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Machine learning methods are increasingly being
employed as surrogate models in place of computa‑
tionally expensive and slownumerical integrators for a
bevy of applications in the natural sciences. However,
while the laws of physics are relationships between
scalars, vectors and tensors that hold regardless
of the frame of reference or chosen coordinate
system, surrogate machine learning models are not
coordinate‑free by default. We enforce coordinate
freedom by using geometric convolutions in three
model architectures: a ResNet, a Dilated ResNet
and a UNet. In numerical experiments emulating
two‑dimensional compressible Navier–Stokes, we see
be琀琀er accuracy and improved stability compared with
baseline surrogate models in almost all cases. The
ease of enforcing coordinate freedom without making
major changes to the model architecture provides an
exciting recipe for any convolutional neural network‑
based method applied to an appropriate class of
problems.
This article is part of the theme issue ‘Partial

di昀昀erential equations in data science’.
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1. Introduction
Contemporary natural science features many datasets that are images, la琀琀ices or grids of geo‑
metric objects. These might be observations of intensities (scalars), velocities (vectors), magnetic
昀椀elds (pseudovectors) or polarizations (2‑tensors) on a surface or in a volume. Any grid of vec‑
tors or tensors can be seen as a generalization of the concept of an image in which the intensity
in each pixel is replaced with a geometric object—scalar, vector, tensor or their pseudo counter‑
parts. These objects are geometric in the sense that they are de昀椀ned in terms of their transformation
properties under geometric operators such as rotation, translation and re昀氀ection. Likewise, a grid
of these objects is also geometric, so we will refer to them as geometric images.
There are many questions that we might like to answer about a dataset of geometric im‑

ages. The images could be the initial conditions of a simulation discretized to a regular grid; see
昀椀gure 1 for some examples. A critical problem in astronomy, climate science and many other
昀椀elds involves modelling the evolution of velocity, pressure and density 昀椀elds according to the
Navier–Stokes equations. Classical numerical methods to solve these equations can be reliable
and accurate [5], but they are computationally expensive and rely on having the full speci昀椀cation
of the di昀昀erential equations that govern the physics. Creating surrogate models with machine
learning (ML) methods has shown promise as an alternative because they allow us to make pre‑
dictions based on only partially speci昀椀ed dynamical systems [6]. Moreover, once trained on the
desired spatial and temporal scales, these surrogate models could generate an approximate solu‑
tion from an initial condition much faster than a traditional solver. However, long‑term stability
in surrogate models remains a concern [7].
One potential culprit for unstable rollouts is that ML models are not coordinate‑free by de‑

fault; they operate on the components of the vectors rather than the vectors themselves. In typical
contexts, the input channels of a convolutional neural network (CNN) are the red, green and blue
channels of a colour image; these are then combined arbitrarily in the layers of the CNN. The
naive, 昀氀awed approach to applying CNN methods to geometric images is to treat the compo‑
nents of the vector or tensor as independent channels, ignoring how these objects behave under
geometric operations.
The fundamental observation inspiring this work is that when an arbitrary function is applied

to the components of vectors and tensors, the geometric structure of these objects is destroyed
[8]. There are strict rules, dating back to the early days of di昀昀erential geometry [9], about how
geometric objects can be combined to produce new geometric objects, consistent with coordinate
freedom and transformation rules. These rules constitute a theme of [10], where they are com‑
bined into a geometric principle (see page 1 of [10]). With the tools of equivariant ML, we can make
be琀琀er and more e昀케cient models by incorporating the rules of coordinate freedom. Similar ideas
have had success in numerical integrators as well [11,12].
The concept of equivariance is simple. Given a group G with action on some spaces X and

Y, we say a function f ∶X→Y is equivariant with respect to G if for all x∈X and g∈G we have
f(g ⋅ x) = g ⋅ f(x). For equivariantML,we learn a function f over a class of equivariant functionswith
respect to a relevant group. Ideally, we would like our group to express all possible coordinate
transformations, but this includes all possible di昀昀eomorphisms, a computationally intractable
group [13]. Thus, in practice, we will consider certain rotations, re昀氀ections and translations.
The symmetries that these rules suggest are continuous symmetries. But of course, images are

usually—and for our purposes, always—regular, discrete grids of values. For our purposes, in‑
stead of the continuous symmetries respected by the tensor objects in the image pixels, there will
be discrete symmetries for each geometric image taken as a whole. We will de昀椀ne these discrete
symmetry groups and use them to de昀椀ne a useful kind of group equivariance for functions of
geometric images. When we enforce this equivariance, the convolution 昀椀lters that appear look
very much like the di昀昀erential operators that appear in discretizations of vector calculus. Even
though we only implement a relatively small set of symmetries, we numerically observe that they
provide a signi昀椀cant improvement over baselines that do not respect these symmetries. In a sim‑
ilar spirit, related observations have been made in the numerical analysis literature, where using
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Figure 1. Examples of geometric images in the natural sciences. (a) A visualization of a temperature map and a polarization
map from the ESA Planck Mission [1] (courtesy ESA/NASA/JPL-Caltech). The colour map shows a temperature 昀椀eld (a scalar or
0(+)-tensor) on the sphere, and the whiskers show the principal eigenvector direction of a 2(+)-tensor 昀椀eld in two dimen-
sions. (b) Two-dimensional maps of ocean current (arrows; a vector or 1(+)-tensor 昀椀eld) and ocean salinity (colour; a scalar or
0(+)-tensor 昀椀eld) [2]. (c) A three-dimensional map of temperature (a scalar or 0(+)-tensor 昀椀eld) based on sensors distributed
throughout the volume of a granary [3]. (d) A two-dimensional map of potential vorticity (a pseudoscalar or 0(−)-tensor 昀椀eld)
in the Earth’s atmosphere, measured for the purposes of predicting storms [4].

discretizations that respect the symmetries of the underlying di昀昀erential operators improves the
accuracy of the numerical simulations [14].
The numerical experiments in this work focus on modelling the Navier–Stokes equations,

which involve scalar 昀椀elds and vector 昀椀elds. However, the model we develop, the GeometricIma‑
geNet, can be immediately applied to geometric images of any tensor order or parity.
Our contributions: The contributions of this paper are the following:

— We de昀椀ne the geometric convolution of tensor images using tensor products and
contractions (§3b).

— We extend the results of [15] and [16] to prove translation and roto‑re昀氀ection equivari‑
ance of geometric convolutions on tensor images (§4).

— We construct a novel model architecture using geometric convolutions and display its
advantages over non‑equivariantmethods through numerical experiments on compress‑
ible Navier–Stokes simulations (§§5 and 6).

Additionally, we discuss related work in §2 and mathematical background in §3a. The proofs
have been sequestered in the appendix along with a larger exploration of related work.

2. Related work
The di昀케culty of modelling Navier–Stokes and other partial di昀昀erential equations has made the
surrogate neural network approach popular in recent years. The CNN approach without regard
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to coordinate freedom is common [17–20] and can be successful with su昀케cient data. Some ap‑
proaches like the Fourier neural operator [21] are adept at handling images at any resolution.
Other methods have tried to incorporate the physical laws back into ML models under the broad
category of physics‑informed ML [22–24].
Equivariant ML is one approach to incorporating physical laws in learned methods by explic‑

itly enforcing the appropriate symmetry in the architecture of the network. When we expect our
target function to be equivariant to that group, this strategy improves the model’s generaliza‑
tion and accuracy (see, for instance, [25–29]) and is a powerful remedy for data scarcity (see [30]).
Equivariant networks, in certain cases, can approximate any continuous equivariant function (see
[31–34]).
Equivariant models have been built for many di昀昀erent symmetry groups, such as translations

[35], gauge symmetries [36], permutations [37], rotations/re昀氀ections [16,26,38,39] ormultiple sym‑
metries [32,40]. There are many approaches to building equivariant models, such as using data
augmentation [41,42], invariant theory [43], group convolutions [16], canonicalization [44,45] or
irreducible representations [38,39,46]. Our paper uses tensor operations to enforce equivariance,
in a similar manner to [37] and [47]. However, both works focus on single tensor inputs and out‑
puts rather than tensor images, which signi昀椀cantly changes the methodology of the linear layers.
Closest to our paper in both strategy and application are [26] and [48], but they implement the
symmetries with irreducible representations and Cli昀昀ord algebras, respectively.
Each equivariant method has some challenges. Group convolutions require convolving over

the group elements in addition to the spatial dimensions, which can be expensive for larger
groups. The Cli昀昀ord algebras can handle vectors and pseudovectors naturally, but they cannot
handle all higher order tensors because they are a quotient group of tensor algebra [49, Ch. 14, the‑
orem 4.1]. Steerable methods require using irreducible representations and decomposing higher
order tensors, which can be somewhat involved [50]. By contrast, the geometric convolutions we
present in this paper operate on tensors in their natural, Cartesian form,which allows every step of
the network to remain interpretable from a physics perspective. Furthermore, geometric convolu‑
tions are naturally discrete like their input images, exactly equivariant to the discrete symmetries
of those images and able to handle any tensor order or parity.
See appendix B for amore in‑depth description of themathematical details of the relatedwork.

3. Geometric objects and geometric images
We de昀椀ne the geometric objects and geometric images that we use to generalize classical im‑
ages in scienti昀椀c contexts in §3a,b. The main point is that the channels of geometric images, the
components of vectors and tensors, are not independent. There is a set of allowed operations on
geometric objects that respect the structure and coordinate freedom of these objects.

(a) Geometric objects
We start by 昀椀xing d, the dimension of the space, which will typically be 2 or 3. The coordinate
transformations will be given by the orthogonal group O(d), the space of isometries of ℝd that 昀椀x
the origin. The geometric principle from classical physics [10] states that geometric objects should
be coordinate‑free scalars, vectors and tensors, or their negative‑parity pseudo counterparts. By
coordinate‑free we mean that if F is a function with geometric inputs, outputs and parameters,
then F(g ⋅ v) = g ⋅ F(v) for all objects v and all g∈O(d). This is the mathematical concept of equiv‑
ariance, which we will explore further in §4. This requires that the de昀椀nitions of the geometric
objects are inseparable from how O(d) acts on them.

De昀椀nition 1 ((pseudo‑)scalars). Let s∈ℝ have an assigned parity p∈ {−1,+1}. Let g∈O(d) and
let M(g) be the standard d × d matrix representation of g, i.e. M(g−1) =M(g)−1 =M(g)⊤. Then the
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action of g on s, denoted g ⋅ s, is de昀椀ned as

g ⋅ s= det
(
M(g)

) 1−p
2 s. (3.1)

When p=+1, s is a scalar and det
(
M(g)

) 1−p
2 = 1 so the action is just the identity. When p=−1, s

is a pseudoscalar, so det
(
M(g)

) 1−p
2 = det

(
M(g)

)
=±1, and there is a sign 昀氀ip if g involves an odd

number of re昀氀ections.

De昀椀nition 2 ((pseudo‑)vectors). Let v∈ℝd be a vector, and let v have parity p∈ {−1,+1}. Let
g∈O(d), and letM(g) be the standardmatrix representation of g. Then the action of g on v, denoted
g ⋅ v, is de昀椀ned as

g ⋅ v= det
(
M(g)

) 1−p
2 M(g) v, (3.2)

where parity p has the same e昀昀ect as on the scalars.

We can now construct higher order tensors using the tensor (outer) product.

De昀椀nition 3 (k(p)‑tensors). The space ℝd equipped with the action O(d) de昀椀ned by (3.2) is the
space of 1(p)‑tensors. If we have k1(pi)‑tensors denoted vi, then T ∶= v1 ⊗ …⊗ vk is a rank−1 k(p)‑tensor,
where p=

∏k
i=1 pi and the action of O(d) is de昀椀ned as

g ⋅ (v1 ⊗ …⊗ vk) = (g ⋅ v1)⊗ …⊗ (g ⋅ vk). (3.3)

Thus, a tensor T is an element of a vector space (ℝd)⊗k, which we denote Td,k,p. To get higher
rank tensors, we can add tensors of the same order k and parity p, and the action of O(d) extends
linearly.

Note that the parity p is not an intrinsic quality of the components of a tensor. For example,
a vector and a pseudovector could be equal for a certain choice of coordinates, but they would
behave di昀昀erently under some coordinate transformations. Also, note the distinction between the
order k of the k(p)‑tensor and the rank of the tensor. We could have a 2(p)‑tensor of rank 1, like those
we use in de昀椀nition 3. We refer to the components of tensors with Einstein summation notation.

De昀椀nition 4 (Einstein summation notation). In Einstein summation notation, the components of
tensors are referred to by subscripts, e.g. [a]ij for the ith, jth component of 2(p)‑tensor awhere i and j
are in the range 1,… , d. In this paper, we assume that our tensor images have a Riemannianmetric
of the identity matrix, so we do not need to distinguish between covariant and contravariant in‑
dices. A subscript index may appear exactly once in a term, in which case we are taking the outer
product, or exactly twice, in which case we are summing over (contracting) that index.

This notation can be used to express a lot of familiar operations. For example, the dot prod‑
uct of vectors a, b is wri琀琀en as [a]i[b]i. The product of two 2(p)‑tensors (represented as two d × d
matrices A and B) is wri琀琀en as

[AB]i,j = [A]i,k [B]k,j ∶=
d∑
k=1

[A]i,k [B]k,j, (3.4)

where the sum from 1 to d on repeated index k is implicit in the middle expression. In summation
notation, the group action of (equation (3.3)) on k(p)‑tensor b is explicitly wri琀琀en

[g ⋅ b]i1 ,…,ik = det
(
M(g)

) 1−p
2 [b]j1 ,…,jk [M(g)]i1 ,j1 ⋯ [M(g)]ik ,jk (3.5)
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for all g∈O(d). For example, a 2(+)‑tensor has the transformation property [g ⋅ b]i,j =
[b]k,l [M(g)]i,k [M(g)]j,l,which, in normalmatrix notation, iswri琀琀en as g ⋅ b=M(g) bM(g)⊤. Tomake
operations on general k(p)‑tensor more concise, we adopt the following two de昀椀nitions.

De昀椀nition 5 (tensor product). Let a be a k(p)‑tensor and let b be a k′(p′)‑tensor. Then the tensor
product of a and b, denoted a⊗ b, is the (k + k′)(p p′)‑tensor whose i1,… , ik+k′ components are de昀椀ned
as

[a⊗ b]i1 ,…,ik+k′ = [a]i1 ,…,ik [b]ik+1 ,…,ik+k′ . (3.6)

De昀椀nition 6 (k‑contraction). Let a be a (2k + k′)(p)‑tensor, then the k‑contraction�k(a) is a k′(p)‑
tensor de昀椀ned as

[�k(a)]j1 ,…,jk′ = [a]i1 ,…,ik ,i1 ,…,ik ,j1…,jk′ . (3.7)

In other words, we are contracting over indices (1, k) to (k + 1, 2k).

It is helpful to think of the contraction as the generalization of the trace to higher order tensors,
wherewe are summing over k pairs of axes. For a 2(p)‑tensor a, the tensor contraction �1(a) is exactly
the trace, a 0(p)‑tensor. If a is a 5(p)‑tensor, then the contraction �2(a) is the 1(p)‑tensor given by

[�2(a)]j = [a]i,l,i,l,j =
d∑
i=1

d∑
l=1

[a]i,l,i,l,j. (3.8)

We use the k‑contraction to de昀椀ne a norm for tensors, which is equivalent to the l2 norm on the
vectorized tensor or the Frobenius norm for matrices extended to tensors.

De昀椀nition 7 (l2 tensor norm). Let a be a k(p)‑tensor. Then the l2tensor norm‖⋅‖2 ∶Td,k,p→Td,0,+

is de昀椀ned as

‖a‖2 =√
�k(a⊗ a). (3.9)

(b) Geometric images and operations
Wewill start by considering square (or cubic or hyper‑cubic) images on a d‑torus. We consider an
image Awith N equally spaced pixels in each dimension for Nd pixels total. Working on a square
regular grid on the d‑torus is essential for the equivariance resultswe develop in §4; the de昀椀nitions
and operations below are applicable with minor adjustments to rectangular, non‑toroidal arrays
as well. Each pixel contains a k(p)‑tensor, where k and p are the same for each pixel. We de昀椀ne the
geometric images as follows.

De昀椀nition 8 (geometric image). A geometric image is a function A ∶ [N]d→Td,k,p, where [N] =
{0, 1,… ,N − 1}. The set of geometric images is denotedAN,d,k,p. We will also consider k(p)‑tensor im‑
ages on the d‑torus, where [N]d is given the algebraic structure of (ℤ∕Nℤ)d. The pixel index of a
geometric image, often {̄, is naturally a 1(+)‑tensor.

Just as the space of k(p)‑tensors is a vector space, the space of geometric images is also a vector
space. Thus, they include vector addition and scalar multiplication. Additionally, for each ten‑
sor operation de昀椀ned in §3a, we can de昀椀ne an analogous operation on geometric images that is
performed pixel‑wise.
We now turn to the 昀椀rst major contribution of this paper, the generalization of convolution

to take geometric images as inputs and return geometric images as outputs. The idea is that a
geometric image of k(p)‑tensors is convolved with a geometric 昀椀lter of k′(p′)‑tensors to produce a
geometric image that contains (k + k′)(p p′)‑tensors, where each pixel is a sum of outer products.
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These (k + k′)(p p′)‑tensors can then be contracted down to lower‑order tensors using contractions
(de昀椀nition 6). Note that the side lengthM of the geometric 昀椀lter can be any positive odd number,
but typically it will be much smaller than the side length N of the geometric image.

De昀椀nition 9 (geometric convolution). Given A∈AN,d,k,p and C∈AM,d,k′ ,p′ with M= 2m + 1 for
some positive integer m, the geometric convolutionA ∗C is a (k + k′)(p p′)‑tensor image such that

(A ∗C)({̄) =
∑

ā∈[−m,m]d
A({̄ − ā)⊗ C(ā + m̄), (3.10)

where {̄ − ā is the translation of {̄ by ā on the d‑torus pixel grid (ℤ∕Nℤ)d and m̄ is the vector of allm.

This de昀椀nition is on the torus to achieve exact translation equivariance, but, in practice, we
can use zero padding or any other form of padding as the situation requires. Additionally, geo‑
metric convolution can be adapted to use longer strides, 昀椀lter dilation, transposed convolution or
other convolution variations common in the literature. See 昀椀gure 3a for examples with a scalar
and vector 昀椀lter. We can de昀椀ne max pooling using the l2 norm of a tensor as follows:

De昀椀nition 10 (max poolb). Let b be a positive integer, and let A∈AN,d,k,p, where b divides N.
Then the function max poolb ∶AN,d,k,p→AN∕b,d,k,p is de昀椀ned for each pixel index {̄∈ [0, (N∕b) − 1]d

max poolb(A)({̄) =A
(
b {̄ + arg maxā∈[0,b−1]d‖A(b {̄ + ā)‖2) . (3.11)

The convolution, contraction, index‑permutation and pooling operators above e昀昀ectively span a
large class of linear functions from geometric images to geometric images.

4. Functions of geometric images and equivariance
We start by de昀椀ning the groups of interest acting on geometric images. First is the group of dis‑
crete translations on the d‑torus pixel grid, denoted TN,d ≅ (ℤ∕Nℤ)d. If A is a k(p)‑tensor image and
� ∈ TN,d, then the action L�A produces the k(p)‑tensor image (L�A)({̄) =A({̄ − �), where {̄ is a pixel
index and {̄ − � is the translation of {̄ by � on the d‑torus pixel grid.
In addition to translation symmetries, wewant to consider other natural symmetries occurring

in the application domains where vectors and tensors arise. Ideally, we would like to apply con‑
tinuous rotations to the images, but the discretized nature of images makes this challenging. To
obtain exact results on images, we focus on discrete rotations. For two‑dimensional images, this
is the familiar dihedral group D4 of rotations of 90 degrees and re昀氀ections, and in the general‑D
case, it is the hyperoctahedral group Bd, the Euclidean symmetries of the d‑dimensional hyper‑
cube. The notation Bd is standard nomenclature coming from the classi昀椀cation theorem for 昀椀nite
irreducible re昀氀ection groups [51]. Because the groups Bd are subgroups of O(d), all determinants
of the matrix representations of the group elements are either +1 or −1, and the matrix represen‑
tation M(g−1) of the inverse g−1 of group element g is the transpose of the matrix representation
M(g) of group element g.

De昀椀nition 11 (action of Bd on k(p)‑tensors). Given a k(p)‑tensor b, the action of g∈ Bd on b,
denoted g ⋅ b, is the restriction of the action in de昀椀nition 3 to Bd, which is a subgroup of O(d).

Remark. Although we now consider Bd acting on k(p)‑tensors, we continue to use the O(d)‑equivariant
tensor operations of §3a to preserve full tensor coordinate freedom.

De昀椀nition 12 (action of Bd on k(p)‑tensor images). GivenA∈AN,d,k,p on the d‑torus and a group
element g∈ Bd, the action g ⋅ A produces a k(p)‑tensor image on the d‑torus such that

(g ⋅ A)({̄) = g ⋅ A(g−1 ⋅ {̄). (4.1)
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Since {̄ is a 1(+)‑tensor, the action g−1 ⋅ {̄ is performed by centring {̄, applying the operator, then
un‑centring the pixel index

g−1 ⋅ {̄=
(
M(g−1)({̄ − m̄)

)
+ m̄,

where m̄ is the d‑length 1(+)‑tensor
[
N−1

2
,… ,

N−1

2

]⊤
. If the pixel index is already centred, such as

ā∈ [−m,m]d, then we skip the centring and un‑centring.

It might be a bit surprising that the group element g−1 appears in the de昀椀nition of the action
of the group on images. One way to think about it is that the pixels in the transformed image are
‘looked up’ or ‘read out’ from the pixels in the original untransformed image. The pixel locations
in the original image are found by going back or inverting the transformation.

De昀椀nition 13 (the groupGN,d, and its action on k(p)‑tensor images). GN,d is the group generated
by the elements of Bd and the discrete translations on the Nd‑pixel la琀琀ice on the d‑torus.

Remark.We view the d‑torus as the quotient of the d‑hypercube obtained by identifying opposite faces.
The torus obtains the structure of a 昀氀at (i.e. zero curvature) Riemannian manifold this way. Because the
symmetries Bd of the hypercube preserve pairs of opposite faces, they act in a well‑de昀椀ned way on this quo‑
tient, so we can also view Bd as a group of isometries of the torus. We choose the common 昀椀xed point of the
elements of Bd as the origin for the sake of identifying the Nd pixel la琀琀ice with the group TN,d ≅ (ℤ∕Nℤ)d

of discrete translations of this la琀琀ice; then the action of Bd on the torus induces an action of Bd on TN,d by
automorphisms. The group GN,d is the semidirect product TN,d ⋊ Bd with respect to this action. Thus, there
is a canonical group homomorphism GN,d→ Bd with kernel TN,d. In concrete terms, every element of GN,d

can be wri琀琀en in the form �◦b, where b∈ Bd and � ∈ TN,d. Then the canonical map GN,d→ Bd sends �◦b to b.

With our groups speci昀椀ed, we can de昀椀ne equivariance and invariance before proceeding to
several theoretical results.

De昀椀nition 14 (equivariance of a geometric image function). Let G be one of TN,d,Bd or GN,d.
Given a function on geometric images f ∶AN,d,k,p→AN,d,k′ ,p′ , we say that f is G‑equivariant if for all
g∈G and A∈AN,d,k,p we have

f(g ⋅ A) = g ⋅ f(A). (4.2)

Likewise, f is invariant to G if

f(g ⋅ A) = f(A). (4.3)

We also say a geometric image is G‑isotropic if g ⋅ A=A for all g∈G.

The fundamental property of convolution is that it is translation equivariant and that every
translation equivariant linear function can be expressed as a convolution with a 昀椀xed 昀椀lter, as
long as the 昀椀lter can be set to be as large as the image [15]. The same property holds for geometric
images.

Proposition 1. A function f ∶AN,d,k,p→AN,d,k′ ,p′ is a translation equivariant linear function if and only
if it can be wri琀琀en as �k(A ∗C) for some geometric 昀椀lter C∈AM,d,k+k′ ,p p′ . When N is odd, M=N; otherwise,
M=N + 1.

See appendix A.1 for the proof. We can also build convolution functions that are equivari‑
ant to GN,d. The following theorem generalizes the Cohen & Welling paper [16] for geometric
convolutions.
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Figure 2. (a) All the 昀椀lters for d= 2,M= 3, k∈ {0, 1, 2}. Where there is no symbol in the box the value is zero. There are no
Bd-isotropic pseudoscalar 昀椀lters at d= 2,M= 3. Note that the vector 昀椀lters look like pure divergence and the pseudovector
昀椀lters look like pure curl. (b) Each signed component in the 2(p)-tensor has a particular icon, with the positive diagonal ele-
ments represented by the green double arrows, the negative diagonal elements represented by the black double arrows and
the o昀昀-diagonal elements represented by the petals. Each element rotates in an obvious way, and 2(+)-tensors re昀氀ect in an
obvious way as well. However, re昀氀ections on negative-parity diagonal elements 昀氀ip the sign (colour) of the double arrows and
have no e昀昀ect on the petals other than changing their pixel location.

Theorem 1. A function f ∶AN,d,k,p→AN,d,k′ ,p′ is linear and GN,d‑equivariant if and only if it can be
wri琀琀en as �k(A ∗C) for some Bd‑isotropic C∈AM,d,k+k′ ,p p′ , where M=N if N is odd and M=N + 1
otherwise.

The proof of this theorem is given in appendix A. Theorem 1 provides the explicit require‑
ments for linear layers in our equivariant GeometricImageNet. All we need are the Bd‑isotropic
(k + k′)(p p′)‑tensor 昀椀lters, which are straightforward to 昀椀nd using group averaging.

5. GeometricImageNet architectures
Per theorem 1, we construct linear GN,d‑equivariant layers using Bd‑isotropic 昀椀lters. A complete
basis of Bd‑isotropic (k + k′)(p p′)‑tensor 昀椀lters can be found by group averaging. First, we get the

standard basis ofℝMd×d(k+k
′) and reshape them into 昀椀ltersCiwith side lengthM and assigned parity

p p′. Next, we apply the group averaging

C̃i =
1|||Bd|||

∑
g∈Bd

g ⋅ Ci, (5.1)

where |Bd| is the number of group elements. This will likely result in a linearly dependent set of
昀椀lters, so we perform singular value decomposition to reduce to a single set of unique 昀椀lters. The
昀椀lters are then normalized so that non‑zero tensors have unit norm, and the k= 1 昀椀lters are also re‑
oriented such that non‑zero divergences were set to be positive, and non‑zero curls were set to be
counterclockwise. See 昀椀gure 2 for the Bd‑isotropic convolutional 昀椀lters in d= 2 dimensions for 昀椀l‑
ters of side lengthM= 3. Next, we use these Bd‑isotropic 昀椀lters to construct linearGN,d‑equivariant
layers.
The linear layers take an input collection of geometric images

{
(kz, pz)

}Win
z=1

with cz channels and

the desired output tensor orders and parities
{
(ks, ps)

}Wout
s=1

with cs channels and compute all the
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Figure 3. (a) Convolution of a scalar image with a scalar and vector 昀椀lter. (b) Example architecture taking a vector image and
scalar image as input and output. Linear layers are shown by the blue convolution arrows followed by green contraction arrows.
The black arrows represent nonlinearities. The orange blocks represent multiple channels of images at that tensor order.

convolutions1 and contractions to map between those two sets. Following theorem 1, there are
l= 1,… , cs functions

∑Win
z=1

∑cz
i=1 �kz

(
Ai,z ∗Cl,i,z

)
for each desired output tensor order and parity. Per

the theorem, these convolution 昀椀lters Cl,i,z must be Bd‑isotropic to guarantee that this layer isGN,d‑
equivariant. Each Bd‑isotropic 昀椀lter is a parameterized linear combination of the Bd‑isotropic basis
we found by group averaging. However, using 昀椀lters as large as the input image is impractical in
most cases, so we use deeper networks of 3 × 3 or 5 × 5 昀椀lters, as is commonly done in CNNs [52].
Nonlinear layers present a challenge because the typical pointwise nonlinear functions such

as Recti昀椀ed Linear Unit (ReLU) or tanh break equivariance when applied to the individual com‑
ponents of a tensor. Properly building O(d)‑equivariant nonlinear functions is a challenging and
active area of research; for a larger exploration, see [53] and references therein. For this model, we
extend the VectorNeuron nonlinearity [54] for any tensor order and parity. LetAi for i= 1,… , cz be
the input kz(pz)‑tensor image channels as above (we drop the z from the Ai notation for simplicity),
let �i, �i ∈ℝ be learned scalar parameters and Q=

∑cz
i=1 �i Ai,K=

∑cz
i=1 �i Ai. Then the nonlinearity

� ∶
(
AN,d,kz ,pz

)cz
→AN,d,kz ,pz is de昀椀ned

�
(
(Ai)

cz
i=1

)
=

⎧
⎨⎩
Q if �k(Q⊗ K)≥ 0

Q − �k(Q⊗
K

‖K‖2 ) K

‖K‖2 otherwise
, (5.2)

where ‖⋅‖2 is the tensor norm (3.9). To get cs output channels, we can repeat this function cs times
with di昀昀erent learned parameters �i, �i. We show that this extension is O(d)‑equivariant in ap‑
pendix A.2. See 昀椀gure 3b for an example of a typical architecture interlacing linear and nonlinear
layers.
The 昀椀nal layer types we will use in our model are LayerNorm [55] and max pool. We use the

original LayerNorm for scalar images, but for vector images, we follow the strategy of vector
whitening used in [48], based on a similar strategy developed for neural networks with complex
values [56]. This method has not yet been extended to higher order tensors. Let (Ai)

cz
i=1 be a set

of 1(p)‑tensor images. Let Āi({̄) =Ai({̄) −
1

cz Nd

∑cz
i=1

∑
|̄∈[N]d Ai(|̄) for each pixel {̄ be the mean‑centred

1(p)‑tensor image. Then the covariance is a 2(+)‑tensor given by

Σ=
1

czNd

cz∑
i=1

∑
{̄∈[N]d

(
Āi ⊗ Āi

)
({̄). (5.3)

1The geometric convolution package is implemented in JAX, which in turn uses TensorFlow XLA under the hood. This means
that convolution is actually cross‑correlation, in line with how the term is used in ML papers. For our purposes, this results
in at most a coordinate transformation in the 昀椀lters.
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We calculate Σ−
1
2 by performing an eigenvalue decomposition Σ=UΛU⊤, where Λ is a diagonal

matrix with the eigenvalues along the diagonal. We take the inverse of each eigenvalue and then
its square root, then multiply UΛ−

1
2U⊤ to get Σ−

1
2 . Finally, we scale the vectors by Σ−

1
2

[Bi({̄)]l =
[
Āi({̄)

]
j
[Σ− 12 ]

j,l
, (5.4)

and output Bi for i= 1 to cz. Max pooling layers follow exactly from de昀椀nition 10 for each channel
of each input image. We prove that these layers are GN,d‑equivariant in appendices A.3 and A.4,
respectively.

6. Numerical experiments
We will conduct numerical experiments on two‑dimensional compressible Navier–Stokes simu‑
lation data from the excellent PDEBench dataset [57]. These data consist of velocity (vector) 昀椀elds,
density (scalar) 昀椀elds and pressure (scalar) 昀椀elds with periodic boundary conditions discretized
into 128 × 128 images on the torus. The simulations are saved at 21 time points, which are a subset
of the integrator timesteps. We use 128 simulation trajectories with random initial conditions as
training data and another 128 trajectories as test data. Themodel takes the state of system at times
t= 0, 1, 2, 3 for inferring the trajectories. We use data generated with two distinct sets of param‑
eters: Mach numberM= 0.1, shear viscosity � = 0.01 and bulk viscosity � = 0.01 andM= 1.0, � =
0.1, � = 0.1. The two sets of parameters are used to train entirely di昀昀erent models and tested
separately.
The model task is to take as input the velocity, density and pressure 昀椀elds at a certain time

point and predict what those 昀椀elds will be at the next time point. We adopt a common strategy in
the surrogate model literature [20,26,48] of providing four previous time points as input to help
capture temporal derivatives of the state [57]. Thus, we can turn the 128 training trajectories into
2176 training data points because each trajectory has 17 overlapping sections of four input steps
and one output step. We train a Dilated ResNet [17], a ResNet [58] and a UNet [59] with andwith‑
out LayerNorm [55] and large and small equivariant versions of each of those models. We train
with the sum of the mean squared error loss of each 昀椀eld of a single step, but at test time we are
also interested in the performance of autoregressively rolling out the model over 15 time steps.
The baseline models and training set‑up generally follow those described in [20], and additional
data, model and training details are in appendix C.
The numerical results are given in table 1. In all cases of the 1‑step loss and almost all cases

of the 15‑step rollout loss, the equivariant models outperform the non‑equivariant versions. One
exception is the M1.0 dataset where the equivariant ResNets have be琀琀er 1‑step errors, but worse
rollout errors. These models appear to be over昀椀琀琀ing in a manner that is hurting rollout stability.
In 昀椀gure 4, we can seewithmore granularity the test performance for each rollout step. In themost
drastic example, the rollout error for the Dilated ResNet explodes, while the equivariant Dilated
ResNet is stable and accurate over all 15 steps. In [17], the authors combat this issue by adding a
small amount of Gaussian noise during training; we instead achieve stability in a physically moti‑
vatedway by enforcingO(d)‑equivariance. The equivariance also helps with parameter e昀케ciency;
the small equivariant models have a number of channels so that scalar plus vector components
are comparable to the number of baseline model channels. The large equivariant models have a
comparable number of parameters to baselinemodels (table 2). The large equivariant models gen‑
erally do be琀琀er than the smaller ones, but the smaller ones still outperform the non‑equivariant
models despite having 80% fewer parameters. Code to reproduce all these experiments and build
your own GI‑Net is available at https://github.com/WilsonGregory/GeometricConvolutions. The
code is built in Python using JAX [60].
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Figure 4. (a) Five steps of M0.1 rollout using the UNet48 (E). The x-component of the velocity is plotted. The power spectrum
is the Fourier transform of the two-point correlation function. (b) Comparison of test performance over a 15-step rollout on the
M0.1 dataset. The SMSE is shown for each step, rather than a cumulative loss.

Table 1. Loss values for eachmodel, averaged over three trials. All losses are the sum of themean squared error losses over the
channels: density, pressure and velocity. The rollout loss is the sum of the error over 15 steps. The s.d.±0.xxx is provided if it is
at least 0.001. The equivariant models are indicated by ‘(E)’. The number in the model name refers to the number of channels
per layer, which for equivariant models refers to the number of scalar and vector channels each. The bold values indicate the
best error per group of models.

model M0.1 1-step M0.1 rollout M1.0 1-step M1.0 rollout

DilResNet64 0.040 13318.773± 18824.855 0.005 9.574± 9.608
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DilResNet20 (E) 0.021 3.882± 0.245 0.001 0.249± 0.012
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DilResNet48 (E) 0.018 3.770± 0.090 0.001 0.153± 0.023
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ResNet128 0.039 175.736± 17.846 0.009 0.835± 0.097
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ResNet42 (E) 0.036± 0.004 23.666± 5.507 0.005 2.513± 0.450
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ResNet100 (E) 0.024± 0.001 57.508± 9.157 0.003 2.943± 0.992
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet64 Norm 0.027 3.414± 0.217 0.009± 0.001 1.067± 0.190
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet20 Norm (E) 0.020 3.105± 0.130 0.001 0.140± 0.011
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet48 Norm (E) 0.017 2.898± 0.046 0.001 0.121± 0.007
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet64 0.047± 0.001 5.086± 0.105 0.012± 0.002 2.074± 0.067
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Unet20 (E) 0.017 2.672± 0.071 0.001 0.172± 0.008
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Unet48 (E) 0.017 2.919± 0.094 0.001 0.109± 0.005
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. Discussion
This paper presents geometric convolutions that can easily adapt any CNN architecture to be
equivariant for images of vectors or tensors. This makes the model ideal for tackling many prob‑
lems in the natural sciences in a principledway.We see in two‑dimensional compressible Navier–
Stokes simulations that we achieve be琀琀er accuracy and more stable rollouts than non‑equivariant
baseline models.

One limitation of this work is that we use discrete symmetries instead of continuous symme‑
tries. We expect invariance and equivariance with respect to rotations other than 90 degrees to
appear in nature, but the images that we work with are always going to be d‑cube grids of points.
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Table 2. Comparison of variousmodels. For equivariantmodels, the number of channels is for vector channels and scalar chan-
nels each. The number of channels of each larger equivariant model was chosen so that the equivariant and non-equivariant
models have roughly the same number of parameters. The number of channels for each smaller equivariant model was chosen
so that the total number of components across scalars and vectors is comparable to the number of channels in the baseline
models.

model params CNN channels norm bias learning rate

DilResNet64 1 043 651 64 — Yes 2 × 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DilResNet20 (E) 171 743 20 — Mean 1 × 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DilResNet48 (E) 979 347 48 — Mean 1 × 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ResNet128 2 401 155 128 LayerNorm Yes 1 × 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ResNet42 (E) 455 913 42 LayerNorm Mean 7 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ResNet100 (E) 2 558 703 100 LayerNorm Mean 7 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet64 Norm 31 053 251 64 LayerNorm Yes 8 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet20 Norm (E) 4 704 383 20 — Mean 6 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet48 Norm (E) 27 077 139 48 — Mean 4 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet64 31 046 400 64 BatchNorm No 8 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet20 (E) 4 700 100 20 — No 7 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNet48 (E) 27 066 864 48 — No 3 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thus, we use the groupGN,d to avoid interpolating rotated images andworking with approximate
equivariances. This simpli昀椀es the mathematical results, and we see empirically that we still have
the bene昀椀ts of rotational equivariance. However, there are other possible image representations
that might create continuous concepts of images. For example, if the data are on the surface
of a sphere, it could be represented with tensor spherical harmonics, and it could be subject to
transformations by a continuous rotation group.
Another limitation of this work is that we do not compare our method with existing state‑of‑

the‑art numerical integrator methods. Surrogate ML models for 昀氀uid dynamics simulations have
generally su昀昀ered from comparisons withweak baselines that overstate the accuracy or e昀케ciency
of the surrogate model [61]. In this work, we only claim to improve upon existing vanilla CNN
models, and we leave further comparisons to future work.
There are many other future directions that could be explored. Further research is required

to understand how and why the equivariance helps. One interesting observation of 昀椀gure 4a is
that the power spectrum for the equivariant model output is still quite di昀昀erent from the ground
truth at higher frequencies. It may be that equivariance is advantageous at certain scales and not
at others.
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Appendix A. Proofs

A.1. Proof of theorem 1
Before proving theorem 1, we state and prove a number of helpful properties, propositions and
lemmas.

Properties. Let A,B∈AN,d,k,p, let C,S∈AM,d,k′ ,p′ , let D,Q∈AN,d,2k+k′ ,p, let � ∈ (ℤ∕Nℤ)d be a transla‑
tion on the d‑torus, let �, � ∈ℝ and let g∈GN,d. Then the following properties hold.

(1) Convolutions are translation equivariant

(L�A) ∗C= L�(A ∗C). (A 1)

(2) Convolutions are linear in the geometric image

(�A + �B) ∗C= �(A ∗C) + �(B ∗C). (A 2)

Convolutions are also linear in the 昀椀lters

A ∗ (�C + �S) = �(A ∗C) + �(A ∗ S). (A 3)

(3) The k‑contraction is GN,d‑equivariant

g ⋅ �k(D) = �k
(
g ⋅D

)
. (A 4)

(4) The k‑contraction is a linear function

�k(�D + �Q) = � �k(D) + � �k(Q). (A 5)

Proof . First, we will prove (A 1). LetA,C and � be as above, and let {̄ be a pixel index of L�A ∗C.
Then

(L�A ∗C)({̄) =
∑

ā∈[−m,m]d
(L�A)({̄ − ā)⊗ C(ā + m̄)

=
∑

ā∈[−m,m]d
A({̄ − ā − �)⊗ C(ā + m̄)

=
∑

ā∈[−m,m]d
A(({̄ − �) − ā)⊗ C(ā + m̄)

= (A ∗C)({̄ − �)

= L�(A ∗C)({̄).
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Nowwewill prove (A 2). LetA,B,C, α and � be as above, and let {̄ be a pixel index of (�A + �B) ∗C.
Then

((�A + �B) ∗C)({̄) =
∑

ā∈[−m,m]d
(�A + �B)({̄ − ā)⊗ C(ā + m̄)

=
∑

ā∈[−m,m]d
(�A({̄ − ā) + �B({̄ − ā))⊗ C(ā + m̄)

=
∑

ā∈[−m,m]d
�A({̄ − ā)⊗ C(ā + m̄) + �B({̄ − ā)⊗ C(ā + m̄)

= �
∑

ā∈[−m,m]d
A({̄ − ā)⊗ C(ā + m̄) + �

∑
ā∈[−m,m]d

B({̄ − ā)⊗ C(ā + m̄)

= �(A ∗C)({̄) + �(B ∗C)({̄).

Now we will prove (A 3). Let A, C, S, α and � be as above, and let {̄ be a pixel index. Then

(A ∗ (�C + �S))({̄) =
∑

ā∈[−m,m]d
A({̄ − ā)⊗ (�C + �S)(ā + m̄)

=
∑

ā∈[−m,m]d
A({̄ − ā)⊗ �C(ā + m̄) + A({̄ − ā)⊗ �S(ā + m̄)

= �
∑

ā∈[−m,m]d
A({̄ − ā)⊗ C(ā + m̄) + �

∑
ā∈[−m,m]d

A({̄ − ā)⊗ S(ā + m̄)

= �(A ∗C)({̄) + �(A ∗ S)({̄).

Next, we will prove (A 4). Let D be de昀椀ned as above, and let {̄ be a pixel of D. First, we will show
that contractions are equivariant to translations. Let � ∈ (ℤ∕Nℤ)d. Then

�k(L�D)({̄) = �k((L�D)({̄)) = �k(D({̄ − �)) = �k(D)({̄ − �) = L��k(D)({̄). (A 6)

Thus contractions are equivariant to translations. Now we will show that contractions are
equivariant to Bd. Let g∈ Bd, and denote D(g−1 ⋅ {̄) = a. Then by equation (3.5), we have

�k(g ⋅D)({̄) = �k((g ⋅D)({̄))

= �k
(
g ⋅D

(
g−1 ⋅ {̄

))
= �k(g ⋅ a)

= [g ⋅ a]i1 ,…,ik ,i1 ,…,ik ,i2k+1 ,…,i2k+k′

= [a]j1 ,…,j2k+k′
∏
q∈[k]

[M(g)]iq ,jq [M(g)]iq ,jq+k
∏

q∈[2k+1,2k+k′]

[M(g)]iq ,jq

(∗)
= [a]j1 ,…,j2k+k′

∏
q∈[k]

[�]jq ,jq+k
∏

q∈[2k+1,2k+k′]

[M(g)]iq ,jq

= [a]
q∈[2k+1,2k+k′]
j1 ,…,jk ,j1 ,…,jk ,j2k+1 ,…j2k+k′

= [�k(a)]j2k+1 ,…j2k+k′
∏

q∈[2k+1,2k+k′]

[M(g)]iq ,jq

= g ⋅ �k(a)
]
iq ,jq

= g ⋅ �k
(
D
(
g−1 ⋅ {̄

))
=
(
g ⋅ �k(D)

)
({̄).

Note that (∗) happens because [M(g)]i,j[M(g)]i,k =M(g)⊤M(g) = � because they are orthogonal ma‑
trices, and the next step follows from Kronecker delta identities. Therefore, since contractions are
equivariant to the generators of GN,d, it is equivariant to the group.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

0
 J

u
n
e 

2
0
2
5
 



16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240247

.........................................................................................................................

Finally, we will prove (A 5). Let D, Q, α and � be de昀椀ned as above, let {̄ be a pixel index of
(�D + �Q) and let a, b∈Td,k,p be the tensors of D and Q at that pixel index. Then

[�k(�D + �Q)({̄)]i2k+1 ,…,i2k+k′ = [�k(�D({̄) + �Q({̄))]i2k+1 ,…,i2k+k′

= [�k(�a + �b)]i2k+1 ,…,i2k+k′

= [�a + �b]i1 ,…,ik ,i1 ,…,ik ,i2k+1 ,…,i2k+k′

= �[a]i1 ,…,ik ,i1 ,…,ik ,i2k+1 ,…,i2k+k′ + �[b]i1 ,…,ik ,i1 ,…,ik ,i2k+1 ,…,i2k+k′

= �[�k(a)]i2k+1 ,…,i2k+k′ + �[�k(b)]i2k+1 ,…,i2k+k′

= �[�k(D({̄))]i2k+1 ,…,i2k+k′ + �[�k(Q({̄))]i2k+1 ,…,i2k+k′

= [(��k(D) + ��k(Q))({̄)]i2k+1 ,…,i2k+k′ .

Thus we have shown (A 6). ■

Lemma 1. Given A∈AN,d,k,p a geometric image and C∈AM,d,k′ ,p′ a geometric 昀椀lter where M=N + 1,
there exists C′ ∈AM,d,k′ ,p′ such that A ∗C′ =A ∗C and C′({̄) is the zero k′(p′)‑tensor, for {̄∈ [0,N]d ⧵ [0,N −

1]d. That is, C′ is totally de昀椀ned by Nd pixels, and every pixel with an N in the index is equal to the zero
k′(p′)‑tensor.

Proof . Let A and C be de昀椀ned as above. Thus

N=M − 1= 2m + 1 − 1= 2m. (A 7)

Consider the convolution de昀椀nition (3.9) where we have A({̄ − ā) where {̄∈ [0,N − 1]d and ā∈
[−m,m]d. Since A is on the d‑torus, then whenever the lth index of ā=−mwe have

({̄l − āl) mod N= ({̄l − (−m)) mod N

= ({̄l +m) mod 2m

= ({̄l +m − 2m) mod 2m

= ({̄l −m) mod N.

Thus, any time there is an index āwith a value ±m, we have an equivalence class under the torus
with all other indices with 昀氀ipped sign of them in any combination. If {ā} is this equivalence class,
we may group these terms in the convolution sum

∑
ā′∈{ā}

A({̄ − ā′)⊗ C(ā′ + m̄) =
∑
ā′∈{ā}

A({̄ − ā)⊗ C(ā′ + m̄) =A({̄ − ā)⊗
⎛⎜⎝
∑
ā′∈{ā}

C(ā′ + m̄)
⎞⎟⎠.

Thus, we may pick a single pixel of the convolutional 昀椀lter C, set it equal to
∑

ā′∈{ā} C(ā
′ + m̄) and

set all other pixels of the equivalence class to the zero k′(p′)‑tensor without changing the convolu‑
tion. We choose the non‑zero pixel to be the one whose index has all −m instead of m. Thus, we
can de昀椀ne the 昀椀lter C by Nd pixels rather than (N + 1)d pixels, and we have our result. ■

Lemma 2. Let there be a space of geometric imagesAN,d,k,p, and let C1,C2 ∈AM,d,k+k′ ,p p′ withM= 2m + 1
for positive integer m. Then, �k(A ∗C1) = �k(A ∗C2) for all A∈AN,d,k,p if and only if C1 =C2.

Here is a quick proof sketch of the forward direction. We assume for the sake of contradiction
that C1 and C2 are di昀昀erent so they must have at least one di昀昀ering component. Then we use the
fact that �k(A ∗C1) = �k(A ∗C2) holds for all possible inputs to de昀椀ne an input A that isolates that
component to get a contradiction.
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Proof . Let C1,C2 be de昀椀ned as above. The reverse direction is immediate, so we focus our at‑
tention on the forward direction. Suppose �k(A ∗C1) = �k(A ∗C2) for all A∈AN,d,k,p. Assume for the
sake of contradiction that C1 ≠C2, so C1 − C2 ≠ 0⃗, where 0⃗ is the zero 昀椀lter. Thus, there must be
at least one component of one pixel that is non‑zero. Suppose this is at pixel index b̄ + m̄ and
(C1 − C2)(b̄ + m̄) = c. Suppose the non‑zero component is at index j1,… , jk+k′ . Let a be a k(p)‑tensor
where [a]i1 ,…,ik is non‑zero and all other indices are 0. Now suppose A∈AN,d,k,p such that for pixel
index {̄ of A,A({̄ − b̄) = a and all other pixels are the zero tensor. Thus

0⃗= (�k (A ∗C1) − �k (A ∗C2)) ({̄)

A3,A5
= �k (A ∗ (C1 − C2)) ({̄)

= �k ((A ∗ (C1 − C2)) ({̄))

= �k
⎛⎜⎝

∑
ā∈[−m,m]d

A({̄ − ā)⊗ (C1 − C2) (ā + m̄)
⎞⎟⎠

= �k
(
A({̄ − b̄)⊗ (C1 − C2) (b̄ + m̄)

)
= �k(a⊗ c).

Note that the penultimate step of removing the sum is because A({̄ − ā) = 0 the zero tensor every‑
where other than A({̄ − b̄). Therefore, since the only non‑zero entry of a is at index i1,… , ik, then at
index jk+1,… , jk+k′ of the resulting tensor we have

0⃗= �k(a⊗ c) = [a]i1…ik [c]j1 ,…,jk+k′ .

Since [a]i1 ,…,ik is non‑zero and [c]j1 ,…,jk+k′ is non‑zero, this index is non‑zero. This is a contradiction,
so we conclude that C1 =C2, which 昀椀nishes the proof. ■

Proposition (Restatement of 1). [A function f ∶AN,d,k,p→AN,d,k′ ,p′ is a translation equivariant linear
function if and only if f(A) = �k(A ∗C) for some geometric 昀椀lter C∈AM,d,k+k′ ,p p′ . When N is odd, M=N;
otherwise, M=N + 1.

Proof . Let ℱ =
{
f ∶AN,d,k,p→AN,d,k′ ,p′

}
, where each function f is linear and equivariant to trans‑

lations. Let G=
{
g ∶AN,d,k,p→AN,d,k′ ,p′

}
, where each g is de昀椀ned as g(A) = �k(A ∗C) for some C∈

AM,d,k+k′ ,p p′ . If N is odd, thenM=N; otherwise,M=N + 1. It su昀케ces to show that ℱ = G.
First, we will show that G⊆ℱ. Let g∈ G. By properties (A 2) and (A 5) both convolutions and

contractions are linear. Additionally, by properties (A 1) and (A 4), convolutions and contractions
are both equivariant to translations. Thus g∈ℱ, so G⊆ℱ.
Now we will show that dim(ℱ) = dim(G). Let f∈ℱ. By de昀椀nition 3, Td,k,p ≅

(
ℝd
)⊗k

equipped
with the group action ofO(d). Then by de昀椀nition 8,AN,d,k,p is the space of functionsA ∶ [N]d→Td,k,p,
where [N]d has the structure of the d‑torus. Therefore,AN,d,k,p ≅

(
ℝN

)⊗d
×
(
ℝd
)⊗k

equipped with the

group action of GN,d. Thus, f ∶
(
ℝN

)⊗d
×
(
ℝd
)⊗k

→
(
ℝN

)⊗d
×
(
ℝd
)⊗k′

. Since f is linear, the dimension
of the space of functions ℱ is Nddk′Nddk =N2ddk+k′ . If this is unclear, consider the fact that the lin‑
earity of f means that it has an associated matrix F of that dimension. However, since each f is
translation equivariant, the function to each of theNd pixels in the output must be the same. Thus,

we actually have that dim(ℱ) = N2ddk+k
′

Nd
=Nddk+k′ .

Now we look at dim(G). Each function g∈ G is de昀椀ned by the convolution 昀椀lter C∈AM,d,k+k′ ,p p′

and dim(AM,d,k+k′ ,p p′ ) = dim(AN,d,k+k′ ,p p′ ) =Nddk+k′ , with the 昀椀rst equality following from lemma 1 in
both the even and odd case. Clearly, dim(G) is upper‑bounded by the dimension of the convolu‑
tion 昀椀lters, but does it have to be equal? In otherwords, is it possible that two linearly independent
convolution 昀椀lters result in linearly dependent functions g? We will now show that this is not
possible.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

0
 J

u
n
e 

2
0
2
5
 



18

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240247

.........................................................................................................................

Let g1, g2 ∈ G be de昀椀ned by two linearly independent 昀椀lters C1,C2 ∈AM,d,k+k′ ,p p′ , and we would
like to show that g1 and g2 are linearly independent as well. Suppose that there exists �, � ∈ℝ such
that � g1(A) + � g2(A) = 0⃗ for all A∈AN,d,k,p. It su昀케ces to show that � = � = 0. Thus

�k(A ∗ 0⃗) = �k (A ∗ (0C3))

A3,A5
= 0�k (A ∗C3)

= 0⃗

= �g1(A) + �g2(A)

= ��k (A ∗C1) + ��k (A ∗C2)

A3,A5
= �k (A ∗ (�C1 + �C2)) .

Thus, by lemma 2, 0⃗= �C1 + � C2. Since C1 and C2 are linearly independent, this implies that
� = � = 0. Thus, g1, g2 must be linearly independent. Therefore, dim(G) =Nddk+k′ , and since G⊆ℱ,
we have ℱ = G. ■

Lemma 3. Given g∈ Bd, A∈AN,d,k,p and C∈AM,d,k′ ,p′ , the action g distributes over the convolution of
A with C

g ⋅ (A ∗C) = (g ⋅ A) ∗ (g ⋅ C). (A 8)

Proof . LetA∈AN,d,k,p be a geometric image, let C∈AM,d,k′ ,p′ , let g∈ Bd and let {̄ be any pixel index
of A. By de昀椀nition 12, we have

(g ⋅ (A ∗C))({̄) = g ⋅
(
(A ∗C)

(
g−1 ⋅ {̄

))
= g ⋅

⎛⎜⎝
∑

ā∈[−m,m]d
A
(
g−1 ⋅ {̄ − ā

)
⊗ C(ā + m̄)

⎞⎟⎠
=

∑
ā∈[−m,m]d

g ⋅
(
A
(
g−1 ⋅ {̄ − ā

)
⊗ C(ā + m̄)

)
=

∑
ā∈[−m,m]d

g ⋅ A
(
g−1 ⋅ {̄ − ā

)
⊗ g ⋅ C(ā + m̄).

Now let ā′ = g ⋅ ā. Thus, g−1 ⋅ ā′ = g−1 ⋅ g ⋅ ā= ā. Then

(g ⋅ (A ∗C))({̄) =
∑

ā∈[−m,m]d
g ⋅ A

(
g−1 ⋅ {̄ − ā

)
⊗ g ⋅ C(ā + m̄)

=
∑

g−1 ⋅ā′∈[−m,m]d
g ⋅ A

(
g−1 ⋅ {̄ − g−1 ⋅ ā′

)
⊗ g ⋅ C

(
g−1 ⋅ ā′ + m̄

)
=

∑
g−1 ⋅ā′∈[−m,m]d

g ⋅ A
(
g−1 ⋅ {̄ − g−1 ⋅ ā′

)
⊗ g ⋅ C

(
g−1 ⋅ ā′ + g−1 ⋅ m̄

)
=

∑
g−1 ⋅ā′∈[−m,m]d

g ⋅ A
(
g−1 ⋅ ({̄ − ā′)

)
⊗ g ⋅ C

(
g−1 ⋅ (ā′ + m̄)

)
=

∑
g−1 ⋅ā′∈[−m,m]d

(
g ⋅ A

)
({̄ − ā′)⊗

(
g ⋅ C

)
(ā′ + m̄)

=
∑

ā′∈[−m,m]d

(
g ⋅ A

)
({̄ − ā′)⊗

(
g ⋅ C

)
(ā′ + m̄)

=
(
(g ⋅ A) ∗ (g ⋅ C)

)
({̄).

For the penultimate step, we note that g−1 ⋅ ā′ ∈ [−m,m]d compared with ā′ ∈ [−m,m]d is just a
reordering of those indices in the sum. Thus, we have our result for pixel {̄, so it holds for all
pixels. ■

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

0
 J

u
n
e 

2
0
2
5
 



19

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240247

.........................................................................................................................

Now we will prove theorem 1.

Theorem (Restatement of 1). A function f ∶AN,d,k,p→AN,d,k′ ,p′ is linear and GN,d‑equivariant if and
only if it can be wri琀琀en as �k(A ∗C) for some Bd‑isotropic C∈AM,d,k+k′ ,p p′ , where M=N if N is odd and
M=N + 1 otherwise.

Proof . First, we will show the reverse direction. Let C∈AM,d,k+k′ ,p p′ be Bd‑isotropic, and let a
function f be de昀椀ned as f(A) = �k(A ∗C). Let g∈ Bd,A∈AN,d,k,p. Then by the invariance of Cwe have

�k((g ⋅ A) ∗C) = �k((g ⋅ A) ∗ (g ⋅ C))
3
= �k(g ⋅ (A ∗C))
A5
= g ⋅ �k(A ∗C).

Hence, f is Bd‑equivariant. By (A 1) and (A 4) f is also translation equivariant, so it is equivariant to
GN,d. Also, by the linearity of convolution (A 2) and contraction (A 5), f is linear. Thus, the reverse
direction holds.
Now we will prove the forward direction. Let f ∶AN,d,k,p→AN,d,k′ ,p′ be a linear GN,d‑equivariant

function. Thus, f must be translation equivariant, so by proposition 1 we can write f as f(A) =
�k(A ∗C) for some C∈AM,d,k+k′ ,p p′ . Now it su昀케ces to show that C is Bd‑isotropic. Let A∈AN,d,k,p, let
g∈ Bd and let B= g−1 ⋅ A. Then by the equivariance of fwe have

�k(A ∗C) = �k((g ⋅ B) ∗C).

Thus, by lemma 2,we have g ⋅ C=C. Therefore,C isBd‑isotropic, and this completes the proof. ■

A.2. Extension of Vector Neuron nonlinearities to tensors
In this section, we show that the tensor extension of the Vector Neuron nonlinearity [17] given by
(5.2) is GN,d‑equivariant.

Proposition 2. Let Ai ∈AN,d,kz ,pz , g∈GN,d and �i, �i ∈ℝ for i= 1,… , cz. Then �
((
g ⋅ Ai

)cz
i=1

)
= g ⋅

�
(
(Ai)

cz
i=1

)
.

Proof . Let Ai ∈AN,d,kz ,pz , and �i, �i ∈ℝ for i= 1,… , cz. It is clear to see that � is translation equiv‑
ariant because all the operations are pixel‑wise. Thus, we will show that � is equivariant to g∈ Bd.
First, note that applying g to all Ai results in g ⋅Q and g ⋅ K. Now

�kz
(
g ⋅Q⊗ g ⋅ K

)
= �kz

(
g ⋅ (Q⊗ K)

)
= g ⋅ �kz (Q⊗ K) = �kz (Q⊗ K).

Note that the last step is because bothQ and K are kz(pz)‑tensor images, so �kz (Q⊗ K) is a 0(+)‑tensor
image. Hence, if �kz (Q⊗ K)≥ 0, then �

((
g ⋅ Ai

)cz
i=1

)
= g ⋅Q= g ⋅ �

(
(Ai)

cz
i=1

)
and � is Bd‑equivariant.

Now suppose �kz (Q⊗ K)< 0

�(
(
g ⋅ Ai

)cz
i=1
) = g ⋅Q − �kz(g ⋅Q⊗

g ⋅ K‖g ⋅ K‖2 )
g ⋅ K‖g ⋅ K‖2

= g ⋅Q − �kz(g ⋅Q⊗ g ⋅ K‖K‖2 )g ⋅ K‖K‖2
= g ⋅Q − g ⋅ (�kz(Q⊗

K‖K‖2 ) K‖K‖2 )
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= g ⋅ (Q − �kz(Q⊗
K‖K‖2 ) K‖K‖2 )

= g ⋅ �
(
(Ai)

cz
=1

)
.

Thus � is Bd‑equivariant. ■

A.3. LayerNorm equivariance
Proposition 3. The LayerNorm is GN,d‑equivariant.

Proof . Let (Ai)
cz
i=1 be a set of 1(pz)‑tensor images. Clearly, this function will be translation equiv‑

ariant because let g∈ Bd. Let Āi be as de昀椀ned in §5, and let {̄ be a pixel index of Āi. Then

(g ⋅ Āi)({̄) = g ⋅ Āi(g−1 ⋅ {̄) (A 9)

= g ⋅
⎛⎜⎝Ai(g−1 ⋅ {̄) −

cz∑
j=1

∑
|̄∈[N]d

Aj(|̄)
⎞⎟⎠ (A 10)

= g ⋅ Ai(g−1 ⋅ {̄) −
cz∑
j=1

∑
|̄∈[N]d

g ⋅ Aj(|̄) (A 11)

= g ⋅ Ai(g−1 ⋅ {̄) −
cz∑
j=1

∑
g−1 ⋅|̄∈[N]d

g ⋅ Aj(g−1 ⋅ |̄) (A 12)

= (g ⋅ Ai)({̄) −
cz∑
j=1

∑
|̄∈[N]d

(g ⋅ Aj)(|̄). (A 13)

Note that 30 follows because
∑

|̄∈[N]d Aj(|̄) =
∑

g−1 ⋅|̄∈[N]d Aj(g−1 ⋅ |̄). Thus, the mean centring is equiv‑
ariant to Bd. Likewise,

g ⋅ Σ= g ⋅ 1
czNd

cz∑
i=1

∑
{̄∈[N]d

(Āi ⊗ Āi)({̄) (A 14)

=
1

czNd

cz∑
i=1

∑
{̄∈[N]d

g ⋅ (Āi ⊗ Āi)({̄) (A 15)

=
1

czNd

cz∑
i=1

∑
g−1 ⋅{̄∈[N]d

g ⋅ (Āi ⊗ Āi)(g−1 ⋅ {̄) (A 16)

=
1

czNd

cz∑
i=1

∑
{̄∈[N]d

(g ⋅ Āi ⊗ g ⋅ Āi)({̄). (A 17)

Finally, the inverse square root operation is Bd‑equivariant. If we write it as the function f such
that f(Σ) = f(UΛU⊤) =UΛ−

1
2U⊤ =Σ−

1
2 . Then

g ⋅ f(Σ) = g ⋅ f(UΛU⊤) (A 18)

=M(g)UΛ−
1
2U⊤M(g)⊤ (A 19)

=
(
M(g)U

)
Λ−

1
2
(
M(g)U

)⊤
(A 20)

= f
((
M(g)U

)
Λ
(
M(g)U

)⊤)
(A 21)

= f(g ⋅ Σ). (A 22)
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Thus, [g ⋅ Bi({̄)]l =
[
g ⋅ Āi({̄)

]
l
[g ⋅ Σ− 12 ]

j,l
which is the same as rotating all the inputAi, so LayerNorm

is equivariant. ■

A.4. Max pool equivariance
The O(d)‑invariance of the tensor norm allows the max pool layer to be Bd‑equivariant. With a
careful de昀椀nition of translations for the larger and smaller images, we can also get translational
equivariance, as we see in the following proposition.

Proposition 4. Let g∈ Bd and let � ∈ (ℤ∕(N∕b)ℤ)d be the translation on the d‑torus with side lengths
of N∕b. For images A∈AN,d,k,p, we de昀椀ne the action of this translation as (L�A)({̄) =A({̄ − b �). Then,
max poolb (3.11) is equivariant to both of these groups.

Before we prove this proposition, we need a quick lemma about the tensor norm (3.9).

Lemma 4. The tensor norm (3.9) is O(d)‑invariant.

Proof . Let c be a k(p)‑tensor, and let g∈O(d). Then

‖g ⋅ c‖2 =√
�k
(
g ⋅ c⊗ g ⋅ c

)
)
(A4)
=
√
g ⋅ �k(c⊗ c)

(∗)
=
√
�k(c⊗ c) = ‖c‖2. (A 23)

The (∗) equality is because �k(c⊗ c) is always a scalar. This completes the proof. ■

Now we will prove the proposition.

Proof . First, we will show equivariance to translations. Let � ∈ (ℤ∕(N∕b)ℤ)d be the translation
on the d‑torus with side lengths of N∕b as de昀椀ned in the proposition. Let A∈AN,d,k,p and let {̄ be a
pixel index. Then following the de昀椀nitions, we have(

L�max poolb(A)
)
({̄)

= max poolb(A)({̄ − �)

= A
(
b ({̄ − �) + argmaxā∈[0,b−1]d‖A(b ({̄ − �) + ā)‖2)

= A
(
b {̄ − b � + argmaxā∈[0,b−1]d‖A(b {̄ − b � + ā)‖2)

= (L�A)
(
b {̄ + argmaxā∈[0,b−1]d‖(L�A)(b {̄ + ā)‖2)

= max poolb(L�A)({̄).

Thus max poolb is equivariant to translations. Now let g∈ Bd. Thus, by lemma 4, we have(
g ⋅max poolb(A)

)
({̄)

= g ⋅max poolb(A)(g
−1 ⋅ {̄)

= g ⋅ A
(
b (g−1 ⋅ {̄) + argmaxā∈[0,b−1]d

‖‖‖‖A(b (g−1 ⋅ {̄) + ā)‖‖‖‖2)
= g ⋅ A

(
g−1 ⋅

(
b {̄ + g ⋅ argmaxā∈[0,b−1]d

‖‖‖‖A(g−1 ⋅ (b {̄ + g ⋅ ā))‖‖‖‖2))
4
= (g ⋅ A)

(
b {̄ + g ⋅ argmaxā∈[0,b−1]d

‖‖‖‖g ⋅ A(g−1 ⋅ (b {̄ + g ⋅ ā))‖‖‖‖2)
= (g ⋅ A)

(
b {̄ + g ⋅ argmaxā∈[0,b−1]d

‖‖‖‖(g ⋅ A)(b {̄ + g ⋅ ā)‖‖‖‖2)
(∗)
= (g ⋅ A)

(
b {̄ + g g−1 ⋅ argmaxā∈[0,b−1]d‖(g ⋅ A)(b {̄ + ā)‖2)

= (g ⋅ A)
(
b {̄ + argmaxā∈[0,b−1]d‖(g ⋅ A)(b {̄ + ā)‖2)

= max poolb(g ⋅ A)({̄).
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For the (∗) equality we note that argmaxā‖A(g ⋅ ā)‖2 = g−1 ⋅ argmaxā‖A(ā)‖2 because the pixel index
returned by the left side would have to be transformed by g to maximize ‖A(ā)‖2. Hence, the max
pool is Bd‑equivariant, and this concludes the proof. ■

Appendix B. Mathematical details of related work
The most common method to design equivariant maps is via group convolution, on the group
or on the homogeneous space where the features lie. Regular convolution of a vector 昀椀eld
f ∶ (ℤ∕Nℤ)d→ℝc and a 昀椀lter � ∶ (ℤ∕Nℤ)d→ℝc is de昀椀ned as

(f ∗ �)(x) =
∑

y∈(ℤ∕Nℤ)d
⟨f(y), �(x − y)⟩
⏟⎴⎴⎴⏟⎴⎴⎴⏟
scalar product of vectors

=
∑

y∈(ℤ∕Nℤ)d

c∑
j=1

fj(y)�j(x − y)
⏟⎴⎴⎴⏟⎴⎴⎴⏟

∈ℝ

. (B 1)

Our generalization of convolution replaces this scalar product of vectors with the outer product
of tensors.

B.1. Cli昀昀ord convolution
Probably, the most related work is by Brandste琀琀er et al. [48], which replaces the scalar product in
(B1) with the geometric product of multi‑vector inputs and multi‑vector 昀椀lters of a Cli昀昀ord alge‑
bra. It considers multi‑vector 昀椀elds, i.e.: vector 昀椀elds f ∶ℤ2→ (Clp,q(ℝ))c. The real Cli昀昀ord algebra
Clp,q(ℝ) is an associative algebra generated by p + q= d orthonormal basis elements: e1,… , ep+q ∈ℝd

with the relations

ei ⊗ ei =+1 (i≤ p), (B 2)

ej ⊗ ej =−1 (p< j≤ n), (B 3)

ei ⊗ ej =−ej ⊗ ei (i≠ j). (B 4)

For instance, Cl2,0(ℝ) has the basis {1, e1, e2, e1 ⊗ e2} and is isomorphic to the quaternions ℍ.
The Cli昀昀ord convolution replaces the elementwise product of scalars of the usual convolution

of (B 1) by the geometric product of multi‑vectors in the Cli昀昀ord algebra

f ∗ �(x) =
∑

y∈(ℤ∕Nℤ)d

c∑
j=1

fj(y)⊗ �j(y − x)
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

∈Clp,q(ℝ)

, (B 5)

where f ∶ℤ2→ (Clp,q(ℝ))c and � ∶ℤ2→ (Clp,q(ℝ))c.
The Cli昀昀ord algebra Clp,q(ℝ) is a quotient of the tensor algebra

T(ℝd) =
⨁
k≥0

ℝd ⊗ …⊗ℝd

⏟⎴⎴⎴⏟⎴⎴⎴⏟
k times

=
⨁
k≥0

(ℝd)⊗k, (B 6)

by the two‑side ideal ⟨{v⊗ v −Q(v) ∶ v∈ℝd}⟩, where the quadratic form Q is de昀椀ned by Q(ei) =
+1,if i≤ p, and Q(ej) = −1, else p< j≤ n. Our geometric images are functions A ∶ (ℤ∕Nℤ)d→Td,k,p,
where Td,k,p = (ℝd)⊗k ⊂ T(ℝd). They can be related to the Cli昀昀ord framework by seeing them as N‑
periodic functions fromℤd whose image is projected via the quotient map on the Cli昀昀ord algebra.
This projection can be seen as a contraction of tensors.
The Cli昀昀ord convolution is not equivariant under multi‑vector rotations or re昀氀ections. How‑

ever, the authors derive a constraint on the 昀椀lters for d= 2, which allows to build generalized
Cli昀昀ord convolutions that are equivariant with respect to rotations or re昀氀ections of the multi‑
vectors. That is, they prove equivariance of a Cli昀昀ord layer under orthogonal transformations if
the 昀椀lters satisfy the constraint: �i(Rx) =R�i(x).
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B.2. Uni昀椀ed Fourier framework
Part of our work can be studied under the uni昀椀ed framework for group equivariant networks
on homogeneous spaces derived from a Fourier perspective proposed in [63]. The idea is to con‑
sider general tensor‑valued feature 昀椀elds, before and after a convolution. Their 昀椀elds are functions
f ∶G∕H→V over the homogeneous spaceG∕H taking values in the vector space V and their 昀椀lters
are kernels � ∶G→Hom(V,V′). Essentially, their convolution replaces the scalar product of vec‑
tors of traditional convolution by applying a homomorphism. In particular, if G is a 昀椀nite group
and H= {0}, they de昀椀ne convolution as

� ∗ f(x) = 1|G| ∑
y∈G

�(x−1 y) f(y)
⏟⎴⎴⏟⎴⎴⏟

∈V′

. (B 7)

Van Rossum & Drake [63] give a complete characterization of the space of kernels for equivariant
convolutions. In our framework, the group is ℤ∕Nℤ and the kernel is an outer product by a 昀椀lter
C: �(g)A(g) =A(g)⊗ C(g). Note that ℤ∕Nℤ is neither a homogeneous space of O(d) nor of Bd.
We can analyse our problem from a spectral perspective; in particular, we can describe all lin‑

ear equivariant using representation theory, using similar tools as in the proof of theorem 1 in
[36]. This theorem states that convolutional structure is a su昀케cient and necessary condition for
equivariance to the action of a compact group. Some useful references about group representation
theory are given in [67], a classical book about the theory of abstract harmonic analysis, and in
[68], about the particular applications of it.

B.3. Linear equivariant maps
In this work, we de昀椀ne an action over tensor images of O(d) by rotation of tensors in each pixel;
of Bd by rotating the grid of pixels and each tensor in the pixel; and of (ℤ∕Nℤ)d by translation of
the grid of pixels. The action of each one of these groups G over Td,k,p

Φd,k,p ∶G→GLcon(Td,k,p), (B 8)

can be decomposed into irreducible representations of G

Φd,k,p ≡
⨁
�∈Ĝ

md,k,p(�)�. (B 9)

That is, there is a basis of the Hilbert space Td,k,p in which the action of G is de昀椀ned via a linear
sparse map. In the case of G 昀椀nite, for all g∈G, there is a matrix P spli琀琀ing the representation in
the Hilbert space into its irreducible components

P−1 Φd,k,p(g)P=
⨁
�∈Ĝ

md,k,p(�)�(g). (B 10)

Consider now linear maps between tensor images:

C ∶Td,k,p→Td′ ,k′ ,p′ . (B 11)

Linear equivariant maps satisfy that C◦Φd,k,p =Φd′ ,k′ ,p′◦C. That is, if C̃ is the representation of C in
the above basis,

C̃◦
⨁
�∈G

md,k,p(�)� =
⨁
�∈G

md′ ,k′ ,p′ (�)�◦C̃. (B 12)

By Schur’s lemma, this implies that C≡
⨁

�∈Gmd,k,p(�) Idd� .
The power of representation theory is not limited to compact groups. Mackey machinery al‑

lows us to study, for instance, semidirect products of compact groups and other groups, and in
general to relate the representations of a normal subgroup with the ones of the whole group.
This is the spirit of [15], which makes extensive use of the induced representation theory. An
introduction to this topic can be found in chapter 7 in [67].
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B.4. Steerable convolutional neural networks
The work in [15] deals exclusively with signals f ∶ℤ2→ℝk. They consider the action of G=p4m
on ℤ2 by translations, rotations by 90 degrees around any point and re昀氀ections. This group is a
semidirect product of ℤ2 and B2, so every x∈ p4m can be wri琀琀en as x= t r, for t∈ℤ2 and r∈ B2.
They show that equivariant maps with respect to representations � and �′ of rotations and re‑
昀氀ections B2 lead to equivariant maps with respect to certain representations of G, � and �′. This
means that if we 昀椀nd a linear map � ∶ f↦ � f such that � �(h) f= �′(h)� f for all h∈ B2, then for the
representation of G�′ de昀椀ned by

�′(t r) f(y) = �(r) [f((t r)−1 y)], t r∈G, y∈ℤ2, (B 13)

we automatically have that ��(g) f= �′(g)� f for all g∈G. This is the representation of G induced
by the representation � of B2.

Note the similarity between De昀椀nition 11 of the action of Bd on tensor images and (B13). The
convolution with a symmetric 昀椀lter produces easily an equivariant mapwith respect to the action
of the semidirect product of ℤd and Bd on the tensor images.

B.5. Approximate symmetries
The recent work [69] studies approximately equivariant networks, which are biased towards
preserving symmetry but are not strictly constrained to do so. They de昀椀ne a relaxed group
convolution which is approximately equivariant in the sense that

‖�X(g) f ∗G Ψ(x) − f ∗G Ψ(�Y(y) x‖< �. (B 14)

They use a classical convolution but with di昀昀erent kernels for di昀昀erent group elements.

Appendix C. Experimental details

C.1. Data
The data are the PDEBench 昀椀les 2D_CFD_Rand_M0.1_Eta0.01_Zeta0.01_periodic_128_Train.hdf5
and 2D_CFD_Rand_M1.0_Eta0.1_Zeta0.1_periodic_128_Train.hdf5, which can be found at
h琀琀ps://darus.uni‑stu琀琀gart.de/dataset.xhtml?persistentId=doi:10.18419/darus−2986 [58]. We used
the 昀椀rst 128 trajectories as training data, the next 32 trajectories as a validation set and the next 128
trajectories as a test dataset. The density and pressure 昀椀elds are mean‑centred and scaled to have
variance 1 based on the training and validation datasets. The velocity 昀椀eld is not mean‑centred
because the only rotationally isotropic vector is the zero vector, but it is scaled to have variance 1
in the components.

C.2. Models
Model speci昀椀cs are described below. For equivariant models, we always use ReLU for scalars and
the Vector Neuron activation for non‑scalars. For equivariant encoder and decoder blocks, we use
3 × 3 昀椀lters instead of 1 × 1 昀椀lters because, for some order and parity pairs, there are no 1 × 1Bd‑
isotropic 昀椀lters. All convolutions use biases except for the UNet. For equivariant models, the bias
is a scale of the mean tensor of that image. Additional details are in table 2.

— Dilated ResNet [56]: The model starts with two ‘encoder’ convolutions with 1 × 1 昀椀lters
and ReLU activations. There are four blocks, each consisting of seven convolutions with
dilations of 1, 2, 4, 8, 4, 2, 1 with associated ReLU activations. There are residual connec‑
tions connecting each block. The model concludes with two ‘decoder’ convolutions with
1 × 1 昀椀lters and a ReLU activation between the two.
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— ResNet [26]: This model consists of eight blocks of two convolutions each with residual
connections between each block. Each block also has LayerNorm and a GeLU activation
[70]. We put the LayerNorm and activation prior to the convolution (pre‑activation or‑
der [71]) following [23]. This model also uses two ‘encoder’ 1 × 1 convolutions and two
‘decoder’ 1 × 1 convolutions.

— UNet LayerNorm [23]: This model is referred to as ‘UNetBase’ in [23]. This starts with an
embedding block with a convolution with a 3 × 3 昀椀lter followed by LayerNorm and a
GeLU activation [29]. Next comes a max pool2 followed by two convolutions with Lay‑
erNorm and GeLU activation. This process is repeated for four total downsamples, and
notably the number of convolution channels is doubled for every downsample. Then
the process happens in reverse, with max pooling replaced with transposed convolution
to double the spatial size instead of halving it each time. See [72] for a description of
transposed convolution. The number of convolution channels is also halved each time
we upsample. The 昀椀nal kicker is that there are also residual connections from before
each downsample to after each upsample for the appropriate spatial size. The model
concludes with a 昀椀nal convolution. In the equivariant model we do not include the
LayerNorm because it hurt the performance.

— UNet [53]: This model is the same as the one above, except it uses BatchNorm instead of
LayerNorm and the convolutions are without biases.

C.3. Training
For a loss function, we use the sum of mean squared error loss or sum ofmean squared error. This
loss sums over the tensor components and the channels and takes the mean over the spatial com‑
ponents. If {Ai}

c
i=1 are the true ki(pi)‑tensor images and

{
Âi

}c
i=1
are our predicted ki(pi)‑tensor images,

then the ℒsmse is de昀椀ned as

ℒsmse({Ai}
c
i=1,

{
Âi

}c
i=1
)= c∑

i=1

1
Nd

∑
{̄

‖‖‖‖Ai({̄) − Âi({̄)
‖‖‖‖22, (C 1)

where ‖⋅‖2 is the tensor norm. When calculating a rollout loss, we simply sum the loss of each
rollout step.
We follow a similar training regime as in [23]. We train for 50 epochs using the AdamW op‑

timizer [73] with a weight decay of 1 × 10−5 and a cosine decay schedule [74] with 昀椀ve epochs of
warm‑up. Learning rates were tuned for each model, searching for values between 1 × 10−4 and 2
× 10−3, and are included in table 2.
We trained on 4 RTX A5000 graphics cards with a batch size of 8, for an e昀昀ective batch size

of 32. Experiments we averaged over three trials, using the same training data each time. It is
possible that di昀昀erent optimizers, learning rate schedules, batch sizes or other hyperparameters
may perform be琀琀er on the task, but we held those 昀椀xed and only tuned the learning rate since
our focus is on comparing the equivariant and non‑equivariant models.
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