Rethinking Tiered Storage: Talk to File Systems,
Not Device Drivers

Jiyuan Zhang
University of Illinois
Urbana-Champaign, IL, USA
jiyuanz3@illinois.edu

Peizhe Liu
University of Illinois
Urbana-Champaign, IL, USA
peizhel2@illinois.edu

Abstract

Different storage technologies motivate the development of
specialized file systems tailored to specific device types. A
tiered file system aggregates such device types into a single
file system. We argue that the current practice of developing
tiered file systems tends to lag behind that of device-specific
file systems because, inherently, developers are burdened
with addressing multiple device types simultaneously, rather
than specializing. We propose to solve this problem using
Mux, a new tiered file system that accesses different device
types indirectly through device-specific file systems, rather
than directly through device drivers. Despite introducing an
additional indirection layer, we show that Mux significantly
outperforms Strata, a research tiered file system, because it
utilizes specialized production-ready file systems. Compared
with direct access to per-device file systems (with no tiering),
Mux adds a worst-case read latency overhead of 6.6% to
87.3%, and a write throughout overhead of 1.6% to 3.5% across
devices. We contend that Mux’s separation of tiering and
specialization concerns enables progressive evolution and
flexible integration of heterogeneous storage devices.

CCS Concepts

« Software and its engineering — File systems manage-
ment; « Information systems — Hierarchical storage
management.

Keywords
Tiered Storage, File System, Operating System

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

HOTOS °25, Banff, AB, Canada

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/2025/05
https://doi.org/10.1145/3713082.3730383

Jongyul Kim
University of Illinois
Urbana-Champaign, IL, USA
jyk@illinois.edu

Weiwel Jia
University of Rhode Island
Kingston, RI, USA
weiwel.jila@uri.edu

67

Chloe Alverti

University of Illinois
Urbana-Champaign, IL, USA
xalverti@illinois.edu

Tianyin Xu
University of Illinois
Urbana-Champaign, IL, USA
tyxu@illinois.edu

ACM Reference Format:

Jiyuan Zhang, Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia,
and Tianyin Xu. 2025. Rethinking Tiered Storage: Talk to File Sys-
tems, Not Device Drivers. In Workshop on Hot Topics in Operating
Systems (HOTOS °25), May 14-16, 2025, Banff, AB, Canada. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3713082.3730
383

1 Introduction

The landscape of modern storage is undertaking a disrup-
tive change. The emergence of new storage technologies,
such as persistent memory [13], CXL SSD [4, 5, 29], and oth-
ers [8, 10, 35], are producing faster, larger, and cheaper stor-
age devices. These devices offer new bandwidth, latency,
and capacity features, such as near-memory speed, byte ad-
dressability, and cache coherence. Accordingly, many new,
specialized file systems are being actively developed to fully
utilize these new storage tiers [11-14, 20, 27, 30, 33, 34].

New devices are commonly integrated into heterogeneous
storage hierarchies [17, 18, 21, 29] for cost efficiency and prac-
tical constraints (e.g., hardware acquisition and deployment).
Tiered file systems [16, 19, 26, 31, 32] are a common design
for heterogeneous storage. They expose the storage hierar-
chy as a single device to the host system and leverage the
characteristics of each tier (device) internally to dynamically
migrate files and blocks across tiers, minimizing latency and
maximizing throughput while exposing large capacity.

We argue that the current practice of developing tiered
file systems cannot keep up with the pace of storage innova-
tion. First, their development inevitably lags behind device-
specific file systems, as it involves integrating new device
support and new tiering policies on every storage hierarchy
extension. Second, it has become increasingly hard to cover
all possible device configurations found in real-world storage
infrastructures into one monolithic tiered file system.

In this paper, we propose to solve this problem using Mux,
a new tiered file system that accesses different device types

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3713082.3730383
https://doi.org/10.1145/3713082.3730383
https://doi.org/10.1145/3713082.3730383
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3713082.3730383&domain=pdf&date_stamp=2025-06-06

HOTOS ’25, May14-16, 2025, Banff, AB, Canada

o <VES Call>_ ___
. . . . H 1
Application Application /[VFS Call Processor |!
1 1
1| [Policy Runner |
Linux VFS Linux VFS | 1</0 Request> |
E State Bookkeeper E
Monolithic Mux E File BIk. Tracker |
. 1
Tiered FS i| [Metadata Tracker|!
Policy E 1<1/0 Command>1
. R 1
[FsMultiplexer |,
PM |[SD |[HDD PM |[sSD |[HDD i Cache Controll !
Driver || Driver | | Driver Driver | | Driver | | Driver : GCICISONWOTCH),
¥ ¥ ¥ ¥ ¥ ¥ ! |QCC Synchronizer] E
PM || SSD ||HDD PM || SSD ||HDD -,E VFS Call Maker |;
T<vrscan>
(a) Traditional Tiered FS (b) Mux Tiered FS (c) Mux Components

Figure 1: Traditional tiered file systems, Mux (our
work) and its internal components.

indirectly through device-specific file systems, rather than di-
rectly through device drivers. As shown in Figure 1, Mux slots
between the Virtual File System (VFS) and device-specific,
native file systems; it realizes tiering policies (e.g., data place-
ment, migration, and replication) and delegates I/O requests
to native file systems. The design leverages the opportunity
that native file systems are highly optimized and can be di-
rectly used as building blocks of a tiered file system. Different
from existing meta file systems that combine native file sys-
tems such as OverlayFS [6], MergerFS [7], and UnionFS [24],
Mux exposes the entire hierarchy as a single device to the
host and transparently dispatches reads and writes to na-
tive file systems as per tiering policies. Mux distributes an
individual file across tiers; it bookkeeps which file system
stores the file blocks. The block distribution can happen
both synchronously at allocation time (e.g., by append) and
asynchronously by block-level data migration.

The design treats extensibility—seamless integration of
new device types—as a first-class principle by decoupling
tiering from device management. To integrate new devices,
dedicated file systems can be plugged directly into the stack
through a well-defined interface (e.g., Linux VFS), without
modification. To extend tiering policies, Mux offers a modu-
lar interface (via kernel module or eBPF) for users to register
tiering rules or device profiles. We contend that the separa-
tion of concerns—tiering and device specialization—would
enable progressive evolution and flexible integration of het-
erogeneous file and storage systems.

Mux must address correctness challenges. Given the dis-
tribution of a file across file systems, which participating
file systems are in charge of maintaining file metadata up-
to-date? This metadata ownership challenge is unique, as a
monolithic tiered file system stores a single instance of all

68

Jiyuan Zhang, Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia, and Tianyin Xu

attributes. We opt for distributing the metadata maintenance.
We introduce metadata affinity to assign each metadata at-
tribute to a file system owner. For example, the file system
that stores the last byte of the file is the owner of the logical
file size and the file system that performed the last update is
the owner of the last modified timestamp. Mux bookkeeps
which file system is the owner of an attribute and lazily
synchronizes participating file systems. For metadata that
cannot have a single owner such as disk consumption, Mux
manages them across all related file systems.

Mux must also guarantee that data movement (e.g., for
migration) across file systems does not interfere with user
access—users’ updates on blocks during migration are not
lost or overwritten. The problem is also faced by monolithic
tiered file systems and is commonly solved by locking the
file or blocks in flight [16, 31, 32]. Differently, in Mux, migra-
tions involve multiple native file systems, but no universal
lock among them exists. Instead of global locks, we opt for
optimistic concurrency control [15]. Mux maintains a ver-
sioning counter per file to detect potential conflicts based
on version differences, therefore minimizing the impact of
conflict checking on the critical path.

Despite introducing an additional indirection layer, Mux
can directly benefit from device-specific optimizations of
native file systems. This benefit can outweigh the indirec-
tion overhead in practice. We compare Mux which uses
NOVA for persistent memory (PM), XFS for SSD, and Ext4
for HDD, with Strata [16], a research tiered file system. Mux
achieves 1.46x higher throughput for device I/O and 2.59x
faster data migration over Strata, because it utilizes spe-
cialized production-ready file systems (e.g., device-friendly
journaling and caching scheme). Compared with direct ac-
cess to per-device file systems (with no tiering), Mux adds a
worst-case read latency overhead of 6.6% to 87.3%, as well as
a write throughput overhead of 1.6% to 3.5%, across NOVA,
XFS, and Ext4 on PM, SSD, and HDD, respectively.

We describe the design of Mux and its preliminary results,
and discuss a few open problems. A full-fledged implemen-
tation of Mux is in progress.

2 Mux Design

We describe the Mux design that composes individual file
systems into a tiered file system. The overarching goal is to
aggregate the advantages of underlying device-specific file
systems, while offering extensible tiering policies.

Mux must:

e manage the asynchronous distribution of data blocks (of
files) across heterogeneous storage devices,

e guarantee the consistency of file metadata and data,

e dispatch user requests as individual per-device I/O opera-
tions and merge their results into unified responses,

Rethinking Tiered Storage: Talk to File Systems, Not Device Drivers

User’s view:

/dir User-defined
file A file A: Policy
file B
file C lbli‘llilﬂ?l?l?l l

L
File System 2 |—\
file A (sparse file)

3
/—| File System 1
file A (sparse file)

BT BT T5Te]
e Metadata /@l Metadata
file A - petmission file A ~ ﬁtl.e size
file”p ~Mmume file_c ~aume

Figure 2: An overview of Mux.

e provide a user interface to specify or extend tiering rules,

e orchestrate shared file caching,

e eliminate races between user requests and asynchronous
data movement (e.g., for migration).

Our performance goal is to match or exceed traditional
“monolithic” tiered file systems, given the same tiering policy.

Mux slots between the VFS layer and device-specific file
systems (Figure 1). Figure 2 shows the components of Mux
and how file metadata and data are mapped to device-specific
file systems.

The main challenge is the crossing of file system bound-
aries. In Mux, a file is typically distributed across multiple file
systems, creating challenges for its indexing and metadata
management. At the same time, data movement across file
systems must not race or interfere with user requests, but
the global locking is missing. Mux introduces a set of global
metadata to bookkeep file distribution and devise efficient
synchronization mechanisms.

2.1 Interface

Mux provides a uniform namespace to user applications. The
underlying file systems selected by a user are mounted at
different mount points. Mux merges these mount points in a
single directory tree and presents it to user applications (Fig-
ure 2). A file can be distributed across multiple file systems;
the same file name exists in different file systems. The design
is inspired by OverlayFS [6] which overlays one file system
on top of another, presenting a merged directory view to
applications. In OverlayFS, all data updates are applied to
the topmost file system. We extend this design to enable
finer-grained and dynamic selection of the underlying file
systems, including write operations.

69

HOTOS ’25, May14-16, 2025, Banff, AB, Canada

To add a new device and the corresponding file system, the
user only needs to mount the new file system and register
it with Mux, along with a policy to manage it. To remove a
device, data must be migrated first. Adding or removing a
device can be done at runtime.

Mux is presented to the VFS layer as a standalone file
system, making the OS send file operations to Mux through
the existing VFS interface. Upon receiving a file operation,
Mux splits it based on the block-to-underlying file system
mappings, if required. Mux sends the split requests to device-
specific file systems by calling the same VFS function that
invokes it, but with different file handles, lengths, and offsets.

User-Defined Policy. Mux decouples tiering policies from
file system implementation. It exposes an interface for users
to specify policies on data placement and user request dis-
patching. All the placement and migration policies in existing
tiered file systems [16, 19, 26, 31, 32] can be expressed using
simple functions. For example, the data placement policy
of TPFS [32] can be simply implemented by a function that
returns different device IDs based on the I/O size, synchronic-
ity, and access history. Currently, the policy is encoded as a
kernel module or an eBPF extension so the policy functions
can be directly called.

2.2 File and Data Block

Mux can support block-level data distribution and place data
flexibly as per user-defined policies. For example, LRU-based
or Hot-Cold block-level data migration schemes employed
by existing tiered file systems [16, 31, 32] can be easily sup-
ported by Mux.

Block-level data distribution requires Mux to maintain
the mapping from a block to the underlying file systems (a
file system’s internal index is invisible to Mux). We use a
mapping table, named Block Lookup Table, to locate a block
of a file, as shown in Figure 2. Mux maintains a per-file
block lookup table and tracks in which device the recent
version of a block is stored. Since the table maps file offsets
to devices, that are small in size, we use an extent tree as a
high-performance data structure.

Note that a file can be stored on multiple devices as a result
of load balancing and data migration. Mux leverages sparse
files to preserve the file offset of a block across different
underlying file systems (Figure 2). It enables Mux to avoid
an additional translation while preventing space waste from
allocating the entire file.

2.3 Metadata

Managing file blocks across file systems creates a unique
challenge. Which file system should keep the metadata at-
tributes up to date, given that multiple ones may participate
in metadata-update operations (e.g. appends)? We opt for

HOTOS ’25, May14-16, 2025, Banff, AB, Canada

metadata multiplexing and introduce the notion of metadata
affinity. For each metadata attribute, there is an affinitive
file system at any given point in time, that holds the most
up-to-date value for the attribute. This design reduces small
writes due to metadata updates and avoids waiting on slow
devices for synchronization.

For example, when the file is created, the host file system
is the affinitive for all metadata. Later, if another file system
performs an append guided by Mux (e.g., tiering the new
blocks to multiple devices) the file system that allocated the
last block of the operation becomes the affinitive for the file
size attribute. During a write operation, the file system that
overwrites the last block of the operation becomes the affini-
tive for the last update timestamp. During a read operation,
the file system that fetches the last block of the operation
becomes the affinitive for the last access timestamp, etc. Mux
bookkeeps the affinitive file system per attribute, to orches-
trate incoming requests.

Mux caches metadata attributes in a collective inode, avoid-
ing fetching metadata from different file systems (which is
expensive in the multiplexed design).

Mux maintains its own metadata like block lookup table,
file affinity table, etc. The space overhead of such metadata
is marginal. For example, in a block lookup table, one byte
per 4 KB of user data is sufficient with a simple byte array,
leading to less than 0.025% of space overhead.

2.4 Data Movement

In heterogeneous storage, data movement is critical to per-
formance and cost efficiency. Traditional tiered file systems
realize transparent migration by implementing intra-file sys-
tem locking. It enables the migration and application’s file
operations to be performed atomically with respect to each
other. However, such locking is insufficient in Mux. In Mux,
blocks are moved from one file system to another, which
requires a synchronization mechanism across the file sys-
tems. Moreover, applications’ file operations are an external
operation to underlying device-specific file systems. Hence,
Mux requires a new synchronization mechanism to support
transparent migration.

We design the synchronization mechanism using opti-
mistic concurrency control [15], which is called OCC Syn-
chronizer. Our insight is that data movement does not change
the content of the data; so, a data movement process is consid-
ered successful if the content of the data remains unchanged
throughout the process. With this principle, we introduce a
version number to each file to identify the potential conflicts.
The version number is incremented at the start and end of a
data movement process, allowing Mux to detect the possi-
bility of a conflict while handling an application’s file write
by comparing the version number before and after the write

70

Jiyuan Zhang, Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia, and Tianyin Xu

operation and checking a migration flag on the file. If a po-
tential conflict is detected, Mux searches for blocks that have
changed during migration. If any blocks are found to have
been modified, Mux retries the migration of those blocks. If
all tasks that ran during the migration process are conflict-
free, the migrated block will be atomically committed and
made visible in the block lookup table. If OCC Synchronizer
keeps failing to migrate the block, Mux will resort to a lock-
based migration. This scheme minimizes the critical path of
user requests and enables the parallel execution of migration
without pessimistic blocking or lock contention.

Since a data block migrated using OCC Synchronizer is
only atomically made visible when proven to be conflict-
free, it avoids data corruption due to data race. Also, since
any tasks that could generate a conflict are checked before
committing the block, and those tasks are proven not to
have modified the migrated data block, the migrated data is
also guaranteed to be up-to-date. If any conflict occurs, the
migrated data block will be dropped and overwritten in place
in the next migration attempt. This ensures that there are
no side effects from failed attempts. OCC Synchronizer also
guarantees that the migration process will be completed in
a finite amount of time, due to the limited number of retries,
thus ensuring the replication lag is bounded.

2.5 Caching

Mux includes a cache manager to use Storage Class Memory
(SCM) devices (e.g., persistent memory) as caching devices.
Recent studies [9, 16, 19] show that using SCM for caching
improves storage performance, as SCM has a large capacity
and is accessible via memory operations. Existing tiered file
systems [16, 31] assume SCM-based caches.

In the Mux design, while each file system may use DRAM
as its page cache, the cache cannot be shared across de-
vices. Moreover, as storage continues to grow, DRAM is
difficult to scale. Using SCM devices to offload DRAM page
caches helps alleviate the scalability problem. SCM file sys-
tems [12-14, 20, 27, 33, 34] commonly use the DAX (Direct
Access) interface, where memory mapping a file provides
direct access to the physical storage, minimizing software
overhead. Mux uses DAX to implement data cache to mini-
mize software overhead.

Mux can create one file for all caches, which helps reduce
the overhead of managing multiple files as well as disk frag-
mentation. Alternatively, Mux can preallocate the cache file
to ensure cache availability and reduce block allocation over-
head. Mux uses DAX memory mapping for the cache file. If
the caching memory pool is depleted, the data can be written
back or evicted. We use Multi-generational LRU [3] for cache
replacement, which is also the algorithm Linux uses for its
page caches.

Rethinking Tiered Storage: Talk to File Systems, Not Device Drivers

3 Preliminary Results

We report the performance of an early prototype of Mux, in
comparison to Strata, a traditional tiered file system. We also
report the overhead of Mux over native device-specific file
systems when accessing files directly (without tiering).

3.1 Performance

We use a storage hierarchy that consists of Intel Optane
Persistent Memory 200 (as PM), Intel Optane SSD DC P4800X
(as SSD), and Seagate Exos X18 (as HDD), paired with Intel
Xeon 6346 CPU and 256GB DRAM. We use a prototype of
Mux that utilizes specialized production-ready file systems,
including NOVA [27] for PM, XFS [25] for SSD, and Ext4 [22]
for HDD. We compare Mux with Strata [16], a research tiered
file system. Mux and Strata use the same tiering policy to
manage the storage hierarchy.

Strata follows the traditional tiered file system design. It is
designed as a monolithic file system that manages all three
devices internally. Our Mux prototype implements the tiering
mechanism internally, but delegates the I/O to NOVA, XFS,
and Ext4. We implement a simple LRU policy that evicts cold
data to the slower device if no space left on faster devices,
and promotes data back upon access.

We focus on data migration, which is arguably the most
basic tiering feature. Mux directly supports data migration
between any pair of devices (Figure 3a). As VFS abstracts out
device-specific details, supporting a migration path takes a
single line of code to invoke the migration function. However,
this is not the case for Strata, where adding a path requires
manually matching the threading model, block size, and call
context of the paired devices. If two devices are not wired,
data migration between them either is unsupported (N/S) or
must be relayed via other devices. Among all six migration
pairs, Strata supports only two (Figure 3a). Also, it supports
neither SSD to HDD demotion nor any kind of promotion.

We measure the maximum throughput of data migration
between each device pair by continuously writing data to sat-
urate upper-tier devices, forcing data migrations. As shown
in Figure 3a, the throughputs of inter-device data migration
in Mux are much higher than those in Strata. Specifically, the
throughput of PM to SSD migration is increased by 2.59x. We
also measure the I/O throughput of individual devices. We
run Strata’s microbenchmark [2] with 90GB random writes
and measure the throughput when the I/O request is always
directed to the target devices. As shown in Figure 3b, the I/O
throughput of Mux is 1.08x, 1.46x, and 1.07x higher for PM,
SSD, and HDD respectively over Strata.

We attribute the performance advantage of Mux over
Strata for two reasons. First, Mux leverages the device-specific
optimizations provided by the underlying file systems. For
example, we observe that Strata first writes data to a log

71

HOTOS ’25, May14-16, 2025, Banff, AB, Canada

N/S: Not Supported Numbers are reported in MB/s
Target Device Target Device A600
PM SSD HDD PM SSD HDD g 500
£ PM 375 m £ PM 970 216 E4()0
3 9 é
S ssp Nl < sspl 1185 21| 5
= @ =]
E E 200 N
= =3 =
2 HDD Y HDD| 244 221 = [Strata
100
E Mux
Strata Mux (e ——
(NOVA, xfs, ext4) Q$\ 5‘;9‘290
(a) Extensibility (b) Performance

Figure 3: Extensibility and performance of Strata and
Mux. Strata uses static routing among tiers and only sup-
ports PM to SSD and PM to HDD data movement; Strata has
lower performance compared to device-specific file systems
on a single PM/SSD/HDD device.

on persistent memory and then digests the log to actual
file blocks on final storage devices. However, such logging
is not necessary on persistent memory devices. The opti-
mized file system we use for PM, namely NOVA, is different
in that it writes data directly to the file blocks using DAX
and uses the CLFLUSH instruction to guarantee data consis-
tency. Hence, Strata’s design results in write amplification
and performance degradation. Second, unlike Strata, Mux
uses independent file systems to drive devices. In Strata, the
file extent tree that contains both block offset and device
index has to be partially locked during block-level data mi-
gration, which may prevent access to blocks that do not
require migration. In contrast, since Mux works on top of
device-specific file systems and has its own separate metafile
storage, locking file blocks for migration will not affect ac-
cess to other blocks. We acknowledge that Strata is a research
system and its performance may not represent an ideal tiered
file system. On the other hand, Mux uses production-ready,
highly optimized device-specific file systems, which shows
the advantage of the Mux design—the extensibility allows
Mux to directly benefit from device-specific optimizations
of well-developed file systems.

3.2 Overhead

Mux explores a tradeoff: introducing an additional file system
layer above the device-specific file systems to get the perfor-
mance benefit of per-device specialization for free. One may
suspect an 100% overhead of Mux, as it doubles the work of
file systems. To understand the worst case of the indirection
overhead, we run a microbenchmark that repeatedly reads
one single byte from a 10GB file randomly. Compared to the
native file systems—NOVA, XFS, and Ext4 (with no tiering),
Mux increases the latency by 52.4%, 87.3%, and 6.6% on PM,
SSD, and HDD, respectively.

HOTOS ’25, May14-16, 2025, Banff, AB, Canada

We also run a microbenchmark that repeatedly writes four
megabytes to a file sequentially to evaluate write through-
put overhead. Compared to the native file systems, Mux
decreases the throughput by 1.6%, 2.2%, and 3.5% on PM,
SSD, and HDD, respectively.

Note that some of the above overhead may also appear in
an ideal tiered file system; how to quantify the Mux overhead
over an ideal implementation remains our future work.

4 Discussion

With the initial prototype that shows the promises, we are de-
veloping a full-fledged Mux. We discuss several challenging
problems we encounter and ideas to address them.

Crash Consistency. Currently, the crash consistency prop-
erties of Mux are composed of those of the participating file
systems. Mux sends fsync requests to all the file systems
that are responsible for a given file and synchronizes the
completion of the fsync operations. Upon a crash, Mux relies
on each participating file system to recover the data blocks
it stores. However, different file systems have different crash
consistency guarantees [23] and the overall crash consis-
tency of a file is affected by defects in any participating file
system, assuming no data replication. We believe that a much
stronger crash consistency guarantee can be designed for
Mux by utilizing the diversity of device-specific file systems
and by the opportunity for data replication across devices.

Feature Imparity of File Systems. A common thread in
the Mux design is the difference between different file sys-
tems, despite that they all implement the VFS interface. For
example, file systems often have special features that the
others do not. Some file systems extend metadata attributes
in uncommon ways. Oftentimes, even for the same metadata
attribute, its semantics can vary (e.g., FAT records times-
tamps with a two-second granularity [1]). We currently do
not consider any extended metadata attributes or special
features. How to enable users to effectively manage these
system-specific features and metadata is an open problem.

Improving The I/O Scheduler. High-performance I/O of-
ten requires I/O schedulers to maximize resource utilization
and minimize contention. The I/O scheduler should identify
request types, estimate their costs, and reorder them to opti-
mize performance [28]. We currently use a simple scheduling
algorithm based on device profiles (performance characteris-
tics and feature sets). We expect more intelligent schedulers
to be developed, that consider dynamic states such as load
spikes on devices as well as instantaneous I/O activities for
garbage collection and in-device DRAM flushing to SSDs.

Configuring Mux. As the Mux design can easily integrate
many existing file systems, an emerging problem is how
to find the best configuration of file systems for a given
workload or a given set of storage devices. Sharing Mux

72

Jiyuan Zhang, Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia, and Tianyin Xu

among multiple applications may also require scheduling
schemes that support priority, deadline, and/or quota, which
may dispatch I/Os and accessed data blocks to file systems
with different performances, or ensure that high-priority
tasks are not impeded by reordering and splitting requests.

Distributed Mux. One ambitious idea is to extend Mux in
a distributed manner. By designing a Mux-to-Mux intercon-
nection (e.g., through Remote Procedure Call) at the Mux
layer and a distributed tiering policy, it is possible that a set
of machines mounting traditional file systems can be inte-
grated into a distributed storage system. Certainly, to realize
that, we will need to address many open problems, some
of them are: (1) how to achieve transparency across the OS
boundary? (2) how to support dynamic joining and leaving
of nodes? and (3) how to handle latency variations and net-
work faults? We plan to start with attaching networked file
systems as one of the underlying file systems.

Acknowledgement

We thank our shepherd Dan Tsafrir for the extensive tech-
nical discussion that reshaped the paper. We thank Swami-
nathan Sundararaman and Nam Sung Kim for their valuable
technical discussion. The paper is supported in part by NSF
CNS-1956007, CNS-2145295, SHF-2348066, an IIDAI grant,
and the Wing Kai Cheng Fellowship.

References

[1] Microsoft FAT Specification. https://academy.cba.mit.edu/classes/ne
tworking_communications/SD/FAT.pdf, Aug. 2005.

[2] Microbenchmarks - ut-osa/assise. https://github.com/ut-osa/assise/tre
e/master/bench/micro, Apr. 2021.

[3] Multi-generational LRU: the next generation. https://lwn.net/Articles
/856931/, May 2021.

[4] Samsung Plans to Start Large-Scale Production of CXL Devices Soon.
https://semiconductor.samsung.com/us/news-events/news/samsun
g-demonstrates-new-cxl-capabilities-and-introduces-new-memory-
module-for-scalable-composable-disaggregated-infrastructure-at-
memcon-2024/, Mar. 2024.

[5] Intel Has Incorporated CXL into Its Modern Processors. https://www.
intel.com/content/www/us/en/support/articles/000059219/processor
s.html, Jan. 2025.

[6] Overview of the Overlay File System. https://docs.kernel.org/filesyste
ms/overlayfs.html, Jan. 2025.

[7] trapexit/mergerfs. https://github.com/trapexit/mergerfs, Apr. 2025.

[8] ANDERsON, P., Aranas, E. B., Assar, Y., BEHRENDT, R., BLACK,
R., CABALLERO, M., CAMERON, P., CaNAKkcI, B., DE CARrRvAaLHO, T.,
CHATZIELEFTHERIOU, A., STORAN CLARKE, R., CLEGG, J., CLETHEROE,
D., COOPER, B., DEEGAN, T., DONNELLY, A., DREVINSKAS, R., GAUNT,
A., GKANTSIDIS, C., GOMEZ DiAz, A., HALLER, I, HoNG, F., ILIEVA, T,
JosHi, S., Joyck, R., KUNKEL, M., LARA, D., LEGTCHENKO, S., L1u, F. L.,
MAGALHAES, B., MARZOEV, A., MCNETT, M., MOHAN, J., MYRAH, M.,
NGuyeN, T., Nowozin, S., Ocus, A., OVERWEG, H., ROWSTRON, A., SAH,
M., SAKAKURA, M., SCHOLTZ, P., SCHREINER, N., SELLA, O., SMITH, A.,
STEFANOVICI, 1., SWEENEY, D., THOMSEN, B., VERKES, G., WAINMAN,
P., WESTCOTT, J., WESTON, L., WHITTAKER, C., WILKE BERENGUER, P.,
WiLLiams, H., WINKLER, T., AND WINZECK, S. Project Silica: Towards

https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://github.com/ut-osa/assise/tree/master/bench/micro
https://github.com/ut-osa/assise/tree/master/bench/micro
https://lwn.net/Articles/856931/
https://lwn.net/Articles/856931/
https://semiconductor.samsung.com/us/news-events/news/samsung-demonstrates-new-cxl-capabilities-and-introduces-new-memory-module-for-scalable-composable-disaggregated-infrastructure-at-memcon-2024/
https://semiconductor.samsung.com/us/news-events/news/samsung-demonstrates-new-cxl-capabilities-and-introduces-new-memory-module-for-scalable-composable-disaggregated-infrastructure-at-memcon-2024/
https://semiconductor.samsung.com/us/news-events/news/samsung-demonstrates-new-cxl-capabilities-and-introduces-new-memory-module-for-scalable-composable-disaggregated-infrastructure-at-memcon-2024/
https://semiconductor.samsung.com/us/news-events/news/samsung-demonstrates-new-cxl-capabilities-and-introduces-new-memory-module-for-scalable-composable-disaggregated-infrastructure-at-memcon-2024/
https://www.intel.com/content/www/us/en/support/articles/000059219/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059219/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059219/processors.html
https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html
https://github.com/trapexit/mergerfs

Rethinking Tiered Storage: Talk to File Systems, Not Device Drivers

—
O
—

[10

(11

[12

(13

(14

(15

(16

(17

(18

(19

[20

(21

[22

[23

=

]

—

—_

=

[’

]

]

]

]

]

]

]

—_

Sustainable Cloud Archival Storage in Glass. In Proceedings of the 29th
Symposium on Operating Systems Principles (SOSP °23) (Oct. 2023).
ANDERSON, T. E., CaNint, M., KM, J., KosTi¢, D., Kwon, Y., PETER,
S., REpA, W, ScHUH, H. N., AND WITCHEL, E. Assise: Performance
and Availability via Client-local NVM in a Distributed File System. In
Proceedings of 14th USENLX Symposium on Operating Systems Design
and Implementation (OSDI "20) (Nov. 2020).

BornHOLT, J., LoPEZ, R., CARMEAN, D. M., CEZE, L., SEELIG, G., AND
StrAUSS, K. A DNA-Based Archival Storage System. In Proceedings of
the 21st International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’16) (Mar. 2016).
CHEN, Y., Lu, Y., Zuu, B., ArRPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., AND SHU, J. Scalable Persistent Memory File System with Kernel-
Userspace Collaboration. In Proceedings of the 19th USENIX Conference
on File and Storage Technologies (FAST °21) (Feb. 2021).

CHEN, Y., SHU,], Ov,], AND Lu, Y. HiNFS: A Persistent Memory File
System with Both Buffering and Direct-Access. ACM Transactions on
Storage (TOS) 14, 1 (Apr. 2018).

DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A., LANTZ, P., REDDY,
D., SANKARAN, R., AND JACKSON,]J. System Software for Persistent
Memory. In Proceedings of the Ninth European Conference on Computer
Systems (EuroSys '14) (Apr. 2014).

Kapexkobi, R, LEg, S. K., Kasuyar, S., Kim, T., KorLi, A., AND CHI-
DAMBARAM, V. SplitFS: Reducing software overhead in file systems
for persistent memory. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP °19) (Oct. 2019).

Kung, H.-T., AND ROBINSON, J. T. On optimistic methods for con-
currency control. ACM Transactions on Database Systems 6, 2 (1981),
213-226.

KwoN, Y., FINGLER, H., HUNT, T., PETER, S., WITCHEL, E., AND ANDER-
soN, T. Strata: A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP °17) (Oct. 2017).
LEE, T.,, MONGA, S. K., MIN, C., AND Eom, Y. I. Memtis: Efficient Memory
Tiering with Dynamic Page Classification and Page Size Determination.
In Proceedings of the 29th Symposium on Operating Systems Principles
(SOSP *23) (Oct. 2023).

L1, H., BERGER, D. S., Hsu, L., ERNsT, D., ZARDOSHTI, P., NovAKOVIC, S.,
SHAH, M., RAJADNYA, S., LEE, S., AGARWAL, I, HiLL, M. D., FONTOURA,
M., AND B1aNcHINI R. Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms. In Proceedings of the 28th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °23) (Mar. 2023).

LIN, Z., XIANG, L., Rao, J., AND Lu, H. P2CACHE: Exploring Tiered
Memory for In-Kernel File Systems Caching. In Proceedings of the 2023
USENIX Annual Technical Conference (USENIX ATC °23) (July 2023).
Lu, Y, Suu, J., CHEN, Y., AND L1, T. Octopus: an RDMA-enabled Dis-
tributed Persistent Memory File System. In Proceedings of the 2017
USENIX Annual Technical Conference (USENIX ATC °17) (July 2017).
MaRrur, H. A., WANG, H., DHANOTIA, A., WEINER, J., AGARWAL, N.,
BHATTACHARYA, P., PETERSEN, C., CHOWDHURY, M., KANAU]JIA, S., AND
CHAUHAN, P. TPP: Transparent Page Placement for CXL-Enabled
Tiered-Memory. In Proceedings of the 28th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °23) (Mar. 2023).

MATHUR, A., CA0, M., BHATTACHARYA, S., DILGER, A., TomMAS, A., AND
VIVIER, L. The new ext4 filesystem: current status and future plans.
In Proceedings of the Ottawa Linux Symposium (OLS 2007) (June 2007).
Priral, T. S., CHIDAMBARAM, V., ALAGAPPAN, R., AL-KiswaNny, S.,
ARpACI-DUsSEAU, A. C., AND ARPACI-DUsstAU, R. H. All File Sys-
tems Are Not Created Equal: On the Complexity of Crafting Crash-
Consistent Applications. In Proceedings of the 11th USENIX conference
on Operating Systems Design and Implementation (OSDI'14) (Oct. 2014).

73

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

HOTOS ’25, May14-16, 2025, Banff, AB, Canada

QUIGLEY, D., SIPEK, J., WRIGHT, C., AND ZADOK, E. Unionfs: User- and
Community-Oriented Development of a Unification File System. In
Proceedings of the 2006 Ottawa Linux Symposium (OLS ’06) (July 2006).
SWEENEY, A. Scalability in the XFS File System. In Proceedings of the
USENIX 1996 Annual Technical Conference (USENLX ’96) (Jan. 1996).
Wu, K., Guo, Z., Hu, G, Tu, K., ALAGAaPPAN, R,, SEN, R., PARK, K.,
ARPACI-DUsSEAU, A. C., AND ArRPACI-DuUsseau, R. H. The Storage
Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage
Devices with Orthus. In Proceedings of the 19th USENLX Conference on
File and Storage Technologies (FAST °21) (Feb. 2021).

Xu, J., AND SWANSON, S. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST ’16)
(Feb. 2016).

YANG, S., HARTER, T., AGRAWAL, N., KOWSALYA, S. S., KRISHNAMURTHY,
A., AL-KiswaNny, S., KausHik, R. T., Arraci-Dussgau, A. C., AND
ARrpacI-Dusseau, R. H. Split-level I/O scheduling. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP ’15)
(Oct. 2015).

Yang, S.-P., Kim, M., Nam, S., PARK, J., CHot, J.-Y., Nam, E. H., LEE,
E., LEE, S., AND KiMm, B. S. Overcoming the Memory Wall with CXL-
Enabled SSDs. In Proceedings of the 2023 USENLX Annual Technical
Conference (USENIX ATC °23) (July 2023).

ZHAN, Y., Hu, H., YANG, X., WANG, S., Cao, Q., JIANG, H., AND Yao,
J. RomeFS: A CXL-SSD Aware File System Exploiting Synergy of
Memory-Block Dual Paths. In Proceedings of the 15th ACM Symposium
on Cloud Computing (SoCC "24) (Nov. 2024).

ZHENG, S., HOSEINZADEH, M., AND SWANSON, S. Ziggurat: A Tiered
File System for Non-Volatile Main Memories and Disks. In Proceedings
of the 17th USENIX Conference on File and Storage Technologies (FAST
’19) (Feb. 2019).

ZHENG, S., HOSEINZADEH, M., SWANSON, S., AND HUANG, L. TPFS: A
High-Performance Tiered File System for Persistent Memories and
Disks. ACM Transactions on Storage 19, 2 (2023), 1-28.

Zuou, D., ASCHENBRENNER, V., Lyu, T., ZHANG,]J., KANNAN, S., AND
Kasnyap, S. Enabling High-Performance and Secure Userspace NVM
File Systems with the Trio Architecture. In Proceedings of the 29th ACM
Symposium on Operating Systems Principles (SOSP °23) (Oct. 2023).
Zuou, D., Q1AN, Y., GUPTA, V., YANG, Z., MIN, C., AND KasHYAP, S.
ODINEFS: Scaling PM Performance with Opportunistic Delegation. In
Proceedings of the 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22) (July 2022).

ZHou, J., Dong, M., WANG, F., ZEN, J., ZHAO, L., FAN, C., AND CHEN, H.
Liquid-State Drive: A Case for DNA Block Device for Enormous Data.
In 23rd USENIX Conference on File and Storage Technologies (FAST °25)
(Feb. 2025).

	Abstract
	1 Introduction
	2 Mux Design
	2.1 Interface
	2.2 File and Data Block
	2.3 Metadata
	2.4 Data Movement
	2.5 Caching

	3 Preliminary Results
	3.1 Performance
	3.2 Overhead

	4 Discussion
	References

