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Abstract—Misconfigurations are major causes of software
failures. Existing practices rely on developer-written rules or
test cases to validate configuration values, which are expensive.
Machine learning (ML) for configuration validation is considered
a promising direction, but has been facing challenges such as the
need of large-scale field data and system-specific models. Recent
advances in Large Language Models (LLMs) show promise in
addressing some of the long-lasting limitations of ML-based
configuration validation. We present the first analysis on the
feasibility and effectiveness of using LLMs for configuration
validation. We empirically evaluate LLMs as configuration valida-
tors by developing a generic LLM-based configuration validation
framework, named Ciri. Ciri employs effective prompt engineering
with few-shot learning based on both valid configuration and
misconfiguration data. Ciri checks outputs from LLMs when
producing results, addressing hallucination and nondeterminism of
LLMs. We evaluate Ciri’s validation effectiveness on eight popular
LLMs using configuration data of ten widely deployed open-source
systems. Our analysis (1) confirms the potential of using LLMs
for configuration validation, (2) explores design space of LLM-
based validators like Ciri, and (3) reveals open challenges such
as ineffectiveness in detecting certain types of misconfigurations
and biases towards popular configuration parameters.

I. INTRODUCTION

Modern software systems undertake hundreds to thousands
of configuration changes on a daily basis [1]–[7]. For example,
at Meta/Facebook, thousands of configuration file “diffs” are
committed daily, outpacing the frequency of code changes [1],
[2]. Other systems such as at Google and Microsoft also fre-
quently deploy configuration changes [3], [5], [6]. Such velocity
of configuration changes inevitably leads to misconfigurations.
Today, misconfigurations are among the dominating causes of
production incidents [2], [3], [7]–[13].

To detect misconfigurations, today’s configuration manage-
ment systems employ the “configuration-as-code” paradigm and
enforce continuous configuration validation, ranging from static
validation, to configuration testing, and to manual review and
approval [1]. The configuration is first checked by validation
code (aka validators) based on predefined correctness rules [1],
[14]–[20]; in practice, validators are written by engineers [1],
[14], [15]. After passing validators, configuration changes are
then tested with code to check program behavior [21]–[23].
Lastly, configuration changes, commonly in the form of a
configuration file “diff”, is reviewed before deployment.

The aforementioned pipeline either relies on manual in-
spection to spot misconfigurations in the configuration file
diffs, or requires significant engineering efforts to implement

→Co-primary authors.

and maintain validators or test cases. However, these efforts
are known to be costly and incomprehensive. For example,
despite that mature projects all include extensive configuration
validators, recent work [24]–[30] repeatedly shows that existing
validators are insufficient. The reasons are twofold. First,
with large-scale systems exposing hundreds to thousands
of configuration parameters [31], implementing validators
for every parameter becomes a significant overhead. Recent
studies [1], [24] report that many parameters are uncovered by
existing validators, even in mature software projects. Second,
it is non-trivial to validate a parameter, which could have many
different correctness properties, such as type, range, semantic
meaning, dependencies with other parameters, etc.; encoding
all of them into validators is laborious and error-prone, not to
mention the maintenance cost [32], [33].

Recently, using machine learning (ML) and natural lan-
guage processing (NLP) to detect misconfigurations has been
considered as a promising approach to addressing the above
challenges. Compared to manually written static validators,
ML or NLP-based approaches are automatic, easy to scale
to a large number of parameters, and applicable to different
projects. Several ML/NLP-based misconfiguration detection
techniques were proposed [34]–[41]. The key idea is to first
learn correctness rules from field configuration data [34]–[37],
[39], [41]–[44] or from documents [38], [40], and then use the
learned rules to detect misconfigurations in new configuration
files. ML/NLP-based approaches have achieved good success.
For example, Microsoft adopted PeerPressure [36], [45] as a
part of Microsoft Product Support Services (PSS) toolkits. It
collects configuration data in Windows Registry from a large
number of Windows users to learn statistical “golden states”
of system configurations.

However, ML/NLP-based misconfiguration detection is also
significantly limited. First, the need for large volumes of system-
specific configuration data makes it hard to apply those tech-
niques outside corporations that collect user configurations (e.g.,
Windows Registry [41]) or maintain a knowledge base [40]. For
example, in cloud systems where the same set of configurations
is maintained by a small DevOps team [1], [4], there is often no
enough information for learning [25]. Moreover, prior ML/NLP-
based detection techniques all target specific projects, and rely
on predefined features [39], templates [35], or models [40],
making them hard to generalize.

Recent advances on Large Language Models (LLMs), such
as GPT [46] and Codex [47], show promises to address some
of the long-lasting limitations of traditional ML/NLP-based



misconfiguration detection techniques. Specifically, LLMs
are trained on massive amounts of public data, including
configuration data—configuration files in software reposi-
tories, configuration documents, knowledge-based articles,
Q&A websites for resolving configuration issues, etc. Hence,
LLMs encode extensive knowledge of both common and
project-specific configuration. Such knowledge can be utilized
for configuration validation without the need for manual
rule engineering. Furthermore, LLMs show the capability of
generalization and reasoning [48], [49] and can potentially
“understand” configuration semantics. For example, they can
not only understand that values of a port must be in the range
of [0, 65535], but also reason that a specific configuration value
represents a port (e.g., based on the name and description) and
thus has to be within the range.

Certainly, LLMs have limitations. They are known for
hallucination and non-determinism [50], [51]. Additionally,
LLMs have limited input context, which can pose challenges
when encoding extensive contexts like configuration file and
related code. Moreover, they are reported to be biased to popular
content in the training dataset. Fortunately, active efforts [52]–
[56] are made to address these limitations.

In this paper, we present the first analysis on the feasibility
and effectiveness of using LLMs such as GPT and Claude for
configuration validation. As a first step, we empirically evaluate
LLMs in the role of configuration validators, without additional
fine-tuning or code generation. We focus on basic misconfigu-
rations (those violating explicit correctness constraints) which
are common misconfigurations encountered in the field [9]. We
do not target environment-specific misconfigurations or bugs
triggered by configuration (discussed in §VII).

To do so, we develop Ciri, an LLM-empowered configuration
validation framework. Ciri takes a configuration file or a file diff
as the input; it outputs detected misconfigurations along with
the reasons that explain them. Ciri integrates different LLMs
such as GPT-4, Claude-3, and CodeLlama. Ciri devises effective
prompt engineering with few-shot learning based on existing
configuration data. Ciri also validates the outputs of LLMs to
generate validation results, coping with the hallucination and
non-determinism of LLMs. A key design principle of Ciri is
separation of policy and mechanism. Ciri can serve as an open
framework for experimenting with different models, prompt
engineering, training datasets, and validation methods.

We study Ciri’s validation effectiveness using eight popular
LLMs including remote models (GPT-4, GPT-3.5, Claude-
3-Opus, and Claude-3-Sonnet), and locally housed models
(CodeLlama-7B/13B/34B and DeepSeek). We evaluate ten
widely deployed open-source systems with diverse types. Our
study confirms the potential of using LLMs for configuration
validation, e.g., Ciri with Claude-3-Opus detects 45 out of 51
real-world misconfigurations, outperforming recent configura-
tion validation techniques. Our study also helps understand
the design space of LLM-based validators like Ciri, especially
in terms of prompt engineering with few-shot learning and
voting. We find that using configuration data as shots can
enhance validation effectiveness. Specifically, few-shot learning

using both valid configuration and misconfiguration data
achieves the highest effectiveness. Our results also reveal
open challenges: within the scope of target configurations,
Ciri struggles with certain types of misconfigurations such as
dependency violations and version-specific misconfigurations.
It is also biased to the popularity of configuration parameters,
causing both false positives and false negatives.

In summary, this paper makes the following contributions:
• A new direction of configuration validation using pre-trained

large language models (LLMs);
• Ciri, an LLM-empowered configuration validation framework

and an open platform for configuration research;
• An empirical analysis on the effectiveness of LLM-based

configuration validation, and its design space;
• Ciri is released at https://github.com/xlab-uiuc/ciri.

II. EXPLORATORY EXAMPLES

We explore using LLMs to validate configuration out of the
box. We show that vanilla LLMs can detect misconfigurations.
However, they are prone to both false negatives and false
positives that require careful handling. Figure 1 presents
four examples, two of which the LLM successfully detects
misconfigurations, and two of which the LLM misses the
misconfiguration or reports a false alarm. These examples were
generated using the GPT-3.5-Turbo LLM [57].
Detecting violation of configuration dependency. Validating
dependencies between configuration parameters has been a
challenging task in highly-configurable systems [10], [58].
LLMs can infer relations between entities from text at the
level of human experts [59], which allows LLMs to infer
dependencies between parameters in a given configuration file
based on their names and descriptions. Figure 1 (Example 1)
presents a case where values of two dependent parameters
were changed (i.e., “buffer.size” and “bytes.per.checksum)”.
After understanding the value relationship dependency between
these two parameters, the model determines that the change
in “bytes.per.checksum” has violated the enforced dependency,
and provides the correct reason for the misconfiguration.
Detecting violation with domain knowledge. A state-of-the-
art LLM is trained on a massive amount of textual data and
possesses basic knowledge across a wide range of professional
domains. An LLM thus could be capable of understanding the
definition of a configuration parameter and reasoning with its
semantics. When the LLM encounters a configuration parameter
such as IP address, permissions, and masks, it invokes the
domain knowledge specific to the properties of those parameters.
Figure 1 (Example 2) presents a case where an HTTP address
has been misconfigured to a semantically invalid value. The
model detects the misconfiguration, reasons that its value is
out of range, and further suggests a potential fix.
Missed misconfiguration and false alarm. LLMs as config-
uration validators are not without errors. Examples 3 and 4 in
Figure 1 show two cases where the LLM make mistakes.

In Example 3, the configuration file has provided a descrip-
tion of the changed parameter “hostname.verifier” and explicitly
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<name>io.file.buffer.size</name>
<value>4096</value>
<description>The size of buffer for use   
in sequence files during read and  
write operations.</description>

<name>io.bytes.per.checksum</name>
<value>4097</value>
<description>The number of bytes per 
checksum. Must not be larger than 
io.file.buffer.size.</description> ...

Q: Any mistakes in the above configuration file?
The value of io.bytes.per.checksum should be 
less than or equal to io.file.buffer.size.

C
on

fig
.

A:

<name>dfs.journalnode.httpaddress
</name>
<value>0.0.0.0:80800</value>
<description>
The address and port the
JournalNode HTTP server listens
on.

</description> 
...

The port number is too big. The port number 
should be less than 65535.

Example 1: LLM catches a dependency violation
<name>hadoop.ssl.hostname.verifier
</name>
<value>STRICT_I8</value>
<description>
The hostname verifier to provide
for HttpsURLConnections. Valid
values are DEFAULT,STRICT,
STRICT_I6, DEFAULT_AND_LOCALHOST
and ALLOW_ALL

</description> 
...

<name>io.mapfile.bloom.error.rate</name>
<value>0.01</value>
<description>
The rate of false positives in
BloomFilter-s used in BloomMapFile.
As this value decreases, the size
of BloomFilter-s increases
exponentially. This value is the
probability of encountering false
positives (default is 0.5%). 

</description> ...

Example 3: LLM misses an invalid option Example 4: LLM reports a false alarm

The value of the property hadoop.security.-
crypto.cipher.suite is wrong.

The value of the property io.mapfile.bloom.-
error.rate is 0.01, which is too low.

Example 2: LLM catches an invalid port value

Any mistakes in the above configuration file? Any mistakes in the above configuration file? Any mistakes in the above configuration file?

Fig. 1: Examples 1 and 2 show the LLM correctly catches and reasons the misconfigurations. Examples 3 and 4 show the LLM
misses the misconfiguration or reports a valid configuration as erroneous.

listed the valid value options of the parameter. However, the
model fails to realize that the parameter is misconfigured to
an invalid, non-existent option (STRICT I8). In Example 4,
the description suggests that the parameter “bloom.error.rate”
ranges from 0 to 100 (percentage), whereas the actual scale is
0 to 1 (fraction). This inconsistency supposedly confuses the
model making it mark 0.01 (a valid value) as invalid.

Both examples show that directly using off-the-shelf LLMs
as configuration validators would result in false negatives and
false positives. The incorrect validation results can be attributed
to hallucination [60]. A simple explanation is that LLMs are
exposed to potentially contradictory data during training, which
causes confusion to the model at the inference time.

III. CIRI: AN LLM-EMPOWERED CONFIGURATION
VALIDATION FRAMEWORK

We develop Ciri, an LLM-empowered configuration valida-
tion framework. Ciri takes a configuration file or a file diff
as the input, and outputs a list of detected misconfigurations
along with the reasons to explain the misconfigurations. If no
misconfiguration is detected, Ciri outputs an empty list. Ciri
supports different LLMs such as GPT, Claude, CodeLlama,
and DeepSeek [60], [61].1

Figure 2 gives an overview of Ciri. Ciri turns a configuration
validation request into a prompt to the LLMs (§III-A). The
prompt includes (1) the target configuration file or diff, (2) a few
examples (aka shots) to demonstrate the task of configuration
validation, (3) code snippets automatically extracted from the
code base, and (4) directive question and metadata. To generate
shots, Ciri uses its database that contains labeled configuration
data, including both valid configurations and misconfigurations.
Ciri sends the same query to the LLMs multiple times and
aggregates responses into the final validation result (§III-B).

Ciri applies to any software project, even if it has no labeled
configuration data of that project in its database, regardless their
file format or complexity. Ciri exhibits transferability (using
data from one project and applying it to others), the ability to
transfer configuration-related knowledge across projects when
using configurations from different projects as shots (Finding 4).
Ciri’s configuration validation effectiveness can also be further

1Adding a new LLM in Ciri takes a few lines to add the query APIs.
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Fig. 2: System overview of Ciri.

improved by generating quality shots (Finding 3) and code
snippets (Finding 5).

A. Prompt Engineering
1) Prompt structure: Ciri generates a prompt that includes

four elements: (1) the content of input configuration file or file
diff, (2) the shots as valid configurations or misconfigurations
with questions and ground truth responses for few-shot learn-
ing, (3) code snippets automatically extracted from available
codebase, and (4) a directive question for LLM to respond in
formatted output. Figure 3 shows an illustrative example of the
prompt generated by Ciri. It contains N shots, the content of
to-be-validated configuration file, and the code snippet enclosed
within →Usage↑ followed by the directive question.

Ciri phrases the prompting question as “Are there any
mistakes in the above configuration for [PROJECT] version
[VERSION]? Respond in a JSON format similar to the
following: ...”. The [PROJECT] and [VERSION] are required
inputs of Ciri because the validity of configuration can change
by project and project version [32], [33]. This prompt format
enforces the LLM to respond in a unified JSON format for
result aggregation (§III-B). However, responses from LLMs
sometimes may still deviate from the anticipated format [50],
[51]. In such cases, Ciri retries a new query to the LLM.

2) Few-shot learning: Ciri leverages the LLM’s ability to
learn from examples at inference time (aka few-shot learning)
to improve configuration validation effectiveness. To do so, Ciri
simply inserts shots at the beginning of each prompt. Each shot
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<name>yarn.resourcemanager.hostname</name>
<value>192.168.256.1</value>
<description>Address of applications manager interface in the RM.
</description> ...
Question: Any mistakes in the above configuration file for YARN 
version 3.3.0? Respond in a json format similar to the following:
{
"hasError": boolean, // true if there are errors, false if none
"errParameter": [], // List containing properties with errors
"reason": [], // List containing explanations for each error

}

Configuration File Shot #1

Answer:
{
"hasError": true,
"errParameter": ["yarn.resourcemanager.hostname"],
"reason": ["Each octet (segment of the IP address, separated by  

dots) must be in the range of 0 to 255."]
}

<name>yarn.webapp.address</name>
<value>nm.company.com:8042</value>
<description>NM Webapp address.</description>
<Usage>port=conf.get("yarn.webapp.address").split(":")[1];</Usage>
Question: ...

……

Configuration File Shot #N

To Be Validated Configuration File

Fig. 3: An example prompt generated by Ciri.

contains a configuration snippet, the prompting question, and its
corresponding ground truth. Figure 3 shows an example, where
there are N shots. “Configuration File Shot #1” is the first shot,
in which the parameter “yarn.resourcemanager.hostname” is
misconfigured. This shot also contains the prompting question
(orange box) and the ground truth (blue box).

3) Shot generation: Ciri maintains a database of labeled
valid configurations and misconfigurations for generating
valid configuration shots (referred to as ValidConfig) and
misconfiguration shots (referred to as Misconfig). The database
can be easily customized or extended, e.g., new configuration
data can be added for projects that do not have built-in shot files.
A ValidConfig shot specifies a set of configuration parameters
and their valid values. A valid value of a parameter can be
its default value, or other valid values used in practice. A
Misconfig shot specifies a set of parameters and their values,
where only one of the parameter values is invalid.

For a given configuration of a specific project, Ciri by default
generates shots using configuration data of the same project.
If Ciri’s database does not contain configuration data for the
target project, Ciri will use data from other projects to generate
shots. As shown in Finding 4, LLMs possess transferrable
knowledge in configuration across different projects.

Ciri supports multiple methods for selecting data to generate
shots, including randomized selection, category-based selection,
and similarity-based selection (selecting data from configuration
with the highest cosine similarity). We did not observe major
differences when using different selection methods. So, Ciri
uses randomized selection by default.

4) Augmenting with code: Recent work shows that retrieval-
augmented generation (RAG) can enhance LLMs by incor-
porating additional information [62], [63]. In the context of
configuration, each configuration parameter has corresponding

program context, such as data type, semantics, and usage.
In Figure 3, the code snippet enclosed within →Usage↑ is
automatically extracted from the source code, which uncovers
semantics that the parameter value is expected to include a “:”
symbol, with the split segment representing a port.

Ciri uses a simple but effective code retrieval strategy: To
retrieve the most effective code snippet, Ciri employs the
following strategy: (1) searching codebase with parameter
names and retrieving relevant snippets; (2) prioritizing code
over comments and documents; (3) selecting the longest snippet
if multiple options are available, as longer snippets tend to
be more comprehensive with details, and (4) deduplicating
retrieved snippets. The retrieved code snippet is cached for
efficiency. The retrieval performs text search and analysis on
local source-code files, which typically takes less than a few
seconds. The code retrieval strategy is effective in improving
the effectiveness of configuration validation (Finding 5).

5) Addressing token limits: LLMs limit input size per query
by the number of input tokens. For example, the token limits for
GPT-3.5-Turbo are 16,385. To navigate these constraints, Ciri
compresses the prompt if its size exceeds the limit. Ciri first
tries to put the target configuration and the directive question
in the prompt, then maximizes three Misconfig shots with one
ValidConfig shot (Finding 3) to fit into the remaining space. If
the configuration cannot fit into the token limit, Ciri transforms
it into a more compact format, e.g., transforming an XML file
into INI format. If the compressed input still cannot fit, Ciri
aborts and returns errors. In practice, configuration files and
diffs are small [1], [31] and can easily fit existing limits. For
example, prior study inspects configuration files collected from
Docker, where each file contains 1 to 18 parameters, with eight
on average [64]. For very large configurations, Ciri can split
them into multiple snippets and validate them separately.

B. Result Generation
The JSON response from LLMs contains three primary

fields: (1) “hasError”: a boolean value indicating whether
misconfigurations are detected, (2) “errParameter”: a list
of misconfigured parameters, and (3) “reason”: a list of
explanations of the detected misconfiguration, corresponding to
“errParameter”. The LLM’s ability of explaining the reasoning
is crucial to its usability [65], [66] and is a key advantage of
LLM-empowered detection over traditional approaches.

1) Validation against hallucination: We employ a few rules
to address the hallucination of LLMs. For example, if hasError
is false, both errParameter and reason must be empty. Similarly,
if hasError returns true, errParameter and reason must be non-
empty with the same size. The answer to “errParameter” must
not contain repeated values. If a response fails these rules, Ciri
retries until the LLM returns a valid response.

2) Voting against inconsistency: LLMs can produce incon-
sistent outputs in conversation [67], explanation [68], and
knowledge extraction [69]. To mitigate inconsistency, Ciri uses
a multi-query strategy—querying the LLM multiple times using
the same prompt and aggregating responses towards a result
that is both representative of the model’s understanding and
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more consistent than a single query. Ciri uses a frequency-based
voting strategy: the output that recurs most often among the
responses is selected as the final output [54]. In our evaluation,
5% of responses were rejected by the valdiation.

Note that the “reason” field is not considered during voting
due to the diverse nature of the response. After voting, Ciri
collects reasons from all responses associated with the selected
errParameter. The reason field is important as it provides users
with insights into the misconfiguration, which is different from
the traditional ML approaches that only provide a binary answer
with a confidence score. Ciri clusters the reasons based on
TF-IDF similarity [70], and picks a reason from the dominant
cluster. We find that this mechanism is robust to hallucination—
hallucinated reasons were often filtered out as they tended to
be very different from each other.

C. Ciri Configuration
Ciri is customizable, with a key principle of separating

policy and mechanism. Users can customize Ciri via its
own configurations. Table I shows several important Ciri
configurations and default values. The default values are chosen
by pilot studies using a subset of our dataset (§IV).

TABLE I: Configuration of Ciri and its default values.

Parameter Description Default Value

Model Backend LLM. Also allows users to add other LLMs. GPT-4
Temperature Tradeoff between creativity and determinism. 0.2
# Shots The number of shots included in a prompt. Dynamic
# Queries The number of queries with the same prompt. 3

IV. BENCHMARKS AND METRICS

Our study evaluates ten mature and widely deployed open-
source projects: Alluxio, Django, Etcd, HBase, Hadoop Com-
mon, HDFS, PostgreSQL, Redis, YARN, ZooKeeper, which
are implemented in a variety of programming languages (Java,
Python, Go, and C). They also use different configuration
formats (XML and INI) with a large number of configuration
parameters. Table II lists the version (SHA) and the number
of parameters at that version.

We evaluate Ciri on the aforementioned projects with eight
LLMs: GPT-4-Turbo, GPT-3.5-Turbo, Claude-3-Opus, Claude-
3-Sonnet, CodeLlama-7B/13B/34B, and DeepSeek-6.7B, which
differ in model sizes and capabilities. All of these models have
also been trained with a large amount of code data, where prior
work has demonstrated their promising capability in handling
a number of software engineering tasks.

A. Configuration Dataset
Our study uses two types of datasets: real-world misconfig-

uration datasets and synthesized misconfiguration datasets.
1) Real-world misconfiguration: To our knowledge, the

Ctest dataset [64] is the only public dataset of real-world
misconfigurations; it is used by prior work [21], [34], [71],
[72]. The dataset contains 64 real-world configuration-induced
failures of five open-source projects, among which 51 are
misconfigurations, and 13 are bugs. We discuss the results of
Ciri on real-world misconfigurations in Finding 2.

TABLE II: Evaluated projects and the configuration datasets
(ValidConfig and Misconfig) for shot pool and evaluation.

Project Version # Params ValidConfig Misconfig
(SHA) # Shot # Eval # Shot # Eval

Alluxio 76569bc 494 13 54 13 54
Django 67d0c46 140 6 18 6 18
Etcd 946a5a6 41 8 32 8 32
HBase 0fc18a9 221 12 50 12 50
HCommon aa96f18 395 16 64 16 64
HDFS aa96f18 566 16 64 16 64
PostgreSQL 29be998 315 8 31 8 31
Redis d375595 94 12 44 12 44
YARN aa96f18 525 10 40 10 40
ZooKeeper e3704b3 32 8 32 8 32

2) Synthesized misconfiguration: Since real-world configu-
ration dataset (§IV-A1) is too small, to systematically evaluate
configuration validation effectiveness, we create new synthetic
datasets for each evaluated project. First, we collect default
configuration values from the default configuration file of
each project, and real-world configuration files from the Ctest
dataset (collected from Docker images [64], [73]) for those
projects included in Ctest. We then generate misconfigurations
of different types. The generation rules are from prior studies on
misconfigurations [24], [26]–[28], which violates the constraints
of configuration parameters (Table III). Notably, prior studies
show that the generation rules can cover 96.5% of 1,582
parameters across four projects [26].

For each project, we build two distinct configuration sets.
First, we build a configuration dataset with no misconfiguration
(denoted as ValidConfig) to measure true negatives and false
positives (Table IV). We also build a configuration dataset
(denoted as Misconfig) in which each configuration file has one
misconfiguration, to measure true positives and false negatives
(Table IV). Note that a misconfiguration can be a dependency
violation between multiple parameter values. Table II shows the
size for ValidConfig and Misconfig datasets for each project.

To create the Misconfig data for each project, we first check
if its configuration parameters fit any subcategory in Table III,
and, if so, we apply rules from all matched subcategories to
generate misconfigurations for that parameter. For example,
an IP-address parameter fits both “Syntax: IP Address” and
“Range: IP Address”. We do so for all parameters in the
project. Then, we randomly sample at most five parameters in
each subcategory that has matched parameters, and generate
invalid value(s) per sampled parameter. For each subcategory,
we further randomly select one parameter from the five
sampled ones. We use the selected parameter to create a faulty
configuration as a Misconfig shot (§III) for that subcategory
and add it to the project’s shot pool. For the other four
parameters, we use them to create four faulty configurations
for that subcategory, and use them for evaluation. For Django,
certain subcategories have fewer than five matched parameters,
resulting in the ratio of #Eval to #Shot less than 4:1. We
separate the evaluation set and shot pool to follow the practice
that the training set does not overlap with the testing set [59].
We create the ValidConfig dataset for each project using the
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TABLE III: Misconfiguration generation (we use generation rules from prior work [21], [26]–[28], which reflects real-world
misconfiguraions). “Subcategory” lists rules to generate different misconfiguraions for the same configuration parameter.

Category Subcategory Specification Generation Rules

Syntax

Value set = {Integer, Float, Long...} Generate a value that does not belong to the value setData type
Numbers with units Generate an invalid unit (e.g., “nounit”)

Path ˆ(\/[ˆ\/ ]*)+\/?$ Generate a value that violates the pattern (e.g., /hello//world)
URL [a-z]+://.* Generate a value that violates the pattern (e.g., file///)
IP address [\d]{1,3}(.[\d]{1,3}){3} Generate a value that violates the pattern (e.g., 127.x0.0.1)
Port Data type, value set = {Octet} Generate a value that does not belong to the value set
Permission Data type, value set = {Octet} Generate a value that does not belong to the value set

Range

Basic numeric Valid Range constrainted by data type Generate values outside the valid range (e.g., Integer.MAX VALUE+1)
Bool Options, value set = {true, false} Generate a value that does not belong to the value set
Enum Options, value set = {“enum1”, “enum2”, ...} Generate a value that doesn’t belong to set
IP address Range for each octet = [0, 255] Generate a value outside the valid range (e.g., 256.123.45.6)
Port Range = [0, 65535] Generate a value outside the valid range
Permission Range = [000, 777] Generate a value outside the valid range

Dependency Control (P1, V,↭) ↑↓ P2, ↭ ↔ {>,↗,=, ↘=, <,≃} Generate invalid control condition (P1, V,¬↭)
Value Relationship (P1, P2,↭), ↭ ↔ {>,↗,=, ↘=, <,≃} Generate invalid value relationship (P1, P2,¬↭)

Version Parameter change (V1, P set1) ↑↓ (V2, P set2), Pset1 ↘= Pset2 Generate a removed parameter in V2 or use an added parameter in V1

aforementioned methodology for the Misconfig dataset, except
that we generate valid values.

B. Metrics
We evaluate Ciri’s effectiveness at both configuration file

and parameter levels: (1) at the file level, we check if Ciri can
determine if a configuration file contains misconfigurations; (2)
at the parameter level, we check if Ciri can determine if each
parameter in the configuration file is valid or not. Table IV
describes our confusion matrix. We compute the precision
(TP/(TP+FP)), recall (TP/(TP+FN)), and F1-score at both file
and parameter levels. If not specified, we default to macro
averaging since each project is regarded equally. We prioritize
parameter-level effectiveness for fine-grained measurements
and discuss parameter-level metrics by default in the evaluation.

TABLE IV: Definitions for confusion matrix.
Level Metric Definition

File

TP A misconfigured file correctly identified
FP A correct file wrongly flagged as misconfigured
TN A correct file rightly identified as valid
FN A misconfigured file overlooked or deemed correct

Param.

TP A misconfigured parameter correctly identified
FP A correct parameter wrongly flagged as misconfigured
TN A correct parameter rightly identified as valid
FN A misconfigured parameter overlooked or deemed correct

V. EVALUATION AND FINDINGS

We present empirical evaluation results on the effectiveness
of LLMs as configuration validators with Ciri (§V-A). We ana-
lyze how validation effectiveness changes with regard to design
choices of Ciri (§V-B). We also present our understanding of
when Ciri produces wrongful results (§V-C) and biases (§V-D).

A. Effectiveness of Configuration Validation

Finding 1. Ciri shows effectiveness of using state-of-the-
art LLMs as configuration validators. It achieves file- and
parameter-level F1-scores up to 0.79 and 0.65, respectively.

Ciri exhibits remarkable capability in configuration validation.
Table V shows the F1-score, precision, and recall for each
project using LLMs with three Misconfig and one ValidConfig
shots (Finding 3). The results show that Ciri not only can
effectively identify configuration files with misconfiguration
(with an average F1-score of 0.72 across 8 LLMs), but also
pinpoint misconfigured parameters with explanations (with
an average F1-score of 0.56 across 8 LLMs). Certainly, the
parameter-level F1-scores are about 15% lower than file-
level F1-scores, i.e., pinpointing fine-grained misconfigured
parameters is a more challenging task for LLMs compared to
classifying the entire file as a whole.

The average F1-score of 0.56 at the parameter level may not
seem high. The reason is that certain types of misconfigurations
(e.g., dependency and version violations) are hard to be
detected by Ciri (see Finding 7). On the other hand, Ciri
effectively detects misconfigurations of Syntax and Range
violations, with average an F1-score of 0.83 and 0.79 (Table IX).
This effectiveness is noteworthy given that prior research has
identified Syntax and Range violations as common types of
misconfigurations in the field [9]. Therefore, we believe that
Ciri is already useful in practice.

Finding 2. Ciri detects 45 out of 51 real-world misconfigura-
tions, outperforming recent configuration validation techniques,
including learning-based [34] and configuration testing [21].

We conduct experiments to evaluate how Ciri compares with
existing validation techniques on a real-world dataset. For this
evaluation, we choose the top five LLMs ranked by F1-score
at the parameter-level based on the results from Table V. The
real-world dataset [64] contains 51 misconfigurations in total
(§IV), among which Ciri can detect 33-45 misconfigurations,
as shown in Table VI. Ciri successfully detected 45 using
Claude-3-Opus. The six undetected misconfigurations include
three due to parameter dependency violations (discussed further
in §V-C), and the other three are environment-related issues
that are beyond Ciri’s current capability. Notably, Ciri seldom
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TABLE V: F1-score, precision, and recall of Ciri evaluated on ten projects with eight LLMs as configuration validators.

Models
F1-score Precision Recall

File-Level (F.L.) Parameter-Level (P.L.) F.L. P.L. F.L. P.L.
AL. DJ. ET. HB. HC. HD. PO. RD. YA. ZK. Avg AL. DJ. ET. HB. HC. HD. PO. RD. YA. ZK. Avg Avg Avg Avg Avg

GPT-4-Turbo 0.69 0.86 0.67 0.73 0.75 0.70 0.72 0.75 0.74 0.70 0.73 0.52 0.82 0.59 0.49 0.51 0.53 0.43 0.57 0.62 0.53 0.56 0.62 0.44 0.89 0.81
GPT-3.5-Turbo 0.68 0.71 0.73 0.77 0.78 0.68 0.65 0.71 0.72 0.74 0.72 0.48 0.55 0.60 0.55 0.58 0.55 0.36 0.54 0.61 0.66 0.55 0.62 0.43 0.89 0.77
Claude-3-Opus 0.71 0.81 0.70 0.70 0.79 0.74 0.75 0.82 0.77 0.78 0.76 0.51 0.62 0.53 0.54 0.65 0.60 0.53 0.62 0.60 0.60 0.58 0.65 0.45 0.91 0.83
Claude-3-Sonnet 0.74 0.77 0.79 0.80 0.81 0.76 0.82 0.84 0.79 0.78 0.79 0.53 0.65 0.69 0.73 0.69 0.73 0.53 0.64 0.71 0.59 0.65 0.75 0.57 0.85 0.79
CodeLlama-34B 0.69 0.87 0.80 0.64 0.70 0.67 0.79 0.78 0.66 0.83 0.74 0.61 0.85 0.76 0.35 0.45 0.35 0.59 0.65 0.46 0.79 0.59 0.65 0.51 0.89 0.70
CodeLlama-13B 0.71 0.67 0.67 0.71 0.66 0.70 0.71 0.76 0.69 0.77 0.70 0.54 0.59 0.61 0.48 0.37 0.37 0.50 0.69 0.51 0.73 0.54 0.61 0.45 0.85 0.68
CodeLlama-7B 0.67 0.80 0.74 0.67 0.67 0.67 0.63 0.73 0.67 0.76 0.70 0.53 0.67 0.66 0.27 0.28 0.23 0.51 0.68 0.43 0.72 0.50 0.56 0.40 0.96 0.67
DeepSeek-6.7B 0.72 0.72 0.81 0.52 0.47 0.46 0.70 0.67 0.59 0.84 0.65 0.58 0.56 0.75 0.48 0.40 0.37 0.44 0.44 0.55 0.73 0.53 0.76 0.60 0.66 0.55

TABLE VI: A comparison of Ciri, ConfMiner, and Ctest in
detecting real-world misconfigurations. N.R.: “not reported.”

Technique # Correct # Incorrect # Missed RuntimeDetection Detection

Ciri (Claude-3-Opus) 45 (88.2%) 1 5 20-60 sec
Ciri (GPT-4-Turbo) 41 (80.4%) 2 8 15-40 sec
Ciri (CodeLlama-34B) 39 (76.5%) 1 11 30-70 sec
Ciri (GPT-3-Turbo) 37 (72.5%) 3 11 10-25 sec
Ciri (Claude-3-Sonnet) 33 (67.7%) 1 17 10-30 sec
ConfMiner 27 (52.3%) N.R. N.R. N.R.
Ctest 41 (80.4%) N.R. N.R. 20-230 min

reports incorrect detection. Note that the real-world dataset only
contains misconfigurations without valid configuration, prevent-
ing the calculation of F1-score as defined in methodology due
to the absence of negative cases.

We compare Ciri’s results with a recent learning-based
validation technique, ConfMiner [34], which was evaluated
on the same dataset. ConfMiner utilizes the file content
and commit history to identify patterns in configuration to
detect misconfigurations. ConfMiner can detect 27 out of 51
misconfigurations, which is 40% less than Ciri. Unlike LLMs
that are trained on extensive text data and can comprehend
the context of configurations, ConfMiner relies on regular
expressions to identify patterns. This approach limits its ability
in complex scenarios, such as identifying valid values for
enumeration parameters and understanding the relationships
between different parameters.

We also compare Ciri with a recent configuration testing
technique, namely Ctest [21], [71], [72]. Ctest detected 41 of
the real-world misconfigurations without rewriting test code;
Ciri outperforms Ctest by 8.9%. The reasons are twofold. First,
testing relies on adequacy of the test cases. We find that existing
test suites do not always have a high coverage of configuration
parameters. On the other hand, LLMs can validate any parame-
ter. Second, LLMs detected “silent misconfigurations” [9] that
are not manifested via crashes or captured by assertions (e.g.,
several injected misconfigurations silently fell back to default
values and passed the test; LLMs detected them likely because
they violated documented specifications).

Certainly, Ctest can detect a broader range of misconfigura-
tions such as the environment-related issues that Ciri cannot.
We do not intend to replace configuration testing with LLMs.
Instead, our work shows that LLMs can provide much quicker
feedback for common types of misconfigurations, so tools
like Ciri can be used in an early phase (e.g., configuration

TABLE VII: Effectiveness of LLMs without using shots.

Models F1-score Precision Recall
F.L. P.L. F.L. P.L. F.L. P.L.

GPT-4-Turbo 0.70 (0.03⇐) 0.34 (0.22⇐) 0.57 0.23 0.93 0.82
GPT-3.5-Turbo 0.67 (0.05⇐) 0.20 (0.35⇐) 0.50 0.12 0.99 0.77
Claude-3-Opus 0.69 (0.07⇐) 0.37 (0.21⇐) 0.64 0.28 0.82 0.69
Claude-3-Sonnet 0.67 (0.12⇐) 0.28 (0.37⇐) 0.55 0.20 0.89 0.66
CodeLlama-34B 0.66 (0.08⇐) 0.12 (0.47⇐) 0.50 0.07 0.96 0.52
CodeLlama-13B 0.59 (0.11⇐) 0.12 (0.42⇐) 0.53 0.07 0.76 0.52
CodeLlama-7B 0.65 (0.05⇐) 0.11 (0.39⇐) 0.51 0.08 0.91 0.23
DeepSeek-6.7B 0.11 (0.54⇐) 0.06 (0.47⇐) 0.99 0.50 0.06 0.04

authoring) before running expensive configuration testing. As
shown in Table VI, for a configuration file in the real-world
dataset, Ctest takes 20 to 230 minutes to finish [21], while Ciri
only takes 10 to 70 seconds.

In summary, our results show that LLMs like GPT, Claude-3,
and CodeLlama-34B can effectively validate configurations and
detect misconfigurations with a sensibly designed framework
like Ciri. Ciri can provide prompt feedback, complementing
other techniques like configuration testing.

B. Impacts of Design Choices

Ciri plays a critical role in LLMs’ effectiveness of configu-
ration validation. We explore its design choices and impacts.

Finding 3. Using configuration data as shots can effectively
improve LLMs’ effectiveness of configuration validation. Shots
including both valid configuration and misconfiguration achieve
the highest effectiveness.

Using validation examples as shots can effectively improve the
effectiveness of LLMs. Table VII shows the results of LLMs
when the validation query does not include shots. In particular,
comparing Table VII to Table V, as indicated by the numbered
arrows in Table VII, the average F1-score of the LLMs has
decreased by 0.03–0.54 at the file level, and decreased by
0.21–0.47 at the parameter level.

We also study Ciri’s effectiveness with different shot com-
binations. We evaluate six N -shot learning settings, where
N ranges from 0 to 5. For example, to evaluate Ciri with a
two-shot setting, three experiments will be performed: (1) two
ValidConfig shots; (2) one ValidConfig shot plus one Misconfig
shot; (3) two Misconfig shots. In total, we experiment with
21 shot combinations. Due to cost, we only run experiments
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Fig. 4: F1-scores under different shot combinations.

on GPT-3.5-Turbo to HCommon. We find that only using
ValidConfig shots leads to a decrease in precision, while only
using Misconfig shots reduces recall. Clearly, text distribution in
the query affects LLMs [74]. LLMs can be biased: if the shots
are all misconfigurations, LLMs will be overly sensitive to the
specific patterns in the shots, known as overfitting, which causes
LLMs miss other types of misconfigurations; if the shots are
all ValidConfig, LLMs face challenges in accurately identifying
incorrect parameters within the file, leading to false alarms. As
shown in Figure 4, using both Misconfig and ValidConfig in
few-shot learning mitigates the biases and achieves the highest
effectiveness, and including three Misconfig shots and one
ValidConfig shot in the prompt achieves the highest F1-score
at both the file and parameter levels.

Finding 4. Using configuration data from the same project as
shots often leads to high validation F1 score. However, even
without access to configuration data from the target project,
using configuration data from a different project can lead to a
improved validation score than zero-shot.

In situations where configuration data is unavailable (e.g.,
due to confidentiality), we evaluate whether using configuration
data from other systems as shots can improve configuration
validation effectiveness on the target system. Table VIII shows
the results of using data from other projects as shots for
configuration validation on HCommon. By comparing 4-shot
HCommon with other columns in Table VIII, we see that using
shots from other projects is not as effective as using shots from
the target system. However, the average F1-score is still higher
than zero-shot, indicating that using shots from other projects
can improve the effectiveness over zero-shot. Our observations
highlight that Ciri with LLMs can transfer configuration-related
knowledge across different projects for effective configuration
validation compared to traditional approaches.

Finding 5. Ciri’s code augmentation approach can help LLMs
to better understand the context of the configuration and
improve the validation effectiveness.

We compare the results of GPT-3.5-Turbo with and without
code augmentation with four shots. The results show an
improvement in F1 scores by 0.03 at both the file and parameter
levels. Figure 5 exemplifies code snippets retrieved from the

TABLE VIII: F1-score on HCommon (HC.) using shots from
different systems, e.g., HB. refers to using HBase shots. 4-S
and 0-S means using four shots and no shots respectively.

Models
File-Level (F.L.) Parameter-Level (P.L.)

HC. Dj. ET. HB. Avg HC. Dj. ET. HB. Avg4-S 0-S 4-S 0-S

GPT-3.5-Turbo 0.780.67 0.780.680.74 0.74 0.58 0.20 0.440.420.51 0.46
Claude-3-Sonnet 0.810.67 0.740.740.78 0.75 0.69 0.28 0.540.590.67 0.60

conf.setInt("tfile.fs.input.buffer.size", fsInputBufferSize);Ex1:

conf.setBoolean("fs.automatic.close", false);

port=conf.get("yarn.nodemanager.webapp.address").split(":")[1];

"kerberos".equals(conf.get("hbase.security.authentication"));

Ex2:

Ex3:

Ex4:

Fig. 5: Code snippets retrieved by Ciri to aid LLMs.

codebase by Ciri, which could improve LLMs’ comprehension
of the configuration context: (1) examples 1 and 2 delineate
the parameter types as Integer and Boolean, respectively. (2)
example 3 highlights that the parameter should include a “:”
symbol, with the latter segment representing a port. (3) example
4 shows that “kerberos” is one valid value for the parameter.

Finding 6. Code-specialized LLMs, e.g., CodeLlama, exhibit
much higher validation scores than generic LLMs, e.g., Llama-
2. Moreover, further scaling up the code-specialized LLMs
leads to a continuous increase in validation scores.

In Table V, we observe a notable trend within the CodeLlama
model family: the 13B model demonstrates an improvement
in F1-score at the parameter level, by 0.04 over the 7B
model; this trend continues with the 34B model, which
exhibits a further 0.05 enhancement in F1-score over the
13B model. The observed performance gains can be primarily
attributed to the increased capacity for learning and representing
complex semantics of configuration values as model size scales.
This involves deep comprehension beyond syntax and range
violations which are more common in practice [9].

We further evaluated the effectiveness of the Llama-2 model,
which is identical to CodeLlama in structure but lacks code-
specific training. The Llama-2-13B is not effective, with an
average F1-score of 0.05 at the parameter level. This result
underscores the role of code-specific training, which enhances
LLM’s comprehension of configuration in the context of code.

C. Limitations and Challenges

Finding 7. With Ciri, LLMs excel at detecting misconfigu-
rations of syntax and range violations with an average F1-
score of 0.8 across subcategories. However, LLMs are limited
in detecting misconfigurations of dependency and version
violations with an average F1-score of 0.3 across subcategories.

Table IX shows Ciri’s validation effectiveness per misconfigura-
tion type. The F1-score on detecting misconfigurations of syntax
and range violations is consistently above 0.5 across projects,
and often reaches 0.8. However, F1-score rarely exceeds 0.5 on
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TABLE IX: Parameter-level F1-score by misconfiguration types from Table III. N.A. means no evaluation samples.

Category Sub-category GPT-4-Turbo Claude-3-Opus CodeLlama-34B
AL. DJ. ET. HB. HC. HD. PO. RD. YA. ZK. Avg AL. DJ. ET. HB. HC. HD. PO. RD. YA. ZK. Avg AL. DJ. ET. HB. HC. HD. PO. RD. YA. ZK. Avg

Syntax

Data Type 0.84 1.00 1.00 0.67 0.94 0.89 0.70 0.78 0.89 0.80 0.85 0.67 0.80 1.00 0.80 0.94 1.00 0.80 0.74 1.00 0.80 0.85 0.93 1.00 1.00 0.25 0.67 0.80 1.00 1.00 0.50 1.00 0.82
Path 0.50 1.00 1.00 0.89 0.73 0.73 0.57 0.57 1.00 0.73 0.77 1.00 1.00 0.80 0.89 0.89 1.00 1.00 0.67 0.89 0.73 0.89 1.00 1.00 1.00 0.86 0.50 0.00 1.00 0.57 1.00 1.00 0.79
URL 0.67 0.80 1.00 N.A. 0.80 0.80 N.A. N.A. N.A. N.A. 0.81 1.00 0.67 0.73 N.A. 1.00 0.89 N.A. N.A. N.A. N.A. 0.86 1.00 1.00 0.75 N.A. 1.00 0.60 N.A. N.A. N.A. N.A. 0.87
IP Address 0.70 N.A. N.A. 0.73 0.94 0.89 N.A. 0.84 0.94 0.76 0.83 0.73 N.A. N.A. 0.84 0.94 0.84 N.A. 0.80 0.94 0.84 0.85 1.00 N.A. N.A. 0.82 0.75 0.75 N.A. 1.00 1.00 1.00 0.90
Port 0.74 N.A. N.A. 0.78 0.94 0.82 N.A. 0.94 N.A. 0.84 0.84 0.70 N.A. N.A. 0.82 0.82 0.67 N.A. 0.84 N.A. 0.94 0.80 0.94 N.A. N.A. 0.71 1.00 0.62 N.A. 0.75 N.A. 1.00 0.84
Permission 0.89 N.A. N.A. 0.80 0.78 1.00 N.A. N.A. N.A. N.A. 0.87 0.89 N.A. N.A. 0.80 0.82 1.00 N.A. N.A. N.A. N.A. 0.88 0.86 N.A. N.A. 0.50 0.50 0.40 N.A. N.A. N.A. N.A. 0.56

Range

Basic Numeric 0.73 1.00 0.75 0.73 0.60 0.67 1.00 0.89 1.00 0.80 0.82 0.67 0.80 0.89 0.46 0.50 0.67 1.00 0.67 0.89 0.80 0.73 0.75 1.00 0.89 0.36 0.00 0.50 0.67 0.75 0.50 1.00 0.64
Bool 1.00 0.75 1.00 0.80 1.00 1.00 N.A. 0.89 1.00 0.80 0.92 1.00 0.55 0.73 0.67 0.89 0.89 N.A. 0.73 1.00 0.80 0.80 1.00 0.86 1.00 0.00 0.67 0.00 N.A. 0.67 0.50 0.75 0.60
Enum 0.36 N.A. 0.86 0.73 0.67 0.89 0.89 0.75 0.80 N.A. 0.74 0.36 N.A. 0.89 1.00 0.86 0.75 0.89 0.89 0.80 N.A. 0.80 0.86 N.A. 1.00 0.75 0.57 0.60 0.75 1.00 0.75 N.A. 0.78
IP Address 0.70 N.A. N.A. 0.73 0.94 0.89 N.A. 0.84 0.94 0.76 0.83 0.73 N.A. N.A. 0.84 0.94 0.84 N.A. 0.80 0.94 0.84 0.85 1.00 N.A. N.A. 0.82 0.75 0.75 N.A. 1.00 1.00 1.00 0.90
Port 0.74 N.A. N.A. 0.78 0.94 0.82 N.A. 0.94 N.A. 0.84 0.84 0.70 N.A. N.A. 0.82 0.82 0.67 N.A. 0.84 N.A. 0.94 0.80 0.94 N.A. N.A. 0.71 1.00 0.62 N.A. 0.75 N.A. 1.00 0.84
Permission 0.89 N.A. N.A. 0.80 0.78 1.00 N.A. N.A. N.A. N.A. 0.87 0.89 N.A. N.A. 0.80 0.82 1.00 N.A. N.A. N.A. N.A. 0.88 0.86 N.A. N.A. 0.50 0.50 0.40 N.A. N.A. N.A. N.A. 0.56

Dependency Control 0.50 N.A. 0.00 0.00 0.00 0.25 0.00 0.00 0.00 N.A. 0.09 0.00 N.A. 0.29 0.00 0.00 0.00 0.00 0.00 0.00 N.A. 0.04 0.40 N.A. 0.67 0.29 0.00 0.33 0.00 0.40 0.00 N.A. 0.26
Value Relationship 1.00 N.A. N.A. 0.75 0.36 0.22 0.40 N.A. 0.50 N.A. 0.54 0.80 N.A. N.A. 0.67 0.29 0.25 0.40 N.A. 0.33 N.A. 0.46 0.00 N.A. N.A. 0.29 0.44 0.57 0.67 N.A. 0.67 N.A. 0.44

Version Parameter Change 0.00 N.A. 0.29 0.44 0.36 0.00 0.29 0.33 0.00 N.A. 0.21 0.00 N.A. 0.75 0.00 0.75 0.00 0.00 0.80 0.57 N.A. 0.36 0.00 N.A. 0.67 0.00 0.29 0.00 0.00 0.00 0.00 N.A. 0.12

<name>hbase.security.authentication</name>
<value>simple</value>
<description>Controls whether secure authentication is enabled 
for HBase. Possible values are ‘simple’ (no authentication), and 
‘kerberos’.</description>
...
<name>hbase.auth.key.update.interval</name>
<value>43200000</value>
<description>The update interval for authentication tokens in 
milliseconds. Used when HBase security is enabled.</description> 
...

Fig. 6: Misconfiguration that violates control dependency that
LLMs cannot detect. The update interval for authentication is
set but the secure authentication is disabled.

misconfigurations of dependency and version violations. Under
these two categories, LLMs achieve F1-scores of 0.44–0.54
for misconfigurations that violate value relationship, which is
higher than the other two subcategories (control and parameter
change); however, it is still much lower than others.

The difference can be attributed to the inherent nature
of different types of misconfigurations. Misconfigurations of
syntax and range violations are more common in practice [9],
from which LLMs learned extensive knowledge. In such a
case, domain-specific knowledge from LLMs is sufficient
to detect these misconfigurations. But, misconfiguration of
dependency and version violations is often project-specific,
as exemplified in Figure 6. They are tied to detailed history
and features of the project, and thus hard to be captured or
memorized by LLMs if the LLM is not fine-tuned on project-
specific data. This discrepancy between misconfiguration types
exposes existing LLM’s limitation. In summary, despite our
efforts to incorporate examples of configuration dependencies
in few-shot learning, and utilize code augmentation to provide
code snippets containing dependency information, dependency-
related misconfigurations still remain a challenge.

Finding 8. Among the detected misconfigurations, LLMs
correctly explained reasons for 93.9% of the misconfigurations;
meanwhile, 6.1% of the reasons are misleading.

When an LLM detects a misconfiguration, Ciri also asks the
LLM to explain the reason. The quality of the reasoning is
crucial to the usability of LLM-empowered configuration valida-

alluxio.underfs.gcs.default.mode=888

The property 'alluxio.underfs.gcs.default.mode' has 
the value '888' which is not a valid octal number.

C
on
fig
.

A1:

The property 'alluxio.underfs.gcs.default.mode' has 
the value '888' which exceeds the range of an Integer.A2:

Fig. 7: Correct and incorrect reasons returned by LLMs.

tion, as it aids debugging and fixing the misconfiguration [65],
[66]. To evaluate these explanations, we randomly select one
answer in which the misconfiguration is correctly detected per
→subcategory, project, LLM↑ tuple, and collect a total of 740
answers (resulting from 2,220 queries). Upon careful manual
review, we determined that 93.9% of the reasons given by the
LLMs are clear and explain the misconfigurations. 3.1% of
the answers contain a mix of correct and incorrect reasons
across queries. Ciri filters out incorrect reasons using the
voting mechanism (§III-B2) as correct reasons are dominating.
Figure 7 presents an example of mixed reasons, with the second
reason being an instance of hallucination.

In short, with frameworks like Ciri, LLMs can effectively
validate configurations for syntax or range violations; but are
less effective for the configurations that involve dependen-
cies between parameters and software versions, showing the
challenges for LLMs to reason about interactions between
parameters and between configuration and code [75]. To address
those misconfigurations, one can re-train or fine-tune LLMs
with data related to dependency and versions.

D. Biases

Finding 9. LLMs are biased to popular parameters: Ciri
is more effective in detecting misconfigurations of popular
parameters, but also reports more false alarms on them.

To measure the popularity of a configuration parameter, we
count the number of exact-match search results returned by
Google when searching the parameter name and call it G-hits.

We study the correlation between a parameter’s G-hits and
the effectiveness of LLMs in detecting the misconfigurations.
For each configuration file in the Misconfig dataset, we track the
frequency of LLMs detecting the parameter’s misconfigurations
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Fig. 8: The G-hits distribution of the correctly detected
misconfigurations (orange), and the G-hits distribution of the
missed misconfigurations (blue). The bars in box plots indicate
medians. CL refers to CodeLlama.

Fig. 9: Frequency of the identified parameter with ith highest
G-hits in a configuration file.

with the ith highest G-hits in each file, where i = 1...8. We
separate cases when the misconfigured parameter is detected
versus missed. As shown in Figure 8, the median G-hits of
misconfigured parameters being detected is higher than the
median G-hits of misconfigured parameters being missed.

We also study the frequency of false alarms across different
ranking positions of G-hits within the file. Specifically, for each
configuration file in ValidConfig dataset across all ten projects
we evaluated, we track the frequency of LLMs mistakenly
identifying the parameter with the ith highest G-hits in each
file, where i = 1...8. We group the results by the model family
as shown in Figure 9. The distributions reveal a clear skewness
towards parameters with higher G-hits, indicating that LLMs
are more prone to report false alarms on popular parameters.

The biases can be attributed to the training data of LLMs,
which are from public domains easily accessible by search
engines like Google. Topics or parameters that are popularly
discussed are more likely to be memorized by the LLMs,
due to more frequent presence in the training data. So,
for configuration validation, LLMs can be less effective for
parameters that are not commonly referenced online.

VI. THREATS TO VALIDITY

External threats. External threats come from evaluated
projects, datasets, and LLMs. To mitigate threats of evaluated
projects, we select ten mature, widely used projects of different
types. These systems are commonly used in prior studies [21],
[33], [58], [71], [72], [76], [77]. To account for bias in

the evaluated configuration data, we include many types of
configuration parameters and their generation rules based on
prior work [24], [26]–[28]. Our results cannot generalize to
misconfiguraions of different types, such as environment-related
misconfigurations (discussed in §VII). Moreover, we evaluate
Ciri with eight state-of-the-art LLMs to mitigate threats on
evaluated models. We expect the overall trend to be general,
but the precise numbers may vary with other LLMs, projects,
and configuration data in the field.
Internal threats. The internal threats lie in potential bugs
in the implementation of Ciri, and experimental scripts for
evaluation. We have rigorously reviewed our code and multiple
authors cross-validated the experiment results.
Construct threats. The threats to construct validity mainly
lie in metrics (§IV-B). To reduce such threats, we use the
popular F1-score, precision, and recall, and define our confusion
matrices at both configuration file and parameter levels.

VII. DISCUSSION AND FUTURE WORK

Detecting multiple misconfigurations in one file. In principle,
Ciri can find multiple misconfigurations as its design (such as
prompt and voting) is not specific to a single parameter. For
example, the prompt asks for a list of erroneous configuration
parameters instead of one parameter. Our evaluation focuses
on one misconfiguration, as it is reported that 59.2%–83.0%
of parameter misconfigurations can be attributed to a single
parameter [9]. We further conduct an experiment where we
inject multiple errors in the target configuration file, ranging
from two to four. The experiment is done on HCommon (the
project with the largest dataset) using Claude-3-Sonnet. The
results show an F1 score of 0.72 and 0.74 when the number of
misconfigurations per file is 2 and 4, respectively. Specifically,
Ciri detected nearly all misconfigurations within a file when
the misconfigurations were in the Syntax and Range categories.
Improving effectiveness of LLMs as validators. Despite
the promising results, using LLMs directly as configuration
validators like Ciri is a starting point to harness the ability
of LLMs for configuration validation. Specifically, there are
circumstances where LLMs show limitations and biases (§V-C,
§V-D). One intricate aspect of configuration validation is
understanding configuration dependencies. Integrating LLMs
with configuration dependency analysis [58] could be beneficial.

We plan to investigate advanced prompting techniques, such
as Chain-of-Thoughts (CoT) [48], [54], [78]. For configuration
validation, CoT prompting can potentially mimic the reasoning
process of a human expert. By eliciting LLMs to generate
intermediate reasoning steps toward the validation results, it
makes the validation more transparent and potentially more
accurate. We also plan to explore extending Ciri into a multi-
agent framework, where Ciri can interact with additional tools
such as Ctest [21] and Cdep [58] through agent frameworks
such as LangChain [79] and AutoGen [80].

Lastly, integrating user feedback loops can be valuable. With
user feedback on validation results, the iterative procedure can
refine LLMs over time, leading to more accurate responses.
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Detecting environment-related misconfigurations. While
our study primarily targets misconfigurations that are common
in the field, the validity of configuration files can vary
across deployment environments. For instance, a configuration
parameter can specify a file path, so the file’s existence,
permission, and content decide its validity. To address such
configurations, LLMs can be used to generate environment-
specific scripts to run in the target environment. For example,
given the configuration file as input, the LLM can generate
Python scripts as simple tests as follows.

try:
with open("/path/to/file", "r") as f:

data = json.loads(f.read())

print("Valid configuration")

except:
print("Invalid configuration")

Such LLM-generated scripts can help identify issues like
misconfigured paths, unreachable addresses, missing packages,
or invalid permissions. Notably, these scripts offer a lightweight
alternative to configuration tests [22], [71].
Detecting source-code related misconfigurations. Many
misconfigurations are rooted in the interactions between
configuration values and the code that consumes them [21], [72],
[81]. We have explored augmenting LLMs with code snippets
(Finding 5), which can reveal parameter types and semantics.
This approach can be further improved by integrating advanced
program analysis to present both configuration and relevant
source code to the LLM. Techniques like static or dynamic
program slicing [20], [25], [77], [82] can help identify the
relevant code. Such approach is specifically important for con-
figurations like feature flags [19], [75], [83], [84], where bugs
are often not located in changed configurations but manifested
through code paths enabled by the new configurations.
Detecting domain-specific misconfigurations. We mainly
explored LLM-empowered validation for common types of
software configurations (see §IV). Domain-specific configura-
tions such as access-control, security configuration [65], [85]–
[87], and network configuration [88]–[91] need more domain-
knowledge for reasoning and rely more on system/network
states and environments, and thus are more challenging to
validate. We believe that LLMs can be useful components if
sufficient inputs and guidance are provided.
Fine-tuning LLMs for configuration validation. We also plan
to explore fine-tuning to tackle system-specific configuration
problems, which is hard to address with common-sense knowl-
edge. Specifically, configuration related software evolution is
prevalent, which introduces new parameters and changes the
semantics and constraints of existing parameters [32], [33]. A
promising solution is to fine-tune LLMs on new code and data,
and make LLMs evolution-aware.

VIII. RELATED WORK

Prior studies developed frameworks for developers to imple-
ment validators [1], [14]–[16] and test cases [21], [22], as well
as techniques to extract configuration constraints [18]–[20],

[24]. However, manually writing validators and tests requires
extensive engineering efforts, and is hard to comprehensively
cover various properties of different configurations [24]–[28].
ML/NLP-based configuration validation techniques have been
investigated to reduce the cost. Traditional ML/NLP-based
approaches learn correctness rules from configuration data [34]–
[37], [39], [41], [43], [44] and documents [38], [40] and then
use the learned rules to conduct validation. However, these
techniques often face data challenges and rely on predefined
learning features and models, making them hard to generalize
to different projects and deployment scenarios. We explore
using LLMs for configuration validation, which can potentially
address the limitations of traditional ML/NLP-based techniques
towards automatic, effective configuration validation solutions.

In addition to proactive configuration validation, miscon-
figurations troubleshooting is a related area and has been
under active research [36], [77], [82], [92]–[99]. Traditional
approaches analyze failure symptoms, runtime executions and
system states to reason about root causes in configuration
or program code. Recent work on LLM-empowered root
cause analysis [100]–[103] shows promise in leveraging LLMs
to reason about failures based on symptoms and execution
traces. The high-level principle may apply to troubleshooting
misconfigurations as failure root causes. A recent work has
explored this direction [104].

IX. CONCLUDING REMARKS

As a first step to harvest LLMs for software configuration,
we develop Ciri as an open platform to experiment with
LLMs as configuration validators, and present the important
design choices. Through Ciri, we analyze LLM-empowered
configuration validators. Our analysis shows the potential of
using LLMs for configuration validation—Ciri demonstrates
the effectiveness of state-of-the-art LLMs as configuration
validators for common types of misconfigurations. Despite
the encouraging results, our study reveals the limitations of
directly using LLMs as configuration validators: they are
limited to a few types of misconfigurations they can validate,
and they are ineffective in detecting misconfigurations that
violate dependencies and version-related misconfigurations,
meanwhile inducing biases to popular parameters. We hope
that our work shed light on further research of using LLMs
for software configuration research.
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[19] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Where Do
Configuration Constraints Stem From? An Extraction Approach and an
Empirical Study,” TSE, 2015.

[20] J. Zhang, R. Piskac, E. Zhai, and T. Xu, “Static Detection of Silent
Misconfigurations with Deep Interaction Analysis,” in OOPSLA, 2021.

[21] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
Configuration Changes in Context to Prevent Production Failures,” in
OSDI, 2020.

[22] T. Xu and O. Legunsen, “Configuration Testing: Testing Configuration
Values as Code and with Code,” arXiv:1905.12195, 2019.

[23] S. Wang, X. Lian, Q. Li, D. Marinov, and T. Xu, “Ctest4J: A Practical
Configuration Testing Framework for Java,” in FSE (Demo), 2024.

[24] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do Not Blame Users for Misconfigurations,” in SOSP,
2013.

[25] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early Detection of Configuration Errors to Reduce Failure Damage,”
in OSDI, 2016.

[26] S. Li, W. Li, X. Liao, S. Peng, S. Zhou, Z. Jia, and T. Wang, “ConfVD:
System Reactions Analysis and Evaluation Through Misconfiguration
Injection,” IEEE Transactions on Reliability, vol. 67, no. 4, 2018.

[27] L. Keller, P. Upadhyaya, and G. Candea, “ConfErr: A Tool for Assessing
Resilience to Human Configuration Errors,” in DSN, 2008.

[28] W. Li, Z. Jia, S. Li, Y. Zhang, T. Wang, E. Xu, J. Wang, and
X. Liao, “Challenges and Opportunities: An In-Depth Empirical Study
on Configuration Error Injection Testing,” in ISSTA, 2021.

[29] T. Wang, H. He, X. Liu, S. Li, Z. Jia, Y. Jiang, Q. Liao, and W. Li,
“ConfTainter: Static Taint Analysis For Configuration Options,” in ASE,
2023.

[30] T. Wang, Z. Jia, S. Li, S. Zheng, Y. Yu, E. Xu, S. Peng, and X. Liao,
“Understanding and Detecting On-the-Fly Configuration Bugs,” in ICSE,
2023.

[31] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
You Have Given Me Too Many Knobs! Understanding and Dealing
with Over-Designed Configuration in System Software,” in ESEC/FSE,
2015.

[32] S. Zhang and M. D. Ernst, “Which Configuration Option Should I
Change?” in ICSE, 2014.

[33] Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, and T. Xu, “An
Evolutionary Study of Configuration Design and Implementation in
Cloud Systems,” in ICSE, 2021.

[34] R. Bhagwan, S. Mehta, A. Radhakrishna, and S. Garg, “Learning
Patterns in Configuration,” in ASE, 2021.

[35] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “EnCore: Exploiting System Environment and Correlation
Information for Misconfiguration Detection,” in ASPLOS, 2014.

[36] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
Misconfiguration Troubleshooting with PeerPressure,” in OSDI, 2004.

[37] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Minerals: Using
Data Mining to Detect Router Misconfigurations,” Carnegie Mellon
University, Tech. Rep. CMU-CyLab-06-008, 2006.

[38] C. Xiang, H. Huang, A. Yoo, Y. Zhou, and S. Pasupathy, “PracExtractor:
Extracting Configuration Good Practices from Manuals to Detect Server
Misconfigurations,” in ATC, 2020.

[39] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff, “Mining for
Misconfigured Machines in Grid Systems,” in KDD, 2006.

[40] R. Potharaju, J. Chan, L. Hu, C. Nita-Rotaru, M. Wang, L. Zhang, and
N. Jain, “ConfSeer: Leveraging Customer Support Knowledge Bases
for Automated Misconfiguration Detection,” in VLDB, 2015.

[41] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan,
and Z. Zhang, “STRIDER: A Black-box, State-based Approach to
Change and Configuration Management and Support,” in LISA, 2003.

[42] E. Kiciman and Y.-M. Wang, “Discovering Correctness Constraints for
Self-Management of System Configuration,” in ICAC, 2004.

[43] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic Automated
Language Learning for Configuration Files,” in CAV, 2016.

[44] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac,
“Synthesizing Configuration File Specifications with Association Rule
Learning,” in OOPSLA, 2017.

[45] Q. Huang, H. J. Wang, and N. Borisov, “Privacy-Preserving Friends
Troubleshooting Network,” in NDSS, 2005.

[46] “ChatGPT,” https://openai.com/blog/chatgpt, 2022.
[47] “Codex,” https://openai.com/blog/openai-codex, 2022.
[48] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,

Q. Le, and D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models,” arXiv:2201.11903, 2023.

[49] J. Huang and K. C.-C. Chang, “Towards Reasoning in Large Language
Models: A Survey,” in Findings of ACL, 2023.

[50] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung et al., “A Multitask, Multilingual, Multimodal
Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity,”
arXiv:2302.04023, 2023.

[51] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao,
Y. Zhang, Y. Chen et al., “Siren’s Song in the AI Ocean: A Survey on
Hallucination in Large Language Models,” arXiv:2309.01219, 2023.

[52] Anthropic, “Introducing 100K Context Windows,” https://www.
anthropic.com/index/100k-context-windows, 2023.

[53] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse,
S. Jain, V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe, T. Eloundou,
G. Krueger, K. Button, M. Knight, B. Chess, and J. Schulman, “We-
bGPT: Browser-Assisted Question-Answering With Human Feedback,”
arXiv:2112.09332, 2022.

[54] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowd-
hery, and D. Zhou, “Self-Consistency Improves Chain of Thought
Reasoning in Language Models,” arXiv:2203.11171, 2023.

[55] Y. Liu, Y. Yao, J.-F. Ton, X. Zhang, R. Guo, H. Cheng, Y. Klochkov,
M. F. Taufiq, and H. Li, “Trustworthy LLMs: a Survey and Guideline
for Evaluating Large Language Models’ Alignment,” arXiv:2308.05374,
2023.

[56] P. Manakul, A. Liusie, and M. J. F. Gales, “SelfCheckGPT: Zero-
Resource Black-Box Hallucination Detection for Generative Large
Language Models,” arXiv:2303.08896, 2023.

12

https://openai.com/blog/chatgpt
https://openai.com/blog/openai-codex
https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows


[57] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei,
P. Christiano, and G. Irving, “Fine-tuning language models from human
preferences,” arXiv:1909.08593, 2019.

[58] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu, “Understanding
and Discovering Software Configuration Dependencies in Cloud and
Datacenter Systems,” in ESEC/FSE, 2020.

[59] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
Models Are Few-Shot Learners,” arXiv:2005.14165, 2020.

[60] OpenAI, “GPT-4 Technical Report,” arXiv:2303.08774, 2023.
[61] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,

J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
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D. Kiela, “Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks,” arXiv:2005.11401, 2021.

[63] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang, “REALM:
Retrieval-Augmented Language Model Pre-Training,” arXiv:2002.08909,
2020.

[64] “Openctest,” https://github.com/xlab-uiuc/openctest, 2020.
[65] T. Xu, H. M. Naing, L. Lu, and Y. Zhou, “How Do System Admin-

istrators Resolve Access-Denied Issues in the Real World?” in CHI,
2017.

[66] T. Xu, V. Pandey, and S. Klemmer, “An HCI View of Configuration
Problems,” arXiv:1601.01747, 2016.

[67] D. Adiwardana, M.-T. Luong, D. R. So, J. Hall, N. Fiedel, R. Thoppilan,
Z. Yang, A. Kulshreshtha, G. Nemade, Y. Lu et al., “Towards a Human-
Like Open-Domain Chatbot,” arXiv:2001.09977, 2020.

[68] O.-M. Camburu, B. Shillingford, P. Minervini, T. Lukasiewicz, and
P. Blunsom, “Make Up Your Mind! Adversarial Generation of Incon-
sistent Natural Language Explanations,” arXiv:1910.03065, 2019.

[69] Y. Elazar, N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schütze,
and Y. Goldberg, “Measuring and Improving Consistency in Pretrained
Language Models,” arXiv:2102.01017, 2021.

[70] Wikipedia, “Tf–idf,” https://en.wikipedia.org/wiki/Tf%E2%80%93idf,
2024.

[71] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-Case Prioritization
for Configuration Testing,” in ISSTA, 2021.

[72] S. Wang, X. Lian, D. Marinov, and T. Xu, “Test Selection for Unified
Regression Testing,” in ICSE, 2023.

[73] T. Xu and D. Marinov, “Mining Container Image Repositories for
Software Configurations and Beyond,” in ICSE-NIER, 2018.

[74] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and
L. Zettlemoyer, “Rethinking the Role of Demonstrations: What Makes
In-Context Learning Work?” arXiv:2202.12837, 2022.

[75] J. Meinicke, C.-P. Wong, C. Kästner, T. Thüm, and G. Saake, “On
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