outputs Y; and Y5 by applying a linear model on a subset of the features (20% of
the features) and adding a random Gaussian noise term.

We plot the experiment results in Figures 2 and 3 in Appendix B due to page limits. Figures 2 and 3
show the performance comparisons between AdaProx-SG and AdaProx-PD w.r.t. the running time
for solving the HR problem, when the representation dimension is set to m = 512 and m = 1024, re-
spectively. As depicted, both algorithms solve the problem within a comparable time frame, while
AdaProx-SG is slightly faster. We note the following remarks about the plots in Figures 2 and 3,
which are intuitively expected. (a) AdaProx-SG by design tries to minimize the maximum con-
straint violation and hence is more stable at achieving this goal compared to AdaProx-PD (middle
plots in Figures 2 and 3), but this can come with a less stable minimization of the outer objective
(left plot in Figure 2). (b) Because AdaProx-SG enforces the constraints more effectively, it also
achieves a better optimization of the inner problem, which is just one of the constraints in our re-
formulation. The fact that AdaProx-SG algorithm is more sensitive to the constraint violations is
intuitively expected. Indeed, during the algorithm running, whenever some certain constraints are
not satisfied, then AdaProx-SG directly penalizes the maximum violation with no delay in line 10
of Algorithm 2. However, the AdaProx-PD algorithm penalizes the violated constraints through
increasing the corresponding Lagrangian terms in ), i.e. push the updating direction of z closer to
the directions alleviating the violation. We provide the iteration time comparison of AdaProx-SG
and AdaProx-PD in Table 2, where AdaProx-SG and AdaProx-PD scale similarly with the problem
dimension m and AdaProx-5SG is slightly faster.

6. Conclusion and Future Work

In this paper, we provide the first-known adaptive proximal point algorithm called AdaProx for pes-
simistic bilevel optimization. Our algorithm features novel designs of adaptive constraint relaxation
and accuracy level in order to guarantee an efficient and provable convergence. We further provide
the convergence rate analysis of AdaProx which adopts a standard solvers of SG and PD for solv-
ing subproblems, and show that both AdaProx-SG and AdaProx-PD converge to an e-KKT point.
Our experiments on an illustrative example and the robust hyper-representation learning problem
clearly validate our algorithmic design and theoretical analysis. Moreover, our techniques can also
be applied to constrained min-max problems as well as OBO and PBO with functional constraints.
For example, suppose PBO has functional constraints in the outer level. The problem can still take
the same reformulation as in eq. (3), simply with more additional constraints. Our algorithm and
the convergence analysis can still be applied. An interesting direction for future research is estab-
lishing a PBO benchmark leveraging SOTA optimistic bilevel algorithms, such as FAST-AT [67] and
FAST-BAT [68], applied to the real-world CIFAR-10 dataset.
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Appendix

A. Example Solvers for Sub-problems in AdaProx

In this section, we introduce two popular gradient-based methods for constrained convex optimiza-
tion, which can be used for solving the subproblems in eq. (7) in AdaProx.

A.1. Switching Gradient (SG) Solver

The switching gradient (SG) method, which was recently proposed for solving constrained convex
optimization in [29, 53], can serve as a solver for solving the subproblems in eq. (7) in AdaProx.
As illustrated in Algorithm 2, SG features two alternating updates: either updating the variable =
along the gradient descent direction of the objective function if all constraints are satisfied (in order
to minimize the objective), or updating the variable z along the gradient descent direction of the
constraint that has the maximum violation (in order to enforce the constraints).

More specifically, suppose that the variable z is updated as z; = (z+,y:, w;) at iteration ¢. SG first
runs the following gradient descent over y w.r.t. g, (z,y) as follows:

QZH = gfz - Lgﬁ (Vyg(xuﬂfl) + a@fl) ) (10)

such that g, (z, g% ) serves as a good approximation for g (z;) := maxy g (z¢,y) in the constraint.
We further denote hy(z; 7% ) as the approximation of the constraint hy(z) with z = 2, and g (x¢)
being replaced by g, (x, g% ). Next, if the constraint is satisfied, i.e., all components of approximated
constraint is small enough (maxi{fzk(zt; 94)i} < 5 for some prescribed ¢ > 0), then z; is updated
along the gradient descent direction of the objective function f;(z;). Otherwise, z, is updated along
the 7;-th row of @hk (21; 9% ), where i; corresponds to the maximum constraint violation component,
and Vhy(z; %) is the approximation of Vhy(z) where Vhy(z) can be derived based on eq. (6) as:

(V9(0) — Vagi(2) " (Vyg(0)" 0
—V2 () +wVi,g(0) V2 f(0)+wV},g(0) Vy9(0)
Vhi(z) = Vo f(0) —wV3,g(0) Ve, f(0) - wvi#g(G) ~Vy9(0) +o(z— %),
w (V4g(0) — Vagi(z) w (Vyg(0)) 9(0) — gi(x) — ¢
—w (Vyg(0) — Vagi(a)) —w (Vyg(0))" —9(0) + g5 (x) + ¢ o

where 6 = (x,y) for short. Vhy(z; %) is obtained from Vhy(z;) by replacing g (z;) and Vg, (z;)
with g, (z, 9% ) and V,ga (74, 3% ), respectively.

Note that although the gradient of VA(z) in eq. (11) involves the calculation of the second-order
Jacobian and Hessian terms of f and g, the computational complexity is not demanding since each
update uses only one row of the matrix.
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Algorithm 2 Switching Gradient (SG) Solver

1: Input: Number of iterations 7' and N, stepsizes {7: }, , violation tolerance ¢

2: Initialize feasible indices set 7 = 0 and 2o € Z
3: fort=1,...,T do

4:  Conduct projected gradient descent in eq. (10) for N times with any given ¢ as initialization
5:  if max; {(ﬁk(zt; gjﬁ\,)) } < £ then
J

6: T=TU{t}
7 zip1 =z (20 — v, "Vfr(zt))
8: else
9: Leti; = argmax < ( he(ze; 9% }

t g j {( k(2 yN))j
10: ze41 =z (Zt -7t (ﬁhk(zﬁ?ﬁv)). )

t

11:  end if
12: end for

13: Output: Zx 11 = >, 7 Ve2t/ (ZtET 'Yt)

A.2. Primal-Dual (PD) Solver

As a standard method for solving constrained convex optimization, the primal-dual (PD) method
can also serve as a solver for solving the subproblems in eq. (7) in AdaProx. Specifically, PD solver
in Algorithm 3 solves the minimax problem over the Lagrangian function defined below:

rzréig )I\rel?é Lp(z,A) == fr(z) + (hi(2),A), (12)

where A € R is the dual variable, by alternatively updating the primal variable z and the
dual variable A through gradient descent and gradient ascent, respectively. Because the gradi-
ents V.Lp(2,\) = V.fu(2) + (V.he(2)) "X and VaLi(2,A\) = hi(z), we also need to run a sub-
routine to estimate hy(z) and V.hi(z), as what we have done in eq. (10). Then, the estimations
of V,Li(2z,A) and VLy(z, \) at the iterate (z;, A\;11) immediately follow as: ﬁzﬁk(zt, A+1;0%) =
Ve fi(z) + (Vahi(z95)) T Aeer and VaLi(ze, Aes1) = iz y)-

We then conduct the accelerated gradient ascent and gradient descent to the Lagrangian:
Ary1 = 1a ()\t + i ((1 +00)hi (24 9) — etﬁk(2t71§gf\71))) ] (13)
2 =z (2 — 2V Li(20, M3 ), (14)

where 1, 1; are the stepsizes, 6, is the momentum weight, and A C R, is a closed and bounded set.

Algorithm 3 Primal-Dual (PD) Solver
1: Input: stepsizes n;, 7:, momentum weights 6;, output weight -, initialization zo, Ao, and iteration times T’
and N

:fort=0,1,...,T —1do

Conduct projected gradient descent in eq. (10) for N times with any given ¢ as initialization

Update \; 41 according to eq. (13)

Update z;41 according to eq. (14)
: end for
: Output: Zp41 = ﬁ Z;‘ZO:[ Ytzt+1, where T'p = Zz:ol Vi

NSO e N
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Figure 2: Comparison of AdaProx-PD and AdaProx-SG for the robust HR problem in eq. (9) with
m = 512
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Figure 3: Comparison of AdaProx-PD and AdaProx-SG for the robust HR problem in eq. (9) with
m = 1024

B. Figures of Learning Robust Hyper-representation Experiment
in Section 5.2

In this section, we provide the figures in Figures 2 and 3 for the learning robust hyper-representation
experiment in Section 5.2.

C. Proof of Proposition 1

C.1. Supporting Lemmas

Lemma 1. For any given x € X, consider the following constrained optimization problem.

Jnin - —f (z,y)
st g(z,y) —ga(x) —£ <0. (15)

There exists y*(x) € Y that attains the solution of the above problem. Moreover, there exists w*(x) > 0, such
that the following KKT condition holds.

—Vyf(z,y" (@) + v (2)Vyg(z,y) = 0
w*(z)g(z,y" () — g5 (x) — ) = 0. (16)
For all w*(z) satisfying the above KKT condition, we have w*(x) < 21 with

3
Ap:= ax If(z,y) — f(',9)].

m
z,x' €X,yy' €Y

Proof. Given x € X, let §j € S(z). We have g(z,9) — g (z) — { < —&. Thus, 7 is a strictly feasible
point with margin ¢ for the problem in eq. (15).

Define the dual function d(w) = minyerm —f(z,y) + w(g(z,y) — g4 (x) — §). By its definition, we
have, for any w € Ry and y € R™,

d(w) < —f(z,9) + wlg(x,y) — ga(z) = §) = —f(2,9) — ws. (17)

Moreover, it is known that convex constrained optimization has no duality gap [69]. And the ex-
istence of § ensures the Slater’s condition holds. Therefore, the existence of y*(x) and w*(z) is
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ensured. And, eq. (16) is the necessary and sufficient condition for the optimality of eq. (15). In the
other words, d(w*(z)) = d* = p* = — f(z,y*(x)). Taking w = w*(z) in eq. (17), we obtain

—f(z,y"(2)) = d(w"(2)) < = f(z,9) — w(2)¢.
Rearranging terms in the above inequality, we have

) < L @) = fla,
3
where (i) follows from the definition of Ay. O

D

As
3

Then, we propose the following proposition that provide the clear description of equivalence be-
tween egs. (4) and (5).

Lemma 2. The minimax problem eq. (4) is equivalent to the following constrained optimization:

min f(2)

z€EZ

—wVyg(z,y) | <0, (18)

where = = (2,,2), W = [0, 5], with Ay = max wex ey |fo.y) — f@ )| and Y = {y €
R™ : |lyll2 < Dy} with Dy > 0, such that, forall x € X, {y € R™ : g(z,y) — gki(z) — £ <0} C Y,
Z=XxYxW,and f(z) = f(z,y).

Proof. Let p* = mingex {¢(z) = maxyerm {f(z,y) : 9(z,y) — g% (z) — & < 0}} be the solution of
eq. (4). And let p} = min,c x 9, (x) be the solution of eq. (18), with

Yr(z) = min - f(z,y)

yeY,wew
st. g(z,y) —ga(z) =<0
- Vyf(w, y) + wVyg(z,y) =0
w(g(@,y) — ga(z) — &) =0. (19)

By Lemma 1, the feasible set for a given z € X of eq. (19) is non-empty, i.e., there exist at least one
(y*(z), w*(x)) € Y xW satisfying all three constraints, which implies ¢, () < +o00. Moreover, for all
(y, w) in the feasible set of eq. (19), we have it satisfies the KKT condition and g(z,y) — g% (z) —£ <0,
which the sufficient condition for y to be the solution of eq. (4), i.e., f(z,y) = ¥(z). Therefore, we
have ¢(z) = 9, (x) for all z € X, which complete the proof. O

C.2. Proof of Proposition 1

By Lemma 2 and Assumption 2, we have an equivalent expression of ®, ¢(z) as

D cle) = max{f(@.9) : g(z,y) - gi(x) — € < O

Given an x € X, it is clear that

lyeR™ 1 g(z,y) —g"(z) <0} C{y e R™ : g(w,y) — g5 (z) — € < 0}.

Thus, we have
®(z) =;gﬂg»§{f(fc7y) tg(z,y)—g"(x) <0} < ;rel]%;g{f(x,y) 19(z,y) =95 (2) =€ < 0} = Dy ¢(2). (20)

Moreover, suppose y*(z) € {y € R™ : g(z,y) —g*(z) < 0}and y, (v) € {y € R™ : g(z,y) — g5 (z) —
§ < 0} satisfying f(z,y"(z)) = () and f(x,y, ((¥)) = Pa¢(z). Then, there exist two conditions:
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(a). Suppose y;, (v) € {y € R™ : g(x,y) — g*(2) < 0}. Then, by the definition of ®(x), we have
Do g(2) = f2,yn,e(7)) < gﬂ%ﬁ{f(x,y) 1g(z,y) — 9" (x) <0} = @(z). (21)
(b). Suppose y;, ((z) & {y € R™ : g(z,y) — g"(z) < 0}. Because g(z,y) is convex on y, S(z) = {y €
R™ : g(x,y) — g*(z) < 0} is a convex set. Let § be the orthogonal projection of y, . (x) on S(z). Since
g € S(z), we have
9(, Yo (1)) — 97 (2) = 9(z, ¥4 ¢ (%)) — 9(2,7)

/ (V0,5 + () — ), e (@) — )t

/t 0</ V9@ 9+ s(ya ¢ (@) — §))ds, y3, () —g)>dt
/t o/s 0 Wae(@) = 9) " Viy0(2, 5+ s(us e (2) — 9) (W ¢ (x) — §)dsdt

—

= 2||yo< f( ) yHQ’ (22)
where (i) follows from the facts that, for any s € [0,¢] C [0,1], V,g(z,y(s)) # 0, where we denote
y(s) =G+ sy}, ¢(x) — g) for short, and thus

(W e (@) =) T Vo, 002, y(8)) (Wh () = §) = Anin (Vi g (2, y() [y e (2) = G115 > wllyh ¢ () — 9113

Moreover, it is clear that

000 (@) € () +€ < ") + 5D+ (23)
where (i) follows from the fact that y7, . (z) € {y € R™ : g(z,y) — g5 () — § < 0}, and (ii) follows
from g,(z) < ga(@,y*(2)) = g(z,y"(2)) + §ly*(@)|3 < g% (2) + $D3,.

Combining eqs. (22) and (23), we obtain

* ~ D3
5 (@) = glla < \/ 2(FFa+€). (24)
By the Lipschitz continuity of f(x,y), there exists M > 0 such that

f(@,yae(@) < [, 9) + Mllyg ¢ () — 72

D fa,y (@) + My e (@) — il

()
fz,y

*

(@) + My 2(Fa+¢), (25)
where (i) follows from § € {y € R" : g(z,y) — g*(z) < 0}, and (i) follows from eq. (24).
o(

Equation (25) implies that @, ¢(z) < ®(x) + O(V/€) + O(y/«). Together with egs. (20) and (21), we

complete the proof.

D. Proof Proposition 2

We first provide the Lipschitz condition lemma as follows.

Lemma 3. Given a function J : R™ — R, which is twice differentiable and is a L j-gradient Lipschitz
function on the bounded support X C R", and forallx € X, ||VJ(x)||2 < M. Then, define a new function
I:Xx[0,B] »RasI(x,y)=yJ(x). Wehave I(x,y) isa (BL; + Mj)- gradient Lipschitz function.

Proof. By the definition of I(z,y), we have its gradient VI(z,y) = [V,I(z,y); al(zv | equals
[yVaJ(x); J(x)]. And its Hessian equals

18



(I V)
V) = ((w@)f o) |

2 _ 2
where we let V V(L D) (@y)"
Letz = (a,b)" € R", witha € R*and b € R, forany z € X and 0 < y < B, we have

2"V2I(x,y)z = ya' V2, J(x)a+2b-a' V,J(x)
@)
< yLylall3 + 2bllall2[| Vo (2)]2

(i)
< yLllz[5 + (lall3 + b))V (2)]2
< (BLy + My)|1=[3,

where (i) follows from the L ; gradient Lipschitz condition of J(z) and Cauchy-Schwartz inequality
and (i7) follows from the Young’s inequality. O

In the following proof, we consider each component of the h(z) and prove that they are L. gradient
Lipschitz, with

L. —maX{pr + 2B 4 AMy, + Ly, (2L, + )+M}

where My = sup,cz |V (g(z,y) — g5 (x))||2 and My = sup,cz [|V2,9(2)| £

For the first component g(z, y) — g5 () — &, it has been shown to be (2L, + L2 /)-gradient Lipschitz
(Lemma 1 of [15]). The next m components of h(z) are the entries of —V, f(z,y) + wV,g(z,y).
Consider the ith entry. For any given z and 2’ € Z, let e/ (2) = (=V, f(z,y) + wV,g(z,y)), we
have

Vet (2) — Vei (2)]12
_ HV(— W (@.9) + wVyg(e,y)), = V (=Y, /@ o) + w' Ty o), ||
H (=Viuf (@y) + wVia@y) ;) = (=Vif@'sy) + w'Vie('y) 2
T 00+ T30, ST Tl )
+ (Vag(@9)i = (Vaga )’
H(vz flzy) — vf,wﬂx’,y’))u,on

(ii)

2
2| (29(w,) = Vg0 1) ) + (0 =) (V209" 0)

+2|(V2, ) = V),
+2||(V2,9(2.9) - V3,90",0) ., + (w =) (V3,90",0) |

+ ((Vyg(z,y)i — (Vyg(2',y'))i (26)

)’
where (i) follows from || V4|3 = || V.h|3 + || Vyh[|3 + (22)2 and (M);,.) denotes the ith row of the
matrix M, and (ii) follows from the fact ||a + b||3 < 2|al|5 + 2||b]|3.

Using the fact that va + b < \/a + Vbforalla,b >0, eq. (26) induces
Vel (2) = Ve ()2
<2|[(V2 S (y) = V3 I )) |

a0 (Fhagten) ~ Thal ), |, + 40— ) (P )

2

2

2
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+2| (T30~ T )

+4 Hw (Viya(@,y) = Vi,a('y) H2 +4 H(w —w') (Viy9(='.9)) H
+1(Vyg(z,9)i = (Vyg(z', )il
< (207 + M35 4 AMyy + Ly ) |12 = 2z, (27)

2

where My, = sup,cz ||V29HF-

Next, let e; (2) = (Vyf(z,y) —wVyg(z,y)),. Following the same steps in egs. (26) and (27), we
also obtain

IVer (2) = Vei ()l < (2pg + 2452 + ahyry + Ly ) |2 — '] (28)

For the last two components, w(g(x, y)— gk (x)—¢) and —w(g(z, y)— g (x)—¢&), because g(z, y) — g (x)
is (2Lg + %)—gradient Lipschitz. Moreover, since the support Z is bounded, there exist M, such
that ||V (g(z,y) — g% (z) — §)|l2 £ My, and w is bounded in interval [0, %] Applying Lemma 3, we

have w(g(z,y) — g (x) — &) and —w(g(z,y) — g% (z) — §) are %(QLQ + %‘?’) + M, gradient Lipschitz.

E. Proof of Theorem 1

Lemma 4 (Theorem 2.2.14 [54]). Suppose Assumption 1 holds. Consider the gradient descent in eq. (10).
We have

N
g% —vatele < (1= 5255 ) lldo = 7@l

Lemma 5. (Three-point lemma, (Lemma 3.5 of [69])). Given Z C RY is a convex an closed set, let z,41 =
Iz (2 — G), where G € RY. Then, for any point z € Z, we have

(G,2 = zi11) 2 52— Ze 3 + 3llzee1 = 213~ 3llz = 213
Lemma 6. Suppose Assumption 1 holds. And o > 2{Ly, L.}. Let Hy(z) = max; {(hk(z))]} Consider
ir, (25 gty) and Vhie (25 9% ) specified in Algorithm 2. We have
~ N
(hi(zs95))i, — Hi(z)| < (L +@)D3Dz (1- 252)
Moreover, let OHy(z;) = (Vhy (24 9% ))i,, we have for all z € Z,

~ N
Hi(2) 2 Hi(1) + (OHi(z1), 2 = 20) + § 12 = 20} — 4(Lg + @) DyD3 (1 - 555 )

Proof. By Proposition 2, we have each entry of hy(2) is a §-strongly convex function. Moreover, for
any given z € Z, let I(z) := arg max; {(hk (2)); }, we have V(hi(2))1(z) € OHg(2).

(a). Suppose I(z;) = is.

Observing the form of ha (21; 9% ), only its first and last two entries do not equal to hy(2;). Thus, we

have

(Fulersiy)), = ()| < mo (o ) = g2 ool s (an e ) = g2 )}

1t

(4) ~ .

S DZ|ga(=Tta y?\/) - ga(xt”

(id) L

< (Lg + @)Dy Dzl — yi ()]l

(ii1) N

< (Ly+a)D3Dz (1- 2%5:) (29)
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where () follows from w; < Dz, (ii) follows from that g, (2) is (Lg + «) Dy Lipschitz continuous,
and (7i¢) follows from Lemma 4.

It is clear that OH k(2t) — OHp (=) # 0if and only if i; selects the first or the last two constraints, i.e.,
|0H}(2) — OHy(21) |2 equals one of the following three: 0, ||((Viga (71, 9%) — Vgl (2))T,0,0) |2, or
[(we(Vaga(@e, ) — Vagi(20)) 7,0, ga (1, i) — gi (1)) 2. Thus, we have

|88 (z1) = 0Hw(z1) 2 < \uBl Vot (. 35) = Vogz @)l + oo o ) = g2l
2wl 55) — Vo)l + ot ) — g2 o)
< DLy + o)l o) vl + (g + o)D) — i
) oLy + a)DsDy (1—ﬁ)N, (30)

where (i) follows from the \/z +y < /x4 \/y for z,y > 0, (ii) follows from V,g(z,y) is Ly + a
gradient Lipschitz, w; < Dz, and g(z,y) is (L,+«)Dz Lipschitz continuous, and (4¢7) follows from
Lemma 4. Following the definition of 0Hy(z;), strong convexity, and Cauchy Schwartz inequality,
we obtain

~ N
Hi(2) > Hi(z) + (0H(21), 2 — ) + |2 — 213 = 2(Ly + @) D% Dy (1 - %m) . (31)

(b). Suppose I(z;) # i;.

~ N
Similar to eq. (29), we have ‘(hk(zt; 94 ))i, — (hi(2t))s, ) and

< (Ly+@)D%D3 (1 -

~ N
| (a3 85 ) ey = Hi()| < (Lg + ) D30z (1= 950 )

Together with the facts that (A, (z; )1z < (hi(z6: 9% ), and Hy(z) > (hi(2¢))s,, we have

~ N
| (e 13 )i, = Hil)| < (Lg + ) DYDz (1= 1525 (32)
Hi(2) — 2(Lg + a)D3 Dz (1 - ﬁ)N < (h(z)):, < Hi(). (33)

Given z € Z, following the strong convexity of (h(z));,, we have

Hy(2) 2 (hi(2))i 2 (hie(20))i, + (V(hi(20))ies 2 = 20) + T2 — 23
Y Hy () — 2(Ly + 0)D3 D (1- LQGW)N + (BH(21), 2 — ) + 1z — 2|13
+ (V(hi(21))i, — OHi(2), 2 — 1)
S Hy() + ()2 — 20 + 52— 2l - 4Ly +)DyD% (1- 22) . (39)

where () follows from eq. (33) and (i) follow from eq. (30), Cauchy-Schwartz inequality and Dy <
Dz.

Thus, from egs. (29) and (32), we conclude

~ N
(haz: 94, — ()| < (g +@)D3Dz (1= -%5:) -

From egs. (31) and (34), we conclude

~ N
Hy(2) = Hi(ze) + (0Hi(20), 2 = 2e) + )|z = 23 — 4(Lg + o) Dy D% (1 - ﬁ) :
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Theorem 4 (Formal Statement of Theorem 1). Suppose Assumption 1 holds. Consider Algorithm 2.
Let 0 = max{2L;,2L.}, v = 29U 7 > 2 with M = sup,.p, [|V/fi(2)|, and N >

oe 7

log (4(T+2)2(L;+Q)DyD2Z) /log(1 — m) Then, we have

FelGort) — fulz) < e, and max{(hk(ék_,_l))j} <e
J

In the other words, we have Zj,11 is an e-accurate solution of eq. (6).
Proof. Clearly, by the setting of o and proposition 2, we have both f(z) and hy(z) are . = § strongly
convex function. We let Hy(z) = max; {(hx(z));} for short.

(a). Suppose t € T, we have hy(z;9k) < 5. Applying Lemma 5 to the update with respect to the
V fi(z) ensures that, for any given z € Z,

Vo Vi), 2 = 2e01) 2 5ll2 = 213 + gllaeen — 2l — 5112 — 213 (35)
Moreover, using the strongly convexity of fi(z), we obtain
Fr(2) 2 fe(z) + (Vi(z), 2 — 2) + §ll2 — 215 (36)
Taking z = z; in eq. (35) and using eq. (36), we have

fe(z) — fk(Z;S) < <ka(2t) 2t — Zep1) — Fllzerr — 23 + B2 2 — 2|5 — Bz — zea1ll3

< WALEOIE | 2zt — 28— ot — 2, (37)
where (i) follows from the Young's inequality, (V fi(2¢), 2t — z¢41) < W + Lz — 2413
(i)) Suppose t ¢ T, we have hk(zt, i%) > 5, Applying Lemma 5 the update with respect to the
V(hi (2t 9%))i, (we denote as OH, i (2¢) for short) ensures that, for any given z € Z,
¥ HOHR(2), 2 — ze41) > 3112 — zall3 + 3llzen — zell2 — S|z — 23, (38)

Moreover, applying Lemma 6 with z = 2}, we obtain

~ N
Hi(25) 2 Hi(z0) + (OHi(z1), 2 — ) + 4112 — 20l — 4Ly +)DyD% (1- 855) - (39)

Take z = 2} in eq. (38) and recall eq. (39). We have
zt) — Hi(2;)

~

< (OHg(21), 2t — z141) + L5225 — 2013 — LIz — ze41ll3 — B llzesr — 23

N
+4(Ly + a)DyD% (1= 95

D 10H OB | vmpx 2 2 2 o \V
< WOHLOIR 4ot — 2l — B2k — 2011 +4(Lg + Dy (1- 555) -+ (40)

where (4) follows from applying Young’s inequality.

Proceeding with the following inductions.

D ovwlfulze) = @)+ D veHi(z)

teT te[T),t&T
(@)
< Do mlfulz) = fulEZ) + Y w(Hi(z) — Hi(2))
teT te([T]t&T
~ N
? Z SVAGEIE+ Y <;||3Hk(zt)||§ +49(Ly + 0)DyD% (1= 957 )
teT te[T)t#T
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T
1)t 2t(t+1
+ 7 (M 2 — 2l — Rz - za3)

t=1

=Y VA Y (;|5Hk<zt>||§+2u<t+1><Lg+a>DyDé (1—;;%)N)

teT e [T) LT
< M;T + T +2)*(Ly + a)DyD% (1 - %m)N (41)
where (7) follows from Hy(z;) < 0, and (i7) follows from eqs. (37) and (40).
Recall that, for all ¢ € T, we have hy,(2;; 7k) < 5. Applying Lemma 6, we have, for allt € T,
Hy(z) < % (Ly + a)DyD% (1 - ﬁ)N. (42)

Applying Lemma 6, we have, forallt ¢ T,

€ 2 a N
Hy(z) > 5 (Lg+a)DyDz (1 - Lg+2a> :

Multiplying -; on both sides of the above inequality and telescoping, we obtain

) N
Z YeHi(2) > Z a0 (6 —(Lg+a)DyDz (1 - LgiQOz) )

€[T) AT te[T)t¢T
N
= Y - u(T +2)%(Ly + a)DyD% (1—ﬁ) .
te[T] t&T

Substituting the above inequality into eq. (41), we obtain

* € N
onlfsle) —fulZ) < =5 D w+ MUT 4 9u(T +2)*(Ly + @) DyD3 (1 - #m)
teT te[T)t&T .
(1) € e,uT2 M?32T
<z Yt — +
2 8 2
teT

N
+2u(T + 2 (Ly + 0)DyD% (1= -952)

2
where (i) follows from — 3, i o7 Ve = D oye7 Ve — 2pery Ve and 3o i v 2> %-
Dividing }, .+ 7: on both side of the above inequality and using the fact ), v: > p, we obtain

RSDLVIETPIE =

DoteT Nt T2 Leer e

By the convexity of fj(z) and eq. (43), we have

N
+2(T +2)%(L, + o) Dy D% (1 - ﬁ) . (43)

eT?
Fi(Gran) — fiol )<€+u+2<T+2> (L, +a)DyD% (1- o)
k(Zk+1 % (25, B) pDp—— g TQ)UylUz I,+%a .

Finally using the convexity of Hy(z), and eq. (42), we obtain

~ ~ € 2 « N
max {(hk(zk+1))j} = Hi(Zp41) < 3+ (Lg +@)DyD% (1 - Lg+2a) :

Recall N > log <4(T+2)2(L;+Q)DyD%) /log(1 — e Yand T > 4M ,we have f(Zk+1) — fu(2]) <e,

and max; {(hk(2k+1)) j} <e O

F. Proof of Theorem 2

Before the proof of Theorem 2, we first prove that the optimal dual variable is upper-bounded.
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Lemma 7. Consider the subproblem in eq. (7). When o > 2{Ly, L.}, we have the optimal dual X}, exists
and || ;|1 satisfies gy < —E G = B,

Proof. Recall that convex constrained optimization has no duality gap [69]. Then the existence of Z
ensures that the Slater’s condition holds. Therefore, the existence of A* is ensured, and the following
inequality holds

Fe(z) = Ju(z) + (hi(z), M) < fo(2) + (hi(2), A) < fe(2) + Al max{ (i (2))}-
Rearranging terms in the above inequality, we have

fr(2) = fr(zR)

Al < — max;{(hn(2))i}

We first provide the formal statement of the theorem and then provide the convergence.

Theorem 5 (Formal Statement of Theorem 2). Suppose Assumption 1 hold. Consider Algorithm 3.
Let o = 2max{Ly, Lc}, e =t + 1o+ 3, m = p‘f(tgtﬁl)r Ty = 4(Lgpj(2t€:'11:))2) O = Fries, where ty =
%fp"—kl, B = By+1and By defined in Lemma 7. Let N > log (4

T> O(ﬁ) We have

(T+2)2(L§+Q)DyDQZ ) /log(1— Tiga )

Fe(Gr1) — fu(zr) <€
max {(hi(Zr+1))} < €
The proof is as follow.

We first define some notations that will be used later. By Proposition 2, we have both fi(2)

g

and hy(z) are u = § strongly convex function. Let dy = 1+ Ht)izk(zt;g)}f\,) — Gtﬁk(zt,l;gjf\fl),
di = (14 0y)h(z) — 0th(z4—1), and & = ﬁk(zt;g)fv) — ﬁk(zt,l;yf\fl). Moreover, we specify
Li(zt, Mev139%) = fr(z6) + Mg, B (24 %) and the gradient of Laguragian as ﬁzﬂk(zt, Ai+130%) =
Vi(z) + a1, Vi (25 9% )). Further define the primal-dual gap function as

Q(w,®) = fi(2) + Mu(2) — (fi(2) + k(%)) ,
where w = (z,\), w = (%,\) € Z x A are primal-dual pairs.

Consider the update of A in eq. (13). Applying Lemma 5 with G = —cft/n, Z=ANZ=Ny1,2=N\
and letting Z = X be an arbitrary point inside A, we have

—Os1 = Ny < 5 (A= 207 = O = 2)? = (A= Aea)?) - (44)

Similarly, consider the update of z in eq. (14). Applying Lemma 5 with G = VoL (26 ey 13 93) /e,
we obtain

(VoL (26, Mt 13 95)s 2641 — 2) < % ((z = 2)* = (2041 — 2)* — (2 — 241)°) - (45)
Recall that f;(z) and hy(2) are L-gradient Lipschitz. This implies

Lz — 23

(VIu(2)s 2001 = 24) 2 fize0) = fal(z0) 5 : (46)
Ll|z — 2 2
<th;(2§t), Zt4+1 — Zt> Z hk(2t+1) — hk(zt) — w (4:7)
Recall that both f; and hy, are p-strongly convex function. These two properties yield
2
z—z
(Vfulea)s 2= 2) 2 fulen) — fule) + 2 (49)

2 )
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_ 2
(Vhi(2), 20 — 2) > hio(ze) — ha(z) + M

Consider the exact gradient of Lagrangian with respect to the primal variable, we have

(VaLi(zt, Mig1), 2e41 — 2)
= (Vfr(zt) + Xes1Vhi(20), 2641 — 210)
= (Vfi(2t), ze41 — 2) + (Vfr(20), 2 — 26) + M1 (Vhi(2t), 2601 — 2) + M1 (Vhe(20), 2 — 21)

Q L1+ )\ 21 — 2|2 (14X 2z — 2|3
> fk(ZtJrl) _ fk(z) +)\t+1(hk(zt+1) _ hk(Z)) _ ( t+1>2|| t+1 tH2 + ( t+12)|| t||2,

(50)

(49)

where (i) follows from combining eqs. (46) to (49).
Combining egs. (45) and (50) yields

Fr(zee1) = fr(2) < (VaLi(ze, As1) — Vo Lr(ze, A1 08)s 2041 — 2) 4+ g1 (hie(2) — ha(2041))

ne — (1 + Aeq1) ne — L(1 4+ X\e11)
+f|\2*2t”§* 5 241 — 2ell3

i
~ e — 3 (51)

Recall the definition of §; = ﬁk(zt; 9%) — ﬁk(zt_n 1}5\7_1) Substituting it into eq. (44) yields

0 < —(A = A1) (265 9%) — N1 — N1 + (e — NEe
+ 5 (=27 = Qe = 2)? = A= Ae1)?). (52)

Let w = (2, A) and w41 = (2441, Ade+1). By the definition of the primal-dual gap function, we have

Q(thrlvw)
= fr(ze41) + M (ze41) — fe(2) = Mg 1he(2)
(%) N
<AVLi (26, A1) — VaLr (e, A3 98), 2041 — 2) + (X = Ng1) e (2041)
ne — (1 + Aey1) ne — L(1L+ A\y1)

e EE R

Nt
5 ||Zt+1*ZtH§*5||Z*Zt+1|\§

(44) ~ .
< AVLLE (20 A1) — VoL (20, M 13 90)s 20401 — 2) + (0= Meg1) (ha(2641) — (2o 15 957

= (A1 = N1+ 0:(Aer1 — A& + % (A=) = i1 = A)? = (A= A1)?)

2 2
where (i) follows from eq. (51) and (i) follows from eq. (52) and 0 < A\;41 < B.

Tt
+ z—zl3 - ||Zt+1—ZtH%—EHZ—ZtHH%a (53)

Now we proceed with |hy(z;) — g (z¢; 9 ).

N . G RN ) LY
haze) = Bz B)| = lgees) = 9l Gi)| < 2Ll = lle < LoDz (1= 255)  (54)

where (i) follows from Assumption 1 and (i) follows from the following Lemma 4 and ||j{ —
Ya(zt)l2 < Dz.

The following inequality follows immediately from the above eq. (54).

R . N
A = A1) (e (20) = b (23 93)) < X = N[ (2) — (263 93)| < LgBDz (1 - ﬁ) - (55)
By the definitions of V, Ly (2, Adt11) and ﬁzﬁk(zt, At+1; 3l ), we have

IV2Li (2, Adg1) — VaLi(ze, Mg 15 55) |2
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- Hka(zt) A1 Vi (z0) — (ka(zt) + A1 Vi (2 zﬁv)) H2

L ® L

= Aes1 | Vg, v (20) — V(e 98|, < M Lgllyl (me) — Ol

(i4) LY

< BLDz (1- %) (56)

where (¢) follows from Assumption 1 and (i:) follows from Lemma 4, and because A;y1 < B and
llgo — 7" (x¢)||]2 < Dz.

By Cauchy-Schwartz inequality and eq. (56), we have
(Vo Li (26 A1) — VaLi (20, A1 9 )s 2041 — 2)
~ ~ N
<|NVaLi(ze, As1) — VL2, Aes1s i) |2llze41 — 2]z < BLgD% (1 - ﬁ) . (57)
By the definition of &;, we have
9t()\t+1 - At)ft = et()\t+1 - At)(ilk(zté Z}}EV) - ]A”Lk(ztfl;ﬂfvil))
= 0: (M1 — M) (23 98) — ho(ze) = B (ze13 98 1) + hae(ze—1) + hs(20) — b (2e-1))
< O Agr = Al (o5 98) = b | 4 (o) = ha(zeo) o+ [on(z1) = Bz )
(1) o N
< |Aig1 = M| (204D (1 - m) + M|z — ze—1]|2
(#4) N
< 2BLyDz (1 - ﬁ) + MAey1 — Mel|lze — ze—1]|2
(i) W \Y M?
< QBLgDZ (1 — m) + E(At+1 — )‘t)Q —+ Tﬁ”zt — thlllg’ (58)

where (i) follows from eq. (54), 8; < 1, and hy(z) is M Lipschitz continuous, (i:) follows from
0 < A, A1 < B, and (444) follows from Young’s inequality.

Substituting egs. (55), (57) and (58) into eq. (53) yields

N
Qwis1,w) < — (Mgt — Nt +0,(\ — \)& + 4LBD% (1 _ %m)

T N — K n
+ é (A=) = (A= A1)?) + tTHZ — 23— é”z — zepll3
M? —-L(1+B
DY I S PR (59)
Tt 2

Recall that 7, 6, 7 and 7, are set to satisfy v.1160:41 = V¢, VTt > Ve+17e+1 and

M2
Y(L(L + B) = m) + 22 <0,
Tt+1

Multiplying v on both sides of eq. (59) and telescoping from ¢t = 0,1,...7 — 1 yield

T-1 NT-1
> WQ(wesr,w) < —yra(Ar = Nér +4LBD% (1- £252) -
t=0 =0

. _
B L) EPY
- 1 —L(B+1
T 1(7IT 1 ( )) HZ _ ZTH%
2
Divide both sides of the above inequality by I'r = ZtT:_Ol 7. We obtain
T-1

1 _1( A=A o N
s §0 WQwis1,w) < ~22GENE L 4L BDE (1- o)
o
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W70y N2 Yo(10 — py) 12
+ o1, (A=20)” + Tor, Iz = 202
_ ,YTfl(anl _S(pf—'_Bph))Hz—zTH% (60)

2’y
Similarly to the steps in eq. (58), we have

N
(Oor = Ner| < vr = N (22402 (1= 1355) + Ml = 271l
N
<2L,BDz (1- %) +MBDz.

Define w = ﬁ ZtT;()l ~viwey1. Noting that Q(-, w) is a convex function and substituting the above
inequality into eq. (60) yield

| Tl
Q(w,w) < Ty ; % Q(Wwey1,w)

< QLgBDZ ( _ @ )N i (Lg +2p}LDZ)BDZ
— PT Ly+2a FT
o \N 7000 —pr) 2
+ (LgDz +3Ly)BDz (1 - Lg+2a> + oy 2 = zol|3
_ 1—3 B
+ Y070 ()\ _ )\0)2 _ T 1(77T 1 (pf + ph)) HZ _ ZTH% (61)

2Ty 2Ty

Let w = (2;,0). Then, we have
- @
QW w) = fr(Zr+1) — fu(zr) = Arhi(2) 2 fe(Zrr1) — fu(2g),

where (i) follows from the fact hj(z}) < 0 and Ay = ﬁ ZtT;Ol Vg1 > 0.

Substituting the above inequality into eq. (61) yields

- 2L BDZ N (L + QPth)BDg
o *) < g _ o g9
i) = filoh) < 5 (1= %) -
+ (LyDz +3Ly)BDz (1 B )N L 0l =Pl = zolls oy
g g Lg+2a 2FT
Recall that (2, A};) is a Nash equilibrium of £;(z, A), we have
. . « ., bydef. v .
Lr(rr, M) 2 Li(z:AL) == fr(Zeen) + Aphe(Gren) = fr(z) 20 (63)

Letw = (%, (A\f + 1)I(hx(Zk+1)), where I(z) = 0if x < 0 and I(x) = 1 otherwise. If hy(Zx+1) < 0,
the constraint is satisfied. If 2y (Z;4+1) > 0, we have

Q(W, w) = fi(Zk+1) + (A\f + Dhr(Zrs1) — frlzy) — Aphi(Zrt1)- (64)

Recall that (2}, A}) satisfies the KKT condition of (Py), i.e. Afhi(z5) = 0. Equations (61), (63)
and (64) together yield,

hi(Zi+1) = Q(Wr, w) — (fi(Zkt1) + Aph(Zry1) — fr(z)) < Qg w)

2L,BD N (L, +2pnDz)BD
< (T2 4 (LyDz +3Ly)BDz ) (1- 1951 (Ly + 20nDz)BD2
FT gt2a FT
YOTO ,\ « 2, 700 = PF) | wp2
+or, (Ap+1) M |25 l5- (65)

We thus conclude, by taking T' = O(ﬁ), N = O(log(1)), eqgs. (62) and (65) complete the proof.
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G. Proof of Theorem 3

G.1. Supporting Lemmas

Lemma 8. Suppose Assumptions 1 and 3 hold, Zj4, is 2[;(—accumife solution of Py, and the input z; is
strictly feasible with respect to Py, with margin 5 ﬂ . Let 0 = {2Ly, L.}. Then, we have

4A 28
—ankﬂ —AlE < =+

oK’
with Ay = max, ez |f(2) — f(2')].
Proof. For Zj41 with k > 1, the ——accuracy implies that
feGrir) = fu(z) < 3%, (66)
hi(Zri1) < 5. (67)
Then, we have h(Zx11) = hi(Zky1) + % — 2 2| Zer1 — Zeal? < M , which immediately implies
that hgt1(Zge1) = h(Zky1) — (k}l)ﬁ < —2.. Thus, given that z; is 2% strictly feasible of problem

P,, we conclude that 2 is % strictly fea51ble of problem P, through induction.

Let L1 (2) = fx(2) + (ML) Thi(2) + 1z(2), where 1z(2) is the indicator function. We have L (2) is a
strongly convex function over R"*™*2, Given any ¢ € Nz(z), we have V f.(2) + (Vhy(2),A\;) + C €
O0L(z) for all z € Z. Clearly 2} € argmin,z L;(z). The optimality gives us that 0 € 9L;(2}). And,
due to the strong convexity of fr(z) and hi(z) and A;; > 0, L(2) is §-strongly convex function.
Thus, we have

%o~ 2218 £ La(5) — Lal)
= ua0) ) Thaa) = (k(aD) + 00 (D)

(? Te(Ze) — fu(25), (68)

where (i) follows from the strong convexity of £; and 0 € 0L (z;), and (i¢) follows from the com-
plementary slackness (\;) " hi(Z) = 0 and Z is feasible for hy(z )

Combining egs. (66) and (68), we have

o . . .
ZHZk — 2113 < Fu(Zr) — fe(Zagr) + o

< fiu(Zk) = f(Zrtr) + %
D fz) - FGa) + o, (69)

where (i) follows from the fact that fi(Zx+1) = f(Zk+1) + Sl|Ze41 — 2|3, and (i4) follows from

fr(Z) = f(Zr), k € N.
Telescoping eq. (69) and utilizing the definition of k, we obtain

K ,
i 1 i 4 i i B8\ @ 4A; 28
*12] _ *12 f
B 15~ 98] = e 15 il < G (F0 —sGre +5) ST 00
where (7) follows from the definition Ay = max, . |f(z) — f(2')]. O

G.2. Proof of Theorem 3

We first provide the formal statement of Theorem 3 as follows.

28



Theorem 6 (Formal Statement of Theorem 3). Suppose Assumption 1 holds. Given z; that is % strictly

feasible of (P1). Let 0 = 2max{Ly, L.}, where L. is determined in Proposition 2. Set K > %, and
B = min{;%,2Ay}.. Then we have z;, is an e-KKT point of eq. (6) in expectation that takes the randomness
over k.

Assumption 1 ensures that there exists My and M}, such that |V f(2)|l2 < My and ||[V(h(2))ill2 <
My, thus we have |V fi(2)|la < My + oDz and |V(hg(2))ill2 < My + 0Dz, with Dz =
max, yez ||z — 2'||2. Let M = max{M;, My} + 0Dz, where M; = max,cz{||Vf(z)|2} and
Mj, = max.ez,ie(q{[|V (h(2))ill2}-

By the requirement of the algorithm, we have, foreachk =1,..., K
Tr(Ze) = fr(zz) < %7
max {(hi (%))} < 55

Applying Lemma 8, we have

K
1 N
EZ”Z’“ —zils < aKf oK’ (71)

Moreover, the optimality of (2}, A;) for subproblem P, shows that, there exists (, € Nz(z}) such
that

Vfi(zx) + (Vhi(2), Ap) + G = 0. (72)
Using the facts, Vfi.(2}) = Vf(2}) + (2} — Zx) and Vhy(z}) = Vh(z}) + ol(z; — Z) ', eq. (72)
implies
V() + (V) M) + G =~ + Do~ 20).

Taking ¢s-norm on both sides of the above equality, and using the upper bound of || A} |2 in Assump-
tion 3, we have

IVF(z0) + AEVR(zE)) + Gelly < (B + Do |2e — 2|2 (73)
Telescoping eq. (73) and applying eq. (71), we have

(B+1)(4Af +2p)
K )

E[[vien+oivae + 6l ] <
Using the fact that ¢, € Nz(z}), we have

(B+1)(4Af +20)
% .

E [dist (v FG0) + </\2Vh(z£)>,fj\fg(zz>)} < (74)

Moreover we have

(4)
k 5 kB
ZM* (z£)) ‘*Z‘)‘k ((hi(zy)) —2szfzk||2 ;?)‘S%II%*Z}SH%T’R,

where ¢ is the dimension of the constraint &, (i) follows from the complementary slackness of z;.
Telescoping the above inequality, we obtain

=|3|(%), (60),

Recall that E[h(2])] = + Zszl h(zp) < (K;;l)ﬁ < 28. Using the facts, K > %, 8 =
min{4%5,2Ay}, eq. (60) induces £ {Hék - z;€‘||§} < ¢, egs. (74) and (75) imply that

Z‘)\* ) -1<e.

K q
] = S Iy < BEALED  REEDE 5 7s)
k=1 1i=1

E [dist (Vf(zg) + (ALVA(2D), ~Nz(2;) )] <eE

29



H. Gradients of the Relaxed Problem in Illustrative Example

The KKT reformulation of the problem in eq. (8) is

min —xy
z,y,w,vER
st 22+’ —1-£6<0
g9(z,y) —£ <0

x4 2wy +vG(x,y) =0

w@x?+yP—1-6=0

v(g(z,y) —¢) =0,
where G(z,y) = V,g(z,y) and it equals

3(y — ) y = |zl
G(z,y) =40 —lzl <y <laf .
= 3(y + |z])? y < —|al
The final relaxed problem is
= S
st. 22 49°—1-£6<0
gla,y) =€ <0

x + 2wy + vG(z,y) — B <0

—z— 2wy —vG(z,y) — L <0

w(x? +y* —1-€)—-B<0

—w(@? +y? —1-¢—-p<0

v(g(w,y) =€) —B <0

—o(g(z,y) —§) - <0.
Denote h(z) as

2?4yP—1-¢
g9(x,y) —¢
x + 2wy + vG(z,y) — B
—z — 2wy — vG(z,y) — B
h(z) = 5 o
w(@®+y —1-¢)—p
—w(@?+y?t—1-¢) -3
v(g(z,y) =€) =5
—v(g(z,y) =) —F
Vf(z) = [~y; —x;0; 0], and for the constrained function h(z), we have
2x 2y 0 0
e s : :
1+ viacéi’y) 2w + viacéz’y) 2y G(z,y)
Vh(z) = —1- ULG{gi’y) — 2w — viang,y) —2 2y 2 - G(z,y)
2wz 2wy +y —1-¢ 0
— 2wz — 2wy — (2P —1-9) 0
v20y) v20Y) 0 g(z.y) =€
—vw —v%@’y) 0 —g(z,y) +¢
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where the gradient of the ith entry equals to the ith row of the above matrix and we have

(y — |=])?, y > ||
g(z,y) =140, —lz| <y < x|
— (y + |z])?, y < —|z

—3sgn(z)(|z| —y)®  y>|z|
dg(x,
dalew) = £ 0 | < |z|
—3sgn(z)(|z| +y)* y < —|z|

with sgn(z) = 1if x > 0 and sgn(x) = —1 otherwise.

By—lz)? oy af
Bae) — G(a,y) = 4 0 lyl < |z,
=3y +e)? v < —la|
Gsgn(x)(|z| — y) yzlz
26y _ ) lyl < |2/,

— Gsgn(z)(y + |z[) y < —|z]

6(y — |=[) y > 2|
9Gy) _ )

= lyl < o]

—6(y+z]) y< |z
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