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Abstract

We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK)
regime, where the networks’ biases are initialized to some constant rather than zero.
We prove that under such initialization, the neural network will have sparse activation
throughout the entire training process, which enables fast training procedures via some
sophisticated computational methods. With such initialization, we show that the neural
networks possess a different limiting kernel which we call bias-generalized NTK, and we study
various properties of the neural networks with this new kernel. We first characterize the
gradient descent dynamics. In particular, we show that the network in this case can achieve
as fast convergence as the dense network, as opposed to the previous work suggesting that
the sparse networks converge slower. In addition, our result improves the previous required
width to ensure convergence. Secondly, we study the networks’ generalization: we show a
width-sparsity dependence, which yields a sparsity-dependent Rademacher complexity and
generalization bound. To our knowledge, this is the first sparsity-dependent generalization
result via Rademacher complexity. Lastly, we study the smallest eigenvalue of this new
kernel. We identify a data-dependent region where we can derive a much sharper lower
bound on the NTK’s smallest eigenvalue than the worst-case bound previously known. This
can lead to improvement in the generalization bound.
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1. Introduction

The literature of sparse neural networks can be dated back to the early work of LeCun et al.
(1989) where they showed that a fully-trained neural network can be pruned to preserve
generalization. Recently, training sparse neural networks has been receiving increasing
attention since the discovery of the lottery ticket hypothesis (Frankle and Carbin, 2018).
The lottery ticket hypothesis shows that there exists a sparse network inside a dense
network at the initialization such that when the sparse network is trained, it can match the
performance of the dense network. This discovery has spurred a lot of interest in the deep
learning community as now sparse networks can not only bring computational benefits during
inference time but also at training. However, their method of finding such sparse network
requires multiple rounds of training and pruning, which is computationally expensive for
any practical purposes. Nonetheless, this inspires further interest in the machine learning
community to develop efficient methods to find sparse networks at the initialization such
that the performance of the sparse network can match the dense network after training (Lee
et al., 2018b; Wang et al., 2019; Tanaka et al., 2020; Liu and Zenke, 2020; Chen et al., 2021;
He et al., 2017; Liu et al., 2021).

On the other hand, instead of trying to find some desirable sparse networks at the
initialization, another line of research has been focusing on introducing sparsity at the
random initialization and the sparsity is automatically maintained during training. The
key observation is that if the neural network activation is sparse during the entire training
process, then only the weights of the activated neurons (i.e., ReLU will output some non-zero
value) needs to be updated and one can utilize the sparsity to speedup per-step gradient
descent training via techniques such as high-dimensional geometric data structures, sketching
or even quantum algorithms (Song et al., 2021, 2024; Hu et al., 2022; Gao et al., 2022; Alman
et al., 2024). In this line of theoretical studies, the sparsity is induced by the shifted ReLU
which is the same as initializing the bias of the network’s linear layer to some large constant
and holding the bias fixed throughout the entire training. By the concentration of Gaussian,
at the initialization, the total number of activated neurons will be sublinear in the total
number m of neurons, if we initialize the bias by C'v/logm for some appropriate constant
C. We call this sparsity-inducing initialization. If the network is in the NTK regime, each
neuron weight will exhibit small change after training, and thus the sparsity can be preserved
throughout the entire training process. Therefore, at each step of gradient descent, only a
sublinear number of the neuron weights need to be updated, which can significantly speedup
the training process.

The focus of this work is along the above line of theoretical studies of sparsely activated
overparameterized neural networks and address the two main research limitations in the
aforementioned studies: (1) prior work indicates that the sparse networks have slower
convergence guarantee than the dense network, despite that the per step gradient descent
training can be made cheaper and (2) the previous works only provided the convergence
guarantee, while lacking the generalization analysis which is of central interest in deep
learning theory. Thus, our study fills the above important gaps, by first characterizing a new
generalized limiting kernel of such type of neural networks and providing a comprehensive
study with (a) finer analysis of the convergence; and (b) first generalization bound for such
sparsely activated neural networks after training along with (c) sharp bound on the restricted
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Width for convergence

Width for generalization

Large bias?

(Du et al., 2018) poly(\, ', n) - No
(Arora et al., 2019) poly()\al, n) poly()\al, n) No
(Song and Yang, 2019) Q ()\64114) Q(n' poly(1/X(0))) No
(Song et al., 2021) QN *n* B2 exp(2B?)) - Yes
This work Q ()\54714 exp(B?)) Q (A(B) S exp(—B?)) Yes

Table 1: Comparison of results with previous work.

smallest eigenvalue of the limiting NTK on some restricted region. We further elaborate our
technical contributions are follows:

1. Convergence. In particular, Theorem 1 shows that the network with large bias

initialization can achieve as fast convergence as the original network, as opposed to
the previous work suggesting slower convergence. This is made possible by the fact
that the sparse networks allow a much more relaxed condition on the learning rate,
which was not discovered in the previous work. The theorem further provides an
improved required width to ensure that gradient descent can drive the training error
towards zero at a linear rate. This relies on our novel development of (1) a better
characterization of the activation flipping probability via an analysis of the Gaussian
anti-concentration based on the location of the strip and (2) a finer analysis of the
initial training error.

. Generalization. Theorem 9 studies the generalization of the network after gradient
descent training where we characterize how the network width should depend on
activation sparsity, which lead to a sparsity-dependent localized Rademacher complexity
and generalization bound. When the sparsity parameter is set to zero (i.e., the
activation is not sparsified), our bound matches previous analysis up to logarithmic
factors. To our knowledge, this is the first sparsity-dependent generalization result via
localized Rademacher complexity.

. Restricted Smallest Eigenvalue. Theorem 9 shows that the generalization bound
heavily depends on the smallest eigenvalue Ay of the limiting NTK. However, the
previously known worst-case lower bounds on Ay, under data separation have a 1/n?
explicit dependence in (Oymak and Soltanolkotabi, 2020; Song et al., 2021), making
the generalization bound vacuous. Our Theorem 13 establishes a much sharper lower
bound that is sample-size-independent, on some data-dependent region. This hence
yields a worst-case generalization bound for bounded loss of O(1) as opposed to O(n) in
previous analysis, given that the label vector is in this region. Since our new kernel is a
generalized version of the previous kernel, our lower bound also provides improvements
for the previous kernel.

We include a comparison between our results and previous work in Table 1.

Practicality of NTK theory. Although many works (such as Chizat et al. (2019))

pointed out that the NTK regime is a “lazy training” regime and cannot fully explain the
success of deep learning in practice, it has become less well-known these days on the utility
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of NTK theory. First of all, there are many works showing that for certain cases, replacing
neural networks by NTK or other suitable kernels exhibits only limited performance drop
(Shankar et al., 2020; Novak et al., 2018; Li et al., 2019; Garriga-Alonso et al., 2018; Matthews
et al., 2018; Lee et al., 2018a, 2019; Arora et al., 2020). In particular, what’s even more
surprising is that (GHORBANTI et al., 2021) have shown that NTK is minimax optimal
for learning dense polynomials. Therefore, although neural networks have shown impressive
performances on many applications, there are still tasks on which NTK can perform on par
with neural networks. Thus, our work can provide theoretical guidance for using large bias
initialization to sparsify the activation of neural networks in the NTK regime.

1.1 Related Works

Besides the works mentioned in the introduction, another work related to ours is (Liao
and Kyrillidis, 2022) where they also considered training a one-hidden-layer neural network
with sparse activation and studied its convergence. However, different from our work, their
sparsity is induced by sampling a random mask at each step of gradient descent whereas our
sparsity is induced by non-zero initialization of the bias terms. Also, their network has no
bias term, and they only focus on studying the training convergence but not generalization.
We discuss additional related works here.

Theory of neural tangent kernel. A series of works have shown that if the neural
network is wide enough (polynomial in depth, number of samples, etc), gradient descent
can drive the training error towards zero in a fast rate either explicitly (Du et al., 2018,
2019; Ji and Telgarsky, 2019) or implicitly (Allen-Zhu et al., 2019; Zou and Gu, 2019; Zou
et al., 2020) using the neural tangent kernel (NTK) (Jacot et al., 2018). Further, under some
conditions, the networks can generalize (Cao and Gu, 2019). On the other hand, although
NTK offers good convergence explanation, it contradicts the practice since (1) the neural
networks need to be unrealistically wide and (2) the neuron weights merely change from
the initialization. As Chizat et al. (2019) pointed out, the NTK regime is a “lazy training’
regime which hardly explain the success of deep learning in practice.

Sparse activation in neural networks. The sparse activation phenomena have been
observed and utilized in practice. (Cao et al., 2019) showed that it is possible to use
a quantized network to predict the sparsity pattern of the activation from the original
network, and this can be utilized to accelerate inference. Next, (Jaszczur et al., 2021)
forced the sparse activation of MLP in transformer to be static and used this to speed up
the inference of transformers. Further, (Li et al., 2022) systematically studied the sparse
activation phenomena in transformers and showed that it occurs throughout a wide range of
datasets and applications. They also showed that it can bring additional desired properties
to manually introduce sparsity by selecting the top-k largest values of the MLP activation.

i

2. Preliminaries

Notations. We use ||-||, to denote vector or matrix 2-norm and |[|-|| » to denote the Frobenius
norm of a matrix. When the subscript of ||-|| is unspecified, it is default to be the 2-norm.
For matrices A € R™*" and B € R™*"2 we use [A, B] to denote the row concatenation
of A, B and thus [4, B] is a m X (n; + ng) matrix. For matrix X € R™*"  the row-wise
vectorization of X is denoted by vec(X) = [x1,22,...,2m,] where 2; is the i-th row of X.
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For a given integer n € N, we use [n] to denote the set {0,...,n}, i.e., the set of integers
from 0 to n. For a set S, we use S to denote the complement of S. We use N (u,0?) to
denote the Gaussian distribution with mean y and standard deviation o. In addition, we
use O, ©,Q to suppress (poly-)logarithmic factors in O, ©, Q.

2.1 Problem Formulation

Let the training set to be (X,y) where X = (x1,29,...,2,) € R denotes the feature
matrix consisting of n d-dimensional vectors, and y = (y1,¥2,...,yn) € R™ consists of the
corresponding n response variables. We assume ||z;||, < 1 and y; = O(1) for all i € [n]. We
use one-hidden-layer neural network and consider the regression problem with the square
loss function:

F (W, b) = jm S apor((wy2) — by),
r=1

LOW,b) 2= 5 (o W) — i)

i=1

where W € R™*? with its 7-th row being w,, b € R™ is a vector with b, being the bias of
r-th neuron, a, is the second layer weight, and o(-) denotes the ReLU activation function.
We initialize the neural network by W, ; ~ N(0,1) and a, ~ Uniform({£1}) and b, = B for
some value B > 0 of choice, for all € [m], ¢ € [d]. We train only the parameters W and b
via gradient descent (i.e., with the linear layer a,, r € [m] fixed), the updates are given by

ur b 1) = lr, b)) 2 Do,

By the chain rule, we have C%LT = g—?%. The gradient of the loss with respect to the
oL

network is gz = Yo (f(zs; W,b) — y;) and the network gradients with respect to weights
and bias are
Of(x; W, b 1
f(aw ) = marac]l(w:m > by),
,
of(z; W, b 1
f(@; W) =— a,I(w, z > b,),

b, Jm

where I(-) is the indicator function. We use the shorthand I,.; := I(w, 2; > b,) and define
the empirical NTK matrix H as

m

5 0) = (P B TR — LY () 00 ()

We define its infinite-width version H*(B), given by

i3 (B) i= E [ (w5, ;) + DI(w ;> B,w 2 > B)|.
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Notice that if we set B = 0 and freeze the bias during training, we recover the usual NTK
matrix studied in many previous literature such as (Du et al., 2018). Thus, we call our
limiting matrix the bias-generalized NTK. Let A(B) := Apin(H*(B)). We define the
matrix Z(W,b) € R™d+1)xn g

1 ]11,1(11531 e ]Il,nala?n
Z(W,b) == NG : : ;

Hm’lamil e ]Imynamicn
where 7; := [z] ,—1]T. Note that H(W,b) = Z(W,b)" Z(W,b). Hence, the gradient descent
step can be written as

vec([W,b](t + 1)) = vec([W, b](t)) — nZ () (f(t) — y),

where [W, b](t) € R™*(4+1) denotes the row-wise concatenation of W (t) and b(t) at the t-th
step of gradient descent, and Z(t) := Z(W (t), b(t)).

3. Main Theory

3.1 Convergence and Sparsity

We first present the convergence of gradient descent for the sparsely activated neural networks.
Surprisingly, we show that the sparse network can achieve as fast convergence as the dense
network compared to the previous work (Song et al., 2021) which, on the other hand, shows
the sparse networks converge slower than the dense networks.

Theorem 1 (Convergence) Let the learning rate n < O(%’?’(BZ)), and the bias ini-
tialization B € [0,/0.5logm]. Assume A\(B) = Ao exp(—B?/2) for some Ao > 0 independent
of B. Then, if the network width satisfies m > ) ()\54714 exp(BQ)), with probability at least

1— 6 — e ") oper the randomness in the initialization,
vt L(W(t),b(t)) < (1 = nA(B)/4)'L(W(0),0(0)).

The assumption on A(B) in Theorem 1 can be justified by (Song et al., 2021, Theorem F.1)
which shows that under some conditions, the NTK’s least eigenvalue A\(B) is positive and
has an exp(—B?2/2) dependence. Given this, Theorem 1 in fact implies that the convergence
rate is independent of the sparsity parameter due to the extra exp(B?) term in the learning
rate. This means that the network with sparse activation can achieve as fast convergence as
the original network. Our study further handles trainable bias (with constant initialization).
This is done by a new result in Lemma 23 that the change of bias is also diminishing with a
O(1/4/m) dependence on the network width m.

Remark 2 Theorem 1 establishes a much sharper bound on the width of the neural network
than previous work to guarantee the linear convergence. To elaborate, our bound only requires
m > ()\64n4 exp(BZ)), as opposed to the bound m > Q(/\a4n4B2 exp(2B?)) in (Song et al.,
2021, Lemma D.9). If we take B = \/0.25logm (as allowed by the theorem), then our lower
bound yields a polynomial improvement by a factor of @(n/)\O)S/3, which 1mplies that the
neural network width can be much smaller to achieve the same linear convergence.
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3.1.1 ProoOF OUTLINE OF THEOREM 1

Like many previous NTK analysis, to prove convergence, we first characterize how many
neurons we need so that the empirical NTK matrix (especially its minimum eigenvalue) is
close to its infinite-width limit, in our case, the bias-generalized NTK (Lemma 15). Then,
we consider the case where all the possible neuron weights lying within some bounded region
near their initialization values and we show that within this region the NTK’s smallest
eigenvalue is well above zero (Lemma 20). When we prove this result, we need to analyze
how many neurons are activated and we derived a better bound on this neuron activation
probability (Lemma 3 below). Next, we use this smallest eigenvalue to show that the
training loss can rapidly decrease toward zero when the neural network is within this region
(Lemma 31). Along the way, we prove a better initial error bound (Lemma 5) which leads
to a better convergence guarantee. Finally, since the training loss can decrease sufficiently
fast, we can show that the changes of neuron weights during training is indeed small and
the neural network is indeed within the region close to its initialization value via Lemma 23.
We highlight our key results on novel analysis on activation flipping probability and a finer
upper bound on initial error.

3.1.2 KEY RESULTS IN THE PROOF OF THEOREM 1

Like previous works, in order to prove convergence, we need to show that the NTK during
training is close to its initialization. Inspecting the expression of NTK in Equation (1),
observe that the training will affect the NTK by changing the output of each indicator
function. We say that the r-th neuron flips its activation with respect to input z; at the
k-th step of gradient descent if I(w, (k) z; — b.(k) > 0) # I(w,(k — 1) T2; — b.(k — 1) > 0)
for all r € [m]. The central idea is that for each neuron, as long as the weight and bias
movement R,,, Ry from its initialization is small, then the probability of activation flipping
(with respect to random initialization) should not be large. We first present the bound on
the probability that a neuron flips its activation.

Lemma 3 (Activation flipping probability) Let B > 0 and Ry, Ry < min{l/B,1}.
Let W = (@y,...,Wm) be vectors generated i.i.d. from N(0,I) and b = (b1,...,by) =
(B,...,B), and weights W = (w1, ..., wy,) and biases b = (b1, ...,by,) that satisfy for any
r e [m], |, —wrly < Ry and |b, — by| < Ry. Define the event

Ai,r = {Elwrabr : er - wTHQ < Ry, |br - lN)r| < Rb7ﬂ(m;‘rwr > ET) 7& ]I(x:wr > br)}
Then, for some constant c,
P[A;,] < c¢(Rw + Ryp) exp(—B?%/2).

Remark 4 (Song et al., 2021, Claim C.11) presents a O(min{R, exp(—B2/2)}) bound on
P[A;;]. The reason that their bound involving the min operation is because P[A;,] can
be bounded by the standard Gaussian tail bound and Gaussian anti-concentration bound
separately and then, take the one that is smaller. On the other hand, our bound replaces the
min operation by the product which creates a more convenient (and tighter) interpolation
between the two bounds. Later, we will show that the mazimum movement of neuron weights
and biases, Ry, and Ry, both have a O(1/\/m) dependence on the network width, and thus
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our bound offers a exp(—B2/2) improvement where exp(—B2/2) can be as small as 1/m/*

when we take B = +/0.5logm.

Proof idea of Lemma 3. First notice that P[A; ;] = Py n01)[|7 — Bl < Ry + Ry]. Thus,
here we are trying to solve a fine-grained Gaussian anti-concentration problem with the strip
centered at B. The problem with the standard Gaussian anti-concentration bound is that it
only provides a worst case bound and, thus, is location-oblivious. Centered in our proof is a
nice Gaussian anti-concentration bound based on the location of the strip, which we describe
as follows: Let’s first assume B > R,, + Rp. A simple probability argument yields a bound
of 2(Ry + Rb)\/% exp(—(B — Ry, — Rp)?). Since later in the Appendix we can show that

R, and R, have a O(1/y/m) dependence (Lemma 23 bounds the movement for gradient
descent and Theorem 24 for gradient flow) and we only take B = O(y/logm), by making
m sufficiently large, we can safely assume that R, and Ry is sufficiently small. Thus, the
probability can be bounded by O((Ry, + Ry) exp(—B?/2)). However, when B < R, + R,
the above bound no longer holds. But a closer look tells us that in this case B is close to
zero, and thus (R, + Rb)\/% exp(—B?%/2) ~ % which yields roughly the same bound
as the standard Gaussian anti-concentration.

Next, our analysis develops a finer initial error bound.

Lemma 5 (Initial error upper bound) Let B > 0 be the initialization value of the
biases and all the weights be initialized from standard Gaussian. Let 6 € (0,1) be the failure
probability. Then, with probability at least 1 — § over the randomness in the initialization,
we have

L(0) =0 <n +n (eXp(—B22) + ;) log3(27gm)> .

(Song et al., 2021, Claim D.1) gives a rough estimate of the initial error with O(n(1 +
B?)log*(n/d)log(m/5)) bound. When we set B = Cy/logm for some constant C, our bound
improves the previous result by a polylogarithmic factor. The previous bound is not tight
in the following two senses: (1) the bias will only decrease the magnitude of the neuron
activation instead of increasing and (2) when the bias is initialized as B, only roughly
O(exp(—B?/2)) - m neurons will activate. Thus, we can improve the B? dependence to
exp(—B?%/2).

By combining the above two improved results, we can prove our convergence result with
improved lower bound of m as in Theorem 2. To relax the condition on the learning rate
for the sparse network, a finer analysis of the error terms is conducted in Lemma 31 by
leveraging the fact that the network has sparse activation. This later translates into a wider
range of learning rate choice in the convergence analysis. We provide the complete proof in
Appendix A.

Lastly, since we can show that the total movement of each neuron’s bias has a O(1/y/m)
dependence (shown in Lemma 23), combining with the number of activated neurons at the
initialization, we can bound the number of activated neurons.

Lemma 6 (Number of Activated Neurons per Iteration) Assume the parameter set-
tings in Theorem 1. With probability at least 1 — e~ ™) over the random initialization,

|Son (i, )] = O(m - exp(—B?/2))
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for all0 <t < T and i € [n], where Son(i,t) = {r € [m] : w,(t)Tx; > b.(t)}.

This lemma proves that the activation of the neural network remains sparse throughout the
entire training process. Utilizing the computational techniques in the introduction, it can
speed up the per step training of the neural network.

3.2 Generalization Bound
3.2.1 RESULTS

In this section, we present our sparsity-dependent generalization result. For technical reasons
stated in Section 3.2.2, we use symmetric initialization defined below. Further, we adopt the
setting in (Arora et al., 2019) and use a non-degenerate data distribution to make sure the
infinite-width NTK is positive definite.

Definition 7 (Symmetric Initialization) For a one-hidden layer neural network with
2m meurons, the network is initialized as the following:

1. For r € [m], independently initialize w, ~ N (0,I) and a, ~ Uniform({—1,1}).
2. Forre{m+1,...,2m}, let w, = wy_p, and a, = —ap_p,.

Definition 8 ((\o, J, n)-non-degenerate distribution, (Arora et al., 2019)) A distri-
bution D over R? x R is (Ao, §,n)-non-degenerate, if for n i.i.d. samples {(z;,y;)}", from
D, with probability 1 — § we have Amin(H*(B)) > Ao > 0.

Theorem 9 Fiz a failure probability 6 € (0,1) and an accuracy parameter € € (0,1).
Suppose the training data S = {(x;,y:)}}_, are i.i.d. samples from a (), §,n)-non-degenerate
distribution D defined in Definition 8. Assume the one-hidden layer neural network is
initialized by symmetric initialization in Definition 7. Further, assume the parameter settings
in Theorem 1 except we let m > Q (A(B) nbexp(—B?)). Consider any loss function
¢:R xR — [0,1] that is 1-Lipschitz in its first argument. Then with probability at least
1—26 — e~ guer the randomness in symmetric initialization of W(0) € R™*? and a € R™
and the training samples, the two layer neural network f(W(t),b(t),a) trained by gradient

descent fort > Q(n/\%B) log "loge(l/é)) iterations has empirical Rademacher complezity (see
its formal definition in Theorem 36 in Appendiz) bounded as

Rs(]:) < \/yT(HOO(B))_ly8€—B2/2 +O~ (eBﬁ/Zl)

n n1/2

and the population loss Lp(f) = E(yy)~pll(f(x),y)] can be upper bounded as

(2)

n n1/2

Lo(f(W(t),b(t),a)) < \/yT(HOO(B))_ly . 32¢—B%/2 40 < 1 ) .

To show good generalization, we need a larger width: the second term in the Rademacher
complexity bound is diminishing with m and to make this term O(1/y/n), the width needs
to have (n/A(B))% dependence as opposed to (n/A(B))* for convergence. Now, at the
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first glance of our generalization result, it seems we can make the Rademacher complexity
arbitrarily small by increasing B. Recall from the discussion of Theorem 1 that the smallest
eigenvalue of H*(B) also has an exp(—B?/2) dependence. Thus, in the worst case, the
exp(—B?/2) factor gets canceled and sparsity will not hurt the network’s generalization.

Before we present the proof, we make a corollary of Theorem 9 for the zero-initialized
bias case.

Corollary 10 Take the same setting as in Theorem 9 except now the biases are initialized
as zero, i.e., B = 0. Then, if we let m > Q(A\(0)~%n"), the empirical Rademacher complexity
and population loss are both bounded by

Rs(F), Lot v b, < VO o (L

n n1/2

Corollary 10 requires the network width m > Q((n/A(0))®) which significantly improves
upon the previous result in (Song and Yang, 2019, Theorem G.7) m > Q(n'6 poly(1/A(0)))
(including the dependence on the rescaling factor k) which is a much wider network.
Generalization Bound via Least Eigenvalue. Note that in Theorem 9, the worst
case of the first term in the generalization bound in Equation (2) is given by O(y/1/A(B)).
Hence, the least eigenvalue A(B) of the NTK matrix can significantly affect the generalization
bound. Previous works (Oymak and Soltanolkotabi, 2020; Song et al., 2021) established
lower bounds on A(B) with an explicit 1/n? dependence on n under the § data separation
assumption (see Theorem 13), which clearly makes a vacuous generalization bound of O(n).
This thus motivates us to provide a tighter bound (desirably independent on n) on the
least eigenvalue of the infinite-width NTK in order to make the generalization bound in
Theorem 9 valid and useful. It turns out that there are major difficulties in proving a better
lower bound in the general case. However, we are only able to present a better lower bound
when we restrict the domain to some (data-dependent) regions by utilizing trainable bias.

3.2.2 KEY IDEAS IN THE PROOF OF THEOREM 9

Since each neuron weight and bias move little from their initialization, a natural approach
is to bound the generalization via localized Rademacher complexity. After that, we can
apply appropriate concentration bounds to derive generalization. The main effort of our
proof is devoted to bounding the weight movement to bound the localized Rademacher
complexity. If we directly take the setting in Theorem 1 and compute the network’s localized
Rademacher complexity, we will encounter a non-diminishing (with the number of samples
n) term which can be as large as O(y/n) since the network outputs non-zero values at
the initialization. Arora et al. (2019) and Song and Yang (2019) resolved this issue by
initializing the neural network weights instead by N(0, k2I) to force the neural network
output something close to zero at the initialization. The magnitude of & is chosen to balance
different terms in the Rademacher complexity bound in the end. Similar approach can
also be adapted to our case by initializing the weights by A (0, x2I) and the biases by xB.
However, the drawback of such an approach is that the effect of x to all the previously
established results for convergence need to be carefully tracked or derived. In particular,
in order to guarantee convergence, the neural network’s width needs to have a polynomial

10
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dependence on 1/k where 1/k has a polynomial dependence on n and 1/X, which means
their network width needs to be larger to compensate for the initialization scaling. We
resolve this issue by symmetric initialization Definition 7 which yields no effect (up to
constant factors) on previously established convergence results, see (Munteanu et al., 2022).
Symmetric initialization allows us to organically combine the results derived for convergence
to be reused for generalization, which leads to a more succinct analysis. Further, we replace
the #1-f» norm upper bound by finer inequalities in various places in the original analysis.
All these improvements lead to the following upper bound of the weight matrix change in
Frobenius norm. Further, combining our sparsity-inducing initialization, we present our
sparsity-dependent Frobenius norm bound on the weight matrix change.

Lemma 11 Assume the one-hidden layer neural network is initialized by symmetric initial-
ization in Definition 7. Further, assume the parameter settings in Theorem 1. Then with
probability at least 1 — § — e~ guer the random initialization, we have for allt >0,

exp(—B?/2) 1og<n/5))i>

m

[W.6)(6) — [W.6)(0)]| p < /T (H>=)"1y + O (7; <

o <n Rexp(—B2/2)>

A

log(n?/9)

+ ﬁ -0 <exp(—B2/4)

+ Rexp(—B2/2))

where R = R, + Ry denote the mazximum magnitude of neuron weight and bias change.

By Lemma 23 and Theorem 25 in the Appendlx we have R = O( 5 \F) Plugging in

and setting B = 0, we get [|[W,b](t) — [W,b](0)|| p < \/y" (H>®)"ly + O( oz + )\3/2m1/4 +
ﬁ + %) On the other hand, takmg k =1, (Song and Yang, 2019, Lemma G.6) yields
a bound of [|[W(t) — W(0)||» < V/yT (H®) 1y + O W). Notice that the 6(%)

term has no dependence on 1/m and is removed by symmetric initialization in our analysis.
We further improve the upper bound’s dependence on n by a factor of n?.
The full proof of Theorem 9 is deferred in Appendix C.

3.3 Restricted Least Eigenvalue of the Bias-Generalized NTK
3.3.1 REsULTS

Definition 12 (Data-dependent Region) Let p;; = P, 0,1 w'z; > B, w'z; >
B] for i # j. Define the (data-dependent) region R = {a € R" : Zi# a;a;pij >
mini/#/ Ditj 22753 aiaj}.

Notice that R is non-empty for any input data-set since R’} C R where R’} denotes the set
of vectors with non-negative entries, and R = R" if p;; = pyj for all i # i, j # j'.
Theorem 13 (Restricted Least Eigenvalue) Let X = (x1,...,1,) be points in R? with
|zill, = 1 for all i € [n] and w ~ N(0,14). Suppose that there exists & € [0,+/2] such that

min (||x; — zl,, ||x: + 2 > 4.
7ﬁe[](llz illg s llze 4+ 5ll5)

11
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Let B > 0. Consider the minimal eigenvalue of H>® over the data-dependent region R
defined above, i.e., let A\ :=minjq|,=1, aer a"H®a. Then, A\ > max(0, \') where

Vo [L_ B (1 1)6—32/2
max | - ——, | = — = | —
- 2 Vor B B} or
T — arctan <511626/22/4>

27

_ o~ B2/(2-6%/2)

3)

To demonstrate the usefulness of our result, if we take the bias initialization B = 0 in
Equation (3), this bound yields 1/(27) - arctan((d+/1 — 62/4)/(1 — 62/2)) ~ 6/(27), when §
is close to 0 whereas (Song et al., 2021) yields a bound of §/n2. On the other hand, if the

LB (11 e B2

data points are orthogonal, i.e., § = v/2, we get a max (5 ~ 7 (B ) T ) lower

bound, whereas (Song et al., 2021) yields a bound of exp(—B?/2)v/2/n?. Connecting to our
convergence result in Theorem 1, if f(t) — y € R, then the error can be reduced at a much
faster rate than the (pessimistic) rate with 1/n? dependence in the previous studies as long
as the error vector lies in the region.

Remark 14 The lower bound on the restricted smallest eigenvalue A in Theorem 13 is
independent of n, which makes that the worst case generalization bound in Theorem 9
be O(1) under constant data separation margin (note that this is optimal since the loss is
bounded). Such a lower bound is much sharper than the previous results with a 1/n? explicit
dependence which yields vacuous generalization bound of O(n). This improvement relies on
the condition that the label vector should lie in the region R, which can be achieved by a
simple label-shifting strategy: Since R} C R, the condition can be easily achieved by training
the neural network on the shifted labels y + C' (with appropriate broadcast) where C is a
constant such that min; y; + C' > 0.

Careful readers may notice that in the proof of Theorem 13 in Appendix B, the restricted
least eigenvalue on R} is always positive even if the data separation is zero, which would
imply that the network can always exhibit good generalization. However, we need to point
out that the generalization bound in Theorem 9 is meaningful only when the training is
successful: when the data separation is zero, the limiting NTK is no longer positive definite
and the training loss cannot be minimized toward zero.

3.3.2 KEY IDEAS IN THE PROOF OF THEOREM 13

In this section, we analyze the smallest eigenvalue of the limiting NTK H* with § data
separation. We first note that H*> = E,.r(0,1) [I(Xw > B)I[(Xw > B)"] and for a fixed
vector a, we are interested in the lower bound of By, o,n)[]a" I(Xw > B)|?]. In previous
works, Oymak and Soltanolkotabi (2020) showed a lower bound Q(8§/n?) for zero-initialized
bias, and later Song et al. (2021) generalized this result to a lower bound Q(e=5*/2§ /n?) for
non-zero initialized bias. Both lower bounds have a dependence of 1/n2. Their approach
is by using an intricate Markov’s inequality argument and then proving an lower bound of
Plla"I(Xw > B)| > c|a||.]- The lower bound is proved by only considering the contribution

12
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from the largest coordinate of a and treating all other values as noise. It is non-surprising
that the lower bound has a factor of 1/n since a can have identical entries. On the other
hand, the diagonal entries can give a exp(—B?/2) upper bound and thus there is a 1/n?
gap between the two. Now, we give some evidence suggesting the 1/n? dependence may not
be tight in some cases. Consider the following scenario: Assume n < d and the data set is
orthonormal. For any unit-norm vector a, we have

ol E [H(Xw > B)[(Xw > B)T] a
w~N(0,1)

=i jem @i Plw'z; > B, w'z; > B]

=pollall +p1 ) aa,
oy
=po—p1+p1 ()" >po—p1

where pg,p1 € [0, 1] are defined such that due to the spherical symmetry of the standard
Gaussian we are able to let pg = Plw'z; > BJ, Vi € [n] and p; = Plw'z; > B,w'z; >
B], Vi,j € [n], i # j. Notice that pg > p;. Since this is true for all a € R", we get a lower
bound of pg — p1 with no explicit dependence on n and this holds for all n < d. When d is
large and n = d/2, this bound is better than previous bound by a factor of ©(1/d?). We
hope to apply the above analysis to general datasets. However, it turns out that the product
terms (with ¢ # j) above creates major difficulties in the general case. Due to such technical
difficulties, we prove a better lower bound by utilizing the data-dependent region R defined
in Theorem 12. Let ppin = min,»; p;;. Now, for a € R, we have

E [(@"I(Xw> B))ﬂ

w~N(0,1)

> (pO _pmin) HGHS + Pmin HGHS ~+ Pmin § a; Q5
i#]

> (po — minpy;) [|all3-
i#]

Thus, to lower bound the smallest eigenvalue on this region, we need to get an upper bound
on min;; p;j. To do this, let’s first consider a fixed pair of training data x; and z; and their
associated probability p;; (see Theorem 12). To compute p;;, we can decompose z; into
two components: one is along the direction of x; and the other is orthogonal to x;. Now we
can project the Gaussian vector onto these two directions and since the two directions are
orthogonal, they are independent. This allows p;; to be computed via geometry arguments.
It turns out that this probability is maximized when the data separation is the smallest. We
defer the details of the proof of Theorem 13 to Appendix B.

4. Experiments

In this section, we verify our result that the activation of neural networks remains sparse
during training when the bias parameters are initialized as non-zero.

Settings. We train a 6-layer multi-layer perceptron (MLP) of width 1024 with trainable
bias terms on MNIST image classification (LeCun et al., 2010). The biases of the fully-
connected layers are initialized as 0, —0.5 and —1. For the weights in the linear layer,

13



YANG, JIANG, ZHANG, LIANG AND WANG.

we use Kaiming Initialization (He et al., 2015) which is sampled from an appropriately
scaled Gaussian distribution. The traditional MLP architecture only has linear layers with
ReLU activation. However, we found out that using the sparsity-inducing initialization,
the magnitude of the activation will decrease geometrically layer-by-layer, which leads
to vanishing gradients and that the network cannot be trained. Thus, we made a slight
modification to the MLP architecture to include an extra Batch Normalization after ReLU
to normalize the activation. Our MLP implementation is based on (Zhu et al., 2021). We
train the neural network by stochastic gradient descent with a small learning rate 5e-3 to
make sure the training is in the NTK regime. The sparsity is measured as the total number
of activated neurons (i.e., ReLU outputs some positive values) divided by total number of
neurons, averaged over every SGD batch. We plot how the sparsity patterns changes for
different layers during training.

0.85
0.775 — — —
layer 0 layer 3 layer 0 layer 3 0.95 layer 0 layer 3
0.750 layer1 — layer4 0.80+ layer 1 —— layer 4 layer 1 —— layer 4
layer 2 layer 5 - —— layer2 —— layer5 0.90 — layer 2 layer 5
0.725
0.85
2 0.700 £0.751 L 2
& @ 4
© 0.6751 | g § 0.80
@ # 0.701 \—FI'HWII]TIIIIIIIIIIWIIWI-IIMI ®
0.650 0.75 L
0.625 0.70 LU
0.65
0.600 0.65
0 10k 20k 30k 40k 0 10k 20k 30k 40k 0 10k 20k 30k 40k
Iterations Iterations Iterations
(a) Init Bias as 0 (b) Init Bias as -0.5 (c) Init Bias as -1.0

Figure 1: Sparsity pattern on different layers across different training iterations for three
different bias initialization. The x and y axis denote the iteration number and sparsity
level, respectively. The models can achieve 97.9%,97.7% and 97.3% accuracy after training,
respectively. Note that, in Figure (a), the lines of layers 1-5 overlap together except layer 0.

Observation and Implication. As demonstrated at Figure 1, when we initialize the
bias with three different values, the sparsity patterns are stable across all layers during
training: when the bias is initialized as 0 and —0.5, the sparsity change is within 2.5%;
and when the bias is initialized as —1.0, the sparsity change is within 10%. Meanwhile,
by increasing the initialization magnitude for bias, the sparsity level increases with only
marginal accuracy dropping. This implies that our theory can be extended to the multi-layer
setting (with some extra care for coping with vanishing gradient) and multi-layer neural
networks can also benefit from the sparsity-inducing initialization and enjoy reduction of
computational cost. Another interesting observation is that the input layer (layer 0) has a
different sparsity pattern from other layers while all the rest layers behave similarly.

We next provide experiment on the convergence of the network with large bias initial-
ization. We setup a toy example with 2 € R®> and y € R where z ~ N(0,1) and y = w 'z
for fixed w with unit norm. The network has width 128 and the bias is initialized with
0,—0.1,—0.2,—0.3, —0.4. We plot the convergence rate in Figure 2. As we can see from the
plot, all the curves have the same slope at the end of the training, which verifies our claims
that network with different bias initialization will have the same convergence rate.
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Figure 2: Training loss with different bias initialization.

5. Discussion

In this work, we study training one-hidden-layer overparameterized ReLU networks in
the NTK regime where its biases initialized as some constants rather than zero so that
its activation remains sparse during the entire training process. We showed an improved
sparsity-dependent results on convergence, generalization and restricted least eigenvalue.
One immediate future direction is to generalize our analysis to multi-layer neural networks.
On the other hand, in practice, label shifting is never used. Although we show that the least
eigenvalue can be much better than previous result when we impose additional assumption of
the restricted region, an open problem is whether it is possible to improve the infinite-width
NTK’s least eigenvalue’s dependence on the sample size without such assumption, or even
whether a lower bound purely dependent on the data separation is possible so that the
worst-case generalization bound doesn’t scale with the sample size. We leave these questions
as future work.
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Appendix A. Convergence

Notation simplification. Since the smallest eigenvalue of the limiting NTK appeared in
this proof all has dependence on the bias initialization parameter B, for the ease of notation of
our proof, we suppress its dependence on B and use A to denote A := A(B) = A\pin(H>(B)).

A.1 Difference between limit NTK and sampled NTK

Lemma 15 For a given bias vector b € R™ with b, > 0, Vr € [m], the limit NTK H* and
the sampled NTK H are given as

T T
HY = wNXI;:(O,I) {((ml,x]) + Dl(w, x; > by, w, xj > br)} ,
1 m
Hl‘j = E Z((xz, $j> + 1)]I(erxi > br, w;rxj > br).
r=1

Let’s define X := A\pin(H™) and assume \ > 0. If the network width m = Q(A~1n-log(n/?)),
then

P [)\min(H) > )\] >1-4.

e~ w

Proof Let H, := %)?(wT)T)?(wT), where X (w,) € REUTD*" ig defined as

X (wy) == [[(w, 21 >b) - (x1,1),...,I(w, z,, > b) - (zn,1)],

where (z;,1) denotes appending the vector z; by 1. Hence H, = 0. Since for each entry H;;
we have

1
(Hy)ij = — (@i, z;) + DI(w, 25 > by, w5 > by) <
m

() +1) < =

1
m
and naively, we can upper bound || H,||, by:

4 2n
[Hylly < | Hrllp <[P — = —.

m2  m

Then H = )" | H, and E[H] = H*. Hence, by the Matrix Chernoff Bound in Theorem 45
and choosing m = Q(A~!n - log(n/d)), we can show that

P [/\mm(H) < 2)\] <n-exp <—116/\/(4n/m)>

Am
=n-exp —%

<é.
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Lemma 16 Assume m = n°M and exp(B2?/2) = O(y/m) where we recall that B is the
initialization value of the biases. With probability at least 1 — 6, we have ||H(0) — H*®||p <

4n exp(—B2%/4)4/ W.

Proof First, we have E[(((z;, z;) + 1)L,.;(0)I, ;(0))?] < 4exp(—B?2/2). Then, by Bernstein’s
inequality in Theorem 44, with probability at least 1 — & /n?,

Jlog(n2/0) log(n?/6)

+ 2% log(n?/8) < dexp(—B?/4)y) —=—"-.

|H;;(0) — H;Y| <2 exp(—B?/4) -

By a union bound, the above holds for all 7, j € [n] with probability at least 1 — §, which
implies

VH(©0) — H®|, < dnexp(—B2/4),/ 220210

m

A.2 Bounding the number of flipped neurons

Definition 17 (No-flipping set) For each i € [n], let S; C [m] denote the set of neurons
that are never flipped during the entire training process,

Si = {r € [m]: Vt e [T] sign({(w,(t), z;) — by(t)) = sign({w,(0), z;) — b.(0))}.
Thus, the flipping set is S; for i € [n].

Lemma 18 (Bound on flipping probability) Let B > 0 and Ry, R, < min{l/B,1}.
Let W = (@y,...,0y,) be vectors generated i.i.d. from N(0,I) and b = (by,...,by) =
(B,...,B), and weights W = (w1,...,wy,) and biases b = (by,...,by) that satisfy for any
r € [m], @, —wrly < Ry and |b, — by| < Ry. Define the event

Air = {30y, by ¢ |y — wrlly < Ru, by — bp| < Ry, L] @ > by) # I(2] wy > by)}
Then,
P[Ai,] < ¢(Ry + Ry) exp(—B?/2)
for some constant c.

Proof Notice that the event A;, happens if and only if b, z; — l~)T| < Ry + Rp. First, if
B > 1, then by Theorem 46, we have

P[A;,] < (Rw + Rp) exp(—(B — Ry — Ry)?/2) < c1(Ry + Ry) exp(—B?/2)

1
V2T
for some constant c¢;. If 0 < B < 1, then the above analysis doesn’t hold since it
is possible that B — R, — R, < 0. In this case, the probability is at most P[4;,] <
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2(Ry + Rb)\/% exp(—02/2) = URutly) However, since 0 < B < 1 in this case, we have

Var
exp(—12/2) < exp(—B?/2) < exp(—0?/2). Therefore, P[A;,] < ca(Ry + Rp) exp(—B?/2) for
cy = %L\/%/Q). Take ¢ = max{cj, ca} finishes the proof. [ ]

Corollary 19 Let B > 0 and Ry, Ry < min{1/B,1}. Assume that ||w,(t) — w,(0)|5 < Ry
and |b.(t) — b.(0)| < Ry, for all t € [T]. Fori € [n], the flipping set S; satisfies that

Plr € S;] < ¢(Ry + Rp) exp(—B?/2)
for some constant c, which implies
PVi € [n] = |S;| < 2me(Ry + Ry) exp(—B2/2)]

2
>1—n-exp <—3mC(Rw + Ry) exp(—B2/2)> .

Proof The proof is by observing that P[r € S;] < P[A;,]. Then, by Bernstein’s inequality,

_ t2/2
P[|Si] > ] < exp <_mc(Rw + Rp) exp(—B?/2) + t/3> ‘

Take t = 2mc(Ry, + Ry) exp(—B?/2) and a union bound over [n], we have
PVi € [n] : |S;| < 2mc(Ry + Ry) exp(—B?/2)]

2
>1—mn-exp (—3mc(Rw + Ry) exp(—BQ/2)) .

A.3 Bounding NTK if perturbing weights and biases

Lemma 20 Assume A > 0. Let B > 0 and Ry, Ry, < min{1/B,1}. Let W = (@1, ... ,Wy,)
be vectors generated i.i.d. from N(0,I) and b= (l~)1, b)) = (B,... ,B). For any set
of weights W = (wy,...,wp) and biases b = (by,...,bn) that satisfy for any r € [m],
| W, — wr|ly < Ry and |I~),« —by| < Ry, we define the matriz H(W,b) € R™*"™ by

1 m
H;ij(W,b) = po. Z((xz,xj) + DI(w, 2 > by, w, x> b,).

r=1
It satisfies that for some small positive constant c,

1. With probability at least 1 — n? exp (—%cm(Rw + Ry) exp(—B?/2)), we have

HH(W, b) — H(W, b)HF < n-8¢(Ry + Ry) exp(—B2/2),

HZ( V.5 — Z(W, b)HF < /n - 8¢(Ry + Ry) exp(—B2/2).
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2. With probability at least 1 — 6 — n® exp (—3cm(Ry + Ry) exp(—B?/2)),
Amin(H(W, b)) > 0.75X — n - 8c(Ry, + Rp) exp(—B?/2).

Proof We have

HZ(W,b)_Z(Vv,é)H2 =S (2 (wtwla > b) - W@ a > )

F 1€[n] rem]
2
(s
i€[n] re[m)]

and
- v

= Z (Hij(W,b) — Hi;(W,b))?
i€[n], j&[n]

IN

4 . 8
—5 g g I(w, @ > byyw, 25 > by) — LW, z; > by, @, ;> b))
m

i€ln], j€ln] \re(m]

2
4
=— D> | Do s
i,j€[n] \r€[m]
where we define
T T ~T 7 ~T
Srij o= |L(w, z; > by,w, x; > b,) — (W, x; > by, W, =

tri = (I(w, z; > b)) — (w0, z; > b))%

7 2 BT‘)|5

Notice that t,; = 1 only if the event A; , happens (recall the definition of A;, in Theorem 18)
and s,.; ; = 1 only if the event A;, or A;, happens. Thus,

Z tri < Z I(A;r), Z Srig < Z I(A;r) +1(Aj ).
re[m] relm] re[m] relm]

By Theorem 18, we have

117? [Sr,i,j] < E[S%,i,j] < E[Ai,r] + E[Aj,r] < 2¢(Ry + Ryp) exp(—B2/2).

Define s; j = > " I(A; ) + I(A;j,). By Bernstein’s inequality in Theorem 44,
P [sij > m-2c(Ry + Ry) exp(—B?/2) + mt]

<o m2t2/2
<p [ —
=P T 2¢(Ry, + Rp) exp(—B?%/2) + mt/3

). w=o
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Let t = 2¢(R,, + Rp) exp(—B?/2). We get
2
P[s;; > m - 4c(Ry, + Rp) exp(—B2/2)] < exp <—3cm(Rw + Ry) exp(—B2/2)> :
Thus, we obtain with probability at least 1 — n*exp (—Zem(Ry, + Ry) exp(—B?/2)),

HH(W, B) — H(W, b)HF < n-8¢(Ry + Ry) exp(—B/2),

HZ( Vb — Z(W, b)HF < /n - 8¢(Ry + Ry) exp(—B2/2).

For the second result, by Lemma 15, P[Amin(H(W,b)) > 0.75\] > 1 — 6. Hence, with
probability at least 1 — & — n? exp (—3cm(Ry + Ry) exp(—B?/2)),

Ain (H (W, 5)) > Amin (H (W, 5)) — HH(W b) — H(W, E)H
> Nuin( H(OW,5)) = || H(W0) = HOV.5) |
> 0.75)\ — n - 8¢(Ryy + Ry) exp(—B2/2).

A.4 Total movement of weights and biases

Definition 21 (NTK at time t) Fort > 0, let H(t) be an n x n matriz with (i,7)-th
entry

[ Of(x;0(t) Of (x5;0(t))
Hij(t) = < 20(t) ’ a0(t) >

Z(<x¢,$j> + 1)]I(w,~(t)T:ri > bT(t),wr(t)T:rj > b,(t)).

r=1

1
m

We follow the proof strategy from (Du et al., 2018). Now we derive the total movement of
weights and biases. Let f(t) = f(X;0(t)) where f;(t) = f(x;;60(t)). The dynamics of each

prediction is given by

d . _ /Of(zi;0(t) do(t)
dtfi(t)_< ao(t) dt>

NS [ Of (s 0() Of (x:0(1)
_;(yf_fﬂ(t))< 60 000 >

= (y; — fi()Hi 1),
j=1

which implies
d

5/ =HO)(y - f(1)). (4)
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Lemma 22 (Gradient Bounds) For any 0 < s <t, we have

HaL awi);)b \/7||f )~ ol
et IERVCYEORST

Proof We have:

H OL(W (s),b(s))
dw,(s)

1 n
= /= (fxs W(s),b(s)) — yi)arwl(w.(s) " z; > b,)

LS (e W), bs))

=1
<\ 176 = e

where the first inequality follows from triangle inequality, and the second inequality follows
from Cauchy-Schwarz inequality.
Similarly, we also have:

IN

3

n

(f(xzv W(S)v b(S)) - yi)arﬂ(wr(s)Txi > br)

H OL(W (s), b(s))
Obr(s)

| 2

A.4.1 GRADIENT DESCENT

Lemma 23 Assume A > 0. Assume |y — f(k:)”g < (1 =Mk |y — f(O)Hg holds for all
k' < k. Then for every r € [m],

SVl — FO)l _

[wr (k4 1) = wr(0)[l; <

VmA
8vnlly — fO)lly
lbr(k+1) = b,(0)] < NGD) 2 .= Dy
Proof
OL(W(K'))
”wr(k' + 1) ||2 = awr k‘/ H
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k
< 2y = £k
DIEY
k
< L =R |y - £0)]
?7];)\/; n y )
k
< L= [ly — £(0)]
néﬁ n ) 2

<nS 1= = FO)]
nkzo\/; n y 2

8v/n
ND)

where the first inequality is by Triangle inequality, the second inequality is by Theorem 22,
the third inequality is by our assumption and the fourth inequality is by (1 —x)'/2 < 1—xz/2
for x > 0.

The proof for b is similar. |

<

ly = £l

A.4.2 GRADIENT FLOW

Lemma 24 Suppose for 0 < s < t, Apin(H(s)) > ’\2—0 > 0. Then we have ||y — f(t)||§ <
exp(=Aot) [ly = F(O)[13 and for any 7 € [m], w,(t) — wn(0)]}, < YLOL ang b (1) -
b, (0)] < \/ﬁ||y—f(0)”2.

Yo

Proof By the dynamics of prediction in Equation (4), we have

Dy = 1012 = ~2 — FO)THE)w ~ £)
< —dolly ~ FOI3,

which implies

ly — F(t)]]5 < exp(—Aot) ly — F(£)]5-

Now we bound the gradient norm of the weights

n

E (yi — fi(S))il arzl(w,(s) Tx; > b(s))
vm
i=1

< i ) < Yy S0l < Yooy~ SO

d
], = 2

Integrating the gradient, the change of weight can be bounded as

Vv lly — fO)]]
stg VmAo B

—wy(8)

Jar6) =)l < [
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For bias, we have

< LS A< Yy £ < Y exp(~Aos) ly — FO)],-

Now, the change of bias can be bounded as

Vv lly = £0)l
2ds§ N 2,

1B (£) — b (0)]] s/o

gwr(s)

A.5 Gradient Descent Convergence Analysis
A.5.1 UPPER BOUND OF THE INITIAL ERROR

Lemma 25 (Initial error upper bound) Let B > 0 be the initialization value of the
biases and all the weights be initialized from standard Gaussian. Let 6 € (0,1) be the failure
probability. Then, with probability at least 1 — 0, we have
1£(0)II5 = O(n(exp(~B?/2) + 1/m)log®(mn/5)),
1£(0) — y[l5 = O (n +n (exp(—B?/2) + 1/m) log®(2mn/9)) .
Proof Since we are only analyzing the initialization stage, for notation ease, we omit the
dependence on time without any confusion. We compute

n

ly = FlI3 = (yi = f(x:)?

i=1

n m 2
1
= E P — —— E aro(w:xi—B)>
=1 <y m r=1

= Z Y2 — 2\/% Zara(w:mi - B)+ - (Z aro(w, x; — B))
i=1 r=1 r=1

Since w, z; ~ N(0,1) for all r € [m] and i € [n], by Gaussian tail bound and a union bound
over r,%, we have

PVi € [n], j € [m] : w, z; < \/2log(2mn/8)] > 1—§/2.

Let E7 denote this event. Conditioning on the event E1, let

P T, — B). \/2log(2mn/d)
Zir = T ar mm{a(wracl B), 210g(2mn/5)}.
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Notice that z;, # 0 with probability at most exp(—B?/2). Thus,

E [27,] < eXp(—BQ/Z)%Qlog(an/cS).

Qr,Wr

By randomness in a,, we know E[z; ;] = 0. Now apply Bernstein’s inequality in Theorem 44,
we have for all £ > 0,

m ‘ t2/2 \/ﬁt/Q
P[ - >t] e <_m““<4exp<—B2/2>log<2mn/6>’2 210g<2mn/5>>>'

>
Thus, by a union bound, with probability at least 1 — §/2, for all i € [n],

r=1
m
E Zi,r

r=1

< v/21og(2mn/8) exp(—B2/2)21og(2n/5) + 2

2log(2mn/9) log(2n/6)

< (2 exp(—B?%/4) + 2\/2/m) log®/2(2mn /5).

Let E5 denote this event. Thus, conditioning on the events E1, Es, with probability 1 — 6,

1£ (013 = Z <Z Zw> = O(n(exp(~B?/2) + 1/m)log®(mn/))

=1 \r=1

and

ly = FO)13

:EZ: 3—2§:yzz,zw+z (ZZ”>

i=1 \r=1

Z —l-ZZ\yz (2exp —B%/4) +2v/2/m >10g3/2 2mn/0)
>

((2 exp(—B2/4) + 2«/2/m) 10g3/2(2mn/6)>
i=1
= O (n+n (exp(—B*/2) + 1/m) log®(2mn/4)) ,

where we assume y; = O(1) for all i € [n]. [ |

A.5.2 ERROR DECOMPOSITION

We follow the proof outline in (Song and Yang, 2019; Song et al., 2021) and we generalize it
to networks with trainable b. Let us define matrix H=+ similar to H except only considering
flipped neurons by

HS () = — 37 () + D) s 2 (), (6) 5 2 b, (8)
res;
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and vector vy, vs by

ar(o((wr(k + 1), i) = br(k + 1)) = o((wr(k), zi) — br(K))),

Vi 1=

&

<

S

3= 3~

Vg,i 1= ar(o((wr(k + 1), 2i) = br(k + 1)) — o((wr(k), 1) — br(F))).

Wl

re
Now we give out our error update.

Claim 26

ly — f(k+ D5 = ly — f(k)||5 + B + Ba + B + Bu,

where

By = —2n(y — f(k)) "H(k)(y — f(k)),
By :=2n(y — f(k))THL(’f)(?J — 1)),
By :=—2(y — f(k)) v
By:=|f(k+1)— ()%-

Proof First we can write

. ;mgsj (o ({urt) = o) = (50 =i ) ) = (i) = .6
<—n§L,xi> + g’f ) 1)) = 1) > 0

k))ar (25, 2i) + DI(wp (k) "2 > br(’f)))

—nz )(Hij(k) — H%(k‘))

which means

v = n(H (k) — H(k)(y — f(k)).

Now we compute

ly — flk+ D)5 = lly — f(k) — (F(k +1) — f(k))|3
= lly — f(k)5 —2(y — F(R) T (F(k+1) — f(K)) + | f(k + 1) — F(K)I[3-

Since f(k + 1) — f(k) = v1 + v2, we can write the cross product term as
(y = () (fk+1) = f()
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= (y— f(k) " (v1 + v2)
=(—fk) v+ (y— k) v
=n(y — f(k)) " H(k)(y — f(k ))
=y — f(k))TH (k) (y — F(k) + (y — f(K)) Tv2

A.5.3 BOUNDING THE DECREASE OF THE ERROR

Lemma 27 Assume A > 0. Assume we choose Ry, Ry, B where Ry,, Ry < min{1/B,1} such
that 8cn(Ry,+ Ry) exp(—B?/2) < A/8. Denote 8y = §+n? exp(—2cm(Ry+ Ry) exp(—B?/2)).
Then,
P[By < —n5X ||y — f(k)]l3 /8] > 1 — .
Proof By Lemma 20 and our assumption,
Amin(H(W)) > 0.75)\ — n. - 8¢(Ry, + Ry) exp(—B%/2) > 5)/8

with probability at least 1 — §y. Thus,

(y— (k) TH(K)(y — f(k)) = ly — f(k)]35)/8.

A.5.4 BOUNDING THE EFFECT OF FLIPPED NEURONS

Here we bound the term By, Bs. First, we introduce a fact.

Fact 28
2 4n o
1 2
| < e s
Proof

HHL(k)H2 > % S (@] + DI(w, (k) T > be(k), w,(k) 25 > by(k)
i regi

1 - \? dn & -
< Y (osi) < By s
m m

NIS) i=1
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Lemma 29 Denote g = nexp(—%cm(Rw + Ry) exp(—B2%/2)). Then,
P[By < 8nnc(Ry + Ry) exp(=B%/2) - |y — f(K)|[5] = 1 — do.
Proof First, we have
By < 2y — S0 [0
Then, by Theorem 28,
L e
By Theorem 19, we have
PVi € [n] = [Si| < 2mc(Ry + Rp) exp(—B2/2)] > 1 — 6.
Thus, with probability at least 1 — dg,

HHL(k;)HZ < 4ne(Ry + Ry) exp(—B2/2).

Lemma 30 Denote 6y = nexp(—%cm(Rw + Ry) exp(—B2%/2)). Then,
P[Bs < denn(Ry + Ry) exp(=B2/2) |ly — f(k)|[5] > 1 — do.

Proof By Cauchy-Schwarz inequality, we have B3 < 2|y — f(k)||, ||v2|l,. We have

2

n oL oL

2 _n —,
||Uz|2—Z; \/mz;‘<0wraxz>‘+‘ﬁbr

1= rES;
n 9 2
0 oL oL 5.2

<)y — . L ‘
<3 T (G| [ ])

=1
n? n 2 ’
<nl (22 170 = ol el R + i) expl-5/2))
= 1662y — ORI (Ru + o) exp(— B2),

where the last inequality is by Theorem 22 and Theorem 19 which holds with probability at
least 1 — dg. [ |
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A.5.5 BOUNDING THE NETWORK UPDATE

Lemma 31
By < C3n*n® ||y — f(k)||5 exp(—B?).
for some constant Cs.

Proof Recall that the definition that Son(i,t) = {r € [m] : w,(t) "z; > b.(t)}, i.e., the set
of neurons that activates for input xz; at the ¢-th step of gradient descent.
1F (k+1) = F(R)13
ey (Y

2
oL | (oL
, , Gwr’xl ob,
7:7€8on (1,k+1)USon (4,k)

L (Suni L B)))? oL N oLy’
g (Son(is B+ DI+ 1Son G K)])” macx <‘<aw>‘ " ‘8br

i€[n]

< <02mexp<_32/z> - ﬂ ly - f(k)H2>2

C3n*n? ||y — f(k)|5 exp(—B2).

where the third inequality is by Theorem 33 for some Cl. |

A.5.6 PUTTING IT ALL TOGETHER

Theorem 32 (Convergence) Assume A > 0. Let n < ’\EXCPQ( >, B €0,1/0.5logm]| and

>0 (A™*n* (1 + (exp(—B?/2) + 1/m) log®(2mn/6)) exp(—B?)) .

Assume X\ = \gexp(—B2/2) for some constant \g. Then,
PV fly = FOI5 < (L= n/4)" ly— O3] 21— 05— e 20,

Proof From Theorem 27, Theorem 29, Theorem 30 and Lemma 31, we know with probability
at least 1 — 2n% exp(—2cm(Ry + Ry) exp(—B?/2)) — 6, we have

ly — f(k+1)|3
< |ly — f(k)|3 (1 — 5nA\/8 + 12nnc(Ry + Ry) exp(—B2%/2) + Can*n? |ly — f(k)|3 exp(—B?)).

By Lemma 23, we need

P U
by~ WO g,
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By Theorem 25, we have
P[||£(0) — y|l5 = O (n+n (exp(—B?/2) + 1/m) log3(2mn/5))] >1-0.

Let R = min{R,,, Ry}, D = max{D,,, Dy}. Combine the results we have

R > Q(/\_lm_l/Qn\/l + (exp(—=B?/2) + 1/m)log®(2mn/s)).
Theorem 27 requires

8cn(Ry + Ry) exp(—B?%/2) < \/8
Nexp(B?/2)

<
= s — o

which implies a lower bound on m
m > Q ()\_4714 (1+ (exp(—BQ/Q) +1/m) log3(2mn/5)) exp(—BQ)) .

Lemma 15 further requires a lower bound of m = Q(A~1n - log(n/d)) which can be ignored.
Lemma 20 further requires R < min{1/B, 1} which implies

128cn
Aexp(B2/2)’
m > Q (A*n* (1 + (exp(—B?/2) + 1/m) log®(2mn/6)) exp(—B?)) .

B <

From Theorem F.1 in (Song et al., 2021) we know that A\ = \g exp(—B?/2) for some \¢ with
no dependence on B and Aexp(B?/2) < 1. Thus, by our constraint on m and B, this is
always satisfied.

Finally, to require

12nne(Ry + Ryp) exp(—B2/2) + 022172n2 exp(—BQ) < nA\/4,

Aexp(B?)
5C3n?

we need n < . By our choice of m, B, we have

2
2n? exp(—gcm(Rw + Ry) exp(—B?/2)) = ¢,

A.6 Bounding the Number of Activated Neurons per Iteration

First we define the set of activated neurons at iteration t for training point z; to be
Son(iyt) = {r € [m]: wy(t) z; > b.(t)}.
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Lemma 33 (Number of Activated Neurons at Initialization) Assume the choice of
m in Theorem 32. With probability at least 1 — e=*™) over the random initialization, we
have

|SOH(i7 t)| = O(m : exp(—B2/2)),
for all0 <t <T andi € [n]. And As a by-product,
1Z(0)[I% < 8nexp(~B?/2).

Proof First we bound the number of activated neuron at the initialization. We have
Plw,! z; > B] < exp(—B?/2). By Bernstein’s inequality,

+2
P(|Son(i, 0)] > mexp(—B?/2) + ] < exp <_mexp(_32/2) + t/3> ‘

Take t = mexp(—B?/2) we have
P[|Son (i, 0) > 2mexp(—B?/2)] < exp (—mexp(=B%/2)/4) .
By a union bound over i € [n], we have
P[Vi € [n] : |Son(i,0)| < 2mexp(—B?/2)] > 1 —nexp (—mexp(—B?/2)/4) .

Notice that
4 m n

1Z(0)[1% < EZZM(U) < 8nexp(—B*/2).

r=1i=1

Lemma 34 (Number of Activated Neurons per Iteration) Assume the parameter set-
tings in Theorem 32. With probability at least 1 — e~ over the random initialization, we
have

[Son(i,1)] = O(m - exp(—B?/2))
for all0 <t <T andi € [n].
Proof By Theorem 19 and Theorem 32, we have
P[Vi € [n] : |S;] < 4mcexp(—B?/2)] > 1 — e ™),

Recall S; is the set of flipped neurons during the entire training process. Notice that
|Son (7, )| < [Son(?,0)| + |Si|. Thus, by Theorem 33

PVi € [n] : |Son(i,t)| = O(mexp(—B?/2))] > 1 — ™M,
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Appendix B. Bounding the Smallest Eigenvalue with Structured Data

Theorem 35 Let X = (x1,...,7,) be points in RY with |||, = 1 for all i € [n] and
w ~ N(0,1). Suppose that there exists § € [0,+/2] such that

min (||lz; — x|, , ||xi + x4||,) > 9.
min (o= 2l s + 1)

Let B > 0. Recall the limit NTK matric H*® defined as

HY = wNXI;:(O N [((xl,mﬂ +)I(w'z; > B,w'z; > B)| .

Define pg = Plw'z; > B] and Dij = Pw'z; > B, wTacj > BJ| for i # j. Define the
(data-dependent) region R = {a € R" : 37, aja;jp;; > mingzj pirj Y-, 5 aia;} and let
A= minyg|,—1, acr a'H®a. Then, A\ > max(0, \') where

A > po — min py;
i#]
—B2/2 T — arctan <5V1_15;S/22/4>
cmax (1o B (L_1)\e _ o B2(2-62/2)
- 2 \/27'(’ B B3 \ 21 2

Proof Define A :=max;.; | (x;, %) |. Then by our assumption,

i )2 . 12
1-A=1- max‘ <37z’737j> | — mlnl?ﬁJ(sz x]Hz ) sz + x]HQ)
7] 2

= A<1-6%/2

> 6%/2

Further, we define
Z(w) == [x1I(w' 1 > B), zol(w x5 > B),...,z,I(w' 2, > B)] € R*™

Notice that H* = B,y 0,5 [Z(w)" Z(w) + I(Xw > B)[(Xw > B)"]. We need to lower
bound

min o H@= min o E [Z(w)TZ(w)} a
llally;=1,aeR llall,=1,aeR w~N(0,1)
+a' E [H(Xw > B)I(Xw > B)T] a
w~N(0,1)

> min o' E [H(XwZB)]I(XwZB)T} a.
lally=1,aeR w~N(0,1)

Now, for a fixed a,

o Eo [I[(Xw > B)I[(Xw > B) } a

n
= Za? Plw'z; > B] + Z aa; Plw’z; > B, w'x; > B]
i=1 i
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= po llalls + D @iap,
i#]

where the last equality is by Plw'z; > B] = ... = Plw'x, > B] = py which is due to

spherical symmetry of standard Gaussian. Notice that max;.; p;; < po. Since a € R,

E a'I(Xw > B))?| > — minp;;) |lall5 + (minp;;) [l + mm a;a;
B @ IXw = B))?| = (po —minpy) lall; + (minpy) lal3 + (minpy ; ia;

2
j— —_ o .. 2 o .. .
= (0 — minpy) [laf}} + (minpy) (Z ) .

Thus,

> min B [@(xw > )Y
llall,=1,aeR w~N(0,I)

lafl;=1a€R i) lafl=1aeR

> omin_(po—mingy) faf}+ min_(minp, (Z)

> po — min p;;.
= Po itj Dij
Now we need to upper bound

min p;; < max Dij-
i#] J

We divide into two cases: B =0 and B > 0. Consider two fixed examples x1,x2. Then, let
v=(I—xzx{)zz/ ||(I — z12{ )22 and ¢ = | (z1,22) | *.
Case 1: B = 0. First, let us define the region Aj as

Vi—¢2
o {(91792) €ER®: 120, 1 2 T 92

Then,

IP’[wavl >0, w'zy > 0] = P[wal >0, wT(c:Lj +V1—c%v) >
=Plg1 >0, cg1 + V1 —c%ga > 0]

= P[Ao]
7 — arctan ( 1_62>
_ |e]
2
T — arctan <7V1_A2>
< [A]
= 27_[_ )

1. Here we force c¢ to be positive. Since we are dealing with standard Gaussian, the probability is exactly
the same if ¢ < 0 by symmetry and therefore, we force ¢ > 0.
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T T

where we define g1 := w' 1 and ¢ := w' v and the second equality is by the fact that

since 1 and v are orthonormal, g; and g are two independent standard Gaussian random
V1-c2?

lc]

variables; the last inequality is by arctan is a monotonically increasing function and
is a decreasing function in |c| and |¢| < A. Thus,

1—A2
T — arctan
(%)

2

inp;; < maxp;; <
Tgémpz; > Igéjxng <
Case 2: B > 0. First, let us define the region

B V1-—¢2 }
— 92 -

A:{(ghgz)GRQiglzB, 912;— .

Then, following the same steps as in case 1, we have
Plw 21 > B, wTas > B] = Plgy > B, cg1 + V1 — cg> > B] = P[A].

Let By = B and By = By/1=<. Further, notice that A = Ay + (By, Bz). Then,

2 2
gi + g3
— dg1 d
//91792)64 27T { 2 } e

1 2 2
_ opd Gt B+ (2 +B)"Y
romres 2 p 5 g1 dg
91,92)€A0

e~ (Bi+B3)/2 // —exp{—Big1 — Baga} exp {—M} dgr dgo.
g1,92)EAo 2m 2

Now, Bi1g1 + Bogo = Bg1 + B }—;292 > 0 always holds if and only if g1 > —4/375¢g2. Define

1+c
the region A4 to be

1-c
AL = R GRQZ >O, > — .
+ {(91 92) g1 = g1 = 1 +Cg2}

Observe that

< = Sce<l+e.
1+4+c¢ c c

\/1—C<\/l—62 VI —c)(1+¢)

Thus, Ag C A;. Therefore,

2

2
P[A] < ¢~ (Bi+B3)/2 // 76 p{ 91+ 95
(g1, 92)€A0 2

e~ (BI+B3)/2 p Ag]

)
Tr—arctan( L C)

|c]
2

} dg1 dgo

_ o~ (B}+B3)/2
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) m — arctan ( lfAQ)
< e~ B2/(1+4)
- 2

Finally, we need to lower bound pg. This can be done in two ways: when B is small, we apply
Gaussian anti-concentration bound and when B is large, we apply Gaussian tail bounds.
Thus,

1 B 1 1 e_B2/2
= Plw' 2y > B] > max ——_ = -= | —].
pom e = Bl (2 s (5 w) s

Combining the lower bound of py and upper bound on max;; p;; we have

A > po — min p;;
i#£]

_ 1_AZ
> max 1 B (1 1 e B2 _ G—BQ/(HA)Tr arctan ( [A] ) '
= 2 Vor \B B3) ar o

Applying A < 1—42/2 and noticing that H* is positive semi-definite gives our final result. B

Appendix C. Generalization

C.1 Rademacher Complexity

In this section, we would like to compute the Rademacher Complexity of our network.
Rademacher complexity is often used to bound the deviation from empirical risk and true
risk (see, e.g. (Shalev-Shwartz and Ben-David, 2014).)

Definition 36 (Empirical Rademacher Complexity) Given n samples S, the empir-
ical Rademacher complexity of a function class F, where f : RY — R for f € F, is
defined as

1
Rs(F) = —E
n e

sup Z e f(zi ]

fer 4

T

where € = (€1,...,€,) " and € is an i.i.d Rademacher random variable.

Theorem 37 ((Shalev-Shwartz and Ben-David, 2014)) Suppose the loss function £(-, -)
is bounded in [0, c| and is p-Lipschitz in the first argument. Then with probability at least
1 — 8 over sample S of size n:

sup Lp(f) — Ls(f) < 2pRs(F) + 3¢ logém'
feF -

In order to get meaningful generalization bound via Rademacher complexity, previous results,
such as (Arora et al., 2019; Song and Yang, 2019), multiply the neural network by a scaling
factor k to make sure the neural network output something small at the initialization,
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which requires at least modifying all the previous lemmas we already established. We avoid
repeating our arguments by utilizing symmetric initialization to force the neural network to
output exactly zero for any inputs at the initialization. 2

Definition 38 (Symmetric Initialization) For a one-hidden layer neural network with
2m neurons, the network is initialized as the following

1. Forr € [m], initialize w, ~ N(0,I) and a, ~ Uniform({—1,1}).
2. Forre{m+1,...,2m}, let w, = wy_p, and a, = —ap_p,.

It is not hard to see that all of our previously established lemmas hold including expectation
and concentration. The only effect this symmetric initialization brings is to worse the
concentration by a constant factor of 2 which can be easily addressed. For detailed analysis,
see (Munteanu et al., 2022).

In order to state our final theorem, we need to use Definition 8. Now we can state our
theorem for generalization.

Theorem 39 Fiz a failure probability § € (0,1) and an accuracy parameter € € (0,1).
Suppose the training data S = {(x;,y:)}'_ are i.i.d. samples from a (A, d,n)-non-degenerate
distribution D. Assume the settings in Theorem 32 except now we let

m > (A™*n8 (1 + (exp(—B?/2) + 1/m) log®(2mn/6)) exp(—B?)) .

Consider any loss function £ : R x R — [0, 1] that is 1-Lipschitz in its first argument. Then
with probability at least 1 — 26 — e~ X over the symmetric initialization of W(0) € Rmxd
and a € R™ and the training samples, the two layer neural network f(W(k),b(k),a) trained
by gradient descent for k > Q(n%\log %(1/5))

E () ~pl(f(x),y)] upper bounded as

iterations has population loss Lp(f) =

nl/2

Lo(f(W(k),b(k),a)) < \/yT(HOO)ly'?)QeXp(—B?/Q) ~< 1 >

+0
n
Proof First, we need to bound Lg. After training, we have || f(k) — y|l, <€ < 1, and thus

Ls(FOV (R), b)) =~ S [6CA(R), ) — £, )]
=1

LS 1fith)
=1
1
N

2. While preparing the manuscript, the authors notice that this can be alternatively solved by repa-
rameterized the neural network by f(x; W) — f(z; Wo) and thus minimizing the following objective
L=213" (f(xs; W) — f(zi; Wo) — yi)?. The corresponding generalization is the same since Rademacher
complexity is invariant to translation. However, since the symmetric initialization is widely adopted in
theory literature, we go with symmetric initialization here.

IN

IN

17 (k) =yl
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IN

El

By Theorem 37, we know that

Lo(f(W(k),b(k),a)) < Ls(f(W(k), b(k), ) + 2Rs(F) + O(n~'/?)
< 2Rs(F) 4+ O(n~1/2).

Then, by Theorem 40, we get that for sufficiently large m,

\/yT = 8exp( B2)

|/\
O

<6Xp(—B2/4)>

nl/2

1

IN
o)l

_l’_

\/yT (H>)"y - Sexp( B2/2)

where the last step follows from B > 0.
Therefore, we conclude that:

Lo(f(W(k), b(k), ) < \/ y (H>)"ly - 32exp(=B?/2) m( L )

n

Theorem 40 Fiz a failure probability § € (0,1). Suppose the training data S = {(z4,y;) }1'
are i.i.d. samples from a (X, d,n)-non-degenerate distribution D. Assume the settings in
Theorem 32 except now we let

m>Q ()\_6716 (1+ (exp(—BQ/2) +1/m) log3(2mn/5)) exp(—B2)) .

Denote the set of one-hidden-layer neural networks trained by gradient descent as F. Then
with probability at least 1 — 26 — e~ over the randomness in the symmetric initialization
and the training data, the set F has empirical Rademacher complexity bounded as

y (H>)"ly - Bexp(=B2/2) _ 5 <eXP(—BQ/4)) .

Rs(F) S\/

n nl/2

Note that the only extra requirement we make on m is the (n/\)® dependence instead of
(n/A)* which is needed for convergence. The dependence of m on n is significantly better
than previous work (Song and Yang, 2019) where the dependence is n'4. We take advantage
of our initialization and new analysis to improve the dependence on n.

Proof Let R, (Rp) denotes the maximum distance moved any any neuron weight (bias),
the same role as D,, (Dp) in Lemma 23. From Lemma 23 and Theorem 25, and we have

ny/1+ (exp(—B2/2) + 1/m)log? (2mn /9)

<
max(Ry, Rp) < O NG
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The rest of the proof depends on the results from Theorem 41 and Theorem 43. Let
R = ||[W,b](k) — [W,b](0)| . By Theorem 41 we have

R (FRu,Ry,R)

8exp(—B?/2)

<R +4¢(Ry + Ry)*v/mexp(—B?/2)

8 exp(—B?/2) n?(1 + (exp(=B2%/2) + 1/m)log®(2mn/6)) exp(—B?/2)
<R - +0 < NGO > .

Theorem 43 gives that

R <

n [ exp(—B? og(n 1/4 n w exp(—
yT(Hoo)_lyw(A( p( Bﬁ)lg( /6)) >+O< V& +Rb/i o 32/2)>

log(n?/9)

+ % -0 (exp(—B2/4) + (Ry + Ry) exp(—32/2)> :

Combining the above results and using the choice of m, R, B in Theorem 32 gives us

R(F)
W(Hoo)ly Bexp(—B%/2) , ( nexp(—B2/2) (exp<—32/2> log<n/6>>”4>
A

= n m
Aexp(B?/2) A2
n?(1 + (exp(—=B2%/2) + 1/m)log®(2mn/s)) exp(—B?/2)
o i )

Now, we analyze the terms one by one by plugging in the bound of m and Ry, R and
show that they can be bounded by O(exp(—B?/4)/n'/?). For the second term, we have

o ( VB, + Ry) ) VT, (exp(_32/2> 80 4 (R + R exp(—sB2/4>)

0 ( e -E7D (=B 1og<n/5>>”4> _o <ﬁexp<—32/s> 1og1/4<n/5>>
: .

m n

For the third term, we have

o( n(Rw+Rb)> —o( Vi /(1 + (exp(—B%/2) +1/m) log3(2mn/(5))1/4>
Nexp(B2/2) | Aexp(B?/2) ml/AN\1/2

X <exp<32/2>nﬁZ exp(_32/4>>
ol

nl/2
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For the fourth term, we have

;{? -0 <exp(32/2)

_ o (A/leln/d) exp(—B2/4)
o (M) o ()

k)g;(nm2/5) + (Rw + Ry) eXP(3B2/4)>

nl.b

For the last term, we have
0 <n2(1 + (exp(—B?/2) 4 1/m) log®(2mn/4)) exp(—BQ/2)>
VmA?
A1+ (exp(~B2/2) + 1/m)log? (2mn /)

n

=0

Recall our discussion on A in Section 3.3.2 that A = \gexp(—B?/2) < 1 for some )\ inde-
pendent of B. Putting them together, we get the desired upper bound for R(F), and the
theorem is then proved. |

Lemma 41 Assume the choice of Ry, Ry, m in Theorem 32. Given R > 0, with probability
at least 1 — e 1) over the random initialization of W(0),a, the following function class

TRy By = {f (W, a,0) - W =W(0)[ly oo < R, [b=0(0)]oc < Bo,
[[vec([W, 0] — [W(0),0(0))|| < R}

has empirical Rademacher complexity bounded as

8exp(—B2/2)

Rs(FRry.ryr) < R -

+ 4¢(Ry, + Ry)*v/m exp(—B?/2).

Proof We need to upper bound Rs(Fg, g, r)- Define the events
Ar,i = {|wr(0)TIZ - br(0)| S Rw —+ Rb}7 = [nL re [m]

and a shorthand I(w,(0)"2; — B > 0) = I,;(0). Then,

n m
-
E € E aro(w, x; — b E € g a,L,.;(0)(w, x,—br)

=1 r=1 =1 r=1

= Z Zezar < w x; —by) — HT,i(O)(w:a}i — bT))
i=1 r=1

— Zn: zm:]l Ay i)eiay < wT:UZ —b,) — ]IT,Z-(O)(wTTxZ- — br)>
i=1 r=1
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where the second equality is due to the fact that o (w, z; —b.) = L.;(0)(w, z; — b,) if r ¢ A, ;.

Thus, the Rademacher complexity can be bounded as

Rs(FRy.Ry.R)

1 " "
= _E sup € - 'l,U ZT; —-b )
N W =W (0)ly o <Ruws [Ib=b(0) | oo <Ry, i3 ;\/m
[[vec([W.b]—[W (0),b(0)) [ <R
1 & a 2(Ruy + Rp) o= —
<-E sup € (w) z; — by) | + e I(A.)
noe | w- w<o>HMSRw 16=b(0) | o <Ro, = ;\/7” nym ;;
I[vec([W.b]—[W (0),b(0))[I<R
1 2Ry + Rp) <~ —
=—E sup vec([W,b]) " Z(0)e +gZZH Ari)
€| [lvec([W,b]—[W (0),b(O)) <R =11
1| 9 Rp) <~ &
—-FE sup vec([W, b] — [W(0),b(0)]) T Z(0)e| + 22 22207 (F “ 0) SN u4,)
€| [lvec([Wib]—[W(0),b(O)) <R =1 1
1 2(Ry, +Rb
< = E[R||Z(0)ell,] + )33 )
=1 r=1
R w+Rb n m
< 2 JE[|Z(0 I(A.)
< - E[H()II] NG z;z;
R w +Rb n o m
= 2y + 2Rt ) S S ),
=1 r=1
where we recall the definition of the matrix
1 I[Ll(())al[l'lT, —1]T . Hl’n(O)al[(L‘Z, —1]T
Z(0) = — : : e R+ xn
) vm T T T T
Ln1(0)am(z; ,—1]" ... Lypn(0)anz,,—1]
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By Theorem 33, we have || Z(0)|| < \/8nexp(—B?2/2) and by Theorem 19, we have

Vi € [n]: iH(Am) < 2me(Ry, + Rp) exp(—B?/2)

r=1

P >1—e 20,

Thus, with probability at least 1 — e =" we have

8 exp(—B?/2)

Rs(Fry,ryr) < R + 4c(Ry + Ry)*V/mexp(—B?/2).

C.2 Analysis of Radius

Theorem 42 Assume the parameter settings in Theorem 32. With probability at least
1— 6 — e M) gver the initialization we have

fk) =y =—(I —nH>®)*y £ e(k),

where
(k)|

= k(1 — nA/4)k=D/2pp3/2 . 0 <exp(_B2/4) log(n?/4)

m

+ (Ry + Ryp) exp(—B2/2)> :

Proof Before we start, we assume all the events needed in Theorem 32 succeed, which

happens with probability at least 1 — & — e 4",

Recall the no-flipping set S; in Theorem 17. We have
filk +1) — fi(k) (5)

= \/17% Zar[a(wr(l/v‘ + 1)T.CC7; — br(k‘ + 1)) — U(wr(k)—l—xi — bT(k))]
r=1

= \/1% %S: arfo(w,(k+1) Tz = b(k +1)) = o(w, (k) Ta; — b(k))]
+ \/% Z arlo(w.(k+1) "z — bp(k+ 1)) — o(w, (k) "z; — b (k))] . (6)

TEE»;

Now, to upper bound the second term ¢;(k),

le; (k)| = \/lm TEZSZ arlo(w,(k+1) "z — bp(k+ 1) — o(w, (k) "z — br(k))]
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<— Jwp(k+1) Tz —bo(k+1) — (we(k) z; — b(k))|

< —— " [y (k + 1) = w, (k) + [br (k + 1) = b, (k)|

n

% e ST (F k) =y (k)

J=1

%WZUJ(@ vl (k)aj|| +

2

Hf( ) =yl

;»eQJZ P | (k) - w13 < nO((F + By exp(=B2/2) 11K =ully (7
=1

where we apply Theorem 19 in the last inequality. To bound the first term,

arlo(w,(k+1) "z — b (k4 1)) — o(w, (k) Tz; — b(k))]

aT]IM(k) ((wT(k 1) —wp(k)) Tz — (b (k+1) — br(k))>

n

f
n T
( % Z fi(k )l‘j) Ti — %GTZ(]C]'UC) - yjﬂnj(’f))

Jj=1

Z fik )(f;rxz + 1))

:_772 fi(k) —yj)H, +772 fi(k _y]%Z «73 xz"‘l) (8)

reS;

e; (k)
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where we can upper bound |€;(k)| as

A0 < 203 15500 — il < TV ey
= (9)
:6'2424” PUS £k = g2 < mO((Rus + Re) exp(=B2/2)) [|£(k) — yll.
=1

Combining Equation (5), Equation (7), Equation (8) and Equation (9), we have

filk +1) — = _772 fik Hij(k) + ei(k) + €;(k)

= f(k+1) = f(k) = —77H( )(f(k) —y) + e(k) + € (k)
= —nH>(f(k) —y) + n(H> = H(k))(f(k) —y) + (k) + €'(k)
¢(k)

o
—

= f(k) =y = (I =nH®)"(f(0) —y) + Y (I —nH®)'"((k —1—1)

t=0
k—1
= —(I —nH>)*y+ T —nH®)" F0)+> (I —nH™)'¢(k—1-1t).
t=0
e(k)

Now the rest of the proof bounds the magnitude of e(k). From Theorem 16 and Lemma 20,
we have

1H> = H(k)lly <[[H(0) = H®|ly + [|H(0) = H(K)[

=0 (n exp(—B?/4) bg(;z/é)> + O(n(Ry + Rp) exp(—B?/2)).

Thus, we can bound ((k) as
ISRl < nllH> — H(E)ll; [1f (k) = ylly + lle(B)ll5 + [[€' ()],

=9 (77” (exp<‘32/ 0y 2E) o (1, 4 exp(—B2/2>>> 1K) =yl

Notice that |[H*>®[|, < Tr(H*) < n since H* is symmetric. By Theorem 32, we pick
= O(\/n?) < 1/|[H®||, and, with probability at least 1 — § — e~ over the random
initialization, we have || f(k) — ylly < (1 —nA/4)F/2 (| £(0) — y]|,-
Since we are using symmetric initialization, we have (I — nH>)¥f(0) = 0.
Thus,

le(k)ll
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e

-1

(]

(I = nH>)'¢(k—1~1t)

t

Il
=)

2

I —nH>|3]I¢(k =1 =),

T
L

M

T
_ O

log(n?/9)

M

(1 =nA)'nnO (exp(—32/4)

-
I

+ (Ruw + Ry) eXp(—32/2)>

= O

k—

(k=1—1) =yl

[y

log(n?/6)

(1 = nA)'mO (exp(—B2/4) + (R + Ry) eXp(—B2/2)>

t=

O

(L= A/ £(0) — yll,

< k(1 — qA/4) 2000 <exp<—32/4> tos/0)

+ (Rw + Ryp) eXp(—B2/2)>
1£0) ~ ol

<k(1- 77A/4)(k1)/277n3/20< (exp(—32/4) 10g(:¢2/6)

+ (Rw + Ry) exp(—B2/2)>

. <\/ 1 + (exp(—B2/2) + 1/m) log3(2mn/5)> )

log(n?/9)

= k(1 —nA/8)F 1m0 <exp(—B2/4) + (Ry + Ryp) exp(—B2/2)> .

Lemma 43 Assume the parameter settings in Theorem 32. Then with probability at least
1— 6 — e 2" oper the random initialization, we have for all k > 0,

n [ exp(—B?%/2)log(n 1/4
[, B](k) — [W;b](0) ]| < yT(HOO)ly+O<)\< p(=B?/2)log( /6)) )

L0 (n\/Rexp(—BQ/2)>

A

2/9)

+ % -0 (exp(—32/4) log( + Rexp(—32/2)>

where R = Ry, + Ryp.

Proof Before we start, we assume all the events needed in Theorem 32 succeed, which
happens with probability at least 1 — § — e~ "),

vec([W, bl(K)) — vec([W, 5](0))
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=

-1
= ) vec([W,b](k + 1)) — vec([W,b](k))
=0

-1
==Y Z(k)(u(k) - y)

=0

e

=

K-1
= > nZ(k)((I —nH®)*y — e(k))
Ik;:—()l K-1
= > nZ(k)IT —nH®)ry = > nZ(k)e(k)
o o -
= > nZO0)I —nH*)y+ > n(Z(k) — Z(0))(I —nH®)*y— > nZ(k (10)
k=0 , k=0 k=0
T Ts T3

Now, by Lemma 20, we have ||Z(k) — Z(0)|| < O(y/nRexp(—B?2/2)) which implies

T2l =

K-1
> n(z 0))(I —nH>)*y
k=0

2

N

—1
< 3 0 O(/nRexp(“B2) 1 - nB|5 o1l
k=
K—1
< n-0(y/nRexp(—B2/2)) Z 1—nA)k
k=0

_0 (n\/ReXp(—B2/2)> . (11)

o

A

By [Z(B)lly < [Z(F)llp < v2n, we get

Z nZ(k
k=
n?/)

K-1
<> nVon (m —nA/8)FIyn320 (exp(—32/4) log(m
k=0

IT5ll, =

2
- Rexp(—B2/2)> )

n

=2 @) <exp(—32/4) log(nnj/(S)

+ Rexp(—B2/2)> : (12)
Define T' =17 Zf;ol(l —nH>)*. By Theorem 16, we know
)

|H(0) — H*®||, < O(nexp(—B*/4) bg(rz/d)
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and this implies

2
2

IT1llz =

K-1
> nZ(0)(I —nH>™)*y
k=0

2
= | Z(0)Ty|;

=y'TZ(0)"Z(0)Ty
=y TH(0)Ty
<y TH>Ty+|[H(0) — H*|, | T3 |yl

K-1 2
<y 'TH®Ty+ O (nexp(—BQ/él)\/ log(rz/é)) (17 Z (1— n)\)k> n

k=0
2exp(—B?/4) [log(n/d)
— y TH>®T n” exp( .
y y+ 0 2 -

Let H>® = UXU" be the eigendecomposition. Then

K-1
T=U (n > (I- nz)’“) Ul =U((I - -n2)=Hu'
k=0
= TH®T =U(I - (I —n2)®)x 122U’
=U( - (I —n2)5)2n-ty’
<Ux WU = (H®)"L
Thus,

K-1

> nZ(0)(I —nH>)*y
k=0

2
171l =

2

< \J yT(Hoo)fly +0 <n2 eXp(—BQ/4) 10g(n/6)>

A2 m

2 1/4
< yT(Hoo)—ly +0 (n <eXp(—B /2) log(n/5)> ) ) (13)

A m

Finally, plugging in the bounds in Equation (10), Equation (13), Equation (11), and
Equation (12), we have

IW;b](K) — [W,0](0)]
= [[vec([W,b](K)) — vec([W, b](0))[l,

1/4
< ywHoo)-lym(n (o2 o0)9) )

- A m

o (n\/Rexp(—BQ/2)>

A
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1 2/
0 (exp(on2/a) /80 | peo(—B2/2) ).
A2 m
|
Appendix D. Probability
Lemma 44 (Bernstein’s Inequality) Assume Zi,...,Z, are n i.i.d. random variables

with E[Z;] = 0 and |Z;| < M for all i € [n] almost surely. Let Z =Y | Z;. Then, for all
t>0,

P[Z >t] <exp| — /2 < exp [ — min L t
= > E[Z3] + Mt/3 ) P 23" | E[Z%] 2M

which implies with probability at least 1 — 4,

1

Z <, 12) E[Z%log 5

1
+ 2M log 5
j=1

Lemma 45 (Matrix Chernoff Bound, (Tropp et al., 2015)) Let Xq,...,X,, € R"*"
be m independent random Hermitian matrices. Assume that 0 < X; < L -1 for some L >0
and for alli € [m]. Let X :=3Y"" | X;. Then, for e € (0,1], we have

P Amin(X) < Amin (B[X])] < - exp(—(1 = €)* Amin (E[X]) /(2L)).

Lemma 46 ((Li and Shao, 2001, Theorem 3.1) with improved bound) Let b > 0
and r > 0. Then,

1
—b%/2) P <7< P —b|<r]<2r- - b—r,0})%/2).
exp(17/2) Bl <r< Bl b <] <2 exp(—(max{h —r,01)*/2)
Proof To prove the upper bound, we have
P let<r= [ exp(a?/2) de <2 L exp(~(max(s 0122
T — rl= exp(—z T r- exp(—(max{b —r, .
w~N(0,1) o b—r V2T P o V2 P

Lemma 47 (Anti-concentration of Gaussian) Let Z ~ N(0,02). Then fort >0,

2t

oo

PlZ] <t] <
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Appendix E. The Benefit of Constant Initialization of Biases

In short, the benefit of constant initialization of biases lies in inducing sparsity in activation
and thus reducing the per step training cost. This is the main motivation of our work on
studying sparsity from a deep learning theory perspective. Since our convergence shows that
sparsity doesn’t change convergence rate, the total training cost is also reduced.

To address the width’s dependence on B, our argument goes like follows. In practice,
people set up neural network models by first picking a neural network of some pre-chosen
size and then choose other hyper-parameters such as learning rate, initialization scale, etc.
In our case, the hyper-parameter is the bias initialization. Thus, the network width is picked
before B. Let’s say we want to apply our theoretical result to guide our practice. Since we
usually don’t know the exact data separation and the minimum eigenvalue of the NTK,
we don’t have a good estimate on the exact width needed for the network to converge and
generalize. We may pick a network with width that is much larger than needed (e.g. we pick
a network of width Q(n'?) whereas only (n?*) is needed; this is possible because the smallest
eigenvalue of NTK can range from [2(1/n2), O(1)]). Also, it is an empirical observation that
the neural networks used in practice are very overparameterized and there is always room
for sparsification. If the network width is very large, then per step gradient descent is very
costly since the cost scales linearly with width and can be improved to scale linearly with the
number of active neurons if done smartly. If the bias is initialized to zero (as people usually
do in practice), then the number of active neurons is O(m). However, since we can sparsify
the neural network activation by non-zero bias initialization, the number of active neurons
can scale sub-linearly in m. Thus, if the neural network width we choose at the beginning is
much larger than needed, then we are indeed able to obtain total training cost reduction by
this initialization. The above is an informal description of the result proven in (Song et al.,
2021) and the message is sparsity can help reduce the per step training cost. If the network
width is pre-chosen, then the lower bound on network width m > Q(\;*n*exp(B?)) in

~ 4
Theorem 3.1 can be translated into an upper bound on bias initialization: B < O(4/log /\TOTT)

if m > Q(Ag 4n4). This would be a more appropriate interpretation of our result. Note that
this is different from how Theorem 3.1 is presented: first pick B and then choose m; since m
is picked later, m can always satisfy B < v/0.5logm and m > Q(A\;*n* exp(B?)). Of course,
we don’t know the best (largest) possible B that works but as long as we can get some B to
work, we can get computational gain from sparsity.

In summary, sparsity can reduce the per step training cost since we don’t know the exact
width needed for the network to converge and generalize. Our result should be interpreted
as an upper bound on B since the width is always chosen before B in practice.
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