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ABSTRACT

Federated Learning (FL) has gained significant popularity due to its
effectiveness in training machine learning models across diverse
sites without requiring direct data sharing. While various algo-
rithms along with their optimization analyses have shown that FL
with local updates is a communication-efficient distributed learning
framework, the generalization performance of FL with local updates
has received comparatively less attention. This lack of investigation
can be attributed to the complex interplay between data heterogene-
ity and infrequent communication due to the local updates within
the FL framework. This motivates us to investigate a fundamental
question in FL: Can we quantify the impact of data heterogeneity
and local updates on the generalization performance for FL as the
learning process evolves? To this end, we conduct a comprehensive
theoretical study of FL’s generalization performance using a linear
model as the first step, where the data heterogeneity is considered
for both the stationary and online/non-stationary cases. By pro-
viding closed-form expressions of the model error, we rigorously
quantify the impact of the number of the local updates (denoted as
K) under three settings (K = 1, K < o0, and K = o0) and show how
the generalization performance evolves with the number of rounds
t. Our investigation also provides a comprehensive understanding
of how different configurations (including the number of model
parameters p and the number of training samples n) contribute to
the overall generalization performance, thus shedding new insights
(such as benign overfitting) for implementing FL over networks.
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1 INTRODUCTION

Federated Learning (FL) has recently emerged as a prominent para-
digm in the realm of distributed learning, facilitating the collabora-
tive training of machine learning models among clients under the
orchestration of a central server. By offering privacy preservation,
scalability, and collaborative intelligence, FL holds great potential
to revolutionize industries in healthcare, finance, IoT, among oth-
ers [1-4]. In FL, the federated averaging (FedAvg) algorithm [5] and
its variants have become the prevailing approach. FedAvg lever-
ages local computation at each client and employs a centralized
parameter server to aggregate and update the model parameters.
The unique feature of FedAvg is that each client runs multiple local
stochastic gradient descent (SGD) steps between two consecutive
communication rounds to reduce the communication frequency
between the clients and server. In the literature, it has been shown
that Fed Avg-type algorithms with local updates achieve fast conver-
gence rates while enjoying a low communication complexity. More
importantly, the low communication complexity due to local SGD
updates renders FedAvg-type algorithms ideal for deployment over
wireless edge networks, where the communications links could
likely be highly dynamic, stochastic, and unreliable.

However, even with the evident benefit of being communication-
efficient, the impact of local updates on the generalization per-
formance of FedAvg-type algorithms remains poorly understood.
The lack of such theoretical understanding affects the long-term
and large-scale adoption of FL. Particularly, in the FL literature,
there remains a significant amount of controversy over how the
FL generalization performance is affected under the intricate inter-
play between data heterogeneity and local update steps. Specifically,
some researchers speculated that data heterogeneity results in poor
generalization through empirical experiments [6, 7], while other
works argued that FedAvg can generalize very well with data hetero-
geneity [8-11]. Notably, it has been empirically demonstrated that
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FedAvg-type algorithms using a fine-tuned number of local update
steps exhibit a better generalization performance than the parallel
stochastic gradient descent (SGD) algorithm [9-11]. So far, however,
there is no theoretical guiding principle on how to choose an appro-
priate number of local update steps to achieve good generalization
performance in the FL literature. Given the ever-increasing impor-
tance of FL as a distributed learning mechanism over networks, a
compelling open question arises:

(Q): How does the local update process, when coupled with
data heterogeneity, impact the generalization performance of
federated learning?

In the FL literature, there have been some initial attempts to
theoretically understand the generalization performance of FL (see
Section 2 for more discussions). The first line of work employs the
traditional analytical tools from statistical learning, such as the
“probably approximately correct” (PAC) framework. These works
focus on the domain changes due to the data and system heterogene-
ity. For example, the works in [12] and [13] assumed that clients’
data distributions are drawn from a meta-population distribution.
Accordingly, two generalization gaps in FL are defined. One is the
participation generalization gap, which measures the difference
between the empirical and expected risk for participating clients;
and the other is the non-participation generalization gap, which
measures the difference in the expected risk between participating
and non-participating clients. The second class of works studied
the training dynamic near a manifold of minima and focused on the
effect of stochastic gradient noise on generalization. For instance,
the FL generalization behavior was investigated in [6] through the
lens of the geometry of the loss and Hessian eigenspectrum, while
the long-term FL generlization behavior was studied in [14] using
the stochastic differential equation (SDE) approximation. Recently,
researchers studied FL generalization under data heterogeneity
through algorithmic stability [15]. Also, rate-distortion theoretic
bounds on FL the generalization have been established in [16].

Despite the valuable insights on FL generalization offered by the
aforementioned existing works, it is important to note that they
primarily yield asymptotic results by focusing on domain changes
or describing asymptotic behavior such as sufficiently large com-
munication rounds and fine-tuned local steps. Hence, these works
all fell short of providing an explicit relationship to characterize
how critical factors in FL, (e.g., the number of local updates, the
number of communication rounds, and data heterogeneity) affect
the generalization of FL in general. To bridge this gap, as a start-
ing point, we conduct the first theoretical study on the number of
local updates on FL’s generalization performance based on the re-
cent double-descent theoretical framework for over-parameterized
learning models. Our objective is to explicitly quantify the influence
of local update steps, data heterogeneity, and the total number of
communication rounds on the generalization performance of FL, all of
which are particularly relevant to the deployment of FL over edge
networks. We highlight our contributions as follows:

e To lay a theoretical foundation for FL generalization, we start
with a linear model with Gaussian features in over-parameterized
(related to benign overfitting [17-19]) and under-parameterized
regimes. Specifically, in round ¢ of FL, agent i aims to learn a
model w through its own local data that follow the underlying
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ground truth model y;) ; = X-('—l.)!twu)’, +€(j),» 1 € [m], where
w(;),; is the ground-truth slope. By considering different w;) ,,
the data samples (Xj, y;) can simulate various patterns of data
heterogeneity, including both stationary (i.e., w(;) ; = w(;)) and
online/non-stationary (i.e., w(;) ; is time-varying) cases. Utiliz-
ing this model allows us to efficiently disentangle the distinct
influences of heterogeneous data, local update processes, and
communication rounds in FL.

Based on the aforementioned analytical model, we provide closed-
form expressions of the generalization error of FedAvg-type algo-
rithms in terms of the number of local update steps. Specifically,
we rigorously quantify the impact of local update steps (denoted
as K) under three representative regimes (K = 1, K < co, and
K = o0) and show how the generalization performance evolves
with respect to the number of communication rounds t. Our
results reveal some interesting insights: 1) a good pre-trained
model “helps” but only to some extent; 2) the effect of noise
and heterogeneity accumulates but can be limited; 3) the opti-
mal number of local updates exists only in “some cases,” hence
resolving the empirical controversy regarding the effect of K.

We note that, in addition to offering insights into FL’s deployment
over edge networks, our work is also of independent interest in
learning theory. Specifically, our closed-form expressions of the
FL generalization error contribute to answering, in the FL context,
the fundamental question of why an over-parameterized model
can generalize well. Note that over-parameterized deep neural
networks (DNNs) have been widely used in machine learning (in-
cluding FL), although it remains a myth why they can generalize
well (also known as “benign overfitting”). In the recent literature,
a promising approach toward resolving the benign overfitting
question is the so-called “double-descent” theoretical framework
[18, 20-25] that starts from over-parameterized linear models. In
this work, we extend such double-descent analysis into the FL
regime where the distributed learning procedure is more com-
plex than classical centralized learning due to the complications
of local updates and data heterogeneity.

The rest of this paper is organized as follows. Section 2 reviews
the literature to put our work in comparative perspectives. In Sec-
tion 3, we introduce the over-parameterized linear model in our FL
system. Section 4 presents the main generalization analysis, which
is followed by the (sketched) proofs of some key results in Sections 5
and 6. The conclusion is in Section 7.

2 RELATED WORK

1) Federated Learning: Federated Learning (FL) has emerged as
a popular distributed learning framework, which harnesses the
collaborative power of multiple clients to learn a shared model [26—
28]. Since its inception, FL systems have demonstrated increasing
prowess, effectively handling diverse forms of heterogeneity in data,
network environments, and worker computing capabilities. A large
number of FL algorithms, including FedAvg [29] and its various
adaptations [30-36], have been proposed in the literature. However,
it is worth noting that these works only provide insights into the
convergence in optimization, while lacking the understanding of
generalization performance for FL.
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2) Generalization Performance of FL: In the literature, there
have been relatively limited studies on the generalization of FL.
We categorize these works into three distinct classes. The first line
of work employs the traditional analytical tools from statistical
learning. The work in [12] assumed that clients’ data distributions
are drawn from a meta-population distribution. Accordingly, they
define two generalization gaps in FL: one is the participation gener-
alization gap to measure the difference between the empirical and
expected risk for participating clients, the same as the definition in
classic statistical learning; the second is the non-participation gen-
eralization gap, which measures the difference of the expected risk
between participating and non-participating clients. Following this
two-level distribution framework, sharper bounds are provided [13].
Also, the probably approximately correct (PAC) Bayesian frame-
work is used in [37] to investigate a tailored generalization bound
for heterogeneous data in FL. Recently, some researchers studied
FL generalization under data heterogeneity through algorithmic
stability [15]. Meanwhile, PAC-Bayes and rate-distortion theoretic
bounds on FL generalization errors have been established in [16].
Similar tools are also used to study FL generalization in [38-41].

The second line of work studied the FL training dynamic near a
manifold of minima and focused on the effect of stochastic gradient
noise on generalization. These works used “sharpness” as a tool
for characterizing generalization. For instance, the generalization
behavior was investigated in [6] and [42] through the lens of the
geometry of the loss and Hessian eigenspectrum, which links the
model’s lack of generalization capacity to the sharpness of the
solution under ideal client participation. Based on sharpness, a
momentum algorithm with better generalization was proposed in
[43]. Also, the long-term generalization behavior of FL is studied in
[14] using the stochastic differential equation (SDE) approximation,
which showed that local steps could lead to better generalization
under appropriate conditions (e.g., a sufficiently small learning
rate, a sufficiently large number of communication rounds, and an
appropriately chosen number of local update steps).

We note that all of these existing works on FL generalization only
provide asymptotic results on domain changes or describe limiting
behavior, such as a large number of communication rounds under
a carefully chosen number of local updates. Consequently, they all
fell short of establishing a direct quantification that demonstrates
how key FL factors (i.e., data heterogeneity, the number of local
updates, and the communication round) affect FL generalization.

3) Benign Overfitting and Double Descent: Since our work is
intimately related to the double-descent framework for resolving
the “benign overfitting” mystery, it is also insightful to provide
a quick overview of this research area here. As an initial step to
understanding why over-parameterized DNNs generalize well (i.e.,
“benign overfitting”) and exhibit the so-called “double-descent” phe-
nomenon (i.e., the generalization risk descends again beyond the
conventional “U-shape” curve in the over-parameterized regime),
early attempts in this area started from exploring the minimum
£>-norm [20-24] or £1-norm [18, 25] overfitted solutions of the lin-
ear models with Gaussian or Fourier features. Later studies in this
area investigated the generalization performance of overfitted so-
lutions of shallow neural network approximations. For example,
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researchers have considered random feature (RF) models [44], two-
layer neural tangent kernel (NTK) models [45-47], and three-layer
NTK models [48]. Note that all of these studies have focused only on
the centralized learning settings, while our work considers the be-
nign overfitting phenomenon in the FL settings, which are far more
complex due to the multi-agent nature and unique complications
due to FL, such as local updates and data heterogeneity.

3 SYSTEM MODEL

3.1 The Ground-Truth Model, the Learning
Model, and Training Samples

As a first step toward a theoretical understanding of the impacts of
local updates on the FL generalization performance, we consider
the general linear ground truth model which is widely used in the
literature on machine learning theory (e.g., [17-19]):

1)

where ¥ € R® denotes the feature vector that consists of s true
features, w € R® denotes the corresponding ground-truth model
parameters, and € € R denote the noise in the output y € R.

Let p denote the number of features/parameters for the chosen
learning model. In other words, a sample is in the form of (x €
R?,y). In practice, the number of features could be large (may
or may not be necessary) to make sure that all true features are
included. Thus, we assume that p > s and those p features include
all necessary features'. Without loss of generality, we let % be the
first s elements of x. Correspondingly, we define w = [“(';"] €
RP. Thus, Eq. (1) can be rewritten as y = x"w + €. We note that
such a linear model is considered in many works on theoretical
understanding of the double-descent phenomenon in deep learning
theory [18, 20-25]. In Section 4, we will also show that these linear
models lead to insights that have been observed in practical (non-
linear) FL.

Consider the FL setting with m clients, where the communication
rounds are indexed by t = 1,2,-- -, T. We use [m] to denote the set
{1,2,---,m}, and use [T] to denote the set {1,2,---,T}. We use
the subscript (-)(;),; to denote a quantity for the i-th agent at the
t-th round. In the t-th communication round of FL, the i-th client
uses n;); training samples. Stacking these training samples, we
have the following matrix equation.

y=5cTﬁ/+e,

@)

where X(i),t € Rpxn(")«[,W(l—),t € R?, Y(i)t € R™®.t and €i),t €
R™®.t. 1t is worth noting that Eq. 2 is quite general, including
both stationary scenarios where w(;) ; = w; and non-stationary
scenarios with time-varying w(;) ; that accounts for environmental
changes at the edge devices. The subscript notation (-) (;),» inw;)
offers a more general framework to model various complications
in FL, such as unbalanced data, heterogeneity, and non-stationarity.
In general FL, there exist ground-truth parameters w* € R? in the
system, which corresponds to the target solution of FL. For example,
in simple FL with balanced data, the ground truth is can be written

* _ 1 .
asw* = L 31 () Wi

Yire =X Wire + €

1Our result can be generalized to the case of missing features by treating the missing
part as noise.
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3.2 Data Distribution, Heterogeneity, and
Non-stationarity

To analytically characterize the impact of local updates on the FL
generalization performance, we need some assumptions on the dis-

. First,
i€e[m],t=12,---,T

we adopt the independent Gaussian features and noise assumption,
which is a common assumption in the literature (e.g., 18, 20]) for
analyzing over-parameterized generalization performance. Specifi-
cally, we have the following assumption:

tribution of the training data (X( i) Y( ,»),t)

AssUMPTION 1. For any i,t, each element of X ;) ; follows i.i.d.
standard Gaussian distribution, and each element of €(; ; follows

independent Gaussian distribution with zero mean and variance 0?1.) .

Assumption 1 assumes that each dataset per round is unique and
freshly obtained, mirroring the conditions of an online data acquisi-
tion environment. Besides, it also serves as a realistic approximation
for scenarios involving large, fixed datasets.

Since we consider linear models, the heterogeneity of the vari-
ance of X(;) ; can be normalized, i.e., it is equivalent to only consider
the heterogeneity of the variance of €(;) ; as described in Assump-
tion 1. Note that although X ;) ; has identical distribution among
different clients, the training data are heterogeneous in y(;) ; be-
cause w(;) ; can be different and o(; ; may have different values. In
other words, y(;) ; and y ), may have different distributions for
different i and j in our model. To quantify the level of heterogeneity
in the ground-truth w;) ;, we define

Vi =W W ©)
Intuitively, y(;); describes the (small) perturbation of agent i’s

ground truth at the ¢-th round with respect to the target ground
truth w*. The quantification of data heterogeneity here aligns with

established research in FL, where the assumption ||V f;(x)-V f (%)]|? <

aé is commonly used to quantify data heterogeneity [49]. In the

case of a linear model, this assumption can be equivalently ex-
pressed as IIY(i),t”Z < 0(2;.
3.3 Federated Learning Process

We use mean-squared-error (MSE) as the training loss, i.e., the
training loss of the parameters w on n samples (X, y) is defined as:

©

We consider the FedAvg algorithm [5], where a central server av-
erages the local updates of each agent (weighted by each agent’s
number of samples) and then distributes the weighted averaged
result to all agents as the initial point of the next local update. We
use Wayg,t € R? to denote the weighted average result at round
t, and use w(;) , € R” to denote the result of the local update of
agent i at round t. The weighted average can be expressed as:

1
Lw;X,y) = o ”y - XTﬁll 2 .

. _ Xie[m] M(i).W(i)t
Wavgt = —w . -
Zie[m] M(i)t

Let wp denote the initialization of the parameters (e.g., starting
from a pre-trained model). For notational convenience, we define
Wavg,() = wo.

Recall that the focus of this paper is to examine the impact of
local updates on FL generalization. To this end, we use a parameter

(©)
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K > 0 to denote the number of local update steps. We consider the
following three regimes in terms of different K values: K = 1, K <
o0, and K = co. We use superscripts (-)K=1, ()K<® and (-)K=
to these cases, respectively. For example, Wif]:g}t and Wﬁ)zlt denote
the values of Wavg : and w(;) ;, respectively, when we consider the
setting of K = 1.

3.3.1 K =1 (One-Step Gradient). The simplest algorithm in FL
is to perform only one gradient step in each client’s local update.
Specifically, for all clients i € [m] and each round ¢t = 1,2,---,T,

the result of the local step (denoted by W{f)zlt) can be written as:

CK=1 .
aL(wavg,t—l’X(i),i’ y(i),t)

~K=1
aWavg,t—l

K=l
= Wavgr—1 ~ X(i),t

5

where ;) ; > 0 denotes client i’s learning rate (i.e., step size) of
the local update in round ¢.

3.3.2 General K < oo (Multi-Batch Local Updates). The general
case in FL is that in each round t, every client performs local up-
dates multiple (finite) times. In the k-th update, client i uses ;) ;
data (X(;) 1k Y(i),2.k) (as a batch) where Xy, x € RP*7)1t and
Y(i)tk € R, In this paper, we consider the case where X ;) ; «
for all k € [K] are disjoint and their union is X(;) ;. In other words,
the data X ;) ; are partitioned evenly into K batches (and thus we
have K - i(;) ; = n(;,,). We define w(; , . as the result after the
k-th batch for client i in round ¢. Specifically, for the local update
in the k-th batch (k = 1,2, - - , K), we have

LW (3),t.k—15 X (i),t.5 Y (i), 1,k)
M (i)t k-1 '

W(i) ek =W(i), 0 k—170(i) 1

where a(;) ; > 0 denotes the learning rate. We note that w;) ;o =
Wgzt_l and ;) ; = W(;) . k- Also, the general case degenerates
to that of Section 3.3.1 when K = 1.

3.3.3 K = oo (Convergence in Local Update). In this case with
K = o, we consider each client’s solution that the local GD/SGD
converges to?, which is different from Sections 3.3.1 and 3.3.2 where
every sample is only trained once. In the under-parameterized
regime p < n(;) ;, the convergence point at each client corresponds
to the solution that minimizes the local training loss, i.e.,

~ K=00

Wit = argfninL(W;X(,-),t,y(i),t), when p < n;) ;.
w

In the over-parameterized regime p > n(;);, there are infinitely
many solutions that make the training loss zero with probability
1, i.e., overfitted solutions. It is known in the literature that an
overfitted solution corresponding to GD/SGD on a linear model
in the over-parameterized regime has the smallest £2-norm of the
change of parameters [52, 53]. Specifically, the convergence point
of the local updates corresponds to the solution to the following

optimization problem: for t = 1,2,---, T, when p > (i), We have
Wf(l):‘f = argmin HW —ngf_lu, (6)

w
subject to Xz—i)’tﬁ/ =Yt (7)

The difference between a very large but finite K-value and K = co has been charac-
terized in the literature of the convergence analysis on gradient descent, e.g., [50, 51].
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The constraint in Eq. (7) implies that the training loss is exactly zero 4.1 TheK =1 Case

(i.e., overfitted, which is also known as the interpolation regime). We define the following short-hand notations:

3.4 Generalization Performance Metric glel = F (1, Ag. seq, (Zie[m] ni),t (1= agi,) ) ,
We then use the distance between the trained model w and the Lic[m] (i)

ground truth model w*, i.e., model error, to characterize the gener- se (Zze [m] @)t (i)t Y (i), ) (13)
alization performance: Lmodel () — |Iw — w*||%. Such model error d Zie[m] M)t
is equal to the expected test error in some cases.> For convenience,
we define e (Zze[m ney (1=, t))+ZlE[m &3y ), t(PH) 1)
= 14
A =W —Waygr,  £=0,1,2,---,T. (8) (Zie[m] ni),e)?
. L > a’. pn ol . . . S0P
Therefore, to characterize the generalization performance of FL at _ ie[m]% ) P09y 1 . ”Zze[m]“(z),t”(z),t)’(z),t”
the end of round ¢, we need to quantify l1A;||? with respect to p, K, = (Zie[m] "(i),t)2 j (Zie[m] "(i),t)2
n, learning rates, initialization, etc. Note that Ag characterizes the ) 2
difference between the initial weights wy (which can be viewed as + INE [m] a(i),tn(i)J(p +1) ”y(i)stH
starting from an initial or pre-trained model) and the ideal solution (Zie[m] n(i)e)?
w* (thus A is irrelevant to the configuration of K). .
2 (Zie[m]n(i),t(l—a(i),t))(zz‘e[m]n(i),ta(i),t)’(i),tgt—l)
3.5 Extra Notations (Sicim] 1)
Let seq; () denote a sequence of numbers/vectors indexed by i. For 2y, a2 nes +)vT. gk=1
1=1,2,---, and for a real number/vector fy, we define a mapping _ Lie ()t (l)’t(p )y(i)’tgt_l (15)
F as follows: (Zietm) n(i),t)z
l_l Z n THEOREM 1. When K = 1, we have
F (1, Po. seq; (i), seq; (bi)) = | |aifo+ ) bi- ) 12
St B[|aF= =7 (e 101 seq; (Hp, seqr (G ve € [T1. - (16)
Eq. (9) corresponds to the general-term formula of §; for the recur- For the simple case described by Eqgs. (10) to (12), we have
rence relation §; = a;fi—1 + b;. 2 1_-Ht
Bl = B Aol + S, (a7
4 MAIN RESULTS 2 (pe1) o (pil)
% (p+ o +
In this section, we will present the closed-form expression of E || A; II? where H = (1 - a)? + p ,G=1 mri‘ p H ”
for all three cases of K-values. These expressions are complex since We relegate the proof of Theorem 1 to the supplemental material

our system model considers both the non-stationarity along differ-

[54, Appendix B]. In what follows, two important insights for The-
ent rounds and the heterogeneity across different clients. To make

orem 1 are in order from the perspectives of model initialization

our results more accessible, we also provide a simplified version effects and data heterogeneity/noise.
of our results for the special case, where the system is stationary Insight 1) Effect of model initialization: A good initial/pre-
across rounds and the heterogeneity across clients are bounded. trained model helps, but its effect attenuates as the number
Specifically, the simple case is defined as: for all i € [m], ¢ € [T], of communication rounds increases and it cannot address
NGy =N Q=0 O3y =0, (10) the data heterogeneity challenges. Il"l ’I.'}?eo.rerr'l 1, ||AA0||2 denotes
the model error induced by the model initialization wq (cf. Eq. (8)).
Z jefm] YOt = 0 (11 Theorem 1 shows that starting from a good initialization (e.g., a
pre-trained model) reduces the training time required to reach a

(12) target error rate. The reason is that a good initial/pre-trained model
is usually closer to the target solution w* than a random model
initialization. Thus, ||A¢|| will be small and it helps to reduce the
model error. This result theoretically explains previously observed
experimental results that using pre-trained models as the initial-
ization for FL accelerates the training process [55, 56]. Meanwhile,
we note that the coefficient of ||Ag||? decreases as ¢ increases when
the learning rate is relatively small.* This means that the effect of
the pre-trained model diminishes as the number of communication
rounds increases. As t — oo, the first term in Eq. (17) asymptotically
goes to 0, signifying a vanishing effect of the pre-trained model.
This finding is consistent with existing analyses in FL, suggest-
ing that pre-training becomes unnecessary with a sufficiently long

2je[m] HY(J) t“ W

where ||y||2 > 0 denotes the level of heterogeneity. Here, we con-
sider the balanced data case with a constant learning rate and
constant noise in data. The expression )’ ;¢ [m] Y, = 0inEq. (11)
indicates that the ground-truth solution w* is the average of the
all clients’ ground truth w; ;, i.e., w* = mT Zie[m],re[T] W(i),e-
With the above notations, we are now ready to present our main
results in the following subsections. It is important to note that our
general results, including Eqs. (16), (18), (26) and (27), are derived
independently of the more restrictive Egs. (10) to (12), which are
only applied in simplified scenarios such as Egs. (17), (19) and (28).

3We can show that the model error is equal to the expected test error for noise-free

4
data. See Lemma 6. InEq. (17), H < 1 when a(;); <

2
P+l
H+ma
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training [14]. In addition, Theorem 1 shows that the error induced
by data noise and heterogeneity is not affected by the model ini-
tialization. This means that even a good initial/pre-trained model
cannot alleviate the problems caused by heterogeneous data, which
theoretically confirms prior experimental observations [55].

Insight 2) Effect of noise and heterogeneity: Errors aris-
ing from data noise and heterogeneity accumulate as the
number of communication rounds increases, but eventually
converge to an asymptotic limit. In Eq. (17), the coefficient of
the second error term attributed to data noise and heterogeneity
(G) is expressed as 11__1;’; =1+H+H?+---+ H'~1. This implies
that the error induced by data noise and heterogeneity accumulates
as the value of t increases. Meanwhile, this error term is bounded
from above and it eventually converges to ﬁG as t — oo. This
aligns with the empirical observations that FL algorithms remain
effective, despite the occurrence of model drift resulting from data
heterogeneity [8, 57-59].

Experiments. We perform simulations to illustrate the influence
of model initialization in FL. The experimental setup is as follows:
K=1,m=3p=200,ng,=50s =5 |ypq., = 05 and
o(iy,r = 0.7 for all i, t. Each marker point denotes the outcome of
simulations averaged over 20 simulation trials. In Figure 1, we plot
the model error with respect to (w.r.t.) ¢ for three different pre-
trained models: ||Ag|| = 1 (red solid line with markers “0”), ||Ao|| =
0.5 (green dashed line with markers “>”), and ||Ag|| = 0 (blue dotted

“0”). Generally, the simulation demonstrates the

line with markers “o
tightness of our theoretical findings and confirms our two insights
mentioned above. The blue curve, indicative of the smallest initial
model error, initially outperforms the other two curves. However,
this performance gap diminishes as time progresses. This observed
trend aligns with our insights into the impact of model initialization.
Conversely, as the blue curve originates from the ideal solution,
its upward trend with respect to ¢ is solely attributed to noise and
heterogeneity. This observation further validates our understanding
of the influence of noise and heterogeneity.

4.2 The General K < oo Case

Similar to Egs. (14) and (15), we define J;, Q; € R. The expressions
of Jj and Q; only contain n(;) ;, p, a(;) ¢ ¥(i),+» Ao, and the number
of local steps K. The formal definitions are provided in Egs. (64)
and (65) at the beginning of supplemental material [54, Appendix C]
due to space limitation.

THEOREM 2. When K < oo, we have

K< 2 2
B[|ak<|" = 7 (10l seqy (). seqr @) . (19)
For the simple case described by Egs. (10) to (12) and by further letting

||y||2 =0, we have
- Ak
1-A°

1-9¢
1-9

azpaz 1
mn

(19)

2
B||aK <] = 7" 8ol +

5 o 2 (p+1) — A (m-1) (1-a)*X
wherefi = |n/K|, A = (1-a)*+% — J = m — G2

The proof for Theorem 2 is provided in the supplemental material
[54, Appendix C]. Building upon the insights gained from Theo-
rem 2, we have the following discussions concerning the impact of
the local update step K.
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1.01
= 1Al =1
0s) = Aol =05
o || Ag] =0
= 0.6 1
i
T
<
2 0.4

0.01

Figure 1: Experimental and analytical values of the model
error w.r.t. t where K = 1, m = 3, p = 200, neye = 50, s =5,
||y(,~),t|| =0.5,and o(;) ; = 0.7 for all i, t. Each marker point
is the experimental value by averaging over 20 simulation
runs. The curves are theoretical values of Theorem 1. (All
markers are close to curves, which validates Theorem 1.)

0.8+

0.6

model err

0.2+

0.01

Figure 2: Experimental and theoretical values of the
model error w.r.t. K where t = 5,s = 5, p = 200, ||Ag|| = 1,
ne,: = 144, ”Y(i),t” = 0.5, and o(;); = 0.7 for all i,¢. Each
marker point is the experimental value by averaging over
20 simulation runs. The curves are theoretical values of
Theorem 2. The lowest points of the three curves for cases
m = 3,10, 25 are located at K = 15, 19, 27, respectively.

Insight 3) Effect of the local update step number K: The
optimal choice of finite K sometimes exists. In Eq. (19), the
local update step number K together with several other factors
simultaneously influence two error terms. Therefore, the optimal
choice of K is dependent on other configurations, such as the num-
ber of communication round t, ||Ag]|? (determined by the model
initialization), and the noise denoted by . Through an analysis of
how Eq. (19) evolves with K, we establish the following proposition
for the optimal choice of K:

PRrRoPOSITION 1. The existence of an optimal choice of K (defined
by Kopt) for Eq. (19) in different cases are as follows:

(1) A finite Kop-value must exist when 1 is fixed (i.e., n is deter-
mined by K#t), a is sufficiently small®, and t — co.

5 +(m-1) _
When a < — =1

: ZP , we have A < 1, and thus J <
+L
n
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(2) A finite Kope-value does not exist (i.e., Kopy = o0) when 7 is
fixed, a is sufficiently small, and o = 0.

(3) When n is fixed (i.e., fi is determined by |[n/K|),t < 00, @ < 0.1,
m > 3, and o = 0, if we neglect the difference between |n/K| and
n/K, then

(m-2)
ad

n 3 1) < Kppr < —2 (20)
p+1 =

In Proposition 1, we show that the optimal and finite K-value
only exists in some cases, whose value depends on other parameters
in one specific problem instance. For example, the upper bound
of Kopt in Eq. (20) indicates that the optimal K may increase
when the number of agents m increases. This discovery offers
a theoretical explanation of the experimental controversy, wherein
switching to local update steps yields divergent outcomes for var-
ious tasks; some exhibit improved performance, while others do
not [9, 11, 14]. Proof of Proposition 1 is provided in Section 5.

Experiments. Following a similar setting in Figure 1, we plot
the model error against the local steps K when n(;) ; is fixed in
Figure 2. These three curves in Figure 2 correspond to different
values of m. We can see that each of the three curves in Figure 2
has a minimum. The lowest points of the three curves for cases
m = 3,10, 25 are located at K = 15,19, 27 (i.e., Kopt), respectively.
This phenomenon supports our insights that the optimal K only
exists “sometimes” and may increase w.r.t. m.

4.3 The K=co Case (Convergence in LocalUpdate)
We define the following short-hand notations:

g;(:m =F (l, Ao, seq, (Ar) , seq, (bt)) > (21)
1 "(m,z)
Api= —————— nnge [1- —=1, (22)
' Zzemw(l)tlg‘n] (l)’t( p
1 (e
b = I N . AWE (23)
t Zi’e[m] e i/gn ().t P V@)t
2 e,
)
a (Ziem] n(i),)?
Diej (i)t 1(j).t (1 - %) (1 B %) (24)
(Zietm] nai).0)? |
3 2
L Zietm | pan ‘”’ iyl
i (Ziem)n )t)2
2 Z
Yie[m] Xje[m (—(m)’(l) 46} t)
+ +
(Zie ”(i),t)2
Yie[m] ( )Y(J) I (25)

(Zie[m] n(i),t)2

THEOREM 3. In the over-parameterized (OP) regime, ie., p >
maxn; ; + 1, it holds that

2
B[|aK=] =7 (1 10l seq; (1), seq (D). Ve € [T]. (26)
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In the under-parameterized (UP) regime, i.e, p < minn(;); — 1, it
holds that

n?. po?
2 nn Yo P Sielm] meomat
EHAfz“’H _ m] (i)t (i)t L oretml e ep 21 27)
ie[m] (i)t (Zie[m) n(i).t)
For the simple case described by Egs. (10) to (12), it holds that
off_ [C Al + 25D ifOP,
ellai==[" = { T )
mn—p=1) if UP.
where
1 n m-—1 n\?
C::—(l——)+ (1——) <1, (29)
m p m p
e )

We provide a proof sketch of Theorem 3 in Section 6. The com-
plete proof is in the supplemental material [54, Appendix D].

Insight 4) Benign overfitting exists in FL, and the “null risk”
can be alleviated by using more communications rounds. In
the over-parameterized case of Eq. (28), the term D decreases when
p increases. Thus, when the term D dominates (e.g., when noise
and/or heterogeneity is large, or t is large), the generalization per-
formance of FL in this case will benefit from more parameters when
overfitted. This validates the “double-descent” or benign overfitting
phenomenon in the literature of the classical (single-task single-
agent) linear regression (e.g. [19]). For the comparable Gaussian
models we used, the expectation of the model error of such a clas-
sical (single-task single-agent) linear regression is

no?

p—-n-1
By Eq. (31) and related literature (e.g., [18]), the classical linear
regression suffers from the “null risk” (i.e., converges to the initial
error) when p — oo. However, for the FL result in Eq. (28), we
can see that the “null risk” term ||Ao||? can be alleviated by the
coefficient C*, which approaches zero when ¢t — co. In other words,
for fixed n, when p — oo, as long as we let t — oo in a faster speed
(e.g., t = plog p, proved in Lemma 1 in supplemental material [54,
Appendix A]), then the null risk term C? ||Ag I> = 0, which implies
that using more communication rounds in FL (i.e., larger t) mitigates
the null risk, thus “enhancing” the benefits of overfitting.

(1- g) 18o]1? + (31)

Experiments. In Figure 3, we present a plot of model error
against p in both the underparameterized regime (p < n = 25)
and overparameterized regime (p > n = 25) for three cases with
t =1,t =4, and t = 40. The curves represent theoretical values
derived from Theorem 3, while each marker signifies the average
of 20 simulation trials. It is observed that all three curves exhibit
a decreasing trend at the initial phase of the overparameterized
regime, confirming the presence of benign overfitting. Additionally,
when comparing these three cases, the curve for t = 40 (indicated
by a blue dotted line with markers " o ") has a more substantial and
broader descent. This observation confirms our insight that a larger
t-value enhances the benefits of overfitting in FL.
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model err
=

Figure 3: Experimental and theoretical values of the model
error w.r.t. p where m =
0.5,and o(;) ; = 0.7 for all i, t. Each marker is the experimental
value by averaging over 20 simulation runs. The curves are
drawn purely by the theoretical values from Theorem 3.

5 PROOF SKETCH OF PROPOSITION 1

(1) Since 7 is fixed, then A does not change with K. When t — oo,
the value of Eq. (19) becomes

1 2,42 1— ﬂK
il 4 (32)
1-9 mn 1-A
The only component related to K in Eq. (32) is 1 ] , thus Kopt =
arg man ] . Notice that for any finite K, we must have
2 K
+1
AK = 1oz DYy
il
Thus, we have
1 -1
T =—AK+ (1 - ) < 7K,
m m

which implies that 1

_ }[K . . . 1—
= <1 for any finite K. Meanwhile, Klgnoo I
1. Thus, Kopt should be finite.

(2) Since 7 is fixed, then A does not change with K. When o = 0,

Eq. (19) becomes J* |Ao]|?. Notice that J is strictly monotone
decreasing w.r.t. K. Therefore, Kopt = o0

K
-9 -

(3) Since we use n/K toreplace | n/K], we have Kopt = arg ming f(K)

where
2 K
700 = (107 kL) s 1o
n
: ot If (K) _
Calculating the derivative, we have J;K =
o 2 K 2
(p+1) ((1 0 +K° (p+1)) 1n((1-a)2+1<“ (p+1))
n n
+ (m - 1D)(1-a)*XIn((1-a)?). (33)
When ((1 - 0()2 +K& (p+1)) < 1, we have a];(lf) < 0.
For any § > 0, when
2
((1 —a)? +KM) >1+6,
n
2
CPHY L KS)In(1+8) > (m— 1)l —
n (1-a)?
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we have Eq. (33) > 0. (Notice that we utilize the face that (1—a)?K <
1and (1+5)K > 1+K d.) Solving those inequalities by further letting
In(1+6) =

we thus have

)2’

— 1) < Kopt

n 2
(p+1) (3

2
Sm-max{(&x—az)(l+(l )2) (m—Z)(zla__OZZ},
When a < 0.1 and m > 3, we can further relax the above inequality
as

n
p+1

n (m-2)

2
2 1) <Ky <
(] )— opt = 2T

a3

6 PROOF SKETCH OF THEOREM 3

We provide a sketched proof of Eq. (26) here. For any i € [m], we
define P(;) , € RP*? as

-1
P(i),t = X(i),t (Xz—i),tx(i)»t) X?i),t' (34)

(We know P(l) ¢ is an orthogonal projection since P(;) ;P ;) ; =
P(;),: and P( = = P(;),;-) In the overparameterized situation, after
each agent trains to converge, we have

=P i) Wiy, + (Ip = Pi) W

-1
+ X (i)t (Xm txm,t) €(i).¢-

(l) t

We thus have

A== =w* =Wl (by Eq. (8))

1
Z n(i),t (P(i),t)’(i),t +(Ip

 Die[m] i)t i

_P(i),t)Af;:IOO - X(i),t (Xz—i),tx(i),t) e(i),t) . (36)

Thus, we can write E; ||A{< :°°||2 into the inner product between
the terms in Eq. (36). The key part of the proof is to calculate those
inner product terms. The terms that involve only one agent can be
calculated using the known results in the literature, e.g.,

"()t

Iyl - (37)

2
B[Pyl =
The remaining terms in Ey ||A{<:°°H involve different agents i # j,
which are unique to FL and not seen in the literature. The key step
is to prove

Nes
oo] — (i)t AK=00 (38)

K=
PE [P(i),tAt—l t—1 -
().t
We provide an intuition of Eq. (38) along with a geometric interpre-
tation in Figure 4 at the end of this section. By using Eq. (38), the
terms involving different agents i # j can be calculated, e.g.,

ORI ON]
p—z)’(T]) R{ORS

With the above equations, we thus have

B [10. P01y e] =

2
EHAfz""” =Ct-E“AK“’°H + Dy, (39)
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Figure 4: Geometric interpretation of Eq. (38).

where C; denotes the coefficient of ||AK °°|| and D; denotes the re-
maining parts. The specific expressions of C; and D; are in Egs. (24)
and (25). Applying Eq. (39) recursively, we thus have Eq. (26).
Intuition of Eq. (38): We use Figure 4 to help illustrating the
intuition. In Figure 4, the vector OA denotes Af 7, the plane
denotes the space spanned by the columns of X; ;. Notice that

Py, tA ~ represents result of projecting AK_ to the column

space ofX(,-) +» 1.e., the vector OB in Figure 4. Therefore, in Flgure 4,

calculatmg E P, tA
(L) t
when the hyper-plane « rotating around the point O. Notice that

— = — —
OB = OC +CB where OC and CB are the parallel and perpendicular

components of OB w.rt. ﬁ respectively. Because of the rotational
symmetry of the hyper-plane & (due to the rotational symmetry of
each column of X ;) ;), we know that all the perpendicular compo-
nents are cancelled out while only the parallel components remain
in the averaging process. In other words, for any hyper-plane «a,

~ means calculating the average of 0B

there exists a symmetrical (w.r.t. ﬁ) hyper-plane f with the same
probability density such that the projection of OA to the hyper-
plane §, named OB , has the same parallel component OC but the
opposite perpendicular component C—‘B_; = —CB. Thus, we only

need to calculate the average of the parallel component O—C), whose

length equals cos @ O—J)B where § = ZAOB is defined as the angle
between A Cand Py tA 1° (ie., the angle between A ~ and
the hyperplane spanned by the columns of X(;) ; as
) tA
0= arccos (40)

— —
Also notice that OB‘ =cosf )OA|. Thus, the length of the parallel

— 2= —
component equals |OC‘ =cos“ 0 |OA‘, Therefore, we have EOC =
E cos? 004 = n(’) ! AK_

in literature Just as Eq. (37).

. The last equation uses a known result

7 CONCLUSION

In this paper, we have precisely quantified the influence of data
heterogeneity and the local update process on the generalization
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performance of FedAvg-type algorithms. Specifically, we under-
took a thorough theoretical examination of FL’s generalization
performance utilizing a linear model, which yields closed-form
expressions for the model error. Our analysis rigorously assesses
the impact of local update steps (represented by K) across three
distinct settings (K = 1, K < o0, and K = o0), elucidating how
generalization performance evolves with the progression of rounds,
denoted as t. Additionally, our investigation yields a comprehen-
sive understanding of how various configurations, including the
number of model parameters p, the number of training samples n,
the local steps K, and the total communication round ¢, contribute
to the overall FL generalization performance. This, in turn, unveils
new insights, such as the phenomenon of benign overfitting, opti-
mal local steps, and the impact of a good model initialization, with
practical implications for the implementation of FL.
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