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Machine learning methods are increasingly being
employed as surrogate models in place of computa-
tionally expensive and slow numerical integrators for a
bevy of applications in the natural sciences. However,
while the laws of physics are relationships between
scalars, vectors and tensors that hold regardless
of the frame of reference or chosen coordinate
system, surrogate machine learning models are not
coordinate-free by default. We enforce coordinate
freedom by using geometric convolutions in three
model architectures: a ResNet, a Dilated ResNet
and a UNet. In numerical experiments emulating
two-dimensional compressible Navier-Stokes, we see
better accuracy and improved stability compared with
baseline surrogate models in almost all cases. The
ease of enforcing coordinate freedom without making
major changes to the model architecture provides an
exciting recipe for any convolutional neural network-
based method applied to an appropriate class of
problems.
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1. Introduction

Contemporary natural science features many datasets that are images, lattices or grids of geo-
metric objects. These might be observations of intensities (scalars), velocities (vectors), magnetic
fields (pseudovectors) or polarizations (2-tensors) on a surface or in a volume. Any grid of vec-
tors or tensors can be seen as a generalization of the concept of an image in which the intensity
in each pixel is replaced with a geometric object—scalar, vector, tensor or their pseudo counter-
parts. These objects are geometric in the sense that they are defined in terms of their transformation
properties under geometric operators such as rotation, translation and reflection. Likewise, a grid
of these objects is also geometric, so we will refer to them as geometric images.

There are many questions that we might like to answer about a dataset of geometric im-
ages. The images could be the initial conditions of a simulation discretized to a regular grid; see
figure 1 for some examples. A critical problem in astronomy, climate science and many other
fields involves modelling the evolution of velocity, pressure and density fields according to the
Navier—Stokes equations. Classical numerical methods to solve these equations can be reliable
and accurate [5], but they are computationally expensive and rely on having the full specification
of the differential equations that govern the physics. Creating surrogate models with machine
learning (ML) methods has shown promise as an alternative because they allow us to make pre-
dictions based on only partially specified dynamical systems [6]. Moreover, once trained on the
desired spatial and temporal scales, these surrogate models could generate an approximate solu-
tion from an initial condition much faster than a traditional solver. However, long-term stability
in surrogate models remains a concern [7].

One potential culprit for unstable rollouts is that ML models are not coordinate-free by de-
fault; they operate on the components of the vectors rather than the vectors themselves. In typical
contexts, the input channels of a convolutional neural network (CNN) are the red, green and blue
channels of a colour image; these are then combined arbitrarily in the layers of the CNN. The
naive, flawed approach to applying CNN methods to geometric images is to treat the compo-
nents of the vector or tensor as independent channels, ignoring how these objects behave under
geometric operations.

The fundamental observation inspiring this work is that when an arbitrary function is applied
to the components of vectors and tensors, the geometric structure of these objects is destroyed
[8]. There are strict rules, dating back to the early days of differential geometry [9], about how
geometric objects can be combined to produce new geometric objects, consistent with coordinate
freedom and transformation rules. These rules constitute a theme of [10], where they are com-
bined into a geometric principle (see page 1 of [10]). With the tools of equivariant ML, we can make
better and more efficient models by incorporating the rules of coordinate freedom. Similar ideas
have had success in numerical integrators as well [11,12].

The concept of equivariance is simple. Given a group G with action on some spaces X and
Y, we say a function f : X — Y is equivariant with respect to G if for all x € X and g € G we have
flg - x) =g - f(x). For equivariant ML, we learn a function f over a class of equivariant functions with
respect to a relevant group. Ideally, we would like our group to express all possible coordinate
transformations, but this includes all possible diffeomorphisms, a computationally intractable
group [13]. Thus, in practice, we will consider certain rotations, reflections and translations.

The symmetries that these rules suggest are continuous symmetries. But of course, images are
usually—and for our purposes, always—regular, discrete grids of values. For our purposes, in-
stead of the continuous symmetries respected by the tensor objects in the image pixels, there will
be discrete symmetries for each geometric image taken as a whole. We will define these discrete
symmetry groups and use them to define a useful kind of group equivariance for functions of
geometric images. When we enforce this equivariance, the convolution filters that appear look
very much like the differential operators that appear in discretizations of vector calculus. Even
though we only implement a relatively small set of symmetries, we numerically observe that they
provide a significant improvement over baselines that do not respect these symmetries. In a sim-
ilar spirit, related observations have been made in the numerical analysis literature, where using
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Figure 1. Examples of geometric images in the natural sciences. (a) A visualization of a temperature map and a polarization
map from the ESA Planck Mission [1] (courtesy ESA/NASA/JPL-Caltech). The colour map shows a temperature field (a scalar or
0¢y-tensor) on the sphere, and the whiskers show the principal eigenvector direction of a 2.y-tensor field in two dimen-
sions. (b) Two-dimensional maps of ocean current (arrows; a vector or 1.y-tensor field) and ocean salinity (colour; a scalar or
0¢y-tensor field) [2]. (c) A three-dimensional map of temperature (a scalar or 0,.y-tensor field) based on sensors distributed
throughout the volume of a granary [3]. (d) A two-dimensional map of potential vorticity (a pseudoscalar or 0 _,-tensor field)
in the Earth’s atmosphere, measured for the purposes of predicting storms [4].

discretizations that respect the symmetries of the underlying differential operators improves the
accuracy of the numerical simulations [14].

The numerical experiments in this work focus on modelling the Navier-Stokes equations,
which involve scalar fields and vector fields. However, the model we develop, the GeometricIma-
geNet, can be immediately applied to geometric images of any tensor order or parity.

Our contributions: The contributions of this paper are the following:

— We define the geometric convolution of tensor images using tensor products and
contractions (§3b).

— We extend the results of [15] and [16] to prove translation and roto-reflection equivari-
ance of geometric convolutions on tensor images (§4).

— We construct a novel model architecture using geometric convolutions and display its
advantages over non-equivariant methods through numerical experiments on compress-
ible Navier-Stokes simulations (§§5 and 6).

Additionally, we discuss related work in §2 and mathematical background in §3a. The proofs
have been sequestered in the appendix along with a larger exploration of related work.

2. Related work

The difficulty of modelling Navier—-Stokes and other partial differential equations has made the
surrogate neural network approach popular in recent years. The CNN approach without regard
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to coordinate freedom is common [17-20] and can be successful with sufficient data. Some ap-
proaches like the Fourier neural operator [21] are adept at handling images at any resolution.
Other methods have tried to incorporate the physical laws back into ML models under the broad
category of physics-informed ML [22-24].

Equivariant ML is one approach to incorporating physical laws in learned methods by explic-
itly enforcing the appropriate symmetry in the architecture of the network. When we expect our
target function to be equivariant to that group, this strategy improves the model’s generaliza-
tion and accuracy (see, for instance, [25-29]) and is a powerful remedy for data scarcity (see [30]).
Equivariant networks, in certain cases, can approximate any continuous equivariant function (see
[31-34]).

Equivariant models have been built for many different symmetry groups, such as translations
[35], gauge symmetries [36], permutations [37], rotations/reflections [16,26,38,39] or multiple sym-
metries [32,40]. There are many approaches to building equivariant models, such as using data
augmentation [41,42], invariant theory [43], group convolutions [16], canonicalization [44,45] or
irreducible representations [38,39,46]. Our paper uses tensor operations to enforce equivariance,
in a similar manner to [37] and [47]. However, both works focus on single tensor inputs and out-
puts rather than tensor images, which significantly changes the methodology of the linear layers.
Closest to our paper in both strategy and application are [26] and [48], but they implement the
symmetries with irreducible representations and Clifford algebras, respectively.

Each equivariant method has some challenges. Group convolutions require convolving over
the group elements in addition to the spatial dimensions, which can be expensive for larger
groups. The Clifford algebras can handle vectors and pseudovectors naturally, but they cannot
handle all higher order tensors because they are a quotient group of tensor algebra [49, Ch. 14, the-
orem 4.1]. Steerable methods require using irreducible representations and decomposing higher
order tensors, which can be somewhat involved [50]. By contrast, the geometric convolutions we
present in this paper operate on tensors in their natural, Cartesian form, which allows every step of
the network to remain interpretable from a physics perspective. Furthermore, geometric convolu-
tions are naturally discrete like their input images, exactly equivariant to the discrete symmetries
of those images and able to handle any tensor order or parity.

See appendix B for a more in-depth description of the mathematical details of the related work.

3. Geometric objects and geometricimages

We define the geometric objects and geometric images that we use to generalize classical im-
ages in scientific contexts in §3a,b. The main point is that the channels of geometric images, the
components of vectors and tensors, are not independent. There is a set of allowed operations on
geometric objects that respect the structure and coordinate freedom of these objects.

(a) Geometric objects

We start by fixing d, the dimension of the space, which will typically be 2 or 3. The coordinate
transformations will be given by the orthogonal group O(d), the space of isometries of R that fix
the origin. The geometric principle from classical physics [10] states that geometric objects should
be coordinate-free scalars, vectors and tensors, or their negative-parity pseudo counterparts. By
coordinate-free we mean that if F is a function with geometric inputs, outputs and parameters,
then F(g - v) = g - F(v) for all objects v and all g € O(d). This is the mathematical concept of equiv-
ariance, which we will explore further in §4. This requires that the definitions of the geometric
objects are inseparable from how O(d) acts on them.

Definition 1 ((pseudo-)scalars). Let s € R have an assigned parity p € {—1, +1}. Let g € O(d) and
let M(g) be the standard d x d matrix representation of g, i.e. M(g™") = M(g)™' =M(g)". Then the
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action of g on s, denoted g - s, is defined as
1-p
g-s=det(M(g)) ? s. (3.1

1p
When p = +1, s is a scalar and det(M(g)) 2 =1 so the action is just the identity. When p= -1, s

ﬂ
is a pseudoscalar, so det(M(g)) 2 =det(M(g)) = +1, and there is a sign flip if g involves an odd
number of reflections.

Definition 2 ((pseudo-)vectors). Let v € R? be a vector, and let v have parity p € {—1, +1}. Let
g € O(d), and let M(g) be the standard matrix representation of g. Then the action of g on v, denoted
g - v, is defined as

g-v= det(M(g)) 1%pM(g) v, (3.2)

where parity p has the same effect as on the scalars.
We can now construct higher order tensors using the tensor (outer) product.

Definition 3 (k(p)-tensors). The space R? equipped with the action O(d) defined by (3.2) is the
space of 1,,-tensors. If we have k1, ,-tensors denoted v;, then T : = v; ® ... ® v, is a rank-1 k,-tensor,

where p = HLI p; and the action of O(d) is defined as

0 ®.0v)=(@g 1)Q..80 (g ). (3.3)

Thus, a tensor T is an element of a vector space (R?)®, which we denote 77 ,. To get higher
rank tensors, we can add tensors of the same order k and parity p, and the action of O(d) extends
linearly.

Note that the parity p is not an intrinsic quality of the components of a tensor. For example,
a vector and a pseudovector could be equal for a certain choice of coordinates, but they would
behave differently under some coordinate transformations. Also, note the distinction between the
order k of the k,-tensor and the rank of the tensor. We could have a 2, -tensor of rank 1, like those
we use in definition 3. We refer to the components of tensors with Einstein summation notation.

Definition 4 (Einstein summation notation). In Einstein summation notation, the components of
tensors are referred to by subscripts, e.g. [a]; for the i, j component of 2, -tensor a where i and j
are in the range 1, ..., d. In this paper, we assume that our tensor images have a Riemannian metric
of the identity matrix, so we do not need to distinguish between covariant and contravariant in-
dices. A subscript index may appear exactly once in a term, in which case we are taking the outer
product, or exactly twice, in which case we are summing over (contracting) that index.

This notation can be used to express a lot of familiar operations. For example, the dot prod-
uct of vectors a,b is written as [a];[b];. The product of two 2,-tensors (represented as two d X d
matrices A and B) is written as

d

[A B]i,j =[Al, [B]k,j = Z[A]i,k [B]k,j5 (34)

k=1

where the sum from 1 to d on repeated index k is implicit in the middle expression. In summation
notation, the group action of (equation (3.3)) on k,-tensor b is explicitly written

[g- bl =det(M(g)) * (bl M), - M@l , (35)
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for all g€ O(d). For example, a 2. -tensor has the transformation property [g-b];;=
(bl [IM()]; [M(8)];¢, which, in normal matrix notation, is written as g - b = M(g) b M(g)". To make
operations on general kg, -tensor more concise, we adopt the following two definitions.

Definition 5 (tensor product). Let a be a k,-tensor and let b be a k',/,-tensor. Then the tensor
product of a and b, denoted a ® b, is the (k + k'), , -tensor whose i, ..., i,y components are defined
as

el ! z[a]il ,,,,, i [b]ik+1 ,,,,, o (3.6)

Definition 6 (k-contraction). Let a be a (2k + k’)(p)—tensor, then the k-contractiony(a) is a k',
tensor defined as

[lk(a)]jl ..... e = [u]il,...,ik,il,.4.,ik,j14..,/'k/' (3.7)

In other words, we are contracting over indices (1, k) to (k + 1, 2k).

It is helpful to think of the contraction as the generalization of the trace to higher order tensors,
where we are summing over k pairs of axes. For a 2, -tensor 4, the tensor contraction ¢,() is exactly
the trace, a 0,-tensor. If a is a 5,,-tensor, then the contraction 1,(a) is the 1,-tensor given by

d d
[lz(ﬂ)]j = [a]i,é,i,f,j = Z Z[a]i,é,i,f,j' (3.8)
i=1 ¢=1
We use the k-contraction to define a norm for tensors, which is equivalent to the £, norm on the
vectorized tensor or the Frobenius norm for matrices extended to tensors.

Definition 7 (£, tensor norm). Let a be a k,-tensor. Then the ¢,tensor norm||-||, : Tyy, = Tyo+
is defined as

llall, =Vu(a ® a). (3.9)

(b) Geometricimages and operations

We will start by considering square (or cubic or hyper-cubic) images on a d-torus. We consider an
image A with N equally spaced pixels in each dimension for N pixels total. Working on a square
regular grid on the d-torus is essential for the equivariance results we develop in §4; the definitions
and operations below are applicable with minor adjustments to rectangular, non-toroidal arrays
as well. Each pixel contains a k,-tensor, where k and p are the same for each pixel. We define the
geometric images as follows.

Definition 8 (geometric image). A geometric image is a function A : [N]? > T akpr Where [N]=
{0,1, ..., N — 1}. The set of geometric images is denoted Ay ;. We will also consider k,-tensor im-
ages on the d-torus, where [N]” is given the algebraic structure of (Z/NZ)". The pixel index of a
geometric image, often I, is naturally a 1, -tensor.

Just as the space of k,-tensors is a vector space, the space of geometric images is also a vector
space. Thus, they include vector addition and scalar multiplication. Additionally, for each ten-
sor operation defined in §3a, we can define an analogous operation on geometric images that is
performed pixel-wise.

We now turn to the first major contribution of this paper, the generalization of convolution
to take geometric images as inputs and return geometric images as outputs. The idea is that a
geometric image of k,-tensors is convolved with a geometric filter of k'/-tensors to produce a
geometric image that contains (k + k') ,,,,-tensors, where each pixel is a sum of outer products.
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These (k + k'), -tensors can then be contracted down to lower-order tensors using contractions
(definition 6). Note that the side length M of the geometric filter can be any positive odd number,
but typically it will be much smaller than the side length N of the geometric image.

Definition 9 (geometric convolution). Given A € Ay, and C € Ay p,» with M =2m +1 for
some positive integer m, the geometric convolutionA + Cis a (k + k'), ,,-tensor image such that

AxO@= D, Al-a)® C@+m), (3.10)

a€[—m,m)d

where 7 — i is the translation of T by @ on the d-torus pixel grid (Z/NZ)* and 17 is the vector of all m.

This definition is on the torus to achieve exact translation equivariance, but, in practice, we
can use zero padding or any other form of padding as the situation requires. Additionally, geo-
metric convolution can be adapted to use longer strides, filter dilation, transposed convolution or
other convolution variations common in the literature. See figure 3a for examples with a scalar
and vector filter. We can define max pooling using the ¢, norm of a tensor as follows:

Definition 10 (max pool,). Let b be a positive integer, and let A € Ay ,;,, where b divides N.
Then the function max pool, : Ay, = Ay, is defined for each pixel index 7€ [0, (N/b) — 1)

max pool, (A)(@) = A (b7 + arg max,_,,_, JAGT+aD)],). (3.11)

The convolution, contraction, index-permutation and pooling operators above effectively span a
large class of linear functions from geometric images to geometric images.

4. Functions of geometricimages and equivariance

We start by defining the groups of interest acting on geometric images. First is the group of dis-
crete translations on the d-torus pixel grid, denoted Ty, = (Z/NZ)".If A is a k,-tensor image and
7 € Ty, then the action L, A produces the k,-tensor image (L,A)(1) = A(I — 7), where 1 is a pixel
index and 7 — 7 is the translation of 7 by r on the d-torus pixel grid.

In addition to translation symmetries, we want to consider other natural symmetries occurring
in the application domains where vectors and tensors arise. Ideally, we would like to apply con-
tinuous rotations to the images, but the discretized nature of images makes this challenging. To
obtain exact results on images, we focus on discrete rotations. For two-dimensional images, this
is the familiar dihedral group D, of rotations of 90 degrees and reflections, and in the general-D
case, it is the hyperoctahedral group B,, the Euclidean symmetries of the d-dimensional hyper-
cube. The notation B, is standard nomenclature coming from the classification theorem for finite
irreducible reflection groups [51]. Because the groups B, are subgroups of O(d), all determinants
of the matrix representations of the group elements are either +1 or —1, and the matrix represen-
tation M(g™") of the inverse g™ of group element ¢ is the transpose of the matrix representation
M(g) of group element g.

Definition 11 (action of Bd on k(p)-tensors). Given a k,-tensor b, the action of g€ B, on b,
denoted g - b, is the restriction of the action in definition 3 to B,, which is a subgroup of O(d).

Remark. Although we now consider B, acting on k,-tensors, we continue to use the O(d)-equivariant
tensor operations of §3a to preserve full tensor coordinate freedom.

Definition 12 (action of Bd on k(p)-tensor images). Given A € Ay 4, on the d-torus and a group
element g € B, the action g - A produces a k,-tensor image on the d-torus such that

(g-AD=g A" D. (4.1)

H
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Since 1 is a 1(,)-tensor, the action g™ - T is performed by centring I, applying the operator, then
un-centring the pixel index

gt 1= (M@ Ha—m)) + m,
T
where 171 is the d-length 1 ,,-tensor [%, . % . If the pixel index is already centred, such as
i € [-m, m]?, then we skip the centring and un-centring.

It might be a bit surprising that the group element g™ appears in the definition of the action
of the group on images. One way to think about it is that the pixels in the transformed image are
‘looked up’ or ‘read out’ from the pixels in the original untransformed image. The pixel locations
in the original image are found by going back or inverting the transformation.

Definition 13 (the group Gy ,;, and its action on k(p)-tensor images). Gy, is the group generated
by the elements of B, and the discrete translations on the N”-pixel lattice on the d-torus.

Remark. We view the d-torus as the quotient of the d-hypercube obtained by identifying opposite faces.
The torus obtains the structure of a flat (i.e. zero curvature) Riemannian manifold this way. Because the
symmetries B, of the hypercube preserve pairs of opposite faces, they act in a well-defined way on this quo-
tient, so we can also view B, as a group of isometries of the torus. We choose the common fixed point of the
elements of B, as the origin for the sake of identifying the N* pixel lattice with the group Ty, =(Z/NZ)"
of discrete translations of this lattice; then the action of B, on the torus induces an action of B, on Ty, by
automorphisms. The group Gy, is the semidirect product Ty, X B, with respect to this action. Thus, there
is a canonical group homomorphism Gy, — B, with kernel Ty ,. In concrete terms, every element of Gy,
can be written in the form tob, where b € B, and t € Ty,. Then the canonical map Gy, — B, sends tob to b.

With our groups specified, we can define equivariance and invariance before proceeding to
several theoretical results.

Definition 14 (equivariance of a geometric image function). Let G be one of Ty, B, or Gy,,.
Given a function on geometric images f : Ay x, = Ay qp 7, We say that fis G-equivariant if for all
g€ G and A € Ay, we have

flg-A)=g-f(A). (4.2)

Likewise, fis invariant to G if

fg - A)=fA). (4.3)

We also say a geometric image is G-isotropicif g- A=A forall g€ G.

The fundamental property of convolution is that it is translation equivariant and that every
translation equivariant linear function can be expressed as a convolution with a fixed filter, as
long as the filter can be set to be as large as the image [15]. The same property holds for geometric
images.

Proposition 1. A function f : Ay, = Anap 18 4 translation equivariant linear function if and only
if it can be written as y(A * C) for some geometric filter C € Ay yyip - When N is odd, M = N; otherwise,
M=N+1.

See appendix A.1 for the proof. We can also build convolution functions that are equivari-
ant to Gy,. The following theorem generalizes the Cohen & Welling paper [16] for geometric
convolutions.
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Figure 2. (a) All the filtersford = 2, M = 3,k € {0, 1, 2}. Where there is no symbol in the box the value is zero. There are no
B,-isotropic pseudoscalar filters at d = 2, M = 3. Note that the vector filters look like pure divergence and the pseudovector
filters look like pure curl. (b) Each signed component in the 2,)-tensor has a particular icon, with the positive diagonal ele-
ments represented by the green double arrows, the negative diagonal elements represented by the black double arrows and
the off-diagonal elements represented by the petals. Each element rotates in an obvious way, and 2,.,-tensors reflect in an
obvious way as well. However, reflections on negative-parity diagonal elements flip the sign (colour) of the double arrows and
have no effect on the petals other than changing their pixel location.

Theorem 1. A function f: Ay, = Anap is linear and Gy g-equivariant if and only if it can be
written as y(A x C) for some By-isotropic C € Ay gpsn where M=N if N is odd and M=N +1
otherwise.

pr'y

The proof of this theorem is given in appendix A. Theorem 1 provides the explicit require-
ments for linear layers in our equivariant GeometricImageNet. All we need are the B,-isotropic
(k + k'), s -tensor filters, which are straightforward to find using group averaging.

5. GeometriclmageNet architectures

Per theorem 1, we construct linear Gy -equivariant layers using B,-isotropic filters. A complete
basis of B,-isotropic (k + k), ,-tensor filters can be found by group averaging. First, we get the

standard basis of R"****) and reshape them into filters C; with side length M and assigned parity
pp'. Next, we apply the group averaging

~ 1
C = B_ z g- G, (5.1

1 geBy

where |B,]| is the number of group elements. This will likely result in a linearly dependent set of
filters, so we perform singular value decomposition to reduce to a single set of unique filters. The
filters are then normalized so that non-zero tensors have unit norm, and the k = 1 filters are also re-
oriented such that non-zero divergences were set to be positive, and non-zero curls were set to be
counterclockwise. See figure 2 for the B,-isotropic convolutional filters in d = 2 dimensions for fil-
ters of side length M = 3. Next, we use these B -isotropic filters to construct linear G, 4,-equivariant
layers.

Win .
The linear layers take an input collection of geometric images {(k., pZ)}z=l with ¢, channels and
WOll
the desired output tensor orders and parities {(k,, p,)} . '

5=

with ¢, channels and compute all the
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tensor order

k=3 D D D Image Block

+ B ? == Convolution
: = k=2 D \ D \\\ = Contraction
\_\1 \ \\\\] =) Nonlinearity

\
2 k=1 A _,D \ D_,D
B (vector image) \ f(A.B)
N ‘M o (model output)
i e x

(scalar image)

Figure 3. (a) Convolution of a scalar image with a scalar and vector filter. (b) Example architecture taking a vector image and
scalarimage as input and output. Linear layers are shown by the blue convolution arrows followed by green contraction arrows.
The black arrows represent nonlinearities. The orange blocks represent multiple channels of images at that tensor order.

convolutions' and contractions to map between those two sets. Following theorem 1, there are
t =1,...,c, functions Z:V Yo 4 (A, % C,,.) for each desired output tensor order and parity. Per
the theorem, these convolution filters C,;, must be B,-isotropic to guarantee that this layer is Gy ;-
equivariant. Each B,-isotropic filter is a parameterized linear combination of the B, -isotropic basis
we found by group averaging. However, using filters as large as the input image is impractical in
most cases, so we use deeper networks of 3 x 3 or 5 x 5 filters, as is commonly done in CNNs [52].

Nonlinear layers present a challenge because the typical pointwise nonlinear functions such
as Rectified Linear Unit (ReLU) or tanh break equivariance when applied to the individual com-
ponents of a tensor. Properly building O(d)-equivariant nonlinear functions is a challenging and
active area of research; for a larger exploration, see [53] and references therein. For this model, we
extend the Vector Neuron nonlinearity [54] for any tensor order and parity. Let A, fori=1,...,c, be
the input k., -tensor image channels as above (we drop the z from the A, notation for simplicity),
let a;, B; € R be learned scalar parameters and Q = Zzl a A, K= Zzl B; A;. Then the nonlinearity
0 ¢ (Anaiap.)” = Axas. p, i5 defined

Q if ,(Q®K)>0
k) x . ; (5:2)
Q- lk<Q ® —)— otherwise

K1l /11Kl

where ||-||, is the tensor norm (3.9). To get ¢, output channels, we can repeat this function c, times
with different learned parameters «a;, 5, We show that this extension is O(d)-equivariant in ap-
pendix A.2. See figure 3b for an example of a typical architecture interlacing linear and nonlinear
layers.

The final layer types we will use in our model are LayerNorm [55] and max pool. We use the
original LayerNorm for scalar images, but for vector images, we follow the strategy of vector
whitening used in [48], based on a similar strategy developed for neural networks with complex
values [56]. This method has not yet been extended to higher order tensors. Let (4))Z, be a set
of 1(,-tensor images. Let A@D=A0 - j Zzl zje[N]d A,() for each pixel T be the mean-centred

1,-tensor image. Then the covariance is a 2,,-tensor given by

Z > (A ®A)D. (5.3)

Z i=1 1[N}

'The geometric convolution package is implemented in JAX, which in turn uses TensorFlow XLA under the hood. This means
that convolution is actually cross-correlation, in line with how the term is used in ML papers. For our purposes, this results
in at most a coordinate transformation in the filters.
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1
We calculate Z72 by performing an eigenvalue decomposition X = UAU", where A is a diagonal
matrix with the eigenvalues along the diagonal. We take the inverse of each eigenvalue and then

1 1 1
its square root, then multiply UA™2U" to get £72. Finally, we scale the vectors by X2
- 1
BOL =[A0] 2] . 54)
it

and output B; for i =1 to c,. Max pooling layers follow exactly from definition 10 for each channel
of each input image. We prove that these layers are Gy -equivariant in appendices A.3 and A 4,
respectively.

6. Numerical experiments

We will conduct numerical experiments on two-dimensional compressible Navier-Stokes simu-
lation data from the excellent PDEBench dataset [57]. These data consist of velocity (vector) fields,
density (scalar) fields and pressure (scalar) fields with periodic boundary conditions discretized
into 128 X 128 images on the torus. The simulations are saved at 21 time points, which are a subset
of the integrator timesteps. We use 128 simulation trajectories with random initial conditions as
training data and another 128 trajectories as test data. The model takes the state of system at times
t=0,1,2,3 for inferring the trajectories. We use data generated with two distinct sets of param-
eters: Mach number M = 0.1, shear viscosity 7 = 0.01 and bulk viscosity { =0.01 and M =1.0,n =
0.1, =0.1. The two sets of parameters are used to train entirely different models and tested
separately.

The model task is to take as input the velocity, density and pressure fields at a certain time
point and predict what those fields will be at the next time point. We adopt a common strategy in
the surrogate model literature [20,26,48] of providing four previous time points as input to help
capture temporal derivatives of the state [57]. Thus, we can turn the 128 training trajectories into
2176 training data points because each trajectory has 17 overlapping sections of four input steps
and one output step. We train a Dilated ResNet [17], a ResNet [58] and a UNet [59] with and with-
out LayerNorm [55] and large and small equivariant versions of each of those models. We train
with the sum of the mean squared error loss of each field of a single step, but at test time we are
also interested in the performance of autoregressively rolling out the model over 15 time steps.
The baseline models and training set-up generally follow those described in [20], and additional
data, model and training details are in appendix C.

The numerical results are given in table 1. In all cases of the 1-step loss and almost all cases
of the 15-step rollout loss, the equivariant models outperform the non-equivariant versions. One
exception is the M1.0 dataset where the equivariant ResNets have better 1-step errors, but worse
rollout errors. These models appear to be overfitting in a manner that is hurting rollout stability.
In figure 4, we can see with more granularity the test performance for each rollout step. In the most
drastic example, the rollout error for the Dilated ResNet explodes, while the equivariant Dilated
ResNet is stable and accurate over all 15 steps. In [17], the authors combat this issue by adding a
small amount of Gaussian noise during training; we instead achieve stability in a physically moti-
vated way by enforcing O(d)-equivariance. The equivariance also helps with parameter efficiency;
the small equivariant models have a number of channels so that scalar plus vector components
are comparable to the number of baseline model channels. The large equivariant models have a
comparable number of parameters to baseline models (table 2). The large equivariant models gen-
erally do better than the smaller ones, but the smaller ones still outperform the non-equivariant
models despite having 80% fewer parameters. Code to reproduce all these experiments and build
your own GI-Net is available at https://github.com/WilsonGregory/GeometricConvolutions. The
code is built in Python using JAX [60].
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- MSE vs. Rollout Step, Mean of 3 Trials
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Figure 4. (a) Five steps of M0.1 rollout using the UNet48 (E). The x-component of the velocity is plotted. The power spectrum
is the Fourier transform of the two-point correlation function. (b) Comparison of test performance over a 15-step rollout on the
MO0.1 dataset. The SMSE is shown for each step, rather than a cumulative loss.

Table 1. Loss values for each model, averaged over three trials. All losses are the sum of the mean squared error losses over the
channels: density, pressure and velocity. The rollout loss is the sum of the error over 15 steps. The s.d. £0.xxx is provided if it is
at least 0.001. The equivariant models are indicated by ‘(E). The number in the model name refers to the number of channels
per layer, which for equivariant models refers to the number of scalar and vector channels each. The bold values indicate the
best error per group of models.

model M0.1 1-step M0.1 rollout M1.0 1-step M1.0rollout

DilResNet64 0.040 13318.773 + 18824.855 0.005 9.574 +9.608
....... [) ||ResNet20(E)ooz138821024500010249ioo12
....... D ||ResNet48(E)oo1s3770100900001015310023
....... R esNet12800391757361178460009083510097
....... R esNet42(E)00361000423666155070005251310450
....... R esNeﬂoo(E)002410001575081915700032943i0992
....... U Net64N0rm00273414102170009100011067i0190
....... U NetzoNorm(E)oozo31051013000010140i0011
....... U Net43Norm(E)oo172898ioo450001o1z1iooo7
....... U Net540047i0001508510105001210002207410067
....... U netzo(E)oon2572100710001017210003
....... U net48(E)oo172919100940001010910005

7. Discussion

This paper presents geometric convolutions that can easily adapt any CNN architecture to be
equivariant for images of vectors or tensors. This makes the model ideal for tackling many prob-
lems in the natural sciences in a principled way. We see in two-dimensional compressible Navier—
Stokes simulations that we achieve better accuracy and more stable rollouts than non-equivariant
baseline models.

One limitation of this work is that we use discrete symmetries instead of continuous symme-
tries. We expect invariance and equivariance with respect to rotations other than 90 degrees to
appear in nature, but the images that we work with are always going to be d-cube grids of points.
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Table 2. Comparison of various models. For equivariant models, the number of channels is for vector channels and scalar chan-
nels each. The number of channels of each larger equivariant model was chosen so that the equivariant and non-equivariant
models have roughly the same number of parameters. The number of channels for each smaller equivariant model was chosen
so that the total number of components across scalars and vectors is comparable to the number of channels in the baseline
models.

model params (NN channels  norm bias learning rate
DilResNet64 1043651 64 — Yes 2x1073
[)||Re5Net20(E) ......... 171743 ...................... 20_ .............................. Mean .......................... 1><10—3 44444444444444444

D||Re5Net48(E) ......... 979347 ...................... 43_ .............................. Mean .......................... 1><10—3 44444444444444444

ResNet128 ................. 240”55 ................... 128LayerN0rm ................. Y es .............................. 1><10—3 AAAAAAAAAAAAAAAAA

ResNet42(E) .............. 455913 ...................... 42LayerNorm ................. Mean .......................... 7)(10_4 AAAAAAAAAAAAAAAAA

ResNet]OO(E) AAAAAAAAAAAA 2558703 AAAAAAAAAAAAAAAAAAA 100LayerNorm ................. Mean .......................... 7)(10_4 AAAAAAAAAAAAAAAAA

UNet64N0rm ............. 31053251 AAAAAAAAAAAAAAAAA 64LayerN0rm ................. Y es .............................. 8)(10_4 AAAAAAAAAAAAAAAAA

UNetZONorm(E) ....... 4704383 AAAAAAAAAAAAAAAAAAA 20_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Mean .......................... 5><10—4 AAAAAAAAAAAAAAAAA

UNEt48N0rm(E) ....... 27077139 ................ 48_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Mean .......................... 4><10—4 AAAAAAAAAAAAAAAAA

UNEt64 ....................... 31046400 ................ 64BatChN0rm ................. No _______________________________ 8><1o—4 _________________

UNetzo(E) ................. 4700100 .................. 20_ .............................. No ............................... 7)(1074 .................

UNem(E) ................. 27066854 ................ 48_ .............................. NO ............................... 3><10*4 .................

Thus, we use the group Gy, to avoid interpolating rotated images and working with approximate
equivariances. This simplifies the mathematical results, and we see empirically that we still have
the benefits of rotational equivariance. However, there are other possible image representations
that might create continuous concepts of images. For example, if the data are on the surface
of a sphere, it could be represented with tensor spherical harmonics, and it could be subject to
transformations by a continuous rotation group.

Another limitation of this work is that we do not compare our method with existing state-of-
the-art numerical integrator methods. Surrogate ML models for fluid dynamics simulations have
generally suffered from comparisons with weak baselines that overstate the accuracy or efficiency
of the surrogate model [61]. In this work, we only claim to improve upon existing vanilla CNN
models, and we leave further comparisons to future work.

There are many other future directions that could be explored. Further research is required
to understand how and why the equivariance helps. One interesting observation of figure 4a is
that the power spectrum for the equivariant model output is still quite different from the ground
truth at higher frequencies. It may be that equivariance is advantageous at certain scales and not
at others.
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Appendix A. Proofs
A.1. Proof of theorem 1

Before proving theorem 1, we state and prove a number of helpful properties, propositions and
lemmas.

Properties. Let A, B € Ay, let C,S € Ayyap . let D, Q € Ay ypisir o let T E€(Z/NZ) be a transla-
tion on the d-torus, let o, 3 € R and let g € Gy,. Then the following properties hold.

(1) Convolutions are translation equivariant
(L,A)*C=L(A=C). (A1)
(2) Convolutions are linear in the geometric image
(@A+pB)*C=a(A+C)+ B(B*C). (A2)
Convolutions are also linear in the filters
Ax(@C+BS)=a(A*C)+B(AxS). (A3)
(3) The k-contraction is Gy ~equivariant
g u(D)=4(g- D). (A4)

(4) The k-contraction is a linear function
t(@D + Q) = au(D) + S 1(Q)- (A5)

Proof . First, we will prove (A 1). Let A, C and 7 be as above, and let 7 be a pixel index of L A * C.
Then

LAxO®= 2, (LAGT—7)®C@+in)

ﬁel—m,mld

> AG-a-1)® C@+m)

ae[—mm]d

D, A-1)-2)® C@+m)

ae[—m,m]4
Ax=O)1—-1)
=L.(A*CO)D).
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Now we will prove (A 2). Let A, B, C, @ and 8 be as above, and let T be a pixel index of (¢ A + 8B) * C.
Then

((@A+BB)«CO)(1) = z (xA + BB)(1 —a) ® C(a + m)

a€[—m,m)d
= > (aA(—a)+ pBB@-a) ® C@+ )
ae[—mm)d
= >, aA@-a)® C@+ i)+ pBI—a)® C@+ i)
ae[—mm]d
=a ), AT-DQC@a+m+p Y, dB(T—Ez)@C(Zz+ﬁ1)
a€[—m,m]d a€[—m,m]
= a(A % O)(@) + B(B * O)(1).

Now we will prove (A 3). Let A, C, S, a and 8 be as above, and let 7 be a pixel index. Then
(A @C+BSHD= D, AlT—a)® (aC+pS)@+m)

a€[—m,m)d
= > A(-a)®aC@+ i)+ Al —a) ® BS@ + i)
ae[—mm)d
=a ), AG-D@C@+m+p Y, AlI-a)® S@a+m)
ae[—mm)d ae[—m,m)d
= a(A * C)(D) + B(A % S)(D).

Next, we will prove (A 4). Let D be defined as above, and let T be a pixel of D. First, we will show
that contractions are equivariant to translations. Let 7 € (Z/NZ)". Then

(L. D)D) = 4,((L. D)D) = 4(D(T — 7)) = (,(D)( — 7) = L.t,(D)(®). (A6)

Thus contractions are equivariant to translations. Now we will show that contractions are
equivariant to B,. Let g € B,, and denote D(¢™! - 1) = a. Then by equation (3.5), we have

4(g - D)@ =u((g - D)D)
=4 (g-D(g" 1))
=u(g-a)

=[aly e TTIM@T, M@, TT M@,

qelk] q€[ 241,26+ |
()
= [a]jl ookl H[a]jq,qurk H [M(g)],-q,jq

qelk] q€[ 241,264k |

_ qe[2k+1,2k+k’]
- [a]fl O N N Y R YR

= [Lk(a)]j2k+1,.../2k+k; H [M(g)]fq’fq

e[ 2k+1,2+K |
=g- Lk(a)]l'qvjq
=g-4.(D(g" 1)
= (g (D)) @.

Note that (x) happens because [M(g)];;,[M()];x = M(g)"M(g) = 6 because they are orthogonal ma-
trices, and the next step follows from Kronecker delta identities. Therefore, since contractions are
equivariant to the generators of Gy, it is equivariant to the group.
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Finally, we will prove (A 5). Let D, Q, a and 8 be defined as above, let 7 be a pixel index of
(aD + BQ) and let a,b € T, be the tensors of D and Q at that pixel index. Then

[4(aD + fQ)D)] = [4(aD(®) + fQW)]
= [1(aa + )]
= [aa + pb]
=alal, oy simirin B it i
=alu@ly,, i+ BEO o
=als DO, ., +BlLQD),,,..
= [(at(D) + B(Q)D)]

Thus we have shown (A 6). [

k1 sifey ! Dk 15k k!

2k 1rmipf k!

el ol 1 e 1

ket 1l

Lemma 1. Given A € Ay, a geometric image and C € Ay qp s a geometric filter where M =N +1,
there exists C' € Ay gy, such that A % C' = A x Cand C'(1) is the zero k' y-tensor, for 1 € [0, NJ*\ [0O,N —
1]. That is, C' is totally defined by N* pixels, and every pixel with an N in the index is equal to the zero
K n-tensor.

Proof. Let A and C be defined as above. Thus
N=M-1=2m+1-1=2m. (A7)

Consider the convolution definition (3.9) where we have A(I —a) where 1€ [0,N—1]? and a €
[=m, m]". Since A is on the d-torus, then whenever the ¢ index of 7 = —m we have

(i, —a,) mod N=(I, —(—m)) mod N
=, +m) mod 2m
=, +m—2m) mod 2m

=(, —m) mod N.

Thus, any time there is an index 4 with a value +m, we have an equivalence class under the torus
with all other indices with flipped sign of the m in any combination. If {a} is this equivalence class,
we may group these terms in the convolution sum

DAC-T)@C@ +m)= Y, AU-DQC@ +m)=AT—-D) Q| D, C@ +m)|.

@ e{a} o’ efa} o’ efa}
Thus, we may pick a single pixel of the convolutional filter C, set it equal to Zﬁ,e{a} C(@ + m) and
set all other pixels of the equivalence class to the zero k' ,,-tensor without changing the convolu-
tion. We choose the non-zero pixel to be the one whose index has all —m instead of m. Thus, we

can define the filter C by N” pixels rather than (N + 1) pixels, and we have our result. [ ]

Lemma 2. Let there be a space of geometric images Ay 4, and let C,, Cy € Aypgppr pp With M =2m +1
for positive integer m. Then, y(A * C;) = 4(A x C,) for all A € Ay, if and only if C; = C,.

Here is a quick proof sketch of the forward direction. We assume for the sake of contradiction
that C, and G, are different so they must have at least one differing component. Then we use the
fact that (A * C;) = 4(A * C,) holds for all possible inputs to define an input A that isolates that
component to get a contradiction.
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Proof. Let C;, C, be defined as above. The reverse direction is immediate, so we focus our at-
tention on the forward direction. Suppose (A * C;) = y,(A * C,) for all A € Ay ;. Assume for the
sake of contradiction that C; #C,, so C; — C, # 6, where 0 is the zero filter. Thus, there must be
at least one component of one pixel that is non-zero. Suppose this is at pixel index b + /1 and
(C, — G)(b + i) = c. Suppose the non-zero component is at index j,, ..., ji,. Let a be a k,-tensor

index T of A, A(T — b) = a and all other pixels are the zero tensor. Thus

0=, (A% C) — 4 (A% C))(D

A3,A5

= (A% (C,-C)®
=4 (A*(C, =) (D)

=4 > AC-D®(C, —C)@+m)

ﬁe[—m,m]d
=4 (AC-D) ® (C, = C) (b + 1))
=u(@a®c).

Note that the penultimate step of removing the sum is because A(T — @) = 0 the zero tensor every-
where other than A(T — b). Therefore, since the only non-zero entry of a is at index iy, ..., i;, then at
index ji,q, ..., jr Of the resulting tensor we have

O=4@®c)=[al; ,c]

Tlmofieak! ©

Since [a];, . ; is non-zero and [c]; . ; .. is non-zero, this index is non-zero. This is a contradiction,
so we conclude that C; = C,, which finishes the proof. [ |

Proposition (Restatement of 1). [A function f© Ay i, = Anau s 1S a translation equivariant linear
function if and only if f(A) = 4(A * C) for some geometric filter C € Ay yy4p ,r- When N is odd, M= N;
otherwise, M =N + 1.

Proof. Let & = {f F ANy = Anax }, where each function f is linear and equivariant to trans-
lations. Let §G={g : Ay, = Ayap,}, Where each g is defined as g(A) =1 (A  C) for some Ce
Apapsw pp - If N is odd, then M = N; otherwise, M = N + 1. It suffices to show that ¥ = G.

First, we will show that G C ¥. Let g € G. By properties (A 2) and (A 5) both convolutions and
contractions are linear. Additionally, by properties (A 1) and (A 4), convolutions and contractions
are both equivariant to translations. Thus g€ ¥, so GC ¥.

Now we will show that dim(F) = dim(9). Let f€ ¥. By definition 3, 7, = (R )®k equipped
with the group action of O(d). Then by definition 8, Ay 4, is the space of functions A : [N 1">T e

where [N]* has the structure of the d-torus. Therefore, Ay, = (RY )®d X (Rd)®k equipped with the

group action of Gy,. Thus, f: (RY )®d X (Rd)®k - (RN )®d X ([Rd)@(,. Since fis linear, the dimension
of the space of functions ¥ is Nd¥ Ntgk = N2 g+ If this is unclear, consider the fact that the lin-
earity of f means that it has an associated matrix F of that dimension. However, since each f is
translation equivariant, the function to each of the N pixels in the output must be the same. Thus,
ded:rk’ — NG

Now we look at dim(9). Each flijnction g € Gis defined by the convolution filter C € Ay
and dim( Ay g0 ppr) = AAM(Ay it ppr) = Nd*¥, with the first equality following from lemma 1 in
both the even and odd case. Clearly, dim(9) is upper-bounded by the dimension of the convolu-
tion filters, but does it have to be equal? In other words, is it possible that two linearly independent
convolution filters result in linearly dependent functions ¢g? We will now show that this is not
possible.

we actually have that dim(¥F) =
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Let g1, 8, € G be defined by two linearly independent filters C,, C, € Ay 4.0 7, and we would
like to show that g, and g, are linearly independent as well. Suppose that there exists «, § € R such
that a g,(A) + 8 8,(A) =0 for all A € Ay, It suffices to show that a = § =0. Thus

1 (A % 0) =1, (A # (0Cy))

A3,A5

= 0y (AxCy)
=0
= og1(A) + Bg,(A)
=ay (A%C)+ By (AxCy)

A3,A5

= 4 (Ax(@C +BG5)).

Thus, by lemma 2, 0=aC, +8C,. Since C, and C, are linearly independent, this implies that
a =B =0. Thus, g,,, must be linearly independent. Therefore, dim(G) = Nd*¥  and since GC ¥,
we have F = G. [ ]

Lemma 3. Given g € B;, A € Ay 4y, and C € Ay 4, the action g distributes over the convolution of
A with C

g-(AxC)=(g-A)x(g-O). (A8)

Proof . Let A € Ay 4y, be a geometric image, let C € A, 41, let ¢ € B; and let Tbe any pixel index
of A. By definition 12, we have

@ (AxONM=g- (A*O)(g" 1))

g D Alg'-1-a)®C@+m)

ae[—m,m]d

> g (A(g - 1—a) ® C@+ i)

a€[—m,m)d

> g Algi-a)®g- C@+m).
d

a€[—m,m]

Now let@ =g-a. Thus, g' -7 =g - g-a=a. Then
G- AxON)D= D, g-Alg" -1-a)®g-C@+n)

ae[—mm)d

= D $ARTI-g-a)®g-Clgt-a +m)

gL' e[-mm]d

= Y gAlTT-gta)®g-Clgt-a g m)

g—l .ﬁ’e[_m’m]d

= Y g Alg-G-)®g-Clg - @ +m))

gL' e[-mm)d

= Y (§AT-)® (g -O)@ +m)

gL' e[-mm)d

= > (§:-AC-)®(3-C)@ +m)

a e[—m,m]d

=(g-A*g-O)D.

For the penultimate step, we note that g™! - @’ € [-m, m]? compared with @’ € [-m, m]" is just a
reordering of those indices in the sum. Thus, we have our result for pixel 1, so it holds for all
pixels. [ ]
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Now we will prove theorem 1.

Theorem (Restatement of 1). A function f: Ay gy, = Ay, is linear and Gy equivariant if and
only if it can be written as y(A * C) for some B,-isotropic C € Ay ysps 1, Where M =N if N is odd and
M =N + 1 otherwise.

v

Proof . First, we will show the reverse direction. Let C € Ay 45, ,» be B;-isotropic, and let a
function fbe defined as {A) = 4(A * C). Let g € B;, A € Ay y,- Then by the invariance of C we have

w((g-A)* O =4(g-A) x(g-C)

Z4(g- (A% 0)

A5

=g 4(A%0).
Hence, fis B;-equivariant. By (A 1) and (A 4) fis also translation equivariant, so it is equivariant to
Gy- Also, by the linearity of convolution (A 2) and contraction (A 5), fis linear. Thus, the reverse
direction holds.
Now we will prove the forward direction. Let f : Ay 4y, = Ayap s be a linear Gy -equivariant
function. Thus, f must be translation equivariant, so by proposition 1 we can write f as {A) =

4(A * C) for some C € Ay 44w ,,r- Now it suffices to show that C is B;-isotropic. Let A € Ay 4, let
g€B,andlet B=g¢" - A. Then by the equivariance of f we have

4t(AxC)=4((g-B)*C).

Thus, by lemma 2, we have g - C = C. Therefore, Cis B,-isotropic, and this completes the proof. Wl

A.2. Extension of Vector Neuron nonlinearities to tensors

In this section, we show that the tensor extension of the Vector Neuron nonlinearity [17] given by
(5.2) is Gy 4-equivariant.

Proposition 2. Let A; € Ay, ., § € Gy, and a,,€R for i=1,...,c,. Then a((g . Az-):;) =g-
G((Ar),cil)

Proof . Let A; € Ay yy, . and a;, B; ER fori =1, ..., c,. It is clear to see that o is translation equiv-
ariant because all the operations are pixel-wise. Thus, we will show that ¢ is equivariant to g € B,.
First, note that applying g to all A; resultsin g- Q and g - K. Now

1 (8-Q®g-K) =4 (¢ (Q®K) =g 4. (Q®K) =4 (Q® K).

Note that the last step is because both Q and K are k, ()" tensor images, so 4 (Q ® K) is a 0 ,,-tensor

image. Hence, if ¢ (Q ® K) >0, then U((g . Ai);) =g¢-Q=g-0((A)?,) and o is B,-equivariant.
Now suppose ¢ (Q® K) <0

g-K ) g-K

A “ =9- - : TMo. kIl
o((g-A))=8-Q (g O T KT, )T KT,

K K
‘g'Q_‘kz(g'Q‘X’g' ||1<||2)g' KT,

K K
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:g.<Q %(Q@ KL, >||II<<||2>

=g U((Ai)z

Thus o is B;-equivariant. |

A.3. LayerNorm equivariance

Proposition 3. The LayerNorm is Gy 4-equivariant.

Proof. Let (A));%, be a set of 1,,)-tensor images. Clearly, this function will be translation equiv-
ariant because let g€ B,. Let A; be as defined in §5, and let T be a pixel index of A;. Then

- A)D=g-AG"D (A9)
=g~[A;(g‘1 ~f)—i lzldAf(i)] (A10)

i1 s
=g-A(g" - D- Z; ZA:”dg A (A11)
=g A" D- Z D y g AET D (A12)

j=1 g1l
=(g-A)D —Z [Z] (g - A (A13)

j=1 JeNid

Note that 30 follows because ZJ,E[W A= ngl-;e[N]d Aj(g™" - J). Thus, the mean centring is equiv-
ariant to B,. Likewise,

g~2=g-clwz Y (A ®A)D (A14)
z i=1 1e[NJ4
Z > 8 (A ®A)D (A15)
Z i=1 1€[N)4
) (A16)
i=1 g~L.1g[N}4
Z D (g A®gA)D. (A17)
i=1 ie[N)d

Finally, the inverse square root operation is B;-equivariant. If we write it as the function f such
that AZ) = AUAUT) = UA"E ur=x" 2 . Then

g f(X)=g-AUAUT) (A18)
= M(9)UA"2 U™M(g)" (A19)
= (M(9U)A™2 (M()U) (A20)
={(MEUAMEU)") (A21)

=fg- ). (A22)
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- 1

Thus, [g - B{®], =[g - A,.(i)]f [g -2£72| whichis the same as rotating all the input A;, so LayerNorm
it

is equivariant. [ |

A.4. Max pool equivariance

The O(d)-invariance of the tensor norm allows the max pool layer to be B;-equivariant. With a
careful definition of translations for the larger and smaller images, we can also get translational
equivariance, as we see in the following proposition.

Proposition 4. Let ¢ € B, and let T € (Z /(N /b)Z) be the translation on the d-torus with side lengths
of N/b. For images A € Ay,y,, we define the action of this translation as (L.A)(@) =A@ —bt). Then,
max pool, (3.11) is equivariant to both of these groups.

Before we prove this proposition, we need a quick lemma about the tensor norm (3.9).
Lemma 4. The tensor norm (3.9) is O(d)-invariant.

Proof . Let c be a k,-tensor, and let g € O(d). Then

) O]
llg - cll, = \/tk(g c®g0)'= \/g (e ® ) =Viu(c @ o) =|lcll,- (A23)
The () equality is because ¢ (c ® c) is always a scalar. This completes the proof. [ |

Now we will prove the proposition.

Proof. First, we will show equivariance to translations. Let 7 € (Z/(N/b)Z)’ be the translation
on the d-torus with side lengths of N/b as defined in the proposition. Let A € Ay, and let Tbe a
pixel index. Then following the definitions, we have

(L, max pool, (A))(@)
= max pool, (A)T - 1)
= A(b (T —1)+argmax,_ 05-1] JNAWG G —1)+a)| )

=A(bi—br+argmax 1d||A(bl—b‘L’+ﬂZ)||>

06—
= (LAYbT+argmax,,, LA+ D,)
= max pool, (L, A)(®).
Thus max pool, is equivariant to translations. Now let ¢ € B;. Thus, by lemma 4, we have
(g - max pool, (A4))(®)
= g - max pool,(A)(g™"
=g- A(b (g D +argmax,,, ||A(b @D+ Zz)”z)
= ( (b 1+g-arg nﬂzxﬁe[o‘bfud”A(g‘1 ~(bi+g- {i))”z))
- A)( 1+g-argmax,, llg-Ag™ - (bi+g- Zz))“)
g A(bT+g- argmax,, |G- bT+g )]
2 (g A)(bl +gg " rargmax, (g - AT+ fl)”z)
=(g- A)(bi +argmax, . (g - A)bT+ [z)||2>
= max pool, (g - A)(D).
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For the (%) equality we note that arg max_||A(g - @)||, =g™" - arg max_||A(@)||, because the pixel index
returned by the left side would have to be transformed by g to maximize [|A(@)||,. Hence, the max
pool is B;-equivariant, and this concludes the proof. [ ]

Appendix B. Mathematical details of related work

The most common method to design equivariant maps is via group convolution, on the group
or on the homogeneous space where the features lie. Regular convolution of a vector field
f:(Z/NZ) - R° and a filter ¢ : (Z/NZ)* - R* is defined as

Frd= 2, fea-y)= 2 DIHPx-y). B1)
ye@/Nzyd ~—————  yez/Nz)d j=1 ~————
scalar product of vectors €R

Our generalization of convolution replaces this scalar product of vectors with the outer product
of tensors.

B.1. Clifford convolution

Probably, the most related work is by Brandstetter et al. [48], which replaces the scalar product in
(B1) with the geometric product of multi-vector inputs and multi-vector filters of a Clifford alge-
bra. It considers multi-vector fields, i.e.: vector fields f : Z* > (Cl,,(R)). The real Clifford algebra
Cl,,(R)is an associative algebra generated by p + g = d orthonormal basis elements: ¢,, ..., e,,, € R?
with the relations

e®e=+1 (<p), (B2)
e®e=-1 (p<j<n), (B3)
e®e=—¢Qe¢ ((#])). (B4)

For instance, Cl,,(R) has the basis {1, ¢;,¢,,¢; ® e,} and is isomorphic to the quaternions H.
The Clifford convolution replaces the elementwise product of scalars of the usual convolution
of (B 1) by the geometric product of multi-vectors in the Clifford algebra

fro=" 2 2fH@Fy-), (B5)
ye@z/Nzyd j=1 ~————————
EClp g(R)

where f: 72 - (Cl, ,(R)) and ¢ : Z*> — (CI, ,(R))".
The Clifford algebra Cl, (R) is a quotient of the tensor algebra

TRY=P R .. ® R = (PR, (B 6)

by the two-side ideal ({v ® v — Q(v) : v € R"}), where the quadratic form Q is defined by Q(e;) =
+1,if i <p, and Q(¢;) = —1, else p < j < n. Our geometric images are functions A : (Z/NZ)' — T,
where 7, = (R)® C T(R"). They can be related to the Clifford framework by seeing them as N-
periodic functions from Z¢ whose image is projected via the quotient map on the Clifford algebra.
This projection can be seen as a contraction of tensors.

The Clifford convolution is not equivariant under multi-vector rotations or reflections. How-
ever, the authors derive a constraint on the filters for d =2, which allows to build generalized
Clifford convolutions that are equivariant with respect to rotations or reflections of the multi-
vectors. That is, they prove equivariance of a Clifford layer under orthogonal transformations if
the filters satisfy the constraint: ¢'(Rx) = R¢'(x).
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B.2. Unified Fourier framework

Part of our work can be studied under the unified framework for group equivariant networks
on homogeneous spaces derived from a Fourier perspective proposed in [63]. The idea is to con-
sider general tensor-valued feature fields, before and after a convolution. Their fields are functions
f: G/H — Vover the homogeneous space G/H taking values in the vector space V and their filters
are kernels x : G — Hom(V, V"). Essentially, their convolution replaces the scalar product of vec-
tors of traditional convolution by applying a homomorphism. In particular, if G is a finite group
and H = {0}, they define convolution as

K% f(x) = L kTP AY). (B7)
Gl 2 VY
ev
Van Rossum & Drake [63] give a complete characterization of the space of kernels for equivariant
convolutions. In our framework, the group is Z/NZ and the kernel is an outer product by a filter
C: x(9)A(g) = A(g) ® C(g). Note that Z/NZ is neither a homogeneous space of O(d) nor of B‘.

We can analyse our problem from a spectral perspective; in particular, we can describe all lin-
ear equivariant using representation theory, using similar tools as in the proof of theorem 1 in
[36]. This theorem states that convolutional structure is a sufficient and necessary condition for
equivariance to the action of a compact group. Some useful references about group representation
theory are given in [67], a classical book about the theory of abstract harmonic analysis, and in
[68], about the particular applications of it.

B.3. Linear equivariant maps

In this work, we define an action over tensor images of O(d) by rotation of tensors in each pixel;
of B! by rotating the grid of pixels and each tensor in the pixel; and of (Z/NZ) by translation of
the grid of pixels. The action of each one of these groups G over 7,

q)d,k,p : G g GLcon(Td,k,p)v (B 8)
can be decomposed into irreducible representations of G
Dy, = @ My, (70) 7. (B9)
neG

That is, there is a basis of the Hilbert space 7, in which the action of G is defined via a linear
sparse map. In the case of G finite, for all g € G, there is a matrix P splitting the representation in
the Hilbert space into its irreducible components

P @, () P =P myy, (1) 2(9). (B10)

neG

Consider now linear maps between tensor images:
C T iy = T g (B11)

Linear equivariant maps satisfy that Co®,, , = @, ,»oC. That is, if € is the representation of € in
the above basis,

Co @ My, (T) 7T = @ My g1 0 () TOC. (B12)
7eG 7eG
By Schur’s lemma, this implies that €= @D __ m,,(7) Id,, .

The power of representation theory is not limited to compact groups. Mackey machinery al-
lows us to study, for instance, semidirect products of compact groups and other groups, and in
general to relate the representations of a normal subgroup with the ones of the whole group.
This is the spirit of [15], which makes extensive use of the induced representation theory. An
introduction to this topic can be found in chapter 7 in [67].
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B.4. Steerable convolutional neural networks

The work in [15] deals exclusively with signals f : Z* - R*. They consider the action of G =p4m
on Z? by translations, rotations by 90 degrees around any point and reflections. This group is a
semidirect product of Z? and B,, so every x € p4m can be written as x =tr, for t € Z? and r € B,.
They show that equivariant maps with respect to representations p and o’ of rotations and re-
flections B, lead to equivariant maps with respect to certain representations of G, 7 and n’. This
means that if we find a linear map ¢ : f— ¢ f such that ¢ p(h) f= p'(h) ¢ f for all h € B,, then for the
representation of G’ defined by

TN fy) =pM AU Y], treGyez? (B13)

we automatically have that ¢ 77(g) f=7'(g) ¢ f for all g € G. This is the representation of G induced
by the representation p of B,.

Note the similarity between Definition 11 of the action of B, on tensor images and (B13). The
convolution with a symmetric filter produces easily an equivariant map with respect to the action
of the semidirect product of Z¢ and B, on the tensor images.

B.5. Approximate symmetries

The recent work [69] studies approximately equivariant networks, which are biased towards
preserving symmetry but are not strictly constrained to do so. They define a relaxed group
convolution which is approximately equivariant in the sense that

llox(@)f *¢ W(x) = fxe Wloy(y) x| <e. (B14)

They use a classical convolution but with different kernels for different group elements.

Appendix C. Experimental details
C.1. Data

The data are the PDEBench files 2D_CFD_Rand_M0.1_Eta0.01_Zeta0.01_periodic_128_Train.hdf5
and 2D_CFD_Rand_M1.0_Eta0.1_Zeta0.1_periodic_128_Train.hdf5, which can be found at
https://darus.uni-stuttgart.de/dataset.xhtml?persistentld=do0i:10.18419/darus—2986 [58]. We used
the first 128 trajectories as training data, the next 32 trajectories as a validation set and the next 128
trajectories as a test dataset. The density and pressure fields are mean-centred and scaled to have
variance 1 based on the training and validation datasets. The velocity field is not mean-centred
because the only rotationally isotropic vector is the zero vector, but it is scaled to have variance 1
in the components.

(.2. Models

Model specifics are described below. For equivariant models, we always use ReLU for scalars and
the Vector Neuron activation for non-scalars. For equivariant encoder and decoder blocks, we use
3 x 3 filters instead of 1 X 1 filters because, for some order and parity pairs, there are no 1 X 1B,-
isotropic filters. All convolutions use biases except for the UNet. For equivariant models, the bias
is a scale of the mean tensor of that image. Additional details are in table 2.

— Dilated ResNet [56]: The model starts with two ‘encoder’ convolutions with 1 x 1 filters
and ReLU activations. There are four blocks, each consisting of seven convolutions with
dilations of 1, 2,4, 8, 4,2, 1 with associated ReLU activations. There are residual connec-
tions connecting each block. The model concludes with two ‘decoder’ convolutions with
1 x 1 filters and a ReLU activation between the two.
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— ResNet [26]: This model consists of eight blocks of two convolutions each with residual
connections between each block. Each block also has LayerNorm and a GeLU activation
[70]. We put the LayerNorm and activation prior to the convolution (pre-activation or-
der [71]) following [23]. This model also uses two ‘encoder’ 1 X 1 convolutions and two
‘decoder’ 1 x 1 convolutions.

— UNet LayerNorm [23]: This model is referred to as ‘UNetBase’ in [23]. This starts with an
embedding block with a convolution with a 3 x 3 filter followed by LayerNorm and a
GeLU activation [29]. Next comes a max pool, followed by two convolutions with Lay-
erNorm and GeLU activation. This process is repeated for four total downsamples, and
notably the number of convolution channels is doubled for every downsample. Then
the process happens in reverse, with max pooling replaced with transposed convolution
to double the spatial size instead of halving it each time. See [72] for a description of
transposed convolution. The number of convolution channels is also halved each time
we upsample. The final kicker is that there are also residual connections from before
each downsample to after each upsample for the appropriate spatial size. The model
concludes with a final convolution. In the equivariant model we do not include the
LayerNorm because it hurt the performance.

— UNet [53]: This model is the same as the one above, except it uses BatchNorm instead of
LayerNorm and the convolutions are without biases.

(.3. Training

For aloss function, we use the sum of mean squared error loss or sum of mean squared error. This
loss sums over the tensor components and the channels and takes the mean over the spatial com-

ponents. If {A,};1 are the true k; .-tensor images and {Ai}

o are our predicted k; -tensor images,
pi) 1
then the £

(pi)

i=

is defined as

smse

Lo (150 A) ) =3 S0 - A 1)

where [|||, is the tensor norm. When calculating a rollout loss, we simply sum the loss of each
rollout step.

We follow a similar training regime as in [23]. We train for 50 epochs using the AdamW op-
timizer [73] with a weight decay of 1 x 10~ and a cosine decay schedule [74] with five epochs of
warm-up. Learning rates were tuned for each model, searching for values between 1 x 10™* and 2
x 1073, and are included in table 2.

We trained on 4 RTX A5000 graphics cards with a batch size of 8, for an effective batch size
of 32. Experiments we averaged over three trials, using the same training data each time. It is
possible that different optimizers, learning rate schedules, batch sizes or other hyperparameters
may perform better on the task, but we held those fixed and only tuned the learning rate since
our focus is on comparing the equivariant and non-equivariant models.
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