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Abstract

Rehearsal-based methods have shown superior
performance in addressing catastrophic forgetting
in continual learning (CL) by storing and training
on a subset of past data alongside new data in
current task. While such a concurrent rehearsal
strategy is widely used, it remains unclear if this
approach is always optimal. Inspired by human
learning, where sequentially revisiting tasks helps
mitigate forgetting, we explore whether sequential
rehearsal can offer greater benefits for CL com-
pared to standard concurrent rehearsal. To address
this question, we conduct a theoretical analysis of
rehearsal-based CL in overparameterized linear
models, comparing two strategies: 1) Concurrent
Rehearsal, where past and new data are trained
together, and 2) Sequential Rehearsal, where new
data is trained first, followed by revisiting past
data sequentially. By explicitly characterizing
forgetting and generalization error, we show that
sequential rehearsal performs better when tasks
are less similar. These insights further motivate
a novel Hybrid Rehearsal method, which trains
similar tasks concurrently and revisits dissimilar
tasks sequentially. We characterize its forgetting
and generalization performance, and our experi-
ments with deep neural networks further confirm
that the hybrid approach outperforms standard
concurrent rehearsal. This work provides the first
comprehensive theoretical analysis of rehearsal-
based CL.
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1. Introduction
Continual learning (CL) (Parisi et al., 2019) seeks to build an
agent that can learn a sequence of tasks continuously without
access to old task data, resembling human’s capability of
lifelong learning. One of the major challenges therein is the
so-called catastrophic forgetting (Kirkpatrick et al., 2017),
i.e., the agent can easily forget the knowledge of old tasks
when learning new tasks. A large amount of studies have
been proposed to address this issue, among which rehearsal-
based approaches (Rolnick et al., 2019) have demonstrated
the state-of-the-art performance. The main idea behind is
to store a subset of old task data in the memory and revisit
them for new task learning, where a widely adopted strategy
for training is concurrent rehearsal (Goldfarb et al., 2024),
i.e., train the model concurrently on new data and past data.

While the concurrent rehearsal strategy seems very natural
and has shown successful performance to address catas-
trophic forgetting, it is indeed questionable whether this
strategy is always the right way for rehearsal in CL as we
consider the following aspects. 1) From the perspective of
human learning. In daily life, a common strategy to prevent
forgetting is to review old knowledge. For example, suppose
a student needs to learn a series of topics over a semester be-
fore taking an exam, and each topic corresponds to one task
in CL. Intuitively, if these topics are highly related to each
other, incorporating the knowledge of old topics into learn-
ing a new topic can be an effective strategy to strengthen the
new learning and simultaneously reduce the forgetting of
old knowledge, which is analogous to concurrent rehearsal.
However, if the topics are very different from each other, a
common practice is to learn new topics first and then go over
old topics to mitigate forgetting. Here, such a sequential
rehearsal may lead to better outcome in the exam. 2) From
the perspective of multi-task learning. Learning multiple
tasks all at once may lead to poor learning performance due
to the potential interference among gradients of different
tasks (Yu et al., 2020), whereas standard CL without regu-
larization and rehearsal may even achieve less forgetting for
more dissimilar tasks (Lin et al., 2023). Thus motivated, an
interesting and open question to ask is:

Question: Whether sequential rehearsal will serve as an
appealing rehearsal strategy to complement the standard
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concurrent rehearsal, and when will it be advantageous
over concurrent rehearsal for CL?

To answer this question from a theoretical perspective, we
study rehearsal-based CL through the lens of overparame-
terized linear models to gain useful insights, by following a
recent series of theoretical studies in CL (Lin et al., 2023;
Evron et al., 2022; Ding et al., 2024; Li et al., 2024). How-
ever, none of those previous studies analyzed the rehearsal-
based methods. The only theoretical work that studied the
rehearsal-based methods is the recent concurrent work (Ba-
nayeeanzade et al., 2024). But this work considered only
the standard concurrent rehearsal method, not from the new
perspective of sequential rehearsal.

To capture the idea of sequential rehearsal, we propose a
novel rehearsal strategy, in which the agent sequentially
revisits each old task and trains the model with the corre-
sponding past data after the current task is well learned.

We summarize our main contributions as follows.

(1) First of all, we provide the first explicit closed-form
expressions for the expected value of forgetting and gen-
eralization error for both concurrent rehearsal strategy and
sequential rehearsal strategy under an overparameterized
linear regression setting. Note that the blending of samples
from old tasks in concurrent rehearsal introduces significant
intricacies related to task correlation in theoretical analysis.
To address this challenge, we partition training data into
blocks based on different tasks, which enables us to further
calculate the task interference using the properties of block
matrix. In particular, our theoretical results demonstrate
how the performance of rehearsal-based CL is affected by
various factors, including task similarity and memory size.

(2) Secondly, we propose a novel rehearsal strategy, i.e., se-
quential rehearsal, to sequentially revisit old tasks after the
current task is fully learned. By characterizing the explicit
closed-form expressions for the expected forgetting and gen-
eralization error for sequential rehearsal and comparing with
the concurrent rehearsal, we give an affirmative answer to
the open question above. More importantly, we rigorously
characterize the conditions when sequential rehearsal can
benefit CL more than concurrent rehearsal, in terms of both
forgetting and generalization error, which is also consistent
with our motivations above: Sequential rehearsal outper-
forms concurrent rehearsal if tasks in CL are dissimilar, and
the performance improvement is larger when the tasks are
more dissimilar. Numerical simulations on linear models
further corroborate our theoretical results.

(3) Last but not least, our theoretical insights can indeed go
beyond the linear models and guide the practical algorithm
design for rehearsal-based CL with deep neural networks
(DNNs). More specifically, we merge the idea of sequential
rehearsal into standard rehearsal-based CL with concurrent

rehearsal, leading to a novel hybrid rehearsal approach
where 1) old tasks dissimilar to the current task will be revis-
ited by using sequential rehearsal (guided by our theory that
suggests more benefit if dissimilar tasks are revisited sequen-
tially) and 2) the past data for the remaining old tasks (that
are sufficiently similar to the current task) will still be used
concurrently with current task data. Our experiments on
real datasets with DNNs verify that our hybrid approach can
perform better than concurrent rehearsal and the advantage
is more apparent when tasks are more dissimilar.

2. Related Work
Empirical studies in CL. CL has drawn significant atten-
tion in recent years, with numerous empirical approaches
developed to mitigate the issue of catastrophic forgetting.
Architecture-based approaches combat catastrophic forget-
ting by dynamically adjusting network parameters (Rusu
et al., 2016) or introducing architectural adaptations such as
an ensemble of experts (Rypeść et al., 2024). Regularization-
based methods constrain model parameter updates to pre-
serve the knowledge of previous tasks (Kirkpatrick et al.,
2017; Magistri et al., 2024). Memory-based methods ad-
dress forgetting by storing information of old tasks in the
memory and leveraging the information during current task
learning, which can be further divided into orthogonal pro-
jection based methods and rehearsal-based methods. The
former stores gradient information of old tasks to modify the
optimization space for the current task (Saha et al., 2021; Lin
et al., 2022b), while the latter stores and reuses a tiny sub-
set of representative data, known as exemplars. Exemplar
sampling methods involve reservoir sampling (Chrysakis
& Moens, 2020) and an information-theoretic evaluation of
exemplar candidates (Sun et al., 2022). Other work such
as Shin et al. (2017) retains past knowledge by replaying
”pseudo-rehearsal” constructed from input data instead of
storing raw input. Rehearsal methods mostly use a concur-
rent scheme that trains the model using a mix of input data
and sampled exemplars (Chaudhry et al., 2018; Dokania
et al., 2019; Rebuffi et al., 2017; Garg et al., 2024). Other
exemplar utilization methods include Lopez-Paz & Ranzato
(2017) and Chaudhry et al. (2018), which use exemplar to
impose constraints in the gradient space.

Theoretical studies in CL. Compared to the vast amount
of empirical studies in CL, the theoretical understanding of
CL is very limited but has started to attract much attention
very recently. Bennani & Sugiyama (2020); Doan et al.
(2021) investigated CL performance for the orthogonal gra-
dient descent approach in NTK models theoretically. Yin
et al. (2020) focused on regularization-based methods and
proposed a framework, which requires second-order infor-
mation to approximate loss function. Cao et al. (2022); Li
et al. (2022) characterized the benefits of continual represen-
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tation learning from a theoretical perspective. Evron et al.
(2023) connected regularization-based methods with Pro-
jection Onto Convex Sets. Recently, a series of theoretical
studies proposed to leverage the tools of overparameter-
ized linear models to facilitate better understanding of CL.
Evron et al. (2022) studied the performance of forgetting
under such a setup. After that, Lin et al. (2023) character-
ized the performance of CL, where they discuss the impact
of task similarities and the task order. Ding et al. (2024)
further characterized the impact of finite gradient descent
steps on forgetting of CL. Goldfarb & Hand (2023) illus-
trated the joint effect of task similarity and overparameter-
ization. Zhao et al. (2024) provided a statistical analysis
of regularization-based methods. More recently, Li et al.
(2024) theoretically investigated the impact of mixture-of-
experts on the performance of CL in linear models.

Different from all these studies, we seek to fill up the theo-
retical understanding for rehearsal-based CL. Note that one
concurrent study (Banayeeanzade et al., 2024) also investi-
gates rehearsal-based CL in linear models with concurrent
rehearsal. However, one key difference here is that we pro-
pose a novel rehearsal strategy, i.e., the sequential rehearsal,
and theoretically show its benefit over concurrent rehearsal
for dissimilar tasks. Our theoretical results further motivate
a new algorithm design for CL in practice, which demon-
strates promising performance on DNNs.

3. Problem setting
We consider a common CL setup consisting of T tasks
where each task arrives sequentially in time t ∈ [T ]. Here
[T ] := {1, 2, ..., T} for any positive integer T . Let Ip de-
note the p×p identity matrix and let ∥·∥ denote the ℓ2-norm.

Data Model. We adopt the setting of linear ground truth
which is commonly used in recent theoretical analysis of
CL, e.g., (Lin et al., 2023; Li et al., 2024; Banayeeanzade
et al., 2024). Specifically, for each task t ∈ [T ], a sample
(xt, yt) is generated by a linear ground truth model:

yt = x⊤
t w

∗
t + zt, (1)

where xt ∈ Rp denotes features, yt ∈ R denotes the output,
w∗

t ∈ Rp denotes the ground truth parameters, and zt ∈ R
denotes the noise.

Dataset. For each task t ∈ [T ], there are nt training sam-
ples (xt,i, yt,i)i∈[nt]. We stack those samples into ma-
trices/vectors to obtain the dataset Dt = {(Xt,Yt) ∈
Rp×nt × Rnt}. By Equation (1), we have

Yt = X⊤
t w∗

t + zt, (2)

where Xt := [xt,1 xt,2 · · · xt,nt ], Yt :=
[yt,1 yt,2 · · · yt,nt ]

⊤, and zt := [zt,1 zt,2 · · · zt,nt ]
⊤. We

consider i.i.d. Gaussian features and noise, i.e., each ele-
ment of Xt follows i.i.d. standard Gaussian distribution, and
zt ∼ N (0, σ2

t Int) where σt ≥ 0 denotes the noise level.
To make our result easier to interpret, we let σt = σ and
nt = n for all t ∈ [T ].

Memory. For any task t ≥ 2, besides Dt, the agent has an
overall memory datasetMt that contains separate memory
datasetsMt,h for each of the previous tasks h ∈ [t − 1],
i.e., Mt =

⋃t−1
h=1Mt,h where Mt,h = (X̃t,h, Ỹt,h) ∈

Rp×Mt,h × RMt,h denotes the samples from previous task
h and we define Mt,h as the number of samples inMt,h.
In most CL applications, the memory space is fully utilized
and the memory size does not change over time. We denote
this memory size by M that does not change with t. In
this case, we have

∑t−1
h=1 Mt,h = M for any t ≥ 2. To

simplify our theoretical analysis, we focus on the situation
in which the memory data are all fresh and have not been
used in previous training. We equally allocate the memory
to all previous tasks at each time t, i.e., Mt,h = M

t−1 for
h ∈ [t − 1]. For simplicity, we assume M

t−1 is an integer1

for any t ∈ {2, 3, · · · , T}.

Performance metrics. We first introduce the model error
of parameter w over task i’s ground truth.

Li(w) = ∥w −w∗
i ∥

2
. (3)

We note that this formulation is widely adopted in recent
theoretical studies(Evron et al., 2022; Lin et al., 2023). The
performance of CL is measured by two key metrics, which
are forgetting and generalization error. Let wt be the param-
eters of the training result at task t.

1. Forgetting: It measures the average forgetting of old tasks
after learning the new task. In our setup, forgetting at task
T w.r.t. previous tasks [T − 1] is defined as follows.

FT =
1

T − 1

T−1∑
i=1

E[Li(wT )− Li(wi)]. (4)

2. Generalization error: It measures the overall model
generalization after the final task is learned. In our setup,
generalization error is defined as follows.

GT =
1

T

T∑
i=1

E[Li(wT )]. (5)

The definitions are consistent with the standard CL perfor-
mance measures in experimental studies (Saha et al., 2021).

1We note that without the assumption of M
t−1

∈ Z, memory can
still be allocated as equally as possible, resulting in only a minor
error. Our theoretical results remain of referential significance.
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4. A Novel Sequential Rehearsal vs. Popular
Concurrent Rehearsal

In this section, we first introduce the popular concurrent
rehearsal strategy that is widely used in current CL appli-
cations to mitigate catastrophic forgetting. We will then
propose a novel sequential rehearsal strategy, which has
appealing advantage compared to concurrent rehearsal.

To describe these rehearsal strategies, note that the training
result wt at task t will be used as the initial point for the
next task t + 1. The initial model parameter of task 1 is
set to be 0, i.e., w0 = 0. The training loss for task t is
defined by mean-squared-error (MSE). We focus on the
over-parameterized case, i.e., p > n + M . As shown in
(Zhang et al., 2022; Gunasekar et al., 2018), the convergence
point of stochastic gradient descent (SGD) for MSE is the
feasible point closest to the initial point with respect to the
ℓ2-norm, i.e., the minimum-norm solution.

Concurrent rehearsal. We first introduce the popular con-
current rehearsal strategy as follows. At each task t ≥ 2, we
apply SGD on the current dataset and the memory dataset
jointly to update the model parameter. Specifically, as il-
lustrated in Figure 1, at time t, we minimize the MSE loss
via SGD on the combined dataset Dt

⋃
Mt with the initial

point wt−1 and obtain the convergent point wt as

wt = argmin
w
∥w −wt−1∥2

s.t. X⊤
t w = Yt, X̃⊤

t,hw = Ỹt,h, ∀h ∈ [t− 1].

Novel sequential rehearsal. In scenarios where previous
tasks are very different from the current task, concurrent
rehearsal may result in contradicting gradient update di-
rections, and can hurt the knowledge transfer among tasks.
Consequently, concurrent rehearsal may not always perform
well. This motivates a novel rehearsal strategy that sequen-
tially revisits history tasks one by one after training the
current task, analogously to the way how a student reviews
previously learned topics to avoid forgetting before exams.

To formally describe the training (see Figure 1 for an illus-
tration), at each task t ≥ 2, we first train on the current
dataset Dt to learn the new task until the convergence to the
initial stopping point w(0)

t . Then, for h = 1, 2, ..., t− 1, we
start from the previous stopping point w(h−1)

t and train on
the memory datasetMt,h to converge to the next stopping
point. Eventually, wt is obtained after revisiting all memory
sets, i.e., wt = w

(t−1)
t . To simplify, we define X̃t,0 := Xt,

Ỹt,0 := Yt and w
(−1)
t := wt−1. Then, the training process

is equivalent to solve the following optimization problems
recursively for h = 0, 1, ..., t− 1:

w
(h)
t = argmin

w

∥∥∥w −w
(h−1)
t

∥∥∥2 , s.t. X̃⊤
t,hw = Ỹt,h.

Figure 1. An illustration of concurrent and sequential rehearsal.

5. Main Results
The main theoretical results consist of two parts. First, we
derive closed forms of forgetting and generalization error for
both concurrent and sequential rehearsal methods. Second,
we compare the performance of these two rehearsal-based
schemes, concluding that sequential rehearsal outperforms
concurrent rehearsal when tasks are dissimilar.

5.1. Characterization of Forgetting and Generalization
Error

In rehearsal-based CL methods, the interference among
tasks throughout the entire training process is intricate, due
to the presence of the memory dataset. This introduces
an unavoidable challenge in understanding the impact of
memory on the performance of rehearsal-based methods.

Following from the definitions of forgetting and generaliza-
tion in Equations (4) and (5), the key to evaluating their per-
formance lies in calculating the expected value of model er-
rors over any previous task ith ground truth after learning the
final task (i.e., E[Li(wT )]). Indeed, for a generic t ≤ T , the
explicit expressions of E[Li(wt)] and E[Li(wt)−Li(wi)]
share the same structure for both rehearsal methods. Thus,
further following from the definitions of forgetting and gen-
eralization error, we present a common performance struc-
ture shared by both concurrent rehearsal and sequential
rehearsal methods in the following theorem.
Theorem 5.1. Under the problem setups in this work, the
forgetting and the generalization error at time T ≥ 2 in
both rehearsal-based methods take the following forms.

FT =
1

T − 1

T−1∑
i=1

ci ∥w∗
i ∥

2
+

T−1∑
i=1

T−1∑
j,k=1

cijk
∥∥w∗

j −w∗
k

∥∥2
+

T−1∑
i=1

(noiseT (σ)− noisei(σ))

]
,

GT =
1

T

d0T T∑
i=1

∥w∗
i ∥

2
+

T∑
i=1

T∑
j,k=1

dijkT
∥∥w∗

j −w∗
k

∥∥2
+ noiseT (σ), (6)

where coefficients and the noise term depend on p, n,M , as
provided in Appendix C for both rehearsal-based methods.
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Theorem 5.1 indicates that both rehearsal-based methods
share the same high-level performance dependence on the
system parameters. It can be seen that both of their for-
getting and generalization error consist of the following
three components. The first component exhibits the form of
C∥w∗

i ∥2 for some constant C, which arises from the overpa-
rameterized linear regression error. The second component
captures the impact of task dissimilarities, representing the
interference among different tasks during the training pro-
cess. Extracting central information from this component
is particularly useful for understanding how task dissimilar-
ity affects the comparison between the two rehearsal-based
methods, which is the focus of Section 5.2. The third part
captures the impact of the noise level.

Here, we first provide some basic conclusions for the coeffi-
cients in Theorem 5.1. (i) By letting M = 0, both training
methods yield the same result, which is consistent with the
memoryless case shown by Lin et al. (2023). (ii) We can also
observe that low task similarity negatively impacts model
generalization, as dijkT (defined in Proposition C.2) are
non-negative. When p→∞, we observe that the value of
coefficients dijkT approaches to 0 for both rehearsal meth-
ods, which implies the negative influence of task dissimi-
larities will be alleviated if the model has enough capacity
(i.e., when p is sufficiently large). (iii) We observe that the
forgetting approaches to 0 when p→∞. This implies that
a model with substantial capacity will facilitate effective
learning for each task without forgetting, which can also
alleviate the negative impact of task dissimilarity.

Outline of Proof of Theorem 5.1. We provide a brief
outline of the proof of Theorem 5.1 here, and the detailed
proof is given in Appendix C. By the definition of forgetting
and generalization error, it is sufficient to analyze E[Li(wt)]
and E[Li(wt) − Li(wi)]. We next explain how to obtain
the explicit expression for E[Li(wt)], and E[Li(wi)] can
be calculated in a similar way by substituting t with i.

The derivation of E[Li(wt)] is carried out through an iter-
ative procedure as follows. We first split E[Li(wt)] into
three terms as follows:

E[Li(wt)] = gt(E[Li(wt−1)]) + term2 + termnoise,

where gt, term2 and termnoise are given in Equation (26) in
Appendix C. We then analyze each of those three terms.

The first term gt(E[Li(wt−1)]) can be evaluated by iter-
atively rolling out to the initial term, which can then be
derived explicitly. Note that the function g(·) takes a linear
form, which simplifies the iteration. The second term cap-
tures the interference among different tasks during training
process. For concurrent rehearsal method, we further derive
it by partitioning the data from different tasks and leveraging
the properties of block matrices. For sequential rehearsal,
we follow the same idea as the memoryless case (Lin et al.,

2023) since different tasks in the memory dataset as well as
the current task are learned one by one. The third term cap-
tures the noise, which can be analyzed by applying “trace
trick” and the properties of Inverse-Wishart distribution.

5.2. Comparison Between Concurrent rehearsal and
Sequential rehearsal

The main challenge to compare the performance between the
two rehearsal-based methods lies in the complexity of the
second term in forgetting and generalization in Theorem 5.1,
which captures how the task similarity as well as memory
data affect the performance. Here the task similarity is
characterized by the distance between the true parameters
for two tasks. In this section, we will first study a simple
case with two tasks, i.e., when T = 2, to build our intuition,
and then extend to the case with general T based on the
central insight obtained in the simple case.

Two-task Case (T = 2): Given the noise level σ, we de-
note noiset = noiset(σ) for simplification. Following from
Theorem 5.1, the performance of both rehearsal methods
shares the common form:

F2 = ĉ1 ∥w∗
1∥

2
+ ĉ2 ∥w∗

1 −w∗
2∥

2
+ noise2 − noise1,

G2 = d̂1(∥w∗
1∥

2
+ ∥w∗

2∥
2
) + d̂2 ∥w∗

1 −w∗
2∥

2
+ noise2,

where the specific expressions of constants ĉ1, ĉ2, d̂1, d̂2
for both rehearsal methods are provided in Appendix D.
To compare between the two rehearsal-based methods, the
following lemma captures how their coefficients compare
with each other.

Lemma 5.2. Under the problem setups of the two-task case,
we have

ĉ(concurrent)
1 < ĉ(sequential)

1 , ĉ(concurrent)
2 > ĉ(sequential)

2 ,

d̂(concurrent)
1 < d̂(sequential)

1 , d̂(concurrent)
2 > d̂(sequential)

2 .

Intuitively, when the task dissimilarities are sufficiently
large (i.e., ∥w∗

1 −w∗
2∥ is large), then ĉ2 and d̂2 will domi-

nant forgetting and generalization error respectively. Then
Lemma 5.2 suggests that sequential rehearsal will have less
forgetting and generalization error than concurrent rehearsal.
Alternatively, if the tasks are very similar and the noise is
small, then ĉ1 and d̂1 will dominate the performance, and
concurrent rehearsal will yield better performance. The fol-
lowing theorem formally establishes the above observations.

Theorem 5.3. Under the problem setups considered in the
work, we have

F (concurrent)
2 > F (sequential)

2 iff ξ1∥w∗
1−w∗

2∥
2+ξ2σ

2

∥w∗
1∥2

> 1,

G(concurrent)
2 > G(sequential)

2 iff µ1∥w∗
1−w∗

2∥
2+µ2σ

2

∥w∗
1∥2

> 1,
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where ξ1, ξ2, µ1, µ2 are positive constants with detailed ex-
pressions given in Appendix D.

Theorem 5.3 provably establishes an intriguing fact that the
widely used concurrent rehearsal may not always perform
better, and sequential rehearsal can perform better when
tasks are more different from each other. We further elabo-
rate our comparison between the two methods for the case
with T = 2 in Appendix D (where the impact of noise is
also considered) and with T = 3 in Appendix E. The in-
sights obtained from Theorem 5.3 can also be extended to
the general case as follows.

General Case (T ≥ 2): Comparing the performance in two
rehearsal methods provided in Theorem 5.1 under general T
is significantly more challenging, because the mathematical
expression of the coefficients become highly complex. How-
ever, our insights obtained from the two-task case can still
be useful, i.e., sequential rehearsal tends to performance
better when tasks are very different. To formalize such
an observation, the following lemma compares the coeffi-
cients in forgetting and generalization error between the two
rehearsal methods.

Lemma 5.4. Under the problem setups considered in the
work, the value of coefficients ci, cijk, d0T , dijkT in Theo-
rem 5.1, as derived from different rehearsal methods, satisfy
the following relationship.

c(concurrent)
i < c(sequential)

i , c(concurrent)
ijk ≥ c(sequential)

ijk ,

d(concurrent)
0T < d(sequential)

0T , d(concurrent)
ijkT ≥ d(sequential)

ijkT .

The above lemma suggests that if the tasks are all very dif-
ferent from each other, then sequential rehearsal will have
smaller forgetting and generalization error than concurrent
rehearsal because c(concurrent)

ijk > c(sequential)
ijk and d(concurrent)

ijkT >

d(sequential)
ijkT will dominate the comparison. While it is chal-

lenging to provide an exact closed-form characterization of
the conditions under which sequential rehearsal outperforms
concurrent rehearsal, the following theorem presents an ex-
ample where sequential rehearsal outperforms concurrent
rehearsal, based on the understanding outlined above.

Theorem 5.5. Under the problem setups in this work, sup-
pose the ground truth w∗

i is orthonormal to each other for
i ∈ [T ], M ≥ 2, and p = O(T 4n2M2). Then we have:

F (concurrent)
T > F (sequential)

T and G(concurrent)
T > G(sequential)

T .

In Theorem 5.5, orthonormal w∗
i is an extreme case to have

very different tasks. Typically, since forgetting and gener-
alization error are continuous functions of the task dissimi-
larity, we expect that in the regime that the tasks are highly
different, sequential rehearsal will still be advantageous to
enjoy less forgetting and smaller generalization error, and

such an advantage should be more apparent as tasks become
more dissimilar. To explain this, we consider the generaliza-
tion error as an example. Assuming that the norm of ground
truth is fixed, a higher level of task dissimilarities exacer-
bates the generalization error since each coefficient dijkT
(defined in Proposition C.2) is positive for both training
methods. However, a weaker dependence on task similar-
ities indicates that the generalization error of sequential
rehearsal grows slower than concurrent rehearsal as tasks
become more dissimilar, resulting advantage for sequential
rehearsal to enjoy smaller generalization error. A similar
reason is applicable to the forgetting performance, although
it is important to note that cijk is not always positive.

Simulation Experiments: To validate our theoretical in-
vestigation, we conduct simulation experiments on CL with
overparameterized linear models. Set T = 5, p = 500,
n = 24, σ = 0 and M = 24. The construction of
ground truth features follows two principles: 1) each fea-
ture is drawn from the unit sphere, and 2) the task gap (i.e.,∥∥w∗

j −w∗
i

∥∥) between any two features is identical. Under
different setups of the task gap, the comparisons between
theoretical results and simulation results are shown in Fig-
ure 2 in terms of both forgetting and generalization error.
Here, the theoretical results are calculated according to The-
orem 5.1, and the simulation results are obtained by taking
the empirical expectation over 103 iterations.
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Figure 2. Forgetting and Generalization Error vs Task Gap

Several important insights can be immediately obtained
from Figure 2: 1) Our theoretical results exactly match with
our simulation results, which can clearly corroborate the
correctness of our theory. 2) When tasks are similar, i.e.,
the task gap ||w∗

j − w∗
i ||2 is small than some threshold,

concurrent replay is better than sequential replay. However,
when tasks become dissimilar, sequential replay starts to
outperform concurrent replay in terms of both forgetting
and generalization error. And the advantage of sequential
replay becomes more significant as the task gap increases,
which also aligns with our theoretical results.
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Remark. It is clear that the order in which old tasks are
revisited after current task learning is very important un-
der the framework of sequential rehearsal, which affects
both forgetting and generalization errors. Needless to say,
the sequential order considered in this work, where tasks
are reviewed from the oldest to the newest, is not neces-
sarily the optimal strategy for sequential rehearsal, where
however has already demonstrated exciting advantages over
concurrent rehearsal. How to design an effective rehearsal
order to achieve better performance is a very interesting yet
challenging future direction.

6. Implications on Practical CL
6.1. Hybrid Algorithm Framework

As our theory suggests, sequential rehearsal can benefit CL
more than concurrent rehearsal when tasks are dissimilar.
Hence, an interesting idea and a potential way to improve the
performance is to merge sequential rehearsal into rehearsal-
based CL with concurrent rehearsal. Thus inspired, we
propose a novel hybrid rehearsal framework, which adapts
between concurrent rehearsal and sequential rehearsal for
each task based on its similarity with old tasks in the mem-
ory. The details are presented in Algorithm 1.

Algorithm 1 Hybrid Rehearsal Training Framework
Initialization. Model parameters θ.
for task t = 1, 2, . . . , T do

Retrieve current data Dt and memory dataMt

ifMt ̸= ∅ then
Msim

t ,Mdis
t ← DIVIDEBUFFER(Mt)

end if
θ ← CONCURRENTTRAIN(Dt ∪Msim

t )
for h :Mt,h ∈Mdis

t do
θ ← SEQUENTIALTRAIN(Mt,h)

end for
Mt+1 ← UPDATEMEMORY(Dt ∪Mt)

end for

In Algorithm 1, prior to training on task t, the overall mem-
ory dataset Mt is first divided into Msim

t and Mdis
t , de-

pending on whether previous tasks are similar to the current
task or not. Specifically, there are two steps in function
DIVIDEBUFFER(Mt): we characterize task similarities
between the current task Dt and each previous task h in
the memory Mt,h ∈ Mt, based on their cosine similar-
ity of gradients with respect to the model parameters, i.e.,
Sc(∇θL(Dt, θt−1),∇θL(Mt,i), θt−1), where L denotes
training loss and Sc is the cosine similarity function; 2)
any previous task for which the similarity score is below
a threshold τ will be regarded as a dissimilar task and its
data will be put intoMdis

t . It is important to note that this
framework does not rely on very accurate characterizations

of the task similarity. Instead, a heuristic-based estimation
should be sufficient, by following the gradient-based sim-
ilarity characterization as in previous studies (Lopez-Paz
& Ranzato, 2017; Lin et al., 2022a;b). To learn task t, we
first train the model concurrently on the combined dataset
consisting of the current task data Dt and the memory sam-
ples from similar tasksMsim

t . Subsequently, we perform
sequential rehearsal by finetuning the learned model on
the memory data from each dissimilar task inMdis

t . The
function UPDATEMEMORY represents a general exemplar
sampling strategy, such as Reservoir Sampling (Rolnick
et al., 2019).

Under the problem setups considered in the work, the theo-
retical forgetting and generalization error of hybrid re-
hearsal strategy under linear models follow the same general
expression as described in Theorem 5.1. The explicit expres-
sions for coefficients are provided in Appendix H. In what
follows, we validate the advantage of hybrid rehearsal strat-
egy through experiments conducted on real-world datasets
and DNNs.

6.2. Hybrid Rehearsal for CL in Practice
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Figure 3. Evolution of Accuracy Acc for Concurrent rehearsal and
Hybrid rehearsal across three datasets and their corrupted variants,
corresponding to the results reported in Table 1.

As an extension of our theoretical results, we verify the
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Table 1. Averaged Final Accuracy Acc and Averaged Final Forgetting Fgt of different rehearsal methods (concurrent rehearsal vs. hybrid
rehearsal) on three datasets and their corrupted variations. “Improvement” shows the Acc or Fgt overhead that hybrid rehearsal achieves
over concurrent rehearsal under the same setup. For all datasets, we construct a sequence of 5 tasks for training. The reported results are
presented with ± standard deviation. All results are averaged over 10 independent runs.

Metric Acc (↑) Fgt (↓) Acc (↑) Fgt (↓) Acc (↑) Fgt (↓)
Dataset Split-CIFAR-10 Split-CIFAR-100 Split-TinyImagenet200

Concurrent rehearsal 86.20 ± 0.68 9.73 ± 0.76 68.43 ± 0.93 14.56 ± 1.15 61.10 ± 0.28 13.28 ± 0.30

Hybrid rehearsal 87.27 ± 0.59 8.25 ± 0.50 69.92 ± 0.52 11.29 ± 0.79 63.29 ± 0.47 9.62 ± 0.45

Improvement +1.07 −1.48 +1.49 −3.27 +2.19 −3.66

Dataset Corrupted Split-CIFAR-10 Corrupted Split-CIFAR-100 Corrupted Split-TinyImagenet200

Concurrent rehearsal 82.01 ± 0.90 11.14 ± 0.98 62.33 ± 0.57 17.35 ± 0.75 52.69 ± 0.44 15.23 ± 0.49

Hybrid rehearsal 83.45 ± 0.22 6.90 ± 0.56 64.34 ± 0.36 9.49 ± 1.67 55.07 ± 0.33 1.91 ± 0.69

Improvement +1.44 −4.24 +2.01 −7.86 +2.38 −13.32

performance of the proposed hybrid framework in Algo-
rithm 1 and compare it with the widely-used concurrent re-
hearsal. We consider three real-world datasets under a task-
incremental CL setup: CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), and TinyImagenet200 (Le & Yang, 2015).
Following recent work (Van de Ven et al., 2022), we ran-
domly partition the classes from each dataset into multi-
ple tasks, yielding Split-CIFAR-10, Split-CIFAR-100, and
Split-TinyImagenet200. For example, in Split-CIFAR-10,
the sequence of tasks {T1, . . . , T5} is constructed such that
each task contains two distinct classes. The objective for
each task Tt is to classify between {Yt,1,Yt,2} with the task
label explicitly provided during training and testing. We
employ a non-pretrained ResNet18 as the backbone model
for all three datasets. To evaluate the performance, we de-
note ak,t as the testing accuracy on task t after training
task k and consider the following two metrics: 1) Final
Average Accuracy (Acc) across all seen tasks after training
defined as Acc = 1

T

∑T
t=1 aT,t, which can be regarded as

generalization error, and 2) Final Average Forgetting (Fgt),
defined as Fgt = 1

T−1

∑T−1
t=1 (at,t−aT,t), which evaluates

the average accuracy drop of old tasks after learning the
final task.

Here, to simplify our comparison between hybrid rehearsal
and concurrent rehearsal while avoiding extraneous com-
plexities such as rehearsal task ordering (which is beyond
the scope of this paper), we adopt a straightforward relax-
ation: at most one task with the lowest similarity charac-
terization in memory is designated as the “dissimilar task”.
As shown in Table 1, hybrid rehearsal consistently outper-
forms concurrent rehearsal across all three datasets in terms
of both average accuracy and forgetting. For the original
datasets, the most significant improvement is observed on
Split-TinyImagenet200, where hybrid rehearsal achieves a
2.19% higher accuracy than concurrent rehearsal while also
reducing forgetting by 3.66. We further report the perfor-

mance evolution during CL for all settings from Table 1 in
Figure 3, where each point shows the average performance
of the model after learning task t on all seen tasks so far.
While the performance of hybrid rehearsal may degrade
during intermediate tasks, it consistently surpasses concur-
rent rehearsal in terms of final performance, highlighting
the effectiveness of sequentially fine-tuning the model on
dissimilar task data for better knowledge consolidation.

To demonstrate the potential of hybrid rehearsal, we con-
sider a challenging setup on Split-CIFAR-100 and Split-
TinyImagenet200 with a long task sequence, i.e., under a
20-task setting. As shown in Table 2, hybrid rehearsal out-
performs concurrent rehearsal by a more pronounced gap,
demonstrating the scalability and effectiveness of the hybrid
rehearsal strategy in scenarios with a large number of tasks.

Furthermore, following our theoretical insight, the hybrid
rehearsal strategy exhibits greater advantages when the task
dissimilarity is higher. To validate this, we increase task dis-
similarity by applying image corruption to one specific task
in each of the three datasets, generating Corrupted Split-
CIFAR-10, Corrupted Split-CIFAR-100, and Corrupted
Split-TinyImagenet200. Details of the employed image cor-
ruption schemes are provided in Appendix A.3. As shown in
the second part of Table 1, hybrid rehearsal outperforms con-
current rehearsal in both accuracy and forgetting by a larger
margin on all three corrupted dataset variations, aligning
with our theoretical insight.

To characterize the impact of task similarity on hybrid re-
hearsal, we next control the similarity by applying various
proportions of label corruption in the task sequence on Split-
TinyImagenet200. For each class within a corrupted task,
pcor% of training samples are randomly selected and their
labels are uniformly reassigned to other class labels within
the same task. Intuitively, the tasks are more dissimilar when
a larger proportion of labels are corrupted. In particular, we
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Table 2. Acc and Fgt of different rehearsal methods on Split-
CIFAR-100 and Split-TinyImagenet200. For all datasets, we con-
struct a sequence of 20 tasks for training. All results are averaged
over 5 independent runs.

Dataset Split-CIFAR-100 Split-TinyImagenet200

Concurrent 67.99 ± 0.21 62.94 ± 0.60

Hybrid 72.31 ± 0.38 66.46 ± 0.13

Improvement +4.32 +3.52

Table 2.1 Acc (↑)
Dataset Split-CIFAR-100 Split-TinyImagenet200

Concurrent 13.91 ± 0.11 15.05 ± 0.81

Hybrid 7.43 ± 0.18 13.03 ± 0.79

Improvement −6.48 −2.02

Table 2.2 Fgt (↓)

Table 3. Acc and Fgt of different rehearsal methods on Split-Tiny-
Imagenet200, where a subset of training data labels are corrupted
in the first two tasks. All results are averaged over 5 independent
runs.

Setting pcor = 5% pcor = 10% pcor = 20%

Concurrent 57.36 ± 0.06 53.92 ± 0.78 49.07 ± 0.59

Hybrid 60.02 ± 0.36 56.88 ± 0.12 53.73 ± 0.60

Improvement +2.66 +2.96 +4.66

Table 3.1 Acc (↑)
Setting pcor = 5% pcor = 10% pcor = 20%

Concurrent 14.85 ± 0.28 17.40 ± 0.82 17.35 ± 1.15

Hybrid 11.26 ± 0.10 12.73 ± 1.00 12.48 ± 0.78

Improvement −3.59 −4.67 −4.87

Table 3.2 Fgt (↓)

consider three different settings: pcor = 5%, 10%, 20%. It
can be seen from Table 3 that hybrid rehearsal consistently
outperforms concurrent rehearsal, and more importantly,
the performance improvement becomes more significant as
tasks are more dissimilar. These results further justify the
correctness and usefulness of our theoretical results. Note
that the performance of hybrid rehearsal has not been opti-
mized in terms of the rehearsal order and selection of similar
tasks, which may further improve the effectiveness of se-
quential rehearsal. This encouraging result highlights the
great potential of exploiting sequential rehearsal in improv-
ing the performance of rehearsal-based CL.

7. Conclusion
In this work, we took a closer look at the rehearsal strategy
in rehearsal-based CL and questioned the effectiveness of
the widely used training technique, i.e., concurrent rehearsal.

In particular, we proposed a novel rehearsal strategy, namely
sequential rehearsal, which revisits old tasks in the memory
sequentially after current task learning. By leveraging over-
parameterized linear models with equal memory allocation,
we provided the first explicit expressions of both forgetting
and generalization errors under two rehearsal methods: con-
current rehearsal and sequential rehearsal. Comparisons
between their theoretical performance led to the insight that
sequential rehearsal outperforms concurrent rehearsal in
terms of forgetting and generalization error when the tasks
are less similar, which is consistent with our motivations
from human learning and multitask learning. Our simulation
results on linear models further corroborated the correctness
of our theoretical results. More importantly, based on our
theory, we proposed a novel hybrid rehearsal framework for
practical CL and experiments on real-world data with DNNs
verified the superior performance of this framework over tra-
ditional concurrent rehearsal. To the best of our knowledge,
our work provides the first comprehensive theoretical study
on rehearsal for rehearsal-based CL, which could motivate
more principled designs for better rehearsal-based CL.
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Supplementary Materials

A. DNN Experiments Details
A.1. Hardware Details

We outline the hardware configuration used to conduct the experiments on DNN:

• Operating system: Red Hat Enterprise Linux Server 7.9 (Maipo)

• Type of CPU: 2.4 GHz 14-Core Intel Xeon E5-2680 v4 (Broadwell)

• Type of GPU: NVIDIA P100 ”Pascal” GPU with 16GB memory

A.2. Implementation Details

Dataset. We evaluate our hybrid rehearsal on variations of standard image classification datasets: Split-MNIST, Split-
CIFAR-10, Split-CIFAR-100, and Split-TinyImagenet200 (Van de Ven et al., 2022; Guo et al., 2022; Sun et al., 2022).

• MNIST (LeCun et al., 1989) contains 60, 000 28×28 grayscale train images and 10, 000 test images of 10 unique classes.
For the experiments reported in Table 5, we randomly split 10 classes into 5 tasks, each containing 2 non-overlapping
classes.

• CIFAR-10 (Krizhevsky et al., 2009) contains 50, 000 32 × 32 color train images and 10, 000 test images of 10
unique classes. For the experiments reported in Table 1, we randomly split 10 classes into 5 tasks, each containing 2
non-overlapping classes.

• CIFAR-100 (Krizhevsky et al., 2009) contains 50, 000 32 × 32 color train images and 10, 000 test images of 100
unique classes. For the experiments reported in Table 1, we randomly split 25 classes into 5 tasks, each containing 5
non-overlapping classes. For the experiments reported in Table 2, we randomly split 100 classes into 20 tasks, each
containing 5 non-overlapping classes. For the experiments reported in Table 6, we randomly split 100 classes into 10
tasks, each containing 10 non-overlapping classes.

• TinyImagenet200 (Le & Yang, 2015) contains 100, 000 64 × 64 color train images and 20, 000 test images of 200
unique classes. For the experiments reported in Table 1 and Table 3, we randomly split 50 classes into 5 tasks, each
containing 10 non-overlapping classes. For the experiments reported in Table 2, we randomly split 200 classes into 20
tasks, each containing 10 non-overlapping classes.

DNN Architecture and Training Details. For training on Split-MNIST, we employ a three-layer MLP with two fully
connected hidden layers of 400 ReLU units following (Van de Ven et al., 2022). For training on Split-CIFAR-10, Split-
CIFAR-100, and Split-TinyImagenet200, we employ a non-pretrained ResNet-18 as our DNN backbone. Following (Van de
Ven et al., 2022), we adopt a multi-headed output layer such that each task is assigned its own output layer, consistent
with the typical Task Incremental CL setup. During supervised training, we explicitly provide the task identifier (ranging
from 1 to 5 for Split-CIFAR-10) alongside the image-label pairs as additional input to the model. For simplicity, we use a
reservoir sampling strategy to construct the memory buffer. Our buffer size is 200, 300, 30, 30 per class for Split-MNIST,
Split-CIFAR-10, Split-CIFAR-100, and Split-TinyImagenet200, correspondingly. For experiments not involving image
corruption, we didn’t apply any data augmentation before training.

For all experiments on concurrent rehearsal and sequential rehearsal, we use the SGD optimizer with a StepLR learning
rate scheduler, which decays the learning rate by a fixed factor at predefined intervals. The detailed parameters for each
dataset are listed in Table 4.

Similarity Threshold. We report the employed similarity threshold parameter τ corresponding to different setting in
Table 1. For Split-CIFAR-100, and Corrupted Split-CIFAR-100, τ = −0.1. For Split-CIFAR-10, Corrupted Split-CIFAR-10,
Split-TinyImagenet200, and Corrupted Split-TinyImagenet200, τ = 0.
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Table 4. Training parameters for all four datasets.
Method Parameter Split-MNIST Split-CIFAR-10 Split-CIFAR-100 Split-TinyImagenet200

Concurrent rehearsal

Epoch 15 30 30 40
Minibatch Size 256 128 128 128
Momentum 0.9 0.9 0.9 0.9
Weight Decay 1e−5 1e−4 1e−4 2e−4

Initial LR 0.05 0.05 0.05 0.05
LR Decay Factor 0.1 0.1 0.1 0.1
LR Step 10 20 20 25

Sequential rehearsal

Epoch 15 30 30 40
Minibatch Size 128 64 64 64
Momentum 0.9 0.9 0.9 0.9
Weight Decay 1e−5 1e−3 1e−3 2e−3

Initial LR 0.0007 0.001 0.001 0.002
LR Decay Factor 0.8 0.5 0.5 0.5
LR Step 10 12 12 16

A.3. Task Corruption

For experiments described in Section 6.2, we control the similarity level of the dataset by applying data corruption to a
selected task. We provide a list of sample images under different image corruption schemes in Figure 4.

In Table 1, for Corrupted Split-CIFAR-10, we apply Glass Corruption on all T1 training data. For Corrupted Split-
CIFAR-100, we apply Color-swapping, Gaussian Blur, and Rotating Corruption on all T2 training data. For Corrupted
Split-TinyImagenet200, we apply Color-swapping, Gaussian Blur, and Rotating Corruption on all T1 training data.

In Table 5, for Corrupted Split-MNIST, we apply Rotation on all T2 training data.

In Table 6, for the scenario ”Original Dataset”, we don’t apply any image corruption. For the scenario ”1 Corruption”, we
apply the Glass corruption on T1. For the scenario ”2 Corruption”, we apply Glass corruption on T1, and rotational color
swapping on T2. For the scenario ”3 Corruption”, we apply Glass corruption on T1, rotational color swapping on T3, and
elastic pixelation on T5.

A.4. Additional Results

We report the performance of hybrid rehearsal and concurrent rehearsal on Split-MNIST and its corrupted variation in
Table 5.

To further demonstrate the effect of task similarity on hybrid rehearsal, we seek to control the similarity by using the number
of corrupted tasks (i.e., task with corrupted images) in the task sequence on Split-CIFAR-100. In particular, we consider
three different scenarios, ‘1 Corruption’ with 1 corrupted task, ‘2 Corruption’ with 2 corrupted tasks, and ‘3 Corruption’
with 3 corrupted tasks. Intuitively, the tasks are more dissimilar when more tasks are corrupted. It can be seen from Table 6
that hybrid rehearsal consistently outperforms concurrent rehearsal, and more importantly, the performance improvement
becomes more significant as tasks are more dissimilar.

Table 5. Acc and Fgt of different rehearsal methods (concurrent rehearsal vs. hybrid rehearsal) on Split-MNIST and its corrupted
variations. All results are averaged over 5 independent runs.

Metric Acc (↑) Fgt (↓) Acc (↑) Fgt (↓)
Dataset Split-MNIST Corrupted Split-MNIST

Concurrent rehearsal 95.24 ± 0.25 5.33 ± 0.30 94.29 ± 0.15 6.48 ± 0.20

Hybrid rehearsal 95.39 ± 0.16 1.65 ± 1.12 94.81 ± 0.08 2.57 ± 0.73

Improvement +0.15 −3.68 +0.52 −3.91
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Table 6. Acc and Fgt of different rehearsal methods on Split-CIFAR-100 with varying numbers of corrupted tasks. We construct a
sequence of 10 tasks for training. “Corruption Number = s” indicates that data corruption was applied to s out of 10 tasks, making it more
dissimilar than others. All results are averaged over 4 independent runs.

Corruption Number 0 1 2 3

Concurrent rehearsal 68.27 ± 0.33 64.24 ± 0.23 60.67 ± 0.23 58.93 ± 0.11

Hybrid rehearsal 68.79 ± 0.43 64.81 ± 0.16 61.30 ± 0.17 59.72 ± 0.15

Improvement +0.52 +0.57 +0.63 +0.79

Table 4.1 Acc (↑)
Corruption Number 0 1 2 3

Concurrent rehearsal 6.24 ± 0.11 7.76 ± 0.09 9.28 ± 0.16 8.57 ± 0.08

Hybrid rehearsal 6.10 ± 0.22 7.23 ± 0.10 8.75 ± 0.09 8.35 ± 0.10

Improvement −0.14 −0.53 −0.53 −0.22

Table 4.2 Fgt (↓)

B. Supporting Lemmas
Define PX = X(X⊤X)−1X⊤ and X† = X(X⊤X)−1. We first provide some useful lemmas for the derivation of
forgetting and generalization error. In the following lemma, we provide the expression of the SGD convergence point when
training on a single task.

Lemma B.1. Suppose X ∈ Rp×m and Y ∈ Rm, where Y = X⊤w∗ + z. Consider the optimization problem:

wo =argmin
w
∥w −ws∥22

s.t. X⊤w = Y .

The solution of the above problem can be written as:

wo = ws +X†(Y −X⊤win),

or equivalently,
wo = (I − PX)ws + PXw∗ +X†z.

Proof. The detailed proof refers to Lemma B.1 in Lin et al. (2023).

Lemma B.2. Suppose each element of the random matrix X ∈ Rp×m follows i.i.d. standard distribution and v ∈ Rp, then
we have:

E ∥PXv∥2 =
m

p
∥v∥2 .

Proof. The detailed proof refers to Proposition 3 in Ju et al. (2023).

Lemma B.3. Suppose each element of the random matrix X ∈ Rp×m follows i.i.d. standard distribution. Also, the random
vector z ∈ Rm follows N (0, σ2Im) independently. Then, we have:

E
∥∥X†z

∥∥2 =
mσ2

p−m− 1
.

Proof. The proof is completed by applying the ”trace trick” as follows.

E
∥∥X†z

∥∥2 = E
[
z⊤ (X⊤X

)−1
z
]

= E
[
tr
[(
X⊤X

)−1
zz⊤

]]
(i)
= tr

[
E
[(
X⊤X

)−1
]
E
[
zz⊤]]

14
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(ii)
= σ2tr

[
E
[(
X⊤X

)−1
]]

(iii)
=

mσ2

p−m− 1
,

where (i) follows from the independence between X and z, (ii) follows from the fact that E
[
zz⊤] = σ2Im and

(iii) follows from the fact that
(
X⊤X

)−1
follows the inverse-Wishart distribution with identity scale matrix Im and p

degrees-of-freedom.

Lemma B.4. Suppose X ∈ Rp×m and v1,v2 ∈ Rp, then we have:

⟨(I − PX)v1,X
†v2⟩ = 0,

⟨(I − PX)v1, PXv2⟩ = 0.

Proof. The proof follows from the definitions of PX and X† straightforward.

Now, we provide useful lemmas in proving Lemma C.1 for the concurrent rehearsal method.

Lemma B.5. Suppose P ∈ Rp×p is a projection matrix and each element of the random vector v ∈ Rp follows i.i.d.
standard Gaussian distribution, then Pv and (I − P )v are independent. Moreover, Suppose each element of the random
matrix V ∈ Rp×m follows i.i.d. standard Gaussian distribution, then PV and (I − P )V are independent

Proof. The proof for vector case is completed in two steps. First, we prove that Pv and (I − P )v are jointly Gaussian.

Denote z =

[
Pv

(I − P )v

]
as the concatenation of the two vectors and w =

[
w1

w2

]
as an arbitrary vector, where w1,w2 ∈ Rp.

Since the linear combination w⊤z = (w⊤
1 P +w⊤

2 (I − P ))v remains Gaussian distribution for any w, we conclude that
Pv and (I − P )v are jointly Gaussian. Next, we prove that they are uncorrelated as follows:

Cov(Pv, (I − P )v) = E
[
Pv((I − P )v)⊤

]
= PE(vv⊤)(I − P )

(i)
= P (I − P )

= 0,

where (i) follows from the fact that v has i.i.d. standard Gaussian elements. By combining these two facts, we conclude that
Pv and (I − P )v are independent. For the matrix case, we can equivalently consider the vector v̂ ∈ Rpm which is formed
by concatenating all the columns of V and the projection matrix P̂ = diag([P, P, .., P ]) ∈ Rpm×pm.

Lemma B.6. Suppose each element of the random matrix X ∈ Rp×m follows i.i.d. standard Gaussian distribution and
v ∈ Rp, then we have:

E
[
X⊤vv⊤X

]
= ∥v∥2 · I.

Proof. To clarify, we denote X = [x1, ...,xn], where xi is the ith column of X . We also denote [·]i,j as the element of ith

row and jth column of a matrix. Due to the independence of elements in X , it follows that:

[
E
[
X⊤vv⊤X

]]
i,j

= cov(v⊤xi,v
⊤xj) =

{
0 if i ̸= j,

∥v∥2 if i = j.

Lemma B.7. Suppose each element of the random matrix X ∈ Rp×m follows i.i.d. standard Gaussian distribution and the
projection matrix P ∈ Rp×p satisfying rank(P ) = d, then we have:

tr
(
E
[(
X⊤(I − P )X

)−1
])

=
m

p− d−m− 1
.
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Proof. We first note that (I − P ) is a projection matrix with (p− d) many eigenvalues 1 and d many eigenvalues 0. With
loss of generalization, we write (I − P ) = U⊤ΣU where Σ = diag([1, ..., 1, 0, ..., 0]) is a diagonal matrix, whose first
(p− d) diagonal elements are 1 while others are 0, and U is an orthogonal matrix. We denote X̂ ∈ R(p−d)×n as the first
(p− d) rows of X . Then, we have:

tr
(
E
[(
X⊤(I − P )X

)−1
])

= tr
(
E
[(
X⊤U⊤ΣUX

)−1
])

(i)
= tr

(
E
[(
X⊤ΣX

)−1
])

= tr

(
E
[(

X̂⊤X̂
)−1

])
(ii)
=

m

p− d−m− 1

where (i) follows from the rotational symmetry of standard Gaussian distribution, (ii) follows from the fact that
(
X̂⊤X̂

)−1

follows the inverse-Wishart distribution with identity scale matrix Im and (p− d) degrees-of-freedom..

Lemma B.8. Suppose each element of the random matrices X1 ∈ Rp×m1 , X2 ∈ Rp×m2 follows i.i.d. standard Gaussian
distribution and v ∈ Rp. Denote V = [X1,X2], then we have:

E
∥∥∥∥V †

[
X⊤

1

0

]
v

∥∥∥∥2 =
m1

p
·
(
1 +

m2

p−m1 −m2 − 1

)
∥v∥2

Proof. First of all, we partition the matrix V ⊤V into four blocks as follows:

V ⊤V =

[
X⊤

1

X⊤
2

] [
X1 X2

]
=

[
X⊤

1 X1 X⊤
1 X2

X⊤
2 X1 X⊤

2 X2

]
.

Then, we partition the matrix (V ⊤V )−1 following the same partitioning scheme as V ⊤V :

(V ⊤V )−1 =

[
A1,1 A1,2

A2,1 A2,2

]
,

where A1,1 ∈ Rm1×m1 . More specifically, we have

A1,1 = (X⊤
1 X1)

−1 − (X⊤
1 X1)

−1X⊤
1 X2

(
X⊤

2 X2 −X⊤
2 X1(X

⊤
1 X1)

−1X⊤
1 X2

)−1
X⊤

2 X1(X
⊤
1 X1)

−1

= PX1 + PX1X2

(
X⊤

2 (I − PX1)X2

)−1
X⊤

2 PX1 .

Therefore, we have

E
∥∥∥∥V †

[
X⊤

1

0

]
v

∥∥∥∥2 = E
[
v⊤
[
PX1

+ PX1
X2

(
X⊤

2 (I − PX1
)X2

)−1
X⊤

2 PX1

]
v
]

(i)
=

m1

p
∥v∥2 + E

[
v⊤
[
PX1

X2

(
X⊤

2 (I − PX1
)X2

)−1
X⊤

2 PX1

]
v
]
, (7)

where (i) follows from Lemma B.2. Now, we consider

E
[
v⊤
[
PX1X2

(
X⊤

2 (I − PX1)X2

)−1
X⊤

2 PX1

]
v
]

= E
[
tr
(
X⊤

2 PX1vv
⊤PX1X2

(
X⊤

2 (I − PX1)X2

)−1
)]

(i)
= EX1

[
tr
(
EX2

[
X⊤

2 PX1vv
⊤PX1X2

]
· EX2

[(
X⊤

2 (I − PX1)X2

)−1
])]

(ii)
= EX1

[
tr

(
∥PX1v∥

2 · I · EX2

[(
X̃⊤

2 (I − PX1)X̃2

)−1
])]
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= EX1

[
∥PX1v∥

2 · tr
(
EX2

[(
X⊤

2 (I − PX1
)X2

)−1
])]

(iii)
= EX1

[
∥PX1v∥

2 · m2

p−m1 −m2 − 1

]
(iv)
=

m2

p−m1 −m2 − 1
· m1

p
∥v∥2 , (8)

where (i) follows from Lemma B.5, (ii) follows from Lemma B.6, (iii) follows from the fact that Lemma B.7 actually
holds for any X2 and (iv) follows from Lemma B.2. By combining Equations (7) and (8), we complete the proof.

Lemma B.9. Suppose each element of random matrices X1 ∈ Rp×m1 , X2 ∈ Rp×m2 , X3 ∈ Rp×m3 follows i.i.d. standard
Gaussian distribution and v ∈ Rp. Denote V = [X1,X2,X3], then we have:

E

v⊤ [X1 0 0
]
(V ⊤V )−1

 0
X⊤

2

0

v

 = − m1m2

p(p−m1 −m2 −m3 − 1)
∥v∥2

Proof. First of all, we observe that:

2v⊤ [X1 0 0
]
(V ⊤V )−1

 0
X⊤

2

0

v =

∥∥∥∥∥∥V †

X⊤
1

X⊤
2

0

v

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥V †

X⊤
1

0
0

v1

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥V †

0⊤

X2

0

v

∥∥∥∥∥∥
2

.

By taking expectation over both sides of the equation, we have:

2E

v⊤ [X1 0 0
]
(V ⊤V )−1

 0
X⊤

2

0

v


= E

∥∥∥∥∥∥V †

X⊤
1

X⊤
2

0

v

∥∥∥∥∥∥
2

− E

∥∥∥∥∥∥V †

X⊤
1

0
0

v

∥∥∥∥∥∥
2

− E

∥∥∥∥∥∥V †

0⊤

X2

0

v

∥∥∥∥∥∥
2

(i)
=

m1 +m2

p
·
(
1 +

m3

p−m1 −m2 −m3 − 1

)
∥v∥2 − m1

p
·
(
1 +

m2 +m3

p−m1 −m2 −m3 − 1

)
∥v∥2

− n2

p
·
(
1 +

m1 +m3

p−m1 −m2 −m3 − 1

)
∥v∥2

= − 2m1m2

p(p−m1 −m2 −m3 − 1)
∥v∥2 ,

where (i) follows from Lemma B.8. By dividing both sides by 2, we complete the proof.

Corollary B.10. Suppose each element of random matrices X1 ∈ Rp×m1 , X2 ∈ Rp×m2 , X3 ∈ Rp×m3 follows i.i.d.
standard Gaussian distribution and v1,v2 ∈ Rp. Denote V = [X1,X2,X3], then we have:

E

v⊤
1

[
X1 0 0

]
(V ⊤V )−1

 0
X⊤

2

0

v2

 =
m1m2

(
∥v1 − v2∥2 − ∥v1∥2 − ∥v2∥2

)
2p(p−m1 −m2 −m3 − 1)

Proof. To simplify the notation, we denote V1 =
[
X1 0 0

]
and V2 =

[
0 X2 0

]
. Then according to Lemma B.9,

we first have:

E
[
(v1 − v2)

⊤V1(V
⊤V )−1V ⊤

2 (v1 − v2)
]
= − m1m2

p(p−m1 −m2 −m3 − 1)
∥v1 − v2∥2 .

On the other hand, we have:

E
[
(v1 − v2)

⊤V1(V
⊤V )−1V ⊤

2 (v1 − v2)
]
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= E
[
v⊤
1 V1(V

⊤V )−1V ⊤
2 v1

]
+ E

[
v⊤
2 V1(V

⊤V )−1V ⊤
2 v2

]
− 2E

[
v⊤
1 V1(V

⊤V )−1V ⊤
2 v2

]
(i)
= − m1m2 ∥v1∥2

p(p−m1 −m2 −m3 − 1)
− m1m2 ∥v2∥2

p(p−m1 −m2 −m3 − 1)
− 2E

[
v⊤
1 V1(V

⊤V )−1V ⊤
2 v2

]
,

where (i) follows from Lemma B.9. By combining the above two equations, we complete the proof.

Next, we provide our supporting lemmas that help to prove the advantage of sequential rehearsal as follows.

Lemma B.11. Suppose n, p, t,M are positive integers where t ≥ 2 and p > n+M . For any non-negative integer l < t− 1,
we have: (

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
> 1− n+M

p
.

Proof. We first note the fact that(
1− M

(t− l − 1)p

)t−l−1

>

(
1− (t− l − 1)M

(t− l − 1)p

)
= 1− M

p
.

Therefore, we have (
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
>

(
1− M

p

)(
1− n

p

)
= 1− n+M

p
.

Lemma B.12. Suppose n, p, t,M are positive integers where t ≥ 2 and p > max{n+M,TM}. For any non-negative
integer l < t− 1, we have:(

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
< 1− n+M

p
+

(n+M)M

p2
.

Proof. If t− l − 1 = 1 or t− l − 1 = 2, the proof is trivial. If t− l − 1 ≥ 3, according to the binomial theorem, we have:(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
=

(
1− M

p
+

t−l−1∑
k=2

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k
)(

1− n

p

)
, (9)

where

t−l−1∑
k=2

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(
t− l − 1

2

)(
M

(t− l − 1)p

)2

+
t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

(10)

To simplify the notation, we denote m = M
t−l−1 . We first discuss if t− l − 1 is even. Then, we have:

t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(t−l+1)/2∑
k=3

[(
t− l − 1

2k − 3

)(
−m

p

)2k−3

+

(
t− l − 1

2k − 2

)(
−m

p

)2k−2
]

=

(t−l+1)/2∑
k=3

[
(t− l − 1)!

(2k − 3)!(t− l − 2k + 2)!

(
−m

p

)2k−3

+
(t− l − 1)!

(2k − 2)!(t− l − 2k + 1)!

(
−m

p

)2k−2
]

= −
(t−l+1)/2∑

k=3

(t− l − 1)!

(2k − 3)!(t− l − 2k + 1)!

(
m

p

)2k−3 [
1

t− l − 2k + 2
− 1

2k − 2
· m
p

]
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(i)
< 0 (11)

where (i) follows from the fact that p > TM . We then discuss if t− l − 1 is odd, we have:

t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(t−l)/2∑
k=3

[(
t− l − 1

2k − 3

)(
−m

p

)2k−3

+

(
t− l − 1

2k − 2

)(
−m

p

)2k−2
]
+

(
−m

p

)t−l−1

(i)
<

(t−l)/2∑
k=3

[
(t− l − 1)!

(2k − 3)!(t− l − 2k + 2)!

(
−m

p

)2k−3

+
(t− l − 1)!

(2k − 2)!(t− l − 2k + 1)!

(
−m

p

)2k−2
]

= −
(t−l)/2∑
k=3

(t− l − 1)!

(2k − 3)!(t− l − 2k + 1)!

(
m

p

)2k−3 [
1

t− l − 2k + 2
− 1

2k − 2
· m
p

]
(ii)
< 0 (12)

where (i) follows from the fact that t− l − 1 is odd and (ii) follows from the fact that p > TM . By combing Equations (9)
to (12), we conclude:(

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
<

(
1− M

p
+

(
t− l − 1

2

)
M2

(t− l − 1)2p2

)(
1− n

p

)

= 1− n+M

p
+

nM + (t−l−1)(t−l−2)
2

M2

(t−l−1)2

p2
−
(
t− l − 1

2

)
nM2

(t− l − 1)2p3

< 1− n+M

p
+

(n+M)M

p2
.

which completes the proof.

Lemma B.13. Suppose n, p, t,M, T are positive integers where t ≤ T and p > n+M , then we have:(
1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
T 2(n+M)M

p2
.

Proof. According to the binomial theorem, we have:(
1− n+M

p
+

(n+M)M

p2

)t

=

(
1− n+M

p

)t

+
t−1∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

︸ ︷︷ ︸
αk

(13)

We further notice that for k = 0, 1, .., t− 2:(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

−
(

t

k + 1

)(
1− n+M

p

)k+1(
(n+M)M

p2

)t−k−1

=
t!

k!(t− k − 1)!

(
1− n+M

p

)k (
(n+M)M

p2

)t−k−1 [
(n+M)M

(t− k)p2
− 1

k + 1

(
1− n+M

p

)]
<

t!

k!(t− k − 1)!

(
1− n+M

p

)k (
(n+M)M

p2

)t−k−1 [
(n+M)M

p2
− 1

T

(
1− n+M

p

)]
(i)
< 0, (14)
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where (i) follows from the fact that p > (n+M)(T + 1). We note that Equation (14) shows that the term αk achieves the
maximum at k = t− 1. Therefore, we can upper bound Equation (13) by(

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+ t

(
t

t− 1

)(
1− n+M

p

)t−1(
(n+M)M

p2

)
<

(
1− n+M

p

)t

+
T 2(n+M)M

p2
,

which completes the proof.

Here, we present a tighter version of Lemma B.13, which helps us to prove Theorem 5.5 in Section 5.2.
Lemma B.14. Suppose n, p, t,M, T are fixed positive integers where t ≤ T and p > n+M , then we have:(

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+

T 3(n+M)2M2

2p4
.

Proof. According to the binomial theorem, we have:(
1− n+M

p
+

(n+M)M

p2

)t

=

(
1− n+M

p

)t

+

(
t

t− 1

)(
1− n+M

p

)t−1(
(n+M)M

p2

)
+

t−2∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

<

(
1− n+M

p

)t

+
T (n+M)M

p2
+

t−2∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

︸ ︷︷ ︸
αk

(15)

By the same argument as Equation (14), we know that the term αk achieves the maximum at k = t− 2. Therefore, we can
upper bound Equation (15) by(

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+ (t− 1)

(
t

t− 2

)(
1− n+M

p

)t−2(
(n+M)M

p2

)2

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+

T 3(n+M)2M2

2p4
,

which completes the proof.

Lemma B.15. Suppose n, p, t,M, T are positive integers where M ≥ 2, t ≤ T and p > max{n+M, T (n+M)M
M−1 +n+M}.

For any non-negative integer l < t− 1, we have:(
1− n+M

p
+

(n+M)M

p2

)l (
1− M

(t− l − 1)p

)t−l−1

<

(
1− 1

Tp

)(
1− n+M

p

)l

.

Proof. By dividing
(
1− n+M

p

)l
on both sides, it is equivalent to prove(

1 +
(n+M)M

p2 − p(n+M)

)l (
1− M

(t− l − 1)p

)t−l−1

< 1− 1

Tp
.

According to AM-GM inequality, we have:

(
1 +

(n+M)M

p2 − p(n+M)

)l (
1− M

(t− l − 1)p

)t−l−1

≤

 l
(
1 + (n+M)M

p2−p(n+M)

)
+ (t− l − 1)

(
1− M

(t−l−1)p

)
t− 1

t−1
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=

1 + l(n+M)M
p2−p(n+M) −

M
p

t− 1

t−1

. (16)

When p > T (n+M)M
M−1 + n+M , we have:

l(n+M)M

p2 − p(n+M)
− M

p
<

T (n+M)M

p2 − p(n+M)
− M

p
< −1

p
. (17)

Therefore, by combining Equations (16) and (17), we have:(
1 +

(n+M)M

p2 − p(n+M)

)l (
1− M

(t− l − 1)p

)t−l

<

(
1− 1

(t− 1)p

)t−1

< 1− 1

(t− 1)p
< 1− 1

Tp
,

which completes the proof.

Lemma B.16. Suppose n, p, t,M, T are positive integers where t ≤ T and p > max{n +M, 2T 3(n +M)2}, then we
have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

>

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
.

Proof. To prove this lemma, we first have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=
t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] t−2∏
l=t−i

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=
t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]{t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
− 1

}
︸ ︷︷ ︸

γ1

(i)
>

(
1− n+M

p
+

(n+M)M

p2

)i−1
{[(

1− M

p

)(
1− n

p

)]t−i

− 1

}

=

(
1− n+M

p
+

(n+M)M

p2

)i−1
[(

1− n+M

p
+

nM

p2

)t−i

− 1

]

=

[(
1− n+M

p

)i−1

+
i−1∑
k=1

(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1
]

[(
1− n+M

p

)t−i

− 1 +
t−i∑
k=1

(
t− i

k

)(
nM

p2

)k (
1− n+M

p

)t−i−k
]
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>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]

+

(
1− n+M

p

)i−1 t−i∑
k=1

(
t− i

k

)(
nM

p2

)k (
1− n+M

p

)t−i−k

︸ ︷︷ ︸
γ2

+

[(
1− n+M

p

)t−i

− 1

]
i−1∑
k=1

(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1

︸ ︷︷ ︸
γ3,k︸ ︷︷ ︸

γ3

(18)

where (i) follows from Lemma B.12 together with the fact that term γ1 < 0 and from the fact that
(
1− M

(t−l−1)p

)t−l−1

>

1− M
p for l = 0, 1, .., t− i− 1. Now. we need to prove γ2 + γ3 > 0. We first focus on γ2. We have:

γ2 >

(
1− n+M

p

)i−1(
t− i

1

)(
nM

p2

)(
1− n+M

p

)t−i−1

>

(
1− n+M

p

)T
nM

p2

>

(
1− T (n+M)

p

)
nM

p2
(19)

We then focus on term γ3. Consider:(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1

−
(
i− 1

k + 1

)(
(n+M)M

p2

)k+1(
1− n+M

p

)i−k−2

=
(i− 1)!

k!(i− k − 2)!

(
(n+M)M

p2

)k (
1− n+M

p

)i−k−2 [
1

i− k − 1

(
1− n+M

p

)
− 1

k + 1

(n+M)M

p2

]
(i)
>

(i− 1)!

k!(i− k − 2)!

(
(n+M)M

p2

)k (
1− n+M

p

)i−k−2 [
1

T

(
1− n+M

p

)
− (n+M)M

2p2

]
(ii)
> 0, (20)

where (i) follows from k ∈ [i − 1] and (ii) follows from the fact that p > 2(n +M). This indicates that γ3,k achieves

maximum at k = 1. We recall that
[(

1− n+M
p

)t−i

− 1

]
< 0. Therefore, we have:

γ3 >

[(
1− n+M

p

)t−i

− 1

]
(i− 1)

(
i− 1

1

)(
(n+M)M

p2

)(
1− n+M

p

)i−2

>

[(
1− n+M

p

)t−i

− 1

]
T 2(n+M)M

p2

=

[
t−i∑
k=1

(
t− i

k

)(
−n+M

p

)k
]
T 2(n+M)M

p2
. (21)

When k is even and less than or equal to t− i (i.e., k = 2, 4, 6, ..., and k ≤ t− i), we have:(
t− i

k

)(
−n+M

p

)k

+

(
t− i

k + 1

)(
−n+M

p

)k+1

=
(t− i)!

k!(t− i− k − 1)!

(
n+M

p

)k [
1

t− i− k
− n+M

(k + 1)p

]
>

(t− i)!

k!(t− i− k − 1)!

(
n+M

p

)k [
1

T
− n+M

3p

]
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(i)
> 0, (22)

where (i) follows from p > (n+M)T
3 . By combining Equations (21) and (22) and simply discussing when t− i is odd or

even, we can conclude

t−i∑
k=1

(
t− i

k

)(
−n+M

p

)k

>

(
t− i

1

)(
−n+M

p

)
> −T (n+M)

p
,

which further implies:

γ3 > −T 3(n+M)2M

p3
. (23)

Now, by combining Equations (18), (19) and (23), we have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

(
1− T (n+M)

p

)
nM

p2
− T 3(n+M)2M

p3

(i)
>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
, (24)

where (i) follows from the fact that p > 2T 3(n+M)2.

Lemma B.17. Suppose n, p, t,M, T are positive integers where t ≤ T and p > (n+M)T . For any non-negative integer
i < t, we have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

T 2(n+M)M

p2
.

Proof. To prove this lemma, We consider:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=
t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] t−2∏
l=t−i

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=
t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]{t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
− 1

}
︸ ︷︷ ︸

γ1
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(i)
<

(
1− n+M

p

)i−1
[(

1− n+M

p
+

(n+M)M

p2

)t−i

− 1

]
,

(ii)
<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1 +
T 2(n+M)M

p2

]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

T 2(n+M)M

p2
(25)

where (i) follows from Lemmas B.11 and B.12 and the fact that γ1 < 0; (ii) follows from Lemma B.13.

Here, we present a tighter version of Lemma B.17, which helps to prove Theorem 5.5 in Section 5.2.

Lemma B.18. Suppose n, p, t,M, T are positive integers where t ≤ T and p > (n+M)T . For any non-negative integer
i < t, we have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

(t− i)(n+M)M

p2
+

T 3(n+M)2M2

p4
.

Proof. The proof follows from the same argument as Lemma B.17 but we use Lemma B.14 instead of Lemma B.13.

C. Proof of Theorem 5.1
First of all, we present the detailed iteration formula for the proof outline of Theorem 5.1 in Section 5.1. For both rehearsal
methods, we have:

E[Li(wt)] = gt(E[Li(wt−1)]) + term2 + termnoise, (26)

where g(concurrent)
t (x) = (1− n+M

p )x, g(sequential)
t (x) = (1− M

(t−1)p )
t−1(1− n

p )x, term(concurrent)
noise = (n+M)σ2

p−n−M−1 , term(sequential)
noise =∑t−1

j=1

(
1− M

(t−1)p

)t−j−1 M
t−1σ

2

p− M
t−1−1

+
(
1− M

(t−1)p

)t−1
nσ2

p−n−1 , and the form of term2 is given in Equations (29) and (33)

for concurrent rehearsal and sequential rehearsal, respectively.

Based on the above iteration formula, we further derive the explicit expressions of E[Li(wt)] and E[Li(wt)−Li(wi)], and
they share the same structure for both rehearsal methods for any t ≤ T which is formally presented in the following lemma.

Lemma C.1. Denote wt as the parameters of training result at task t. Under the problem setups considered in this work,
the expected value of the model error Li(wt) in both rehearsal-based methods take the following forms.

ELi(wt) =d0t ∥w∗
i ∥

2
+

T−1∑
j,k=1

dijkt
∥∥w∗

j −w∗
k

∥∥2 + noiset(σ),

E(Li(wt)− Li(wi)) =ci ∥w∗
i ∥

2
+

T−1∑
j,k=1

cijk
∥∥w∗

j −w∗
k

∥∥2 + (noiset(σ)− noisei(σ)) .

For both concurrent and sequential rehearsal method, Theorem 5.1 follows directly by combining Lemma C.1 and the
definitions of FT and GT . Therefore, it suffices to prove Lemma C.1 to obtain the coefficients in Theorem 5.1. Before we
start our proof, we first present the explicit expressions of coefficients as well as the noise term in Theorem 5.1 for both
concurrent and sequential rehearsal methods in the following proposition.

Proposition C.2. Under the problem setups considered in this work, the coefficients that express forgetting Ft and
generalization error Gt take the following forms.

d(concurrent)
0t = r0r

t−1
M , c(concurrent)

i = d(concurrent)
0T − d(concurrent)

0i ,
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d(concurrent)
ijkt =



(1− r0)r
t−j−1
M +

t−j−1∑
l=0

rlMBl,t + rt−k
M nHt−k,t +

t−2∑
l=0

prlMBl,tHl,t if j ∈ [t− 1], k = i

(1− r0) + rt−k
M nHt−k,t if j = t, k = i

t−2∑
l=0

prlMBl,tHl,t if j < k and j, k ̸= i, t

rt−k
M nHt−k,t if j < k and j, k ̸= i

c(concurrent)
ijk = d(concurrent)

ijkT − d(concurrent)
ijki ,

d(sequential)
0t = r0∆t(t− 1), c(sequential)

i = d(sequential)
0T − d(concurrent)

0i ,

d(sequential)
ijkt =

 (1− r0)(1−Bt−j,t)
j−1∆t(t− j) +

t−j−1∑
l=0

∆t(l)(1−Bl,t)
t−j−l−1Bl,t if j ∈ [t− 1] and k = i

(1− r0)(1−B0,t)
t−1 if j = t, k = i

c(sequential)
ijk = d(sequential)

ijkT − d(sequential)
ijki ,

noise(concurrent)
t (σ) = r0r

t−1
M Λn,σ +

t−2∑
l=0

rlMΛn+M,σ,

noise(sequential)
t (σ) =

t−2∑
l=0

∆t(l)
[
(1−B0,t)

t−1Λn,σ +
t−1∑
l=1

(1−B0,t)
t−l−1Λ M

t−1 ,σ

]
.

where ra = 1 − n+a
p , Bl,t =

{ M
(t−l−1)p if l ̸= t− 1

0 o.w.
, Hl,t =

Bl,t

p−n−M−1 , ∆t(a) =
a−1∏
l=0

[
(1−Bl,t)

t−l−1
r0

]
, Λa,σ =

aσ2

p−a−1 .

To simplify notation, we omit the tilde notation of the memory data to simplify notations: Xt,i := X̃t,i, Yt,i := Ỹt,i and
zt,i := z̃t,i for i ∈ [t− 1]. Similar to Equation (2), for the memory data, we have

Yt,i = X⊤
t,iw

∗
i + zt,i. (27)

where zt,i ∼ N (0, σ2
i Ip) is i.i.d. noise. Since there is no memory data involved for task 1, by combining Lemma B.1 and

the fact that w0 = 0, we can easily derive the first parameter as

w1 = PX1
w∗

1 +X†
1z1,

Then, the expected value of the model error ELi(w1) can be derived as follows.

E ∥w1 −w∗
i ∥

2 (i)
= E ∥PX1

(w∗
1 −w∗

i )∥
2
+ E ∥(I − PX1

)w∗
i ∥

2
+ E

∥∥∥X†
1z1

∥∥∥2
(ii)
=

n

p
∥w∗

1 −w∗
i ∥

2
+

(
1− n

p

)
∥w∗

i ∥
2
+

nσ2

p− n− 1
, (28)

where (i) follows from Lemma B.4 and the fact that z1 are independent Gaussian with zero mean and (ii) follows from
Lemma B.2 and Lemma B.3. For t ≥ 2, the two training methods use memory in different ways. We present them in the
following two subsections.

C.1. Proof of Concurrent Rehearsal in Lemma C.1

In this subsection, we prove Lemma C.1 for concurrent rehearsal method. To simplify, we apply the following notations to
denote the current data in this subsection: Xt := Xt,t, Yt := Yt,t and zt := zt,t. Then, for each task t, the SGD convergent
point wt of training loss Ltr

t (w,Dt

⋃
Mt) is equivalent to the optimization problem:

wt = min
w
∥w −wt−1∥2 s.t. X⊤

t,jw = Yt,j , j ∈ [t].
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Define Vt = [Xt,1,Xt,2, ...,Xt,t] and z⃗t = [zt,1, zt,2, ..., zt,t]
⊤. According to Lemma B.1, we have

wt = wt−1 + V †
t



Yt,1

Yt,2

...
Yt,t

− V ⊤
t wt−1



= (I − PVt)wt−1 + V †
t


X⊤

t,1w
∗
1

X⊤
t,2w

∗
2

...
X⊤

t,tw
∗
t

+ V †
t z⃗t.

Consider an arbitrary i s.t. i ≤ T and fix it. The expected value of model error ELi(wt) can be split into the following three
parts.

E ∥wt −w∗
i ∥

2
= E

∥∥∥∥∥∥∥∥(I − PVt)(wt−1 −w∗
i ) + V †

t


X⊤

t,1(w
∗
1 −w∗

i )
X⊤

t,2(w
∗
2 −w∗

i )
...

X⊤
t,t(w

∗
t −w∗

i )

+ V †
t z⃗t

∥∥∥∥∥∥∥∥
2

(i)
= E ∥(I − PVt)(wt−1 −w∗

i )∥
2
+ E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i )
X⊤

t,2(w
∗
2 −w∗

i )
...

X⊤
t,t(w

∗
t −w∗

i )


∥∥∥∥∥∥∥∥
2

+ E
∥∥∥V †

t z⃗t

∥∥∥2

(ii)
=

(
1− nt +Mt

p

)
E ∥wt−1 −w∗

i ∥
2
+ E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i )
X⊤

t,2(w
∗
2 −w∗

i )
...

X⊤
t,t(w

∗
t −w∗

i )


∥∥∥∥∥∥∥∥
2

︸ ︷︷ ︸
term(concurrent)

2

+
(n+M)σ2

p− n−M − 1
, (29)

where (i) follows from Lemma B.4 and the fact that z⃗t are independent Gaussian with zero mean and (ii) follows from
Lemma B.2 and Lemma B.3. Denote Vt,j as Vt with all zero elements except Xt,j , i.e., Vt,j =

[
0, ...,Xt,j , ...,0

]
. To

further calculate term(concurrent)
2 in Equation (29), we have:

E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i )
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t,2(w
∗
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i )
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t,t(w

∗
t −w∗

i )


∥∥∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
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j=1
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t V

⊤
t,j(w

∗
j −w∗

i )

∥∥∥∥∥∥
2

=
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j=1

E
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t V
⊤
t,j(w

∗
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i )
∥∥∥2 + t∑

j=1

t∑
k=1,k ̸=j

(w∗
j −w∗

i )
⊤Vt,j(V

⊤
t Vt)

−1V ⊤
t,k(w

∗
k −w∗

i )

(i)
=

t−1∑
j=1

Mt,j

p

(
1 +

nt +Mt −Mt,j

p− nt −Mt − 1

)∥∥w∗
j −w∗

i

∥∥2 + nt

p

(
1 +

Mt

p− nt −Mt − 1

)
∥w∗

t −w∗
i ∥

2

+
t−2∑
j=1

t−1∑
k=j+1

Mt,jMt,k

p(p− nt −Mt − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+
t−1∑
j=1

ntMt,j

p(p− nt −Mt − 1)

(∥∥w∗
j −w∗

t

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
t −w∗

i ∥
2
)

(30)
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where (i) follows from Lemma B.8 and Corollary B.10. Recall that nt = n, Mt,j = M
t−1 and the fact that Mt = M . By

combining Equations (29) and (30), we have:

E ∥wt −w∗
i ∥

2
=

(
1− n+M

p

)
E ∥wt−1 −w∗

i ∥
2

+
t−1∑
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M

(t− 1)p

(
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n+M − M
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)∥∥w∗
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i

∥∥2
+

n

p

(
1 +

M
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∥w∗
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i ∥

2
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( M
t−1 )

2
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i
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i
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t −w∗

i ∥
2
)

+
(n+M)σ2

p− n−M − 1
.

By iterating the above equation and combining it with Equation (28), we have:
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p
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+

(
1− n

p

)(
1− n+M

p

)t−1
nσ2

p− n− 1
+

t−2∑
l=0

(
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p

)l
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p
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=
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p
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2
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where

noise(concurrent)
t (σ) =

(
1− n

p

)(
1− n+M

p

)t−1
nσ2

p− n− 1
+

t−2∑
l=0

(
1− n+M

p

)l
(n+M)σ2

p− n−M − 1
.

By rearranging the terms in the above equation, we complete the poof for d(concurrent)
0t and d(concurrent)

ijkt in Lemma C.1.
Furthermore, the expressions of c(concurrent)

i and c(concurrent)
ijk can be derived directly based on d(concurrent)

0t , d(concurrent)
ijkt and the

definitions of forgetting. The explicit expressions of c(concurrent)
i and c(concurrent)

ijk are derived as follows.

[
E ∥wt −w∗

i ∥
2 − E ∥wi −w∗

i ∥
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(
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p
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]
∥w∗

i ∥
2
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+
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+
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−
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
β2

+ noise(concurrent)
t (σ)− noise(concurrent)

i (σ) (32)

We will show that β1 consists of terms δj,k
∥∥w∗

j −w∗
k

∥∥2 with δj,k > 0 and j, k ̸= t and β2 consists of terms

ηj,k
∥∥w∗

j −w∗
k

∥∥2 with ηj,k > 0 for a sufficient large p in Appendix F.2.

C.2. Proof of Sequential Rehearsal in Lemma C.1

In this subsection, we prove Lemma C.1 for sequential rehearsal method. To simplify, we apply the following notations
to denote the current data in this subsection: Xt := Xt,0, Yt := Yt,0 and zt := zt,0. When t ≥ 2, the sequence of SGD
convergent points w(j)

t is equivalent the sequential optimization problems:

ŵ
(j)
t = min

w

∥∥∥w − ŵ
(j−1)
t

∥∥∥2
2

s.t. X⊤
t,jw = Yt,j , j = 0, 1, ..., t− 1,

where ŵ
(−1)
t = wt−1 and wt = ŵ

(t−1)
t . Consider an arbitrary i s.t. i ≤ T and fix it. During the training process over each

task in the memory dataset, the expected of model error can be split into three parts as follows.

E
∥∥∥ŵ(j)

t −w∗
i

∥∥∥2 = E
∥∥∥(I − PXt,j

)(ŵ
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(w∗
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i ) +X†
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∥∥∥2
(i)
=

(
1− M

(t− 1)p

)
E
∥∥∥ŵ(j−1)

t −w∗
i

∥∥∥2 + M

(t− 1)p

∥∥w∗
j −w∗

i

∥∥2 + M
(t−1)σ

2

p− M
(t−1) − 1

,

for j = 1, 2, ..., t− 1, where (i) follows from Lemmas B.1 to B.4. Similarly, for the current dataset, we have:

E
∥∥∥ŵ(0)

t −w∗
i

∥∥∥2 = E ∥(I − PXt
)(wt−1 −w∗

i ) + PXt
(w∗

t −w∗
i )∥

2
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=

(
1− n

p

)
E ∥wt−1 −w∗

i ∥
2
+

n

p
∥w∗

t −w∗
i ∥

2
+

nσ2

p− n− 1
.

By combining the above two equations, we have:
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=
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)
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︸ ︷︷ ︸
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+
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By applying this process recursively, we obtain the expression of the expected value of the model error ELi(wt) as follows.
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By rearranging the terms, we complete the poof for d(sequential)
0t and d(sequential)

ijkt in Lemma C.1. Furthermore, the expressions of

c(sequential)
i and c(sequential)

ijk can be derived directly based on d(sequential)
0t , d(sequential)

ijkt and the definition of forgetting. The explicit

expressions of c(concurrent)
i and c(sequential)

ijk are derived as follows.[
E ∥wt −w∗

i ∥
2
2 − E ∥wi −w∗

i ∥
2
2

](sequential)

=

(
1− n

p

){t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]}
∥w∗

i ∥
2

+

{
n

p

{
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]}

+
t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

}
∥w∗

1 −w∗
i ∥

2

+
t−1∑
j=i

{
t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

+

t−j−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

i−1∑
j=2

{
t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

−
i−j−1∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−j−l−1
M

(i− l − 1)p

+

t−j−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

−
i−j−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

(
1− M

(t− 1)p

)t−1
n

p
∥w∗

t −w∗
i ∥

2
+ noise(sequential)

t (σ)− noise(sequential)
i (σ) (35)

C.3. Proof of Theorem 5.1

Theorem 5.1 follows directly from Lemma C.1 and the definitions of FT and GT .

D. Proof of Lemma 5.2 and Theorem 5.3
In this section, we will prove Lemma 5.2 and Theorem 5.3, and provide details about constants ξ1, ξ2, µ1, µ2. According to
Equations (31), (32), (34) and (35), the forgetting and generalization error for T = 2 is as follows. For concurrent rehearsal
method, the forgetting is provided as follows.

F (concurrent)
2 = E ∥w2 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2

=

(
−n+M

p

)(
1− n

p

)
∥w∗

1∥
2
+

n

p

(
1 +

M

p− n−M − 1

)
∥w∗

1 −w∗
2∥

2

+
(n+M)σ2

p− (n+M)− 1
− n+M

p
· nσ2

p− n− 1
. (36)
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And also, we provide the generalization error as follows.

G(concurrent)
2 =

1

2

(
E ∥w2 −w∗

1∥
2
+ E ∥w2 −w∗

2∥
2
)

=
1

2

(
1− n+M

p

)(
1− n

p

)
(∥w∗

1∥
2
+ ∥w∗

2∥
2
)

+
1

2

(
2n+M

p
+

2nM

p(p− n−M − 1)
− n(n+M)

p2

)
∥w∗

1 −w∗
2∥

2

+
(n+M)σ2

p− (n+M)− 1
+

(
1− n+M

p

)
nσ2

p− n− 1
. (37)

For sequential rehearsal method, the forgetting is provided as follows.

F sequential
2 = E ∥w2 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2

=

(
−n+M

p
+

nM

p2

)(
1− n

p

)
∥w∗

1∥
2
+

(
1− M

p

)
n

p
∥w∗

1 −w∗
2∥

2

+

(
1− n+ 2M

p
+

nM

p2

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
. (38)

And also, we provide the generalization error as follows.

Gsequential
2 =

1

2
(E ∥w2 −w∗

1∥
2
+ E ∥w2 −w∗

2∥
2
)

=
1

2

(
1− M

p

)(
1− n

p

)2

(∥w∗
1∥

2
+ ∥w∗

2∥
2
) +

1

2

(
2n+M

p
− n(n+ 2M)

p2
+

n2M

p3

)
∥w∗

1 −w∗
2∥

2

+

(
1− M

p

)(
2− n

p

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
. (39)

D.1. Proof of Coefficients ĉ1, ĉ1 in Lemma 5.2 and Forgetting in Theorem 5.3

By observing Equation (36) and Equation (38), the expressions of forgetting for both rehearsal methods share the same
structure:

F2 = ĉ1 ∥w∗
1∥

2
+ ĉ2 ∥w∗

1 −w∗
2∥

2
+ ˆnoiseF (σ).

We first compare the coefficients ĉ1, ĉ2 and the noise term ˆnoiseF (σ). In the below inequalities, the expressions for
concurrent rehearsal are provided on the left while the expressions for sequential rehearsal are on the right.

ĉ1 :

(
−n+M

p

)(
1− n

p

)
<

(
−n+M

p
+

nM

p2

)(
1− n

p

)
ĉ2 :

n

p

(
1 +

M

p− n−M − 1

)
>

(
1− M

p

)
n

p
,

ˆnoiseF (σ) :
(n+M)σ2

p− (n+M)− 1
− n+M

p
· nσ2

p− n− 1
>

(
1− n+ 2M

p
+

nM

p2

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
.

The comparison implies that ĉ(concurrent)
1 < ĉ(sequential)

1 , ĉ(concurrent)
2 > ĉ(sequential)

2 and ˆnoise
(concurrent)
F (σ) > ˆnoise

(sequential)
F (σ). By

further calculation, we obtain the following conclusion:

F (concurrent)
2 > F (sequential)

2 if and only if ξ1 ∥w∗
1 −w∗

2∥
2
+ ξ2σ

2 > ∥w∗
1∥

2
,

where ξ1 =
nM
p ( 1

p−n−M−1+
1
p )

nM
p2

(1−n
p )

and ξ2 =

(
n+M

p−n−M−1−
(
1−M

p +nM
p2

)
n

p−n−1−
M

p−M−1

)
nM
p2

(1−n
p )

. To illustrate this conclusion better, we

provide the following two special cases.

• If the noise σ is 0, and the task similarity is low enough (i.e., ∥w∗
1 −w∗

2∥
2 is large enough), sequential rehearsal achieves

a lower forgetting. More specifically, F (concurrent)
2 ≥ F (sequential)

2 if and only if ∥w∗
1 −w∗

2∥
2 ≥ (p−n)(p−n−M−1)

p2+p(p−n−M−1) ∥w
∗
1∥

2,

32



Unlocking the Power of Rehearsal in Continual Learning: A Theoretical Perspective

• If task difference ∥w∗
1 −w∗

2∥
2
= 0 and the noise σ is large enough, sequential rehearsal achieves a lower forgetting.

More specifically, F (concurrent)
2 ≥ F (sequential)

2 if and only if

σ ≥
nM
p2

(
1− n

p

)
n+M

p−n−M−1 −
(
1− M

p + nM
p2

)
n

p−n−1 −
M

p−M−1

∥w∗
1∥

2
.

D.2. Proof of Coefficients d̂1, d̂2 in Lemma 5.2 and Generalization error in Theorem 5.3

By observing Equation (37) and Equation (39), the expressions of generalization error for both rehearsal methods share the
same structure:

G2 = d̂1(∥w∗
1∥

2
+ ∥w∗

2∥
2
) + d̂2 ∥w∗

1 −w∗
2∥

2
+ ˆnoiseG(σ).

We first compare the coefficients d̂1, d̂2 and the noise term ˆnoiseG(σ). In the below inequalities, the expressions for
concurrent rehearsal are provided on the left while the expressions for sequential rehearsal are on the right.

d̂1 :

(
1− n+M

p

)(
1− n

p

)
<

(
1− M

p

)(
1− n

p

)2

d̂2 :
2n+M

p
+

2nM

p(p− n−M − 1)
− n(n+M)

p2
>

2n+M

p
− n(n+ 2M)

p2
+

n2M

p3
,

ˆnoiseG :
(n+M)σ2

p− (n+M)− 1
+

(
1− n+M

p

)
nσ2

p− n− 1
>

(
1− M

p

)(
2− n

p

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
,

which implies that d̂(concurrent)
1 < d̂(sequential)

1 and d̂(concurrent)
2 > d̂(sequential)

2 , ˆnoise
(concurrent)
G (σ) > ˆnoise

(sequential)
G (σ). By further

calculation, we obtain the following conclusion:

G(concurrent)
2 ≥ G(sequential)

2 if and only if µ1 ∥w∗
1 −w∗

2∥
2
+ µ2σ

2 > ∥w∗
1∥

2
,

where µ1 =
nM
p

(
2

p−n−M−1+
1
p−

n
p2

)
nM
p2

(1−n
p )

and µ2 =
n+M

p−n−M−1−
(
1−M

p +nM
p2

)
n

p−n−1−
M

p−M−1

nM
p2

(1−n
p )

. To illustrate this conclusion better,

we provide the following two special cases.

• If the noise σ is 0, and the task similarity is small enough (i.e., ∥w∗
1 −w∗

2∥
2 is big enough), sequential rehearsal

has a smaller generalization error. More specifically, G(concurrent)
2 ≥ G(sequential)

2 if and only if ∥w∗
1 −w∗

2∥
2 ≥

(p−n)(p−n−M−1)
2p2+(p−n)(p−n−M−1)

(
∥w∗

1∥
2
+ ∥w∗

2∥
2
)

.

• If the task difference ∥w∗
1 −w∗

2∥
2
= 0 and the noise σ is big, sequential rehearsal has a smaller generalization error.

More specifically, G(concurrent)
2 ≥ G(sequential)

2 if and only if

σ2 ≥
nM
p2

(
1− n

p

)
n+M

p−n−M−1 −
(
1− M

p + nM
p2

)
n

p−n−1 −
M

p−M−1

(
∥w∗

1∥
2
+ ∥w∗

2∥
2
)

E. Comparison between Concurrent and Sequential Rehearsal Methods When T = 3

Recall that M2,1 = M and M3,1 = M3,2 = M
2 under our equal memory allocation assumption. In this section, we assume

σ = 0. According to Equations (31) and (32), we write out the performance of the concurrent rehearsal method when T = 3
as follows.

F
(concurrent)
3

=
1

2
(E ∥w3 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2 − E ∥w2 −w∗

2∥
2
)

=
1

2

(
−2(n+M)

p
+

(n+M)2

p2

)(
1− n

p

)
∥w∗

1∥
2
+

1

2

(
−n+M

p

)(
1− n+M

p

)(
1− n

p

)
∥w∗

2∥
2
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+
1

2

[(
1− 2(n+M)

p

)
nM

p(p− n−M − 1)
+

M2

2p(p− n−M − 1)
+

n+M

p

(
1− n

p

)(
1− n+M

p

)]
∥w∗

1 −w∗
2∥

2

+
1

2

[
n

p
+

nM

p(p− n−M − 1)

]
∥w∗

1 −w∗
3∥

2
+

1

2

[
n

p
+

nM

p(p− n−M − 1)

]
∥w∗

2 −w∗
3∥

2
, (40)

and

G
(concurrent)
3

=
1

3
(E ∥w3 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2
+ E ∥w3 −w∗

3∥
2
)

=
1

3

(
1− n+M

p

)2(
1− n

p

)
(∥w∗

1∥
2
+ ∥w∗

2∥
2
+ ∥w∗

3∥
2
)

+
1

3

[(
3− 3(n+M)

p

)
nM

p(p− n−M − 1)
+

3M2

4p(p− n−M − 1)

+
n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)]
∥w∗

1 −w∗
2∥

2

+
1

3

[
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p
+

3nM

2p(p− n−M − 1)

]
∥w∗

1 −w∗
3∥

2

+
1

3

[
n

p

(
2− n+M

p

)
+

M

2p
+

3nM

2p(p− n−M − 1)

]
∥w∗

2 −w∗
3∥

2
. (41)

According to Equations (34) and (35), we write out the performance of sequential rehearsal when T = 3 as follows.

F (sequential)
3 =

1

2
(E ∥w3 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2 − E ∥w2 −w∗

2∥
2
)

=
1

2

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)]
∥w∗

1∥
2

+
1

2

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)2(
1− M

p

)]
∥w∗

2∥
2

+
1

2

[(
1− n

p

)(
1− M

p

)
n

p

((
1− M

2p

)2(
2− n

p

)
− 1

)
+

(
1− M

2p

)2(
1− n

p

)
M

p
− M2

4p2

]
∥w∗

1 −w∗
2∥

2

+
1

2

(
1− M

2p

)2
n

p
∥w∗

1 −w∗
3∥

2
+

(
1− M

2p

)2
n

p
∥w∗

2 −w∗
3∥

2
. (42)

And also, we have

G
(concurrent)
3 =

1

3
(E ∥w3 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2
+ E ∥w3 −w∗

3∥
2
)

=
1

3

(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

(∥w∗
1∥

2
+ ∥w∗

2∥
2
+ ∥w∗

3∥
2
)

+
1

3

{(
1− n

p

)(
1− M

2p

)2 [(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

}
∥w∗

1 −w∗
2∥

2

+
1

3

[(
1− M

2p

)2
n

p
+

(
1− M

2p

)2(
1− n

p

)
M

p
+

(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2
n

p

+

(
1− M

2p

)
M

2p

]
∥w∗

1 −w∗
3∥

2

+
1

3

{(
1− M

2p

)2
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

}
∥w∗

2 −w∗
3∥

2
. (43)
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E.1. Comparison of Forgetting When T = 3

By observing Equation (40) and Equation (42), the expressions of forgetting for both rehearsal methods share the same
structure:

F3 =
1

2
ĉ1 ∥w∗

1∥
2
+

1

2
ĉ2 ∥w∗

2∥
2
+

1

2
ĉ3 ∥w∗

1 −w∗
2∥

2
+

1

2
ĉ4 ∥w∗

1 −w∗
3∥

2
+

1

2
ĉ5 ∥w∗

2 −w∗
3∥

2
.

By comparing Equation (40) and Equation (42), we have the following conclusions: 1.ĉ(concurrent)
1 < ĉ(sequential)

1 ; 2.ĉ(concurrent)
2 <

ĉ(sequential)
2 ; 3.ĉ(concurrent)

3 > ĉ(sequential)
3 , when p > 5n+4M

2 ; 4.ĉ(concurrent)
4 > ĉ(sequential)

4 ; 5.ĉ(concurrent)
5 > ĉ(sequential)

5 . The proof of
these conclusions is provided as follows.

Proof. 1. ĉ(concurrent)
1 < ĉ(sequential)

1 . We have:

ĉ(sequential)
1 =

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)]

=

[(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2

− 1

](
1− n

p

)

>

[(
1− n

p

)2(
1− M

p

)2

− 1

](
1− n

p

)

>

[(
1− n+M

p

)2

− 1

](
1− n

p

)
= ĉ(concurrent)

1 .

2. ĉ(concurrent)
2 < ĉ(sequential)

2 . Consider:

ĉ(sequential)
2 =

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)2(
1− M

p

)]

>

[(
1− n

p

)3(
1− M

p

)2

−
(
1− n

p

)2(
1− M

p

)]

=

(
1− n

p

)[(
1− n

p

)(
1− M

p

)
− 1

](
1− n

p

)(
1− M

p

)
=

(
1− n

p

)[
nM

p2
− n+M

p

](
1− n+M

p
+

nM

p2

)
=

(
1− n

p

)[
nM

p2
− n+M

p

](
1− n+M

p
+

nM

p2

)
=

(
1− n

p

)[
−n+M

p

](
1− n+M

p

)
+

(
1− n

p

)
nM

p2

(
1− 2(n+M)

p
+

nM

p2

)
>

(
1− n

p

)[
−n+M

p

](
1− n+M

p

)
= ĉ(concurrent)

2 .

3. ĉ(concurrent)
3 > ĉ(sequential)

3 when p > 5n+4M
2 . We first lower bound ĉ(concurrent)

3 as follows.

ĉ(concurrent)
3 =

(
1− 2(n+M)

p

)
nM

p(p− n−M − 1)
+

M2

2p(p− n−M − 1)
+

n+M

p

(
1− n

p

)(
1− n+M

p

)
>

(
1− 2(n+M)

p

)
nM

p2
+

M2

2p2
+

n+M

p

(
1− n

p

)(
1− n+M

p

)
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=
n+M

p

(
1− n

p

)(
1− M

p

)
− n2

p2
+

n3 − n2M − 2nM2

p3
.

On the other hand, we upper bound ĉ(sequential)
3 as follows.

ĉ(sequential)
3 =

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

2p

)2(
2− n

p

)
− 1

)
+

(
1− M

2p

)2(
1− n

p

)
M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p

+
M2

4p2

[(
2− n

p

)(
1− M

p

)(
1− n

p

)
n

p
+

(
1− n

p

)
M

p
− 1

]
<

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p
+

M2

4p2

[
2n

p
+

M

p
− 1

]
(i)
<

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p

=

(
1− n

p

)(
1− M

p

)
n

p

(
1− 2M

p
− n

p
+

nM

p2

)
+

(
1− M

p

)(
1− n

p

)
M

p

=

(
1− n

p

)(
1− M

p

)
n+M

p
+

(
1− n

p

)(
1− M

p

)
n

p

(
−n+ 2M

p
+

nM

p2

)
(ii)
<

(
1− n

p

)(
1− M

p

)
n+M

p
+

(
1− n+M

p

)
n

p

(
−n+ 2M

p
+

nM

p2

)
<

(
1− n

p

)(
1− M

p

)
n+M

p
− n2 + 2nM

p2
+

n3 + 4n2M + 2nM2

P 3
,

where (i) follows from the face that p > 5n+4M
2 and (ii) follows from the fact that −n+2M

p + nM
p2 < 0. Since p > 5n+4M

2 ,
we have:

−n2

p2
+

n3 − n2M − 2nM2

p3
> −n2 + 2nM

p2
+

n3 + 4n2M + 2nM2

P 3

which implies ĉ(concurrent)
3 > ĉ(sequential)

3 and completes the proof.

4.ĉ(concurrent)
4 > ĉ(sequential)

4 . Consider:

ĉ(concurrent)
4 =

n

p
+

nM

p(p− n−M − 1)
>

n

p
>

(
1− M

2p

)2
n

p
= ĉ(sequential)

4 .

5. The proof of ĉ(concurrent)
5 > ĉ(sequential)

5 is the same as ĉ(concurrent)
4 > ĉ(sequential)

4 .

E.2. Comparison of Generalization Error When T = 3

By observing Equation (41) and Equation (43), the expressions of generalization error for both rehearsal methods share the
same structure:

G3 =
1

3
d̂1(∥w∗

1∥
2
+ ∥w∗

2∥
2
+ ∥w∗

3∥
2
) +

1

3
d̂2 ∥w∗

1 −w∗
2∥

2
+

1

3
d̂3 ∥w∗

1 −w∗
3∥

2
+

1

3
d̂4 ∥w∗

2 −w∗
3∥

2
.

By comparing Equation (41) and Equation (43), we have the following conclusions: 1.d̂(concurrent)
1 < d̂(sequential)

1 ;
2.d̂(concurrent)

2 > d̂(sequential)
2 when p > 4n+3M

2 ; 3.d̂(concurrent)
3 > d̂(sequential)

3 ; 4.d̂(concurrent)
4 > d̂(sequential)

4 . The proof of these
relationships is provided as follows.

1. d̂(concurrent)
1 < d̂(sequential)

1 :

d̂(sequential)
1 =

(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2
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>

(
1− n

p

)3(
1− M

p

)2

>

(
1− n+M

p

)2(
1− M

p

)
= d̂(concurrent)

1 .

2. d̂(concurrent)
2 > d̂(sequential)

2 when p > 4n+3M
2 . We first lower bound d̂(concurrent)

2 as follows.

d̂(concurrent)
2

=

(
3− 3(n+M)

p

)
nM

p(p− n−M − 1)
+

3M2

4p(p− n−M − 1)
+

n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)
>

(
3− 3(n+M)

p

)
nM

p2
+

3M2

4p2
+

n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)
> 3

(
1− n+M

p

)
nM

p2
+

2(n+M)

p
+

n+M

p

(
−3n

p
− n

p
+

n(n+M)

p2

)
=

2(n+M)

p
− 3n2 + nM +M2

p2
+

n3 − n2M − 2nM2

p3
.

On the other hand, we upper bound d̂(sequential)
2 as follows.

d̂(sequential)
2

=

(
1− n

p

)(
1− M

2p

)2 [(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p
+

M2

4p2

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
+

M2

4p2

[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
− M2

4p2

<

(
1− n

p

)(
1− M

p

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
+

M2

4p2

[
2n

p
+

M

p
− 1

]
<

(
1− n

p

)(
1− M

p

)[(
2− n

p

)
n

p
+

M

p

]
+

M

p

=

(
1− n

p

)(
1− M

p

)
2n

p
−
(
1− n

p

)(
1− M

p

)
n2

p2
+

2M

p
+

(
−n+M

p
+

nM

p2

)
M

p

=
2(n+M)

p
− 3n2 + 3nM +M2

p2
+

n3 + 3n2M + nM2

p3
− n3M

p4

<
2(n+M)

p
− 3n2 + 3nM +M2

p2
+

n3 + 3n2M + nM2

p3
.

Since p > 4n+3M
2 , we have:

−3n2 + nM +M2

p2
+

n3 − n2M − 2nM2

p3
> −3n2 + 3nM +M2

p2
+

n3 + 3n2M + nM2

p3

which implies d̂(concurrent)
2 > d̂(sequential)

2 and completes the proof.

3. d̂(concurrent)
3 > d̂(sequential)

3 . We first lower bound d̂(concurrent)
3 as follows.

d̂(concurrent)
3 =

n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p
+

3nM

2p(p− n−M − 1)
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>
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p
+

3nM

2p2
.

On the other hand, we upper bound d̂(sequential)
3 as follows.

d̂(sequential)
3

=

(
1− M

2p

)2
n

p
+

(
1− M

2p

)2(
1− n

p

)
M

p
+

(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2
n

p
+

(
1− M

2p

)
M

2p

<

(
1− M

2p

)2
n

p

[
1 +

(
1− n

p

)2(
1− M

p

)]
+

(
1− n

p

)(
1− M

p

)
M

p
+

M3

4p3
+

M

2p

<
n

p

(
2− 2n+M

p
+

n2 + 2nM

p2

)
+

n

p

(
−M

p
+

M2

4p2

)
+

M

p

(
1− n+M

p

)
+

nM2

p
+

M3

4p3
+

M

2p

=
n

p

(
2− 2n+ 2M

p
+

n2 + 2nM +M2

p2

)
+

M

p

(
1− n+M

p

)
+

nM2 +M3

4p3
+

M

2p

<
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p
+

3nM

2p2
.

By combining the above equations, we complete the proof.

4. d̂(concurrent)
4 > d̂(sequential)

4 . Consider:

d̂(sequential)
4 =

(
1− M

2p

)2
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

<
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

=
n

p

[
2− n+M

p

]
+

M

2p
+

n2M

p3

<
n

p

[
2− n+M

p

]
+

M

2p
+

3nM

2p(p− n−M − 1)

< d̂(concurrent)
4 .

F. Proof of Lemma 5.4
In this section, we prove Lemma 5.4, which helps to further compare the performance between concurrent and sequential
rehearsal methods for general T . We assume that M ≥ 2. We first prove coefficients d0T , dijkT in Appendix F.1 , and then
prove the coefficients ci, cijk in Appendix F.2.

F.1. Proof of Coefficients d0T , dijkT in Lemma 5.4

In this subsection, we will compare the coefficients d0T , dijkT under different rehearsal methods. We first fix the index i,
which implies that we consider the generalization error on the previous task i.

1. We first prove d(concurrent)
0T < d(sequential)

0T . According to Lemma B.11, we have:

d(concurrent)
0T =

(
1− n

p

)(
1− n+M

p

)T−1

<

(
1− n

p

) T−2∏
l=0

[(
1− M

(T − l − 1)p

)T−l−1(
1− n

p

)]
= d(sequential)

0T
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2. Now, we prove d(concurrent)
i1iT > d(sequential)

i1iT if p > 2T 4(n+M)nM . We first consider:

n

p

T−2∏
l=0

[(
1− M

(T − l − 1)p

)T−l−1(
1− n

p

)]
(i)
<

n

p

(
1− n+M

p
+

(n+M)M

p2

)T−1

(ii)
<

n

p

(
1− n+M

p

)T−1

+
T 2(n+M)nM

p3
, (44)

where (i) follows from Lemma B.12 and (ii) follows from Lemma B.13. We also notice that:

T−2∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−l−2
M

(T − l − 1)p

=
T−3∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−l−2
M

(T − l − 1)p

+
T−3∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

p

)
M

p

(i)
<

(
1− 1

Tp

) T−3∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p
+

(n+M)M

p2

)T−2(
1− M

p

)
M

p

(ii)
<

(
1− 1

Tp

) T−3∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

[(
1− n+M

p

)T−2

+
T 2(n+M)M

p2

](
1− M

p

)
M

p

<
T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3
, (45)

where (i) follows from Lemmas B.12 and B.15 and (ii) follows from Lemma B.13. By combining Equations (44) and (45),
we can conclude:

d(sequential)
i1iT <

n

p

(
1− n+M

p

)T−1

+
T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

T 2(n+M)nM

p3
− M

T 2p2
+

T 2(n+M)M2

p3

(i)
<

n+M

p

(
1− n+M

p

)T−1

+
T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

= d(concurrent)
i1iT , (46)

where (i) follows from the fact that p > 2T 4(n+M)nM .

3. Next, we prove d(concurrent)
ijiT > d(sequential)

ijiT if p > T 4(n+M)M , for j = 2, 3, ..., T − 1. We first have:

T−j−1∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−j−l−1
M

(T − l − 1)p

=

T−j−2∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−j−l−1
M

(T − l − 1)p

+

T−j−2∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)]
M

jp

(i)
<

(
1− 1

Tp

) T−j−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p
+

(n+M)M

p2

)T−j−1
M

jp

(ii)
<

(
1− 1

Tp

) T−j−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p

)T−j−1
M

jp
+

T 2(n+M)M2

jp3
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<

T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3
(47)

where (i) follows from Lemmas B.12 and B.15, (ii) follows Lemma B.13. Therefore, if p > T 4(n+M)M , we have:

T−j−1∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−j−l−1
M

(T − l − 1)p

<

T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
. (48)

Furthermore, we have:

T−j−1∏
k=0

[(
1− M

(T − l − 1)p

)T−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

(i)
<

(
1− n+M

p

)T−j
n

p
(49)

where (i) follows from Lemmas B.12 and B.15. Therefore, by combining Equations (48) and (49), we have:

d(sequential)
ijiT <

T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p

)T−j
n

p
≤ d(concurrent)

ijiT . (50)

4. Last, we prove d(concurrent)
iT iT > d(sequential)

iT iT . The proof is straightforward:

d(sequential)
iT iT =

(
1− M

(T − 1)p

)T−1
n

p
<

n

p
≤ d(concurrent)

iT iT .

5. Moreover, for the other choices of j, k we have d(concurrent)
ijkT ≥ 0 and d(sequential)

ijkT = 0.

F.2. Proof of Coefficients ci, cijk in Lemma 5.4

In this subsection, we will compare the coefficients ci, cijk under different rehearsal methods. Before we start, we first
provide some important observation about the terms β1 and β2 in Equation (32). We split the term β1 into two parts.

β1 =
T−i−1∑
l=0

(
1− n+M

p

)l T−l−2∑
j=1

T−l−1∑
k=j+1

( M
T−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2β+
1

+
T−2∑

l=T−i

(
1− n+M

p

)l T−l−2∑
j=1

T−l−1∑
k=j+1

( M
T−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2


β−
1 . (51)

Since T − i − 1 ≥ 0, we notice that β+
1 consists of terms δ+j,k

∥∥w∗
j −w∗

k

∥∥2 where δ+j,k ≥
(
1− n+M

p

)
M2

T 2p2 for any

j, k ∈ [T − 1] and j < k. For the term β−
1 , we have:

β−
1 =

i−2∑
l=0

(
1− n+M

p

)T−i+l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
=

i−2∑
l=0

[(
1− n+M

p

)T−i

− 1

](
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
40
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≥− T (n+M)

p

i−2∑
l=0

i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2 . (52)

The above argument shows that β−
1 consists of terms δ−j,k

∥∥w∗
j −w∗

k

∥∥2 where δ−j,k ≥ −
T 2(n+M)M2

p3 for j, k ∈ [i− 1] and

j < k. Therefore, if p > (T 4 + 1)(n+M), we can conclude that β1 consists of terms δj,k
∥∥w∗

j −w∗
k

∥∥2 for j, k ∈ [T − 1]
and j < k, where

δj,k ≥
(
1− n+M

p

)
M2

T 2p2
− T 2(n+M)M2

p3
> 0, (53)

By the same argument, we have:

β2 =
T−i−1∑
l=0

(
1− n+M

p

)l T−l−1∑
j=1

nM
T−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

T−l

∥∥2β+
2

+
T−2∑

l=T−i

(
1− n+M

p

)l T−l−1∑
j=1

nM
T−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

T−l

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−1∑
j=1

nM
i−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

i−l

∥∥2


β−
2 , (54)

where β+
2 consists of terms η+j,k

∥∥w∗
j −w∗

k

∥∥2 with η+j,k ≥
(
1− n+M

p

)
nM
Tp2 for j, k ∈ [T − 1] and j < k and β−

2 consists

of terms η−j,k
∥∥w∗

j −w∗
k

∥∥2 with η−j,k ≥ −
T 2(n+M)nM

p3 for j, k ∈ [i− 1] and j < k. Therefore, if p > (T 4 + 1)(n+M)M ,

we conclude that β2 consists of terms ηj,k
∥∥w∗

j −w∗
k

∥∥2 for j ∈ [k − 1], k = 2, 3, .., i where

ηj,k ≥
(
1− n+M

p

)
nM

Tp2
− T 2(n+M)nM

p3
> 0. (55)

Now, we start to coefficients ci, cijk in Lemma 5.4. We first fix the index i, which means that we consider the forgetting on
the previous task i. The proof of c(concurrent)

i < c(sequential)
i if p > 2T 3(n+M)2 follows from Lemma B.16 directly.

The proof of c(concurrent)
ijk > c(sequential)

ijk are as follows.

1. We prove c(concurrent)
i1i > c(sequential)

i1i if p > 3T 4(n+M)nM . We first upper bound part of the coefficient c(sequential)
i1i :

n

p

{
T−2∏
l=0

[(
1− M

(T − l − 1)p

)T−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]}
(i)
<

n

p

[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+

T 2(n+M)nM

p3
(56)

where (i) follows from Lemma B.17. We then upper bound the other part of c(sequential)
i1i as follows.

T−2∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−l−2
M

(T − l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

=
T−i−1∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−l−2
M

(T − l − 1)p

+

T−2∑
l=T−i

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−l−2
M

(T − l − 1)p
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−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

=
T−i−1∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−l−2
M

(T − l − 1)p

+
i−2∑
l=0

l−i+T−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

(i)
<

T−i−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3

+
i−2∑
l=0

[(
1− n+M

p
+

(n+M)M

p2

)l−i+T

−
(
1− n+M

p

)l
](

1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

(ii)
<

T−i−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3

+
i−2∑
l=0

[(
1− n+M

p

)l−i+T

+
T 2(n+M)M

p2
−
(
1− n+M

p

)l
]

M

(i− l − 1)p

<
T−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
−

i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
− M

T 2p2
+

2T 2(n+M)M2

p3
, (57)

where (i) follows from Equation (45) and Lemmas B.11 and B.12, (ii) follows from Lemma B.13. By combining
Equations (56) and (57),

c(sequential)
i1i <

n

p

[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+

T−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

−
i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
+

T 2(n+M)nM

p3
− M

T 2p2
+

2T 2(n+M)M2

p3
(58)

(i)
<

n

p

[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+

T−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

−
i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

(ii)

≤ c(concurrent)
i1i (59)

where (i) follows from the fact that p > 3T 4(n+M)nM , (ii) follows from our observation in Equations (51) to (55).

2. Next, we prove c(concurrent)
iji > c(sequential)

iji if p > 3T 4(n+M)nM , for j = 2, 3, ..., i−1. We observe that c(sequential)
iji consists

of two parts, where the first part can be upper bounded by

T−j−1∑
l=0

l−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(T − l − 1)p

)T−j−l−1
M

(T − l − 1)p

−
i−j−1∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−j−l−1
M

(i− l − 1)p
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(i)
<

T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
− M

T 2p2
+

2T 2(n+M)M2

p3
, (60)

The other part of c(sequential)
iji can be upper bounded by:

T−j−1∏
k=0

[(
1− M

(T − k − 1)p

)T−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

−
i−j−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

(i)
<

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)T−i

− 1

]
+

T 2(n+M)M

p2

}(
1− M

(j − 1)p

)j−1
n

p

<

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)T−i

− 1

]}
+

T 2(n+M)nM

p3
, (61)

where (i) follows from Lemma B.17. By combining Equations (60) and (61), we have

c(sequential)
j <

T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

+

{(
1− n+M

p

)i−1
[(

1− n+M

p

)T−i

− 1

]}
+

T 2(n+M)nM

p3
− M

T 2p2
+

2T 2(n+M)M2

p3

(i)
<

T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

+

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)T−i

− 1

]}
(ii)

≤ c(concurrent)
iji , (62)

where (i) follows from the fact that p > 3T 4(n+M)nM , (ii) follows from our observation in Equations (51) to (55).

3. We prove c(concurrent)
iji > c(sequential)

iji for j = i, i+ 1, ..., T − 1 if p > T 4(n+M)M . According to the same derivation as
Equations (47) and (49), we have

c(sequential)
iji <

T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

(
1− n+M

p

)T−j
n

p
− M

T 2p2
+

T 2(n+M)M2

p3

<

T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

(
1− n+M

p

)T−j
n

p

(i)

≤ c(concurrent)
iji ,

where (i) follows from our observation in Equations (51) to (55).

4. Last, we prove c(concurrent)
iT i > c(sequential)

iT i if p > T 2(n+M)M . Consider:

c(sequential)
iT i =

(
1− M

(T − 1)p

)T−1
n

p
<

(
1− M

(T − 1)p

)
n

p
<

n

p
− nM

p2

(i)
<

n

p
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(ii)

≤ c(concurrent)
iT i , (63)

where (i) follows from the fact that p > T 2(n+M)M , (ii) follows from our observation in Equations (51) to (55).

5. As discussed in Equations (51) to (55), we have

G. Proof of Theorem 5.5
In this section, we prove Theorem 5.5 where we provide a particular example in which sequential rehearsal has lower
forgetting and generalization than concurrent rehearsal. We first prove the forgetting part in Theorem 5.5. Recall FT =

1
T−1

∑T−1
i=1 E(Li(wT )− Li(wi)). Therefore, it suffices to prove

[Li(wT )− Li(wi)]
(concurrent) > [Li(wT )− Li(wi)]

(sequential)

if p > 2T 2(n+M)nM for each i ∈ [T − 1]. Since w∗
i are orthonormal, we have ∥w∗

i ∥
2
= 1 and

∥∥w∗
i −w∗

j

∥∥2 = 2 for
i ̸= j. Recall the discussion about β2 in Equation (54). Then, we consider

2β+
2 =

T−i−1∑
l=0

(
1− n+M

p

)l
2nM

p(p− n−M − 1)

=
2nM

p(p− n−M − 1)
·
[1− (1− n+M

p )T−i]

1− (1− n+M
p )

>
2nM

p2
·
−
∑T−i

k=1

(
T−i
k

)
(−n+M

p )k

n+M
p

(64)

We note that for any k ∈ [3, T − i− 1] and k is odd, we have(
T − i

k

)(
−n+M

p

)k

+

(
T − i

k + 1

)(
−n+M

p

)k+1

=
(T − i)!

k!(T − i− k − 1)!

(
−n+M

p

)k [
1

T − i− k
+

1

k + 1

(
−n+M

p

)]
<

(T − i)!

k!(T − i− k − 1)!

(
−n+M

p

)k [
1

T
− n+M

p

]
(i)
< 0,

where (i) follows from the fact that p > T (n+M). By simply discussing when T − i is odd or even, we can have

−
T−i∑
k=1

(
T − i

k

)(
−n+M

p

)k

> −
(
T − i

1

)(
−n+M

p

)
−
(
T − i

2

)(
−n+M

p

)2

=
(T − i)(n+M)

p
− (T − i)(T − i− 1)(n+M)2

2p2
.

By substituting the above equation into Equation (64), we can have

2β+
2 >

2nM

p(n+M)
·
[
(T − i)(n+M)

p
− (T − i)(T − i− 1)(n+M)2

2p2

]
=

2(T − i)nM

p2
− (T − i)(T − i− 1)(n+M)nM

p3

(i)

≥ (T − i)(n+M)M

p2
+

M

p2
− T 2(n+M)nM

p3
(65)
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where (i) follows from the fact that n ≥M + 1. Now, we can conclude:

[Li(wT )− Li(wi)]
(concurrent)

= c(concurrent)
0 + 2

T∑
j=1

c(concurrent)
j

(i)
>

(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j + 2β+

1 + 2β+
2

≥
(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j + 2β+

2 (66)

where (i) follows from Equations (58), (62) and (63). On the other hand, we have:

[Li(wT )− Li(wi)]
(sequential)

(i)
<

(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j

+
(T − i)(n+M)M

p2
+

T 3(n+M)2M2

p4
, (67)

where (i) follows from Lemma B.18. By combining Equations (65) to (67) and the fact that p > 2T 2(n+M)nM , we have

[Li(wT )− Li(wi)]
(concurrent) > [Li(wT )− Li(wi)]

(sequential),

which completes the proof.

Next, we prove the generalization error part in Theorem 5.5. Recall GT = 1
T

∑T
i=1 ELi(wT ), it suffices to prove

L(concurrent)
i (wT ) > L(sequential)

i (wT )

if p > 2T 4(n+M + 1)2M for each i ∈ [T ]. Since w∗
i are orthonormal, we have ∥w∗

i ∥
2
= 1 and

∥∥w∗
i −w∗

j

∥∥2 = 2 for
i ̸= j. Therefore, we have

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2
=

T−2∑
l=0

(
1− n+M

p

)l T−l−1∑
j=1

2nM
T−l−1

p2

> (T − 1)

(
1− n+M

p

)T
2nM

p2

>

(
1− T (n+M)

p

)
2(T − 1)nM

p2

(i)

≥
(
1− T (n+M)

p

)
(T − 1)(n+M + 1)M

p2
, (68)

where (i) follows from the fact that n ≥M + 1. Therefore, by combining Equations (31) and (68), we have:

L(concurrent)
i (wT ) >

(
1− n

p

)(
1− n+M

p

)T−1

+ 2

{(
1− n+M

p

)T−1
n

p
+

T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

}
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+ 2
T−1∑
j=2

{
T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p

)T−j
n

p

}
+

2n

p

+

(
1− T (n+M)

p

)
(T − 1)(n+M + 1)M

p2
. (69)

On the other hand, we have:

L(sequential)
i (wT )

(i)
<

(
1− n

p

)(
1− n+M

p
+

(n+M)M

p2

)T−1

+ 2

{(
1− n+M

p

)T−1
n

p
+

T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

}

+ 2
T−1∑
j=2

{
T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p

)T−j
n

p

}
+

2n

p

(ii)
<

(
1− n

p

)(
1− n+M

p

)T−1

+ 2

{(
1− n+M

p

)T−1
n

p
+

T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

}

+ 2
T−1∑
j=2

{
T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p

)T−j
n

p

}
+

2n

p

+

(
(T − 1)(n+M)M

p2
+

T 3(n+M)2M2

2p4

)
(70)

where (i) follows from Lemma B.12 and Equations (46) and (50), (ii) follows from Lemma B.14 and the fact that 1− n
p < 1.

To build the relationship between Equations (69) and (70), we have:

(
1− T (n+M)

p

)
(T − 1)(n+M + 1)M

p2
−
(
(T − 1)(n+M)M

p2
+

T 3(n+M)2M2

2p4

)
=

(T − 1)M

p2
− T (T − 1)(n+M)(n+M + 1)M

p3
− T 3(n+M)2M2

2p4

(i)
> 0 (71)

where (i) follows from the fact that p > 2T 2(n +M + 1)2M . By combining Equations (69) to (71), we can conclude:
L(concurrent)
i (wT ) > L(sequential)

i (wT ).

H. Proof of Hybrid Rehearsal in Proposition H.1
First of all, recall that the memory setMt =Msim

t

⋃
Mdis

t , whereMsim
t =

⋃
h∈I(sim)

t
Mt,h andMdis

t =
⋃

h∈I(dis)
t
Mt,h.

We present the explicit expressions of coefficients and the noise term in Theorem 5.1 for hybrid rehearsal method in the
following proposition.

Proposition H.1. Under the problem setups considered in this work, the coefficients that express the expected value of the
forgetting Ft and generalization error Gt obtained by Algorithm 1 take the following forms.

d(hybrid)
0t = r0Γt(t− 1), c(hybrid)

i = d(hybrid)
0T − d(hybrid)

0i
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d(hybrid)
ijkt =



t−j−1∑
l=0

(1−Bl,t)
|I(dis)

t−l|Γt(l)Bl,t1
(sim)
t−l,j +

t−2∑
l=0

(1−Bl,t)
|I(dis)

t−l|Γt(l)pBl,tKl,t1
(sim)
t−l,j1

(sim)
t−l,k

+(1−Bt−k,t)
|I(dis)

k |nΓt(t− k)Kt−k,t1
(sim)
k,j + (1−Bt−j,t)

|I(dis)
j |Γt(t− j)(1− r0)

+

t−j−1∑
l=0

Γt(l)(1−Bl,t)
|I(dis)

t−l|−ft−l(j)Bl,t1{j∈I(dis)
t−l}

if j ∈ [t− 1], k = i

(1− r0) + nΓt(t− k)Kt−k,t1{i∈I(sim)
t } if j = t, k = i

t−2∑
l=0

(1−Bl,t)
|I(dis)

t−l|Γt(l)pBl,tKl,t1{j,k∈I(sim)
t } if j < k and j, k ̸= i, t

(1−Bt−k,t)
|I(dis)

k |nΓt(t− k)Kt−k,t1{j∈I(sim)
t } if j < k and j, k ̸= i

c(hybrid)
ijk = d(hybrid)

ijkT − d(hybrid)
ijki ,

noise(hybrid)
t (σ) =

t−2∑
l=0

Γt(l)

|I(dis)
t−l|∑

j=1

(1−Bl,t)
|I(dis)

t−l|−ft(j)Λ M
t−l−1 ,σ

+ (1−Bl,t)
|I(dis)

t−l|Λn+p|I(sim)
t−l|Bl,t,σ


where ra := 1− n+a

p , Bl,t :=

{ M
(t−l−1)p if l ̸= t− 1

0 o.w.
, Kl,t =

Bl,t

p−n− M
t−l−1 |I(sim)|−1

, ft(j) = s such that (the sth element

of I (dis)
t ) = j, 1(sim)

t,j := 1{j∈I(sim)
t }, 1(dis)

t,j := 1{j∈I(dis)
t }, Γt(a) =

a−1∏
l=0

[
(1−Bl,t)

|I(dis)
t−l | r M

t−l−1 |I
(sim)
t−l |

]
, Λa,σ = aσ2

p−a−1 .

In Algorithm 1, the training process of CONCURRENTTRAIN(Dt

⋃
Msim

t ) is equivalent to solve the following optimization
problem:

ŵ
(0)
t = min

w
∥w −wt−1∥2 s.t. X⊤

t w = Yt,

X⊤
t,hw = Yt,h, h ∈ I (sim)

t . (72)

Then, the training process of SEQUENTIALTRAIN(Mt,h) for h :Mt,h ∈Mdis
t is equivalent to solve:

ŵ
(ft(h))
t = min

w

∥∥∥w − ŵ
(ft(h)−1)
t

∥∥∥2
2

s.t. X⊤
t,hw = Yt,h, h = 1, 2, ..., |It|(dis), (73)

where the ft(h)
th element of I (dis)

t is h. The final convergent point of task t is denoted as wt = ŵ
(|It|(dis))
t . By the same

argument as concurrent rehearsal (or sequential rehearsal), it suffices to prove Lemma C.1 to derive the explicit expressions
for both forgetting and generalization error. Consider an arbitrary i s.t. i ≤ T and fix it. The expected value of model error
E[Li(wt)] are derived as follows including concurrent part and sequential part.

The first part is concurrent part. Define V sim
t as the concatenation of Xt and Xt,h for all h ∈ I (sim)

t . Similarly, define z⃗sim
t ,

as the concatenation of zt and zt,h for all h ∈ I (sim)
t . By following the same argument as concurrent rehearsal method, we

have:

E
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∥∥∥2
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(
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+ E
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†
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∗
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i )

...
X⊤

t (w∗
t −w∗

i )
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∥∥∥∥∥∥∥∥
2

+
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t | Mt−1 )σ
2
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,
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=

(
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p
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i ∥
2

+
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t

M
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(
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n+ M
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+
n

p
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, (74)

where (i) follows from the same argument of Equation (29) and (ii) follows from the same argument of Equation (30). The
second part is sequential part. According to Lemmas B.1 to B.4, we have:
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.

By iterating the above equation, we have:
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By combining Equations (74) and (75) and repeating the process, we derive the expected value of model error Li(wt) with
hybrid rehearsal method as follows.
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where (i) follows from the iteration and Equation (28) and
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By rearranging the terms and substituting t = T , we complete the poof for d(hybrid)
0T and d(hybrid)

ijkT . Furthermore, the expressions

of c(hybrid)
i and c(hybrid)

ijk in Proposition H.1 can be derived directly based on d(hybrid)
0T and d(hybrid)

ijkT and the definition of forgetting.
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(a) Sample images without corruption.

(b) Glass Corruption: the images are transformed to simulate the effect of viewing through frosted glass, inducing localized blurring
and pixel displacement.

(c) Color-swapping and Rotation Corruption: the images are randomly rotated by arbitrary angles, and a subset of pixels undergoes
random permutation of RGB channels.

(d) Elastic and Pixelate Image Corruption: the images are subjected to smooth, non-linear spatial deformations followed by
pixelation, resulting in a low-resolution appearance.

Figure 4. Sample images for demonstrating the employed corruption schemes.
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