
Rethinking Tiered Storage: Talk to File Systems,
Not Device Drivers

Jiyuan Zhang
University of Illinois

Urbana-Champaign, IL, USA
jiyuanz3@illinois.edu

Jongyul Kim
University of Illinois

Urbana-Champaign, IL, USA
jyk@illinois.edu

Chloe Alverti
University of Illinois

Urbana-Champaign, IL, USA
xalverti@illinois.edu

Peizhe Liu
University of Illinois

Urbana-Champaign, IL, USA
peizhel2@illinois.edu

Weiwei Jia
University of Rhode Island

Kingston, RI, USA
weiwei.jia@uri.edu

Tianyin Xu
University of Illinois

Urbana-Champaign, IL, USA
tyxu@illinois.edu

Abstract
Di!erent storage technologies motivate the development of
specialized "le systems tailored to speci"c device types. A
tiered "le system aggregates such device types into a single
"le system. We argue that the current practice of developing
tiered "le systems tends to lag behind that of device-speci"c
"le systems because, inherently, developers are burdened
with addressing multiple device types simultaneously, rather
than specializing. We propose to solve this problem using
Mux, a new tiered "le system that accesses di!erent device
types indirectly through device-speci"c "le systems, rather
than directly through device drivers. Despite introducing an
additional indirection layer, we show that Mux signi"cantly
outperforms Strata, a research tiered "le system, because it
utilizes specialized production-ready "le systems. Compared
with direct access to per-device "le systems (with no tiering),
Mux adds a worst-case read latency overhead of 6.6% to
87.3%, and a write throughout overhead of 1.6% to 3.5% across
devices. We contend that Mux’s separation of tiering and
specialization concerns enables progressive evolution and
#exible integration of heterogeneous storage devices.

CCS Concepts
• Software and its engineering→ File systems manage-
ment; • Information systems → Hierarchical storage
management.

Keywords
Tiered Storage, File System, Operating System

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HOTOS ’25, Ban!, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/2025/05
https://doi.org/10.1145/3713082.3730383

ACM Reference Format:
Jiyuan Zhang, Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia,
and Tianyin Xu. 2025. Rethinking Tiered Storage: Talk to File Sys-
tems, Not Device Drivers. InWorkshop on Hot Topics in Operating
Systems (HOTOS ’25), May 14–16, 2025, Ban!, AB, Canada. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3713082.3730
383

1 Introduction
The landscape of modern storage is undertaking a disrup-
tive change. The emergence of new storage technologies,
such as persistent memory [13], CXL SSD [4, 5, 29], and oth-
ers [8, 10, 35], are producing faster, larger, and cheaper stor-
age devices. These devices o!er new bandwidth, latency,
and capacity features, such as near-memory speed, byte ad-
dressability, and cache coherence. Accordingly, many new,
specialized "le systems are being actively developed to fully
utilize these new storage tiers [11–14, 20, 27, 30, 33, 34].

New devices are commonly integrated into heterogeneous
storage hierarchies [17, 18, 21, 29] for cost e$ciency and prac-
tical constraints (e.g., hardware acquisition and deployment).
Tiered "le systems [16, 19, 26, 31, 32] are a common design
for heterogeneous storage. They expose the storage hierar-
chy as a single device to the host system and leverage the
characteristics of each tier (device) internally to dynamically
migrate "les and blocks across tiers, minimizing latency and
maximizing throughput while exposing large capacity.
We argue that the current practice of developing tiered

"le systems cannot keep up with the pace of storage innova-
tion. First, their development inevitably lags behind device-
speci"c "le systems, as it involves integrating new device
support and new tiering policies on every storage hierarchy
extension. Second, it has become increasingly hard to cover
all possible device con"gurations found in real-world storage
infrastructures into one monolithic tiered "le system.

In this paper, we propose to solve this problem using Mux,
a new tiered "le system that accesses di!erent device types

67

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3713082.3730383
https://doi.org/10.1145/3713082.3730383
https://doi.org/10.1145/3713082.3730383
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3713082.3730383&domain=pdf&date_stamp=2025-06-06

HOTOS ’25, May14–16, 2025, Ban!, AB, Canada Jiyuan Zhang, Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia, and Tianyin Xu

Linux VFS

PM

Monolithic
Tiered FS

SSD HDD

Linux VFS

(a) Traditional Tiered FS (b) Mux Tiered FS

PM
Driver

Policy

ApplicationApplication

SSD
Driver

HDD
Driver

PM SSD HDD

PM
Driver

Policy

SSD
Driver

HDD
Driver

NOVA XFS ext4

<VFS Call>

<I/O Request>
Policy Runner

<VFS Call>

VFS Call Processor

Cache Controller
OCC Synchronizer

FS Multiplexer

VFS Call Maker

<I/O Command>

(c) Mux Components

Metadata Tracker

State Bookkeeper

File Blk. TrackerMux

Figure 1: Traditional tiered !le systems, Mux (our
work) and its internal components.

indirectly through device-speci"c "le systems, rather than di-
rectly through device drivers. As shown in Figure 1,Mux slots
between the Virtual File System (VFS) and device-speci"c,
native "le systems; it realizes tiering policies (e.g., data place-
ment, migration, and replication) and delegates I/O requests
to native "le systems. The design leverages the opportunity
that native "le systems are highly optimized and can be di-
rectly used as building blocks of a tiered "le system. Di!erent
from existing meta "le systems that combine native "le sys-
tems such as OverlayFS [6], MergerFS [7], and UnionFS [24],
Mux exposes the entire hierarchy as a single device to the
host and transparently dispatches reads and writes to na-
tive "le systems as per tiering policies. Mux distributes an
individual "le across tiers; it bookkeeps which "le system
stores the "le blocks. The block distribution can happen
both synchronously at allocation time (e.g., by append) and
asynchronously by block-level data migration.
The design treats extensibility—seamless integration of

new device types—as a "rst-class principle by decoupling
tiering from device management. To integrate new devices,
dedicated "le systems can be plugged directly into the stack
through a well-de"ned interface (e.g., Linux VFS), without
modi"cation. To extend tiering policies, Mux o!ers a modu-
lar interface (via kernel module or eBPF) for users to register
tiering rules or device pro"les. We contend that the separa-
tion of concerns—tiering and device specialization—would
enable progressive evolution and #exible integration of het-
erogeneous "le and storage systems.
Mux must address correctness challenges. Given the dis-

tribution of a "le across "le systems, which participating
"le systems are in charge of maintaining "le metadata up-
to-date? This metadata ownership challenge is unique, as a
monolithic tiered "le system stores a single instance of all

attributes. We opt for distributing the metadata maintenance.
We introduce metadata a"nity to assign each metadata at-
tribute to a "le system owner. For example, the "le system
that stores the last byte of the "le is the owner of the logical
"le size and the "le system that performed the last update is
the owner of the last modi"ed timestamp. Mux bookkeeps
which "le system is the owner of an attribute and lazily
synchronizes participating "le systems. For metadata that
cannot have a single owner such as disk consumption, Mux
manages them across all related "le systems.
Mux must also guarantee that data movement (e.g., for

migration) across "le systems does not interfere with user
access—users’ updates on blocks during migration are not
lost or overwritten. The problem is also faced by monolithic
tiered "le systems and is commonly solved by locking the
"le or blocks in #ight [16, 31, 32]. Di!erently, in Mux, migra-
tions involve multiple native "le systems, but no universal
lock among them exists. Instead of global locks, we opt for
optimistic concurrency control [15]. Mux maintains a ver-
sioning counter per "le to detect potential con#icts based
on version di!erences, therefore minimizing the impact of
con#ict checking on the critical path.
Despite introducing an additional indirection layer, Mux

can directly bene"t from device-speci"c optimizations of
native "le systems. This bene"t can outweigh the indirec-
tion overhead in practice. We compare Mux which uses
NOVA for persistent memory (PM), XFS for SSD, and Ext4
for HDD, with Strata [16], a research tiered "le system. Mux
achieves 1.46x higher throughput for device I/O and 2.59x
faster data migration over Strata, because it utilizes spe-
cialized production-ready "le systems (e.g., device-friendly
journaling and caching scheme). Compared with direct ac-
cess to per-device "le systems (with no tiering), Mux adds a
worst-case read latency overhead of 6.6% to 87.3%, as well as
a write throughput overhead of 1.6% to 3.5%, across NOVA,
XFS, and Ext4 on PM, SSD, and HDD, respectively.

We describe the design of Mux and its preliminary results,
and discuss a few open problems. A full-#edged implemen-
tation of Mux is in progress.

2 Mux Design
We describe the Mux design that composes individual "le
systems into a tiered "le system. The overarching goal is to
aggregate the advantages of underlying device-speci"c "le
systems, while o!ering extensible tiering policies.

Mux must:

• manage the asynchronous distribution of data blocks (of
"les) across heterogeneous storage devices,

• guarantee the consistency of "le metadata and data,
• dispatch user requests as individual per-device I/O opera-
tions and merge their results into uni"ed responses,

68

Rethinking Tiered Storage: Talk to File Systems, Not Device Drivers HOTOS ’25, May14–16, 2025, Ban!, AB, Canada

Multiplexer

/dir
file_A
file_B
file_C

file_A:

Block Lookup Table

File System 1 File System 2

blk1 2 3 4 5 6 ...

file_A (sparse file)
3 ...1 4

/dir
file_A
file_B

/dir
file_A
file_C

...2 5 6
file_A (sparse file)

User’s view:
User-defined

Policy

- permission
- mtime
- ...

Metadata

Mux. Meta
Cached FS Meta

- file size
- atime
- ...

Metadata

Figure 2: An overview of Mux.

• provide a user interface to specify or extend tiering rules,
• orchestrate shared "le caching,
• eliminate races between user requests and asynchronous
data movement (e.g., for migration).
Our performance goal is to match or exceed traditional

“monolithic” tiered "le systems, given the same tiering policy.
Mux slots between the VFS layer and device-speci"c "le

systems (Figure 1). Figure 2 shows the components of Mux
and how "le metadata and data are mapped to device-speci"c
"le systems.
The main challenge is the crossing of "le system bound-

aries. In Mux, a "le is typically distributed across multiple "le
systems, creating challenges for its indexing and metadata
management. At the same time, data movement across "le
systems must not race or interfere with user requests, but
the global locking is missing. Mux introduces a set of global
metadata to bookkeep "le distribution and devise e$cient
synchronization mechanisms.

2.1 Interface
Mux provides a uniform namespace to user applications. The
underlying "le systems selected by a user are mounted at
di!erent mount points. Mux merges these mount points in a
single directory tree and presents it to user applications (Fig-
ure 2). A "le can be distributed across multiple "le systems;
the same "le name exists in di!erent "le systems. The design
is inspired by OverlayFS [6] which overlays one "le system
on top of another, presenting a merged directory view to
applications. In OverlayFS, all data updates are applied to
the topmost "le system. We extend this design to enable
"ner-grained and dynamic selection of the underlying "le
systems, including write operations.

To add a new device and the corresponding "le system, the
user only needs to mount the new "le system and register
it with Mux, along with a policy to manage it. To remove a
device, data must be migrated "rst. Adding or removing a
device can be done at runtime.
Mux is presented to the VFS layer as a standalone "le

system, making the OS send "le operations to Mux through
the existing VFS interface. Upon receiving a "le operation,
Mux splits it based on the block-to-underlying "le system
mappings, if required. Mux sends the split requests to device-
speci"c "le systems by calling the same VFS function that
invokes it, but with di!erent "le handles, lengths, and o!sets.
User-De!ned Policy. Mux decouples tiering policies from
"le system implementation. It exposes an interface for users
to specify policies on data placement and user request dis-
patching. All the placement andmigration policies in existing
tiered "le systems [16, 19, 26, 31, 32] can be expressed using
simple functions. For example, the data placement policy
of TPFS [32] can be simply implemented by a function that
returns di!erent device IDs based on the I/O size, synchronic-
ity, and access history. Currently, the policy is encoded as a
kernel module or an eBPF extension so the policy functions
can be directly called.

2.2 File and Data Block
Mux can support block-level data distribution and place data
#exibly as per user-de"ned policies. For example, LRU-based
or Hot-Cold block-level data migration schemes employed
by existing tiered "le systems [16, 31, 32] can be easily sup-
ported by Mux.
Block-level data distribution requires Mux to maintain

the mapping from a block to the underlying "le systems (a
"le system’s internal index is invisible to Mux). We use a
mapping table, named Block Lookup Table, to locate a block
of a "le, as shown in Figure 2. Mux maintains a per-"le
block lookup table and tracks in which device the recent
version of a block is stored. Since the table maps "le o!sets
to devices, that are small in size, we use an extent tree as a
high-performance data structure.

Note that a "le can be stored onmultiple devices as a result
of load balancing and data migration. Mux leverages sparse
"les to preserve the "le o!set of a block across di!erent
underlying "le systems (Figure 2). It enables Mux to avoid
an additional translation while preventing space waste from
allocating the entire "le.

2.3 Metadata
Managing "le blocks across "le systems creates a unique
challenge. Which "le system should keep the metadata at-
tributes up to date, given that multiple ones may participate
in metadata-update operations (e.g. appends)? We opt for

69

HOTOS ’25, May14–16, 2025, Ban!, AB, Canada Jiyuan Zhang, Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia, and Tianyin Xu

metadata multiplexing and introduce the notion of metadata
a"nity. For each metadata attribute, there is an a"nitive
#le system at any given point in time, that holds the most
up-to-date value for the attribute. This design reduces small
writes due to metadata updates and avoids waiting on slow
devices for synchronization.

For example, when the "le is created, the host "le system
is the a$nitive for all metadata. Later, if another "le system
performs an append guided by Mux (e.g., tiering the new
blocks to multiple devices) the "le system that allocated the
last block of the operation becomes the a$nitive for the "le
size attribute. During a write operation, the "le system that
overwrites the last block of the operation becomes the a$ni-
tive for the last update timestamp. During a read operation,
the "le system that fetches the last block of the operation
becomes the a$nitive for the last access timestamp, etc. Mux
bookkeeps the a$nitive "le system per attribute, to orches-
trate incoming requests.

Mux caches metadata attributes in a collective inode, avoid-
ing fetching metadata from di!erent "le systems (which is
expensive in the multiplexed design).
Mux maintains its own metadata like block lookup table,

"le a$nity table, etc. The space overhead of such metadata
is marginal. For example, in a block lookup table, one byte
per 4 KB of user data is su$cient with a simple byte array,
leading to less than 0.025% of space overhead.

2.4 Data Movement
In heterogeneous storage, data movement is critical to per-
formance and cost e$ciency. Traditional tiered "le systems
realize transparent migration by implementing intra-"le sys-
tem locking. It enables the migration and application’s "le
operations to be performed atomically with respect to each
other. However, such locking is insu$cient in Mux. In Mux,
blocks are moved from one "le system to another, which
requires a synchronization mechanism across the "le sys-
tems. Moreover, applications’ "le operations are an external
operation to underlying device-speci"c "le systems. Hence,
Mux requires a new synchronization mechanism to support
transparent migration.
We design the synchronization mechanism using opti-

mistic concurrency control [15], which is called OCC Syn-
chronizer. Our insight is that data movement does not change
the content of the data; so, a datamovement process is consid-
ered successful if the content of the data remains unchanged
throughout the process. With this principle, we introduce a
version number to each "le to identify the potential con#icts.
The version number is incremented at the start and end of a
data movement process, allowing Mux to detect the possi-
bility of a con#ict while handling an application’s "le write
by comparing the version number before and after the write

operation and checking a migration #ag on the "le. If a po-
tential con#ict is detected, Mux searches for blocks that have
changed during migration. If any blocks are found to have
been modi"ed, Mux retries the migration of those blocks. If
all tasks that ran during the migration process are con#ict-
free, the migrated block will be atomically committed and
made visible in the block lookup table. If OCC Synchronizer
keeps failing to migrate the block, Mux will resort to a lock-
based migration. This scheme minimizes the critical path of
user requests and enables the parallel execution of migration
without pessimistic blocking or lock contention.

Since a data block migrated using OCC Synchronizer is
only atomically made visible when proven to be con#ict-
free, it avoids data corruption due to data race. Also, since
any tasks that could generate a con#ict are checked before
committing the block, and those tasks are proven not to
have modi"ed the migrated data block, the migrated data is
also guaranteed to be up-to-date. If any con#ict occurs, the
migrated data block will be dropped and overwritten in place
in the next migration attempt. This ensures that there are
no side e!ects from failed attempts. OCC Synchronizer also
guarantees that the migration process will be completed in
a "nite amount of time, due to the limited number of retries,
thus ensuring the replication lag is bounded.

2.5 Caching
Mux includes a cache manager to use Storage Class Memory
(SCM) devices (e.g., persistent memory) as caching devices.
Recent studies [9, 16, 19] show that using SCM for caching
improves storage performance, as SCM has a large capacity
and is accessible via memory operations. Existing tiered "le
systems [16, 31] assume SCM-based caches.

In the Mux design, while each "le system may use DRAM
as its page cache, the cache cannot be shared across de-
vices. Moreover, as storage continues to grow, DRAM is
di$cult to scale. Using SCM devices to o%oad DRAM page
caches helps alleviate the scalability problem. SCM "le sys-
tems [12–14, 20, 27, 33, 34] commonly use the DAX (Direct
Access) interface, where memory mapping a "le provides
direct access to the physical storage, minimizing software
overhead. Mux uses DAX to implement data cache to mini-
mize software overhead.

Mux can create one "le for all caches, which helps reduce
the overhead of managing multiple "les as well as disk frag-
mentation. Alternatively, Mux can preallocate the cache "le
to ensure cache availability and reduce block allocation over-
head. Mux uses DAX memory mapping for the cache "le. If
the caching memory pool is depleted, the data can be written
back or evicted. We use Multi-generational LRU [3] for cache
replacement, which is also the algorithm Linux uses for its
page caches.

70

Rethinking Tiered Storage: Talk to File Systems, Not Device Drivers HOTOS ’25, May14–16, 2025, Ban!, AB, Canada

3 Preliminary Results
We report the performance of an early prototype of Mux, in
comparison to Strata, a traditional tiered "le system. We also
report the overhead of Mux over native device-speci"c "le
systems when accessing "les directly (without tiering).

3.1 Performance
We use a storage hierarchy that consists of Intel Optane
Persistent Memory 200 (as PM), Intel Optane SSD DC P4800X
(as SSD), and Seagate Exos X18 (as HDD), paired with Intel
Xeon 6346 CPU and 256GB DRAM. We use a prototype of
Mux that utilizes specialized production-ready "le systems,
including NOVA [27] for PM, XFS [25] for SSD, and Ext4 [22]
for HDD.We compare Mux with Strata [16], a research tiered
"le system. Mux and Strata use the same tiering policy to
manage the storage hierarchy.

Strata follows the traditional tiered "le system design. It is
designed as a monolithic "le system that manages all three
devices internally. OurMux prototype implements the tiering
mechanism internally, but delegates the I/O to NOVA, XFS,
and Ext4. We implement a simple LRU policy that evicts cold
data to the slower device if no space left on faster devices,
and promotes data back upon access.
We focus on data migration, which is arguably the most

basic tiering feature. Mux directly supports data migration
between any pair of devices (Figure 3a). As VFS abstracts out
device-speci"c details, supporting a migration path takes a
single line of code to invoke themigration function. However,
this is not the case for Strata, where adding a path requires
manually matching the threading model, block size, and call
context of the paired devices. If two devices are not wired,
data migration between them either is unsupported (N/S) or
must be relayed via other devices. Among all six migration
pairs, Strata supports only two (Figure 3a). Also, it supports
neither SSD to HDD demotion nor any kind of promotion.

We measure the maximum throughput of data migration
between each device pair by continuously writing data to sat-
urate upper-tier devices, forcing data migrations. As shown
in Figure 3a, the throughputs of inter-device data migration
in Mux are much higher than those in Strata. Speci"cally, the
throughput of PM to SSDmigration is increased by 2.59x. We
also measure the I/O throughput of individual devices. We
run Strata’s microbenchmark [2] with 90GB random writes
and measure the throughput when the I/O request is always
directed to the target devices. As shown in Figure 3b, the I/O
throughput of Mux is 1.08x, 1.46x, and 1.07x higher for PM,
SSD, and HDD respectively over Strata.
We attribute the performance advantage of Mux over

Strata for two reasons. First, Mux leverages the device-speci"c
optimizations provided by the underlying "le systems. For
example, we observe that Strata "rst writes data to a log

Strata Mux
(NOVA, xfs, ext4)

N/S: Not Supported Numbers are reported in MB/s

So
ur

ce
 D

ev
ic

e

Target Device

So
ur

ce
 D

ev
ic

e

Target Device

(a) Extensibility

PM SSD
HDD

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (M

B
/s

)

Strata
Mux

(b) Performance

Figure 3: Extensibility and performance of Strata and
Mux. Strata uses static routing among tiers and only sup-
ports PM to SSD and PM to HDD data movement; Strata has
lower performance compared to device-speci"c "le systems
on a single PM/SSD/HDD device.

on persistent memory and then digests the log to actual
"le blocks on "nal storage devices. However, such logging
is not necessary on persistent memory devices. The opti-
mized "le system we use for PM, namely NOVA, is di!erent
in that it writes data directly to the "le blocks using DAX
and uses the CLFLUSH instruction to guarantee data consis-
tency. Hence, Strata’s design results in write ampli"cation
and performance degradation. Second, unlike Strata, Mux
uses independent "le systems to drive devices. In Strata, the
"le extent tree that contains both block o!set and device
index has to be partially locked during block-level data mi-
gration, which may prevent access to blocks that do not
require migration. In contrast, since Mux works on top of
device-speci"c "le systems and has its own separate meta"le
storage, locking "le blocks for migration will not a!ect ac-
cess to other blocks.We acknowledge that Strata is a research
system and its performance may not represent an ideal tiered
"le system. On the other hand, Mux uses production-ready,
highly optimized device-speci"c "le systems, which shows
the advantage of the Mux design—the extensibility allows
Mux to directly bene"t from device-speci"c optimizations
of well-developed "le systems.

3.2 Overhead
Mux explores a tradeo!: introducing an additional "le system
layer above the device-speci"c "le systems to get the perfor-
mance bene"t of per-device specialization for free. One may
suspect an 100% overhead of Mux, as it doubles the work of
"le systems. To understand the worst case of the indirection
overhead, we run a microbenchmark that repeatedly reads
one single byte from a 10GB "le randomly. Compared to the
native "le systems—NOVA, XFS, and Ext4 (with no tiering),
Mux increases the latency by 52.4%, 87.3%, and 6.6% on PM,
SSD, and HDD, respectively.

71

HOTOS ’25, May14–16, 2025, Ban!, AB, Canada Jiyuan Zhang, Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia, and Tianyin Xu

We also run a microbenchmark that repeatedly writes four
megabytes to a "le sequentially to evaluate write through-
put overhead. Compared to the native "le systems, Mux
decreases the throughput by 1.6%, 2.2%, and 3.5% on PM,
SSD, and HDD, respectively.

Note that some of the above overhead may also appear in
an ideal tiered "le system; how to quantify the Mux overhead
over an ideal implementation remains our future work.

4 Discussion
With the initial prototype that shows the promises, we are de-
veloping a full-#edged Mux. We discuss several challenging
problems we encounter and ideas to address them.
Crash Consistency. Currently, the crash consistency prop-
erties of Mux are composed of those of the participating "le
systems. Mux sends fsync requests to all the "le systems
that are responsible for a given "le and synchronizes the
completion of the fsync operations. Upon a crash, Mux relies
on each participating "le system to recover the data blocks
it stores. However, di!erent "le systems have di!erent crash
consistency guarantees [23] and the overall crash consis-
tency of a "le is a!ected by defects in any participating "le
system, assuming no data replication.We believe that a much
stronger crash consistency guarantee can be designed for
Mux by utilizing the diversity of device-speci"c "le systems
and by the opportunity for data replication across devices.
Feature Imparity of File Systems. A common thread in
the Mux design is the di!erence between di!erent "le sys-
tems, despite that they all implement the VFS interface. For
example, "le systems often have special features that the
others do not. Some "le systems extend metadata attributes
in uncommon ways. Oftentimes, even for the same metadata
attribute, its semantics can vary (e.g., FAT records times-
tamps with a two-second granularity [1]). We currently do
not consider any extended metadata attributes or special
features. How to enable users to e!ectively manage these
system-speci"c features and metadata is an open problem.
Improving The I/O Scheduler. High-performance I/O of-
ten requires I/O schedulers to maximize resource utilization
and minimize contention. The I/O scheduler should identify
request types, estimate their costs, and reorder them to opti-
mize performance [28]. We currently use a simple scheduling
algorithm based on device pro"les (performance characteris-
tics and feature sets). We expect more intelligent schedulers
to be developed, that consider dynamic states such as load
spikes on devices as well as instantaneous I/O activities for
garbage collection and in-device DRAM #ushing to SSDs.
Con!guring Mux. As the Mux design can easily integrate
many existing "le systems, an emerging problem is how
to "nd the best con"guration of "le systems for a given
workload or a given set of storage devices. Sharing Mux

among multiple applications may also require scheduling
schemes that support priority, deadline, and/or quota, which
may dispatch I/Os and accessed data blocks to "le systems
with di!erent performances, or ensure that high-priority
tasks are not impeded by reordering and splitting requests.
Distributed Mux. One ambitious idea is to extend Mux in
a distributed manner. By designing a Mux-to-Mux intercon-
nection (e.g., through Remote Procedure Call) at the Mux
layer and a distributed tiering policy, it is possible that a set
of machines mounting traditional "le systems can be inte-
grated into a distributed storage system. Certainly, to realize
that, we will need to address many open problems, some
of them are: (1) how to achieve transparency across the OS
boundary? (2) how to support dynamic joining and leaving
of nodes? and (3) how to handle latency variations and net-
work faults? We plan to start with attaching networked "le
systems as one of the underlying "le systems.

Acknowledgement
We thank our shepherd Dan Tsafrir for the extensive tech-
nical discussion that reshaped the paper. We thank Swami-
nathan Sundararaman and Nam Sung Kim for their valuable
technical discussion. The paper is supported in part by NSF
CNS-1956007, CNS-2145295, SHF-2348066, an IIDAI grant,
and the Wing Kai Cheng Fellowship.

References
[1] Microsoft FAT Speci"cation. https://academy.cba.mit.edu/classes/ne

tworking_communications/SD/FAT.pdf, Aug. 2005.
[2] Microbenchmarks - ut-osa/assise. https://github.com/ut-osa/assise/tre

e/master/bench/micro, Apr. 2021.
[3] Multi-generational LRU: the next generation. https://lwn.net/Articles

/856931/, May 2021.
[4] Samsung Plans to Start Large-Scale Production of CXL Devices Soon.

https://semiconductor.samsung.com/us/news-events/news/samsun
g-demonstrates-new-cxl-capabilities-and-introduces-new-memory-
module-for-scalable-composable-disaggregated-infrastructure-at-
memcon-2024/, Mar. 2024.

[5] Intel Has Incorporated CXL into Its Modern Processors. https://www.
intel.com/content/www/us/en/support/articles/000059219/processor
s.html, Jan. 2025.

[6] Overview of the Overlay File System. https://docs.kernel.org/"lesyste
ms/overlayfs.html, Jan. 2025.

[7] trapexit/mergerfs. https://github.com/trapexit/mergerfs, Apr. 2025.
[8] A!"#$%&!, P., A$’!’%, E. B., A%%’(, Y., B#)$#!"*, R., B+’,-,

R., C’.’++#$&, M., C’/#$&!, P., C’!’-,0, B., D# C’$1’+)&, T.,
C)’*20#+#(*)#$0&3, A., S*&$’! C+’$-#, R., C+#44, J., C+#*)#$&#,
D., C&&5#$, B., D##4’!, T., D&!!#++6, A., D$#10!%-’%, R., G’3!*,
A., G-’!*%0"0%, C., G&/#2 D0’2, A., H’++#$, I., H&!4, F., I+0#1’, T.,
J&%)0, S., J&6,#, R., K3!-#+, M., L’$’, D., L#4*,)#!-&, S., L03, F. L.,
M’4’+)’#%, B., M’$2, A., M,!#**, M., M&)’!, J., M6$’), M.,
N436#!, T., N&7&20!, S., O43%, A., O1#$7#4, H., R&7%*$&!, A., S’),
M., S’-’-3$’, M., S,)&+*2, P., S,)$#0!#$, N., S#++’, O., S/0*), A.,
S*#(’!&10,0, I., S7##!#6, D., T)&/%#!, B., V#$-#%, G., W’0!/’!,
P., W#%*,&**, J., W#%*&!, L., W)0**’-#$, C., W0+-# B#$#!43#$, P.,
W0++0’/%, H., W0!-+#$, T., ’!" W0!2#,-, S. Project Silica: Towards

72

https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://github.com/ut-osa/assise/tree/master/bench/micro
https://github.com/ut-osa/assise/tree/master/bench/micro
https://lwn.net/Articles/856931/
https://lwn.net/Articles/856931/
https://semiconductor.samsung.com/us/news-events/news/samsung-demonstrates-new-cxl-capabilities-and-introduces-new-memory-module-for-scalable-composable-disaggregated-infrastructure-at-memcon-2024/
https://semiconductor.samsung.com/us/news-events/news/samsung-demonstrates-new-cxl-capabilities-and-introduces-new-memory-module-for-scalable-composable-disaggregated-infrastructure-at-memcon-2024/
https://semiconductor.samsung.com/us/news-events/news/samsung-demonstrates-new-cxl-capabilities-and-introduces-new-memory-module-for-scalable-composable-disaggregated-infrastructure-at-memcon-2024/
https://semiconductor.samsung.com/us/news-events/news/samsung-demonstrates-new-cxl-capabilities-and-introduces-new-memory-module-for-scalable-composable-disaggregated-infrastructure-at-memcon-2024/
https://www.intel.com/content/www/us/en/support/articles/000059219/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059219/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059219/processors.html
https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html
https://github.com/trapexit/mergerfs

Rethinking Tiered Storage: Talk to File Systems, Not Device Drivers HOTOS ’25, May14–16, 2025, Ban!, AB, Canada

Sustainable Cloud Archival Storage in Glass. In Proceedings of the 29th
Symposium on Operating Systems Principles (SOSP ’23) (Oct. 2023).

[9] A!"#$%&!, T. E., C’!0!0, M., K0/, J., K&%*08, D., K7&!, Y., P#*#$,
S., R#"’, W., S,)3), H. N., ’!" W0*,)#+, E. Assise: Performance
and Availability via Client-local NVM in a Distributed File System. In
Proceedings of 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’20) (Nov. 2020).

[10] B&$!)&+*, J., L&5#2, R., C’$/#’!, D. M., C#2#, L., S##+04, G., ’!"
S*$’3%%, K. A DNA-Based Archival Storage System. In Proceedings of
the 21st International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’16) (Mar. 2016).

[11] C)#!, Y., L3, Y., Z)3, B., A$5’,09D3%%#’3, A. C., A$5’,09D3%%#’3,
R. H., ’!" S)3, J. Scalable Persistent Memory File System with Kernel-
Userspace Collaboration. In Proceedings of the 19th USENIX Conference
on File and Storage Technologies (FAST ’21) (Feb. 2021).

[12] C)#!, Y., S)3, J., O3, J., ’!" L3, Y. HiNFS: A Persistent Memory File
System with Both Bu!ering and Direct-Access. ACM Transactions on
Storage (TOS) 14, 1 (Apr. 2018).

[13] D3++&&$, S. R., K3/’$, S., K#%)’1’/3$*)6, A., L’!*2, P., R#""6,
D., S’!-’$’!, R., ’!" J’,-%&!, J. System Software for Persistent
Memory. In Proceedings of the Ninth European Conference on Computer
Systems (EuroSys ’14) (Apr. 2014).

[14] K’"#-&"0, R., L##, S. K., K’%)6’5, S., K0/, T., K&++0, A., ’!" C)09
"’/.’$’/, V. SplitFS: Reducing software overhead in "le systems
for persistent memory. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP ’19) (Oct. 2019).

[15] K3!4, H.9T., ’!" R&.0!%&!, J. T. On optimistic methods for con-
currency control. ACM Transactions on Database Systems 6, 2 (1981),
213–226.

[16] K7&!, Y., F0!4+#$, H., H3!*, T., P#*#$, S., W0*,)#+, E., ’!" A!"#$9
%&!, T. Strata: A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17) (Oct. 2017).

[17] L##, T., M&!4’, S. K., M0!, C., ’!" E&/, Y. I. Memtis: E$cient Memory
Tiering with Dynamic Page Classi"cation and Page Size Determination.
In Proceedings of the 29th Symposium on Operating Systems Principles
(SOSP ’23) (Oct. 2023).

[18] L0, H., B#$4#$, D. S., H%3, L., E$!%*, D., Z’$"&%)*0, P., N&1’-&10,, S.,
S)’), M., R’:’"!6’, S., L##, S., A4’$7’+, I., H0++, M. D., F&!*&3$’,
M., ’!" B0’!,)0!0, R. Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms. In Proceedings of the 28th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’23) (Mar. 2023).

[19] L0!, Z., X0’!4, L., R’&, J., ’!" L3, H. P2CACHE: Exploring Tiered
Memory for In-Kernel File Systems Caching. In Proceedings of the 2023
USENIX Annual Technical Conference (USENIX ATC ’23) (July 2023).

[20] L3, Y., S)3, J., C)#!, Y., ’!" L0, T. Octopus: an RDMA-enabled Dis-
tributed Persistent Memory File System. In Proceedings of the 2017
USENIX Annual Technical Conference (USENIX ATC ’17) (July 2017).

[21] M’$3(, H. A., W’!4, H., D)’!&*0’, A., W#0!#$, J., A4’$7’+, N.,
B)’**’,)’$6’, P., P#*#$%#!, C., C)&7")3$6, M., K’!’3:0’, S., ’!"
C)’3)’!, P. TPP: Transparent Page Placement for CXL-Enabled
Tiered-Memory. In Proceedings of the 28th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’23) (Mar. 2023).

[22] M’*)3$, A., C’&, M., B)’**’,)’$6’, S., D0+4#$, A., T&/’%, A., ’!"
V010#$, L. The new ext4 "lesystem: current status and future plans.
In Proceedings of the Ottawa Linux Symposium (OLS 2007) (June 2007).

[23] P0++’0, T. S., C)0"’/.’$’/, V., A+’4’55’!, R., A+9K0%7’!6, S.,
A$5’,09D3%%#’3, A. C., ’!" A$5’,09D3%%#’3, R. H. All File Sys-
tems Are Not Created Equal: On the Complexity of Crafting Crash-
Consistent Applications. In Proceedings of the 11th USENIX conference
on Operating Systems Design and Implementation (OSDI’14) (Oct. 2014).

[24] ;04+#6, D., S05#-, J., W$04)*, C., ’!" Z’"&-, E. Unionfs: User- and
Community-Oriented Development of a Uni"cation File System. In
Proceedings of the 2006 Ottawa Linux Symposium (OLS ’06) (July 2006).

[25] S7##!#6, A. Scalability in the XFS File System. In Proceedings of the
USENIX 1996 Annual Technical Conference (USENIX ’96) (Jan. 1996).

[26] W3, K., G3&, Z., H3, G., T3, K., A+’4’55’!, R., S#!, R., P’$-, K.,
A$5’,09D3%%#’3, A. C., ’!" A$5’,09D3%%#’3, R. H. The Storage
Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage
Devices with Orthus. In Proceedings of the 19th USENIX Conference on
File and Storage Technologies (FAST ’21) (Feb. 2021).

[27] X3, J., ’!" S7’!%&!, S. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST ’16)
(Feb. 2016).

[28] Y’!4, S., H’$*#$, T., A4$’7’+, N., K&7%’+6’, S. S., K$0%)!’/3$*)6,
A., A+9K0%7’!6, S., K’3%)0-, R. T., A$5’,09D3%%#’3, A. C., ’!"
A$5’,09D3%%#’3, R. H. Split-level I/O scheduling. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP ’15)
(Oct. 2015).

[29] Y’!4, S.9P., K0/, M., N’/, S., P’$-, J., C)&0, J.9Y., N’/, E. H., L##,
E., L##, S., ’!" K0/, B. S. Overcoming the Memory Wall with CXL-
Enabled SSDs. In Proceedings of the 2023 USENIX Annual Technical
Conference (USENIX ATC ’23) (July 2023).

[30] Z)’!, Y., H3, H., Y’!4, X., W’!4, S., C’&, Q., J0’!4, H., ’!" Y’&,
J. RomeFS: A CXL-SSD Aware File System Exploiting Synergy of
Memory-Block Dual Paths. In Proceedings of the 15th ACM Symposium
on Cloud Computing (SoCC ’24) (Nov. 2024).

[31] Z)#!4, S., H&%#0!2’"#), M., ’!" S7’!%&!, S. Ziggurat: A Tiered
File System for Non-Volatile Main Memories and Disks. In Proceedings
of the 17th USENIX Conference on File and Storage Technologies (FAST
’19) (Feb. 2019).

[32] Z)#!4, S., H&%#0!2’"#), M., S7’!%&!, S., ’!" H3’!4, L. TPFS: A
High-Performance Tiered File System for Persistent Memories and
Disks. ACM Transactions on Storage 19, 2 (2023), 1–28.

[33] Z)&3, D., A%,)#!.$#!!#$, V., L63, T., Z)’!4, J., K’!!’!, S., ’!"
K’%)6’5, S. Enabling High-Performance and Secure Userspace NVM
File Systems with the Trio Architecture. In Proceedings of the 29th ACM
Symposium on Operating Systems Principles (SOSP ’23) (Oct. 2023).

[34] Z)&3, D., Q0’!, Y., G35*’, V., Y’!4, Z., M0!, C., ’!" K’%)6’5, S.
ODINFS: Scaling PM Performance with Opportunistic Delegation. In
Proceedings of the 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’22) (July 2022).

[35] Z)&3, J., D&!4, M., W’!4, F., Z#!, J., Z)’&, L., F’!, C., ’!" C)#!, H.
Liquid-State Drive: A Case for DNA Block Device for Enormous Data.
In 23rd USENIX Conference on File and Storage Technologies (FAST ’25)
(Feb. 2025).

73

	Abstract
	1 Introduction
	2 Mux Design
	2.1 Interface
	2.2 File and Data Block
	2.3 Metadata
	2.4 Data Movement
	2.5 Caching

	3 Preliminary Results
	3.1 Performance
	3.2 Overhead

	4 Discussion
	References

