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Abstract

Understanding the training dynamics of transformers is important to explain the
impressive capabilities behind large language models. In this work, we study the
dynamics of training a shallow transformer on a task of recognizing co-occurrence
of two designated words. In the literature of studying training dynamics of trans-
formers, several simplifications are commonly adopted such as weight reparameter-
ization, attention linearization, special initialization, and lazy regime. In contrast,
we analyze the gradient flow dynamics of simultaneously training three attention
matrices and a linear MLP layer from random initialization, and provide a frame-
work of analyzing such dynamics via a coupled dynamical system. We establish
near minimum loss and characterize the attention model after training. We discover
that gradient flow serves as an inherent mechanism that naturally divide the training
process into two phases. In Phase 1, the linear MLP quickly aligns with the two tar-
get signals for correct classification, whereas the softmax attention remains almost
unchanged. In Phase 2, the attention matrices and the MLP evolve jointly to enlarge
the classification margin and reduce the loss to a near minimum value. Technically,
we prove a novel property of the gradient flow, termed automatic balancing of
gradients, which enables the loss values of different samples to decrease almost at
the same rate and further facilitates the proof of near minimum training loss. We
also conduct experiments to verify our theoretical results.

1 Introduction

Ever since the invention of self-attention [VSPT17], transformers have become a dominat-
ing backbone architecture in many machine learning applications such as computer vision
[DBK*20, LLC*21] and natural language processing [DCLT18]. Nowadays, ChatGPT and
GPT-4 [Ope23] have demonstrated astonishing abilities in many areas such as language under-
standing, mathematics and coding, which have sparked artificial general intelligence [BCE*23].
In the meantime, there has been a burgeoning development of large language models (LLMs)
[TLIT23, MH23, ADF123] as well as multi-modal models [Tea23].

Despite the huge empirical success, theoretical understanding of why a pre-trained language model
can possess such impressive performance has been significantly lagging behind. Some previous
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efforts have been made in understanding the capacity and representational power of transformers
[EGKZ22, LAG'22, ZPGA23, SHT23, BCW'23]. However, most results of this type of works are
existential and rely on manual construction of the weights. It is unclear whether the constructed
weights are the actual solutions after training transformers. In order to understand the mechanism
behind those pre-trained language models, a line of studies have aimed to open the black box of
optimization via studying training dynamics of transformers and explaining why transformers can be
trained to perform well [JSL22, LWLC22, TWCD23, TWZ*23, LLR23, TLZ023, TLTO23, ZFB24,
HCL23]. Howeyver, those previous works often relied on various simplifications in their analysis such
as weight reparameterization, attention linearization, special initialization, lazy regime, etc. One goal
of this paper is to take a further step to demystify the training dynamics of transformers and consider
more practical training setup, thus better capturing the actual training process.

Our study of transformers’ training dynamics will focus on a basic problem of recognizing co-
occurrence of words under a binary classification setup, which is an important ability of LLMs
to perform many tasks correctly in natural language processing (NLP). For example, the classical
n-gram model [MS99, Dam18] predicts the next word based on co-occurrence of multiple words.
Consider the following scenario: if the task for the language model is to read a paragraph describing
a children and then answer some questions, say, “Is Bob eating a banana?”. In order to answer the
question correctly, the model must be able to detect the co-occurrence of the two words “Bob” and
“banana” in the paragraph. Motivated by this, we study the problem of detecting co-occurrence of
two target words via the model of a one-layer transformer with a self-attention module followed by a
linear multi-layer perceptrons (MLP) layer. Our goal is to characterize the dynamics of the training
process via the gradient flow analysis, thus providing a theory to explain how transformers can be
trained to perform well.

Our contribution is summarized below:

e We study the gradient flow dynamics of detecting word co-occurrence. The training starts with
random initialization and then simultaneously updates four weight matrices (including key, query,
and value matrices and a linear MLP) in the transformer architecture via gradient flow. We show
that gradient flow can achieve small loss although the loss function is highly nonconvex. We
further characterize the explicit form of attention matrices after training, which captures the strong
positive correlation between the two target signals and strong negative correlation between one
target signal and the common token, both leading to large classification margin.

e We characterize the training process into two phases. In Phase 1 (alignment of MLP for correct
classification), we show that the linear MLP of the transformer quickly aligns with the two target
word tokens whereas all other variables in the dynamical system stay almost unchanged from their
initialization values. All training samples are correctly classified at the end of Phase 1, but the loss
value is still large due to small classification margin. In Phase 2 (evolution of attention and MLP
for large classification margin), along with the continual evolution of MLP, correct classification
by MLP also encourages the gradients of attention matrices to learn. Specifically, the softmax
probability increases if the key and query tokens correspond to the two target words, and the
value transform of the two words becomes more positively correlated, both leading to enlarge the
classification margin. Thus, the training and test loss values both are driven down to nearly zero.

e Technically, our proof techniques do not rely on several commonly used assumptions in the
literature such as weight reparameterization, attention linearization, special initialization, lazy
regime, etc. Our main idea is to treat the problem as a coupled dynamical system with six different
types of dynamic variables, for which we provide an articulated analysis on the gradient flow
dynamics. In particular, we prove a novel property of the gradient flow, termed automatic balancing
of gradients, which shows that the ratio of several important gradients will evolve closely within
the same range during training. This enables us to show that the losses of all training samples
can decrease almost at the same rate, and is also a key component in proving the near minimum
training loss as well as analyzing the changes of softmax.

1.1 Related Work

Transformer representational power. Several previous works have studied the expressiveness of
transformers. One line of work was from a universal approximation perspective and thus provided
the existential results [YBR'19, WCM?22, PBM21, ZPGA23, LAG*22, BCW'23]. As a separate
view, [EGKZ22] showed that a single attention head can represent a sparse function over the input



sequence with sample complexity much smaller than the context length. [ZZYW23] studied the
approximation and generalization performance of transformers in in-context learning. [SHT23]
proved that transformers can represent certain functions more efficiently than MLPs.

Training transformers. Various settings of training transformers have been studied recently.
[WXM21] studied the impact of head and prompt tuning of transformer on the downstream learning
tasks. [JSL22] proved that transformers can learn spatial structures. [LWLC22] studied how a
shallow transformer learns a dataset with both label-relevant and label-irrelevant tokens. [TWCD23]
studied a next-token prediction problem and showed that self-attention behaves like a discriminating
scanning algorithm. [LLR23] analyzed a layer-wise optimization scheme on how transformers learn
topic structures. [TLZO23, TLTO23, VDT24] studied a setting where transformers can learn a
SVM solution. [LWM™*23] provided analysis of training graph transformers for node classification
tasks. [Thr24] studied the implicit bias in the next-token prediction problem. For in-context linear
regression, [VONR™'23] constructed transformer weights to solve this task and showed empirically
that this is similar to what the transformer learned by gradient descent, [ACDS24] proved that the
critical points of the training objective of linear transformers implement a pre-conditioned gradient
descent, [ZFB24] provided the training dynamics of linear attention models, [HCL23] characterized
the training dynamics of softmax transformers, and [CSWY24] studied a multi-task linear regression
problem with a multi-headed softmax transformer. Further, [LWL"24] focused on nonlinear self-
attention and nonlinear MLP over classification tasks in in-context learning. [WLCC23] proved the
convergence of transformers via neural tangent kernel. [NDL24] showed that two-layer transformers
can learn causal structure via gradient descent. [CL24] developed algorithms for provably learning a
multi-head attention layer. [HWCL24] studied how transformers learn feature-position correlation.

This paper studies a different problem of detecting co-occurrence of words via transformers. Such a
setting has not been considered in the literature. More importantly, the previous studies of training
dynamics of transformers have adopted various assumptions/simplifications such as weight reparame-
terization, special initialization, attention linearization, lazy regime, etc. In contrast, our analysis here
based on gradient flow does not rely on those simplifications, which can be of independent interest
for studying transformers in other settings.

2 Problem Setting

Notations. For a vector v € R?, we use diag(v) to denote a diagonal matrix with v being the diagonal
entries. When we subtract the vector v by a scalar a, we subtract each entry of v by a,i.e., v —a € R4

and (v — a); = v; —a. We use 2, ©, O to hide polylogarithmic factors.

2.1 Data Model

Definition 2.1 (Data distribution). Given a set of orthonormal vectors {j1;}¢_, as word embedding,
let py, o € R? be two target signals whose co-occurrence needs to be detected by the model,
and let i3 € R be a common token vector. A data entry (X,y) € R¥*E x {+1}, where X =
[x1, 22, ... 2] consists of L tokens, is generated by the distribution D as follows:

1. Uniformly randomly select an index i3 € [L] and set x;, = 3.

2. Then, one of the following cases occurs:

o With probability 1/2, set y = 1 and uniformly randomly select two indices i1 # i € [L] \ {is}
and set i, = 1, T;, = pg. Fori € [L]\ {i1,i2,i3}, set z; = Uniform({u;}%_,).

o With probability 1/6, set y = —1 and uniformly randomly select one index i, € [L] \ {is} and
set i, = p1. Fori € [L]\ {i3,i1}, we set x; = Uniform({u;}_,).

o With probability 1/6, set y = —1 and uniformly randomly select one index is € [L] \ {is} and
set x;, = pio. Fori € [L]\ {i3,ia}, we set x; = Uniform({u;}_,).

e With probability 1/6, set y = —1. Forall i € [L]\ {i3}, we set z; = Uniform({u;}¢_,).

In summary, there are 4 types of data: (1) both i, o appear, (2) only w1 appears, (3) only o
appears, and (4) neither p1 nor ps appears. We denote the set of indices of the above 4 different types
of data by Iy, Is, I3, I, C [n]. We further define R = {1, }¢,. For simplicity, our data distribution
assumes ji1, fo, 43 appear only once in a data entry. The occurrence probability of each type of



data is chosen in the above way to make the distribution label-balanced. We assume there is a fixed
set of orthonormal vectors as word embedding, which is analogous to the one-hot embedding of a
set of vocabularies. Furthermore, in our daily language, there are some words appearing in almost
every sentence such as “a” and “the”. Thus, to model those words, we include a common token in
every data entry. Finally, notice that if we ignore the common token and random tokens, the data
distribution simplifies to a logical AND problem.

Remark 2.2. Recognizing co-occurrence of words is an important ability for language models
to perform many NLP tasks correctly. Consider the example of a language model first reading a
paragraph describing a children and then answering the question “Is Bob eating a banana?” If the
description is “Bob is watching a television while eating a banana”, then the model should answer
“Yes”. If the description is “Bob is playing computer games”, then the model should answer “No” .
Thus, the model needs to recognize the co-occurrence of “Bob” and “banana’.

For simplicity of our analysis, we make the following assumption on our training data set.

Assumption 2.3. The training set satisfies: (i) - WLl = 1 gpa llzl |I3l = Ul = 1. gpq (ii) for

n

all iy, iz € [n], Iy, 12 € [L], if X}, ) x 12) ¢ {M17M2,M5} thenX “) # X, () e, all irrelevant
words are different.

The first assumption can be approximately satisfied with high probability given the total number n of
samples is large enough. Such an assumption can be removed by applying the standard concentration
theorems. The second assumption implicitly assumes nL < d. If the irrelevant words are uniformly
sampled from a large entire vocabulary, then each irrelevant word appears only very few times in the
training set. Thus, letting irrelevant words appear only once in the entire training set is a reasonable
way to simplify our analysis.

2.2 Transformer Architecture and Training

Consider a training set {(X (), y;)}7_, with n training samples. Each data point X() ¢ RIxL

contains L tokens, i.e., X = [z (1) (21')’ . (7)]
self-attention module followed by a lmear MLP

We consider the transformer model with a

L m
1 XTWIw,
F(X; W, Wy, Wi, Wo) = Z Zaj (w;WVX ) Softmax(fﬂ)) (1
m
=1 j=1

where the query matrix W¢ € R™*4_ the key matrix Wy € R™*?_the value matrix Wy € R™*?,
the hidden-layer MLP weights W € R™ X" (with wJT being the j-th row of W), and the output-layer
weights of the MLP a € R™!. We define the linear MLP function of the transformer to be G(11) =
>y o1 QW5 T Wy p. We now introduce some shorthand notations K = Wx X, Q = WoX, V =
Wy X and let k; = Wi ;. Notice that K = [k, ko, ..., kr]. We further extend this shorthand to
q; and v;. We also define functions k() = Wk p, q(,u) = Wou, v(p) = Wy . We introduce the
X WrWaoz

shorthand for the score vector s; := T

» and the attention vector p; := Softmax(s;). For the

attention vector, if y1, v € X, let I(i, i), (i, v) be the indices such that X(() ) =t Xl((?’u) =v,

i i XOTwIw,
and we define pgiuykey = pgil(i’m’kel(iyy) = Softmax(iﬁw)l(i U).

Initialization. We initialize a; bt Uniform(+1) and the value of a is fixed during training.
The trainable parameters are [W, Wy, Wg, Wg]. We initialize [W, Wy, W, Wg| by W, ; i
N(0,0%) and (Wy )i, (Wi )iss (Wa)ig =" N0, 03).

Training. We adopt the cross-entropy loss [(z) = log(1 + exp(—z)). The gradient of the cross-
entropy loss is given by I’ (x) = —m and we define g(z) = The model is trained by
gradient flow to minimize the following empirical loss:

1
1+exp(x)*

~ 1 & .
LW, Wy, Wi, Wo) = — S Uy (XD W, Wy, Wi, W), @)

i=1



Similarly, we define the generalization loss L := E(x ,y~p £(yF(X)). We introduce the parameter
condition that we take throughout the entire analysis and proofs.

Condition 1. We make the following parameter choices in our analysis:

The embedding dimension and network width satisfy m > Q(max{m,, L2}) and m; > Q(1).

1
O(ym1)’

The network weight initialization variance satisfies 0 = =——; and 0, =

O(vVLm)

The number of training samples and tokens satisfy n > Q(L?) and L > Q(1).
The failure probability satisfies 1/5 < poly(m).

3 Main Results

Challenges. The essential goal is to derive the gradient flow update for each weight matrix (see
the gradient expressions for all weight matrices in Appendix B). However, directly analyzing the
dynamics of those weight matrices is extremely challenging, because: (i) keeping track of how the
column and row spaces of each weight matrix change during training is difficult; and (ii) all attention
and MLP weight matrices are affecting each other, leading to highly coupled dynamics.

Our General Idea. To overcome the above challenges, we first note that rather than tracking
W, Wy, Wi, W, directly, it is sufficient to analyzing their impact on inputs, i.e., X TW& WX and
a" WWy X, which are sufficient to compute F'(X; W, Wy, W, We). Based on this observation,
we formulate two differential equations to keep track of wj(-t)TW‘(/t ),u and VTWI(?TWC(;)M (with
respect to t) for all u, v € {,ui};i:l (See Equation (6) and Equation (7) in Appendix C). We further

include additional equations to keep track of <wj(-?, wj(z)> , Z/TW‘(/t )TW‘(/t Jp, vTWDTW D 1, and

I/TWS)TWS ) 1 to complete the system. Intuitively, the additional equations keep track of the shape

of the neurons and the word embedding after Wy, Wi, W transform. Although the dynamical
system does not directly track the softmax, the softmax probability can be calculated via the scores of

vl Wf(f )TWg) 1. The full dynamical system is presented in Appendix C. Then the training dynamics
can be characterized by analyzing these differential equations (see a proof outline in Section 4).

In the next two theorems, we present our characterization of the training process into two phases.

Theorem 3.1 (Phase 1). With probability at least 1 — 0 over the randomness of weight initialization,
there exists a time Ty = O(1/m) such that

e The linear MLP functions satisfy: G™) (1) > Q(1), G (uz) > Q(1), GT) (u3) < —Q(1).
e All training samples are correctly classified: yiFZ-(Tl) > 0 foralli € [n).

e For t € [0,T1], all dynamical variables <w§?,w§?>, I/TW[(;)TWS)M, VTW‘(/t)TW‘(,t)/J,

Z/TWI(?TW[(;)M, and VTWg)TWg)u are close to their initialization values.
e Training loss is still large: L(T) = O(1).

In Theorem 3.1, item 1 implies that in a short time, the linear MLP function G(7)(.) positively aligns
with the two target signals p1 and ps, but negatively aligns with the common token 3. This further
guarantees item 2 of Theorem 3.1 that all training samples are classified correctly. Further, item 3 of
Theorem 3.1 indicates that the attention matrices are still close to their initialization values, and hence
have not started to learn any knowledge yet. This results in item 4 of Theorem 3.1, which shows that
the training loss is still large.

Theorem 3.2 (Phase 2). With probability at least 1 — § over the randomness of weight initialization,
there exists a time range (T1,Ts) with Ty = poly(m) such that for all t € (T1,T?)

° u;Wg)TWS)m and /,LIWI(;)TWC(;)/,LQ increase,  whereas u;WI(f)TWg)ul and
pa WI(;)T Wg),ug decrease.



® W(t)TW‘(,)Mg increases, whereas (i, W(t) W( )u and MTW(t)TW‘(})ug decrease.
e Linear MLP functions satisfy: G (1) > Q(1), G® (1) > Q(1), —GD(uz) < Q(1).

o GOn) + GO (z) + GO (g) = Q1) GO(n) + GO () < —Q(1) and GO () +
GO (j15) < ~0(1)

In Theorem 3.2, item 1 indicates that, during Phase 2, gradient flow drives the self-attention module
to weigh more between the two target signals p; and p9, and to weigh less between one of these
signals and the common token p3. Item 2 indicates that gradient flow drives the value matrix Wy,
to positively align the two target signals pq and o, but negatively align one target signal (g1 or pi2)
with the common token p3. Further, the last two items indicate that the MLP continue to classify
correctly and further enlarge the classification margin. Hence, all items in Theorem 3.2 collectively
indicate that attention and MLP evolve jointly to enlarge the classification margin and hence drive the
loss value to decrease in Phase 2.

Theorem 3.3 (Near Minimum Training Loss and Attention). With probability at least 1 — 6, there
exists a time T* = ©(poly(m)) such that

o The training and generalization losses satisfy L(T") < 1/poly(m) and L(™") < 1/poly(m).
e The attention matrices satisfies:
T*) T yr (T 0)T 17,00 T*
W1(< ) Wé) ) = W1(<) Wé)) + Zil,ige[d] Ci(l,z'Q)MhML 3
T T T T* o5 o
where C§,2 )705,1 ) _C?(, 1 ) _C:E,z = e (\/mLz(;?:erl \/m(;\gml) and Czl iz =

6( o oi Y/ )ifoneofil,ige[d]\[?)].

n\/mLU%mml vm (7 mma

Theorem 3.3 indicates that both training and test losses converge nearly to zero as long as the
embedding dimension m is sufficiently large, because both the attention and MLP matrices are
trained towards enlarging the classification margin in Phase 2. Theorem 3.3 also provides the explicit
form of the attention matrix in Equation (3), in which the second term captures the learned information

of the self-attention module. It can be seen that the large coefficients C; (T*) and CéT*) capture strong
coupling of the two target signals p; and o, and the large negative coefﬁ01ents C3T1 ) and C T )
encourages strong negative coupling of one target signal 1 or o and the common token . All these

attention terms contribute to enlarge correct classification margin. Further, the coefficients between
all other random tokens are order-level smaller and hence do not corrupt the correct classification.

Synthetic Experiment: We next verify our theory and the two-phase characterization of the training
process via synthetic experiments (see the experiment setup in Appendix A).

score Training Loss
— loss
0.7 1
0.10 loss_(u1, u2, u3)
061 —— loss_(u1,u3)
. —— loss_(u2,u3)
1 —— loss_(u3)
005 — (@=pLk=p3) 03
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0.00 — (q=u2,k=pu3)
— (@=p2,k=pl1) 0.3
—
0.2 1
-0.054
Phase 1 Phase 2 0.1+
A ——— Phase 1 Phase 2
0101 —— 00
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(a) Attention score correlation (b) Training loss

Figure 1: Synthetic experiments with illustration of two training phases. The detailed experiment
setup can be found in Appendix A.

Figure 1 (a) shows how the attention score correlation 1, Wl((t )TW(t)MJ evolves during the training.
It is clear that these scores do not change significantly in Phase 1, ver1fy1ng Theorem 3.1. In Phase
2, the score correlation between two target signals 11 and o increases, and the score between one
target signal and the common token decreases, verifying Theorem 3.2.



Figure 1 (b) plots how the training loss changes during the two phases of training. The blue curve
(indexed by ‘loss’) represents the overall training loss of all samples. The other curves correspond to
the training loss of four types of samples as indicated in the legend. In Phase 1, the training loss for
samples with both target signals (i.e., orange curve) decreases because the linear MLP layer aligns
with the target signals (verifying Lemma 4.1 in Section 4.1). The training loss for samples with
one target signal and the common token (i.e., green or red curves) first increases because the linear
MLP layer initially has not aligned negatively enough with the common token yet (as captured by
Lemma 4.2 in Section 4.1), and then decreases in the later stage of Phase 1 when the MLP layer aligns
negatively with the common token (as captured by Lemma 4.3 in Section 4.1). All loss functions
decrease in Phase 2 because all attention matrices and linear MLP jointly enlarge the classification
margin, verifying Theorem 3.2.

4 Proof Outline: Two-phase Gradient Flow Analysis

4.1 Phase 1: Alignment of Linear MLP for Correct Classification

In Phase 1, the linear MLP quickly aligns with the two target word tokens while all attention matrices
stay roughly unchanged from their initialization values. We show that the linear MLP functions
IGD (1)1, |GO ()|, |G (113) | become sufficiently large (larger than some constant threshold) so
that all training samples are correctly classified at the end of Phase 1.

We first analyze the dynamical system at the initialization. In particular, the following lemma shows
that at the initialization, the linear MLP layer receives a sufficiently large gradient from the two target
signals, and hence samples with the two target signals will be classified correctly as co-occurrence
soon afte the training starts.
Lemma 4.1 (Same as Lemma E.4). With probability at least 1 — § over the weight initialization,
Oa; w(»O)W‘(/O);J, 2 2

Vp € {p,pe}: ——g—— =6((og + o1)m).
Further, by the definition of Phase 1 (see Definition E.2 for a formal definition), the gradients of
the attention matrices in the dynamical system are much smaller than that of linear MLP given
in Lemma 4.1. This implies that during Phase 1, mainly the linear MLP is performing learning,
whereas all the attention matrices are changing slowly from their initialization. Based on this, we have
£2.GW (1) = ©((03 + 03)mmy) which implies that it takes only O(1/(c3 + o7)mm; ) iterations
for G (111) to reach a certain constant magnitude.

Lemma 4.1 indicates that the samples with co-occurrence of the two target signals are classified
correctly. The following lemma shows that the initial gradient from the common token, i.e., the
gradient of G(*) (143), is much smaller than the gradient from the two target signals, which implies
that the samples with only one target signal may be classified incorrectly as co-occurrence (since the
network in this case will output a positive value). This is verified empirically by our experiments in
Figure 1 (b), where the loss function corresponding to only one target signal and the common token
first increases in Phase 1.

Lemma 4.2 (Same as Lemma E.16). Let F = max; |F\")|. With probability at least 1 — § over the
weight initialization,

a(lj 'w;o) W‘(/O) M3

5t ‘ =0 (U%‘/mml +o3vVmL + a%mF) .

Notice that the model output F' depends on the weight initialization scale and can be made small.
We next show in the following lemma that the gradient % of the common token will quickly
become negative soon after the training begins, which drives the transformer model to output a
negative value when it sees those types of samples. This implies that negative samples (without
co-occurrence of two target tokens) will be classified correctly towards the end of Phase 1. This is
also verified empirically by our experiments in Figure 1 (b), where the loss function corresponding to
only one target signal and the common token descreases towards the end of Phase 1.

Lemma 4.3 (Abbreviated from Theorem E.19). There exists a time Ty 5 < T4 and a constant C' such
that for all t € [Ty 5, T1]

(1+ C)max (é)G(;)t(“l), 8G(2t(“2)) < f% <(1-0) (OG(;(M) + SG(gt(uz)> )




Proof Intuition of Lemma 4.3. We first note that the term
0 0 0,i
E 0y S S e X D) T

(t)
makes the major contribution to the gradient ‘%'VT(‘”‘). Such a term is small at the initialization due
to the cancellation effect from positive and negative y;’s. However, since the linear MLP G will
positively align the two target signals at the beginning, for the samples with positive labels, ggt) will

Oy
. . t i1y - dajw;’ Wy, us
decrease, whereas for samples with only one target signal, gz( ) will increase. Hence, —/—L—Y“—

will become negative. This trend will continue until the gradient from (3 starts to match the gradients
from p1, po, which is what we establish in Lemma 4.3. O

Using Lemma 4.3, we can show that all training samples are correctly classified at end of Phase 1.

4.2 Phase 2: Evolution of Attention and MLP for Large Classification Margin

In Phase 2, both attention and MLP matrices evolve towards enlarging the classification margin, thus
driving the loss value small.

We now analyze what happens in Phase 2. Let 75 denote the end of Phase 2. Recall that at the end of
Phase 1, we have G® (1), G (u2), —G® (u3) > Q(1). We will mainly need to show that such a
condition continues to hold in Phase 2, so that attention matrices will evolve with MLP to learn better
classifiers. To this end, we exam the following gradient flow in the dynamical system:

oGD(u) 1 (ti <« w®
ot n Z 922 Yia quel ké—p Z Z @jr Lz < Wi Wi, > “)
in: p€X (i2) l2=1 Ji=1j2=1
+ Z gzl Yiy Z a]lplt = V(t’il)TW‘(ft)M-
11=1 =1
o (f)
It has been proved that at the end of Phase 1, for 1 € {11, pi2, s}, we have |3° . W(t) ‘
> w](?—r BW u‘ since the magnitude of Zn 1 ij 1 <aj1 ](?, aJQwJ( )> is large. Assume this

can hold for long enough (which we can indeed prove later). Then, we only need to focus on the
first term in the sum on the right-hand side in Equation (4). On the other hand, from the dynamical
system, we can calculate

¢ 2my e t
8t Z Z <aJ1 Ww;," i, W J(Q)> n gz( )yle( )' &)
J1=1j2=1 i=1

Thus, if yZ-Fi(t) > 0 forall i € [n], then 337"2 371, <aj1wj(-?, aj2w§z)> is always increasing.

® ) ;
Thus, aGT(“) mainly depends on the behavior of % Dy pEX (i2) gi(;)y,;2 Zi:l p((;’_liz)’keu. Fur-
L . wTw®OTy® wTwdOTy®
ther, this is also a key quantity we need to analyze =~ Vo 2 and e € —. Note

t L tyi - t e (L N .
that % Zig: peX (i2) gz(z)ylz Zl2:1 pfﬂ—?il«—u ~ % ZiQ: neX (i2) gz(z)ym lfpfy—lz),l«—,u ~ 1/L which

holds at the beginning of Phase 2. Later, we are going to prove convergence of the training loss via
the following: (1) the training loss can decrease if the softmax probability is uniform; (2) even though
the softmax probability will deviate from uniform distribution during training, we can bound such
deviation and the loss value can still decrease.

Automatic balancing of gradients. As argued above, our main focus is on analyzing the behavior of
% Eiz: peX i) gg)yiT This consists of two parts: (i) Lemma 4.4, which shows that the two groups
of samples with only the presence of one target signal have gradients ) ;. 91 ) and Y e Is gt ) close
to each other during training; and (ii) Lemma 4.5, which shows that the gradient gaps ), I gl(t)

D icl gl(t) and D icr oo, gl@ =D ien gl( ) are not too small compared with Zle[n] g(t) Both



Lemmas 4.4 and 4.5 establish that the ratio of those important gradients are kept within certain ranges
during training. We call such a key property as automatic balancing of gradients, which is further
used for proving that the gradient flow can drive the training loss small.

Lemma 4.4 (Same as Lemma E.5). Fort € [T1,T5), there exists a small constant C' < 1 such that

t t
Zie[z gz( )~ Zzel3 gz( )

, 0 w, = ¢
mln(ZmZ 9; ’Zielg 9")

Proof Intuition of Lemma 4.4. The intuition behind the result is as follows. If ), I gl(t) becomes

much bigger than >, ; ¢, () during the training, then Yien gt — D el g\ is much smaller than

©
Yien gt — diers 9! which makes 2¢ ) < 8G<(;(“2). It is not hard to show that random

(t) (1)
tokens make negligible contributions to the gradient. Thus, for ¢ € I, we have agt ~ OGT;‘“) +

® O ,
% By the cha1nrule we have agl =g (qu( ))yz 5 Since M <0, 1fL)(”l)
aG t t
%, then ZZGI gZ ) will drop faster than 21613 gz( e, —4 21612 ) —% icls gz( )
In Appendix, we formally prove Lemma 4.4 by analyzing the ratio ) _, I glt)/ D i Iy gl(t) , and show
that this ratio hangs over around 1 during training. O

Lemma 4.5 (Abbreviated from Lemma F.6). Fort € [T}, T5), the gradient satisfies that
(t) (t)
Zie[n] 9i _oa Zie[n] 9
(t) (t) O (t) (t)
Zi612u13u14 9; " — 21611 9; Zze]l 9; Zlezz 9;
Further, for some constant C, we have

OGO (1) 9GD(ua)\ _  9GW (pis)
ot 7 0ot - ot

—0(1).

<(1-

(1+C) max< ) (aG(t)(’“) + aGWW)) .

ot ot

Proof Sketch of Lemma 4.5. The proof of Lemma 4.5 relies on analyzing how the ratio between

® ® N
wait(’“) and —BGTJ’”’) changes. We show that this ratio will hang over around some range. Recall

ionshi G (w) 1 ®) @) ;
the relationship that =57 ~ =37, = o) 95, Yis 'Zh 1 Eh 1G5, Gy w5, w;) ). Itis not

hard to show that

aG™ (t) (t)
*% o dien it 2 icnunun 9i

0G0 () ® ®
at(ul) 21611 9; ZiEIz 9;

® ®
-3, PP . . .
Define R(t) := ZSI IEIgl gmi_:;lij“;(f;‘ i Solving when 2 R(t) > 0 yields a quadratic inequal-
iery 9i iery 9i
ity, and further analysis shows that the root is contractive and is within some specific range. O

Utilizing the gradient automatic balancing properties, the following corollary characterizes how the
attention matrices in the dynamical system change in Phase 2. In particular, we can show that after
Wy -transform, pq and po become more positively correlated whereas (11 and p3 (also puo and ps)
become negatively correlated. This is a direct result following from updates of the dynamical system.

Corollary 4.6 (Abbreviated from Corollary F.13). Fort € [Ty, Ts),

) )
E;LQTW&)TW‘(})M >0, ot i WETW P s < 0.

Since we have analyzed how G(*) (+) will change in stage 2, we can utilize this information to analyze
the change of softmax attention via the following relationship: by Appendix C, we can derive

8M1TW¥)TW5)M2
ot



n L

1 i : i i i i) (i

= e 20wl WROTEOD - diag (GO (X D) — (GO TR ) o
i=1 =1

+

ny/m <
The following lemma shows that the attention score between the two target signals pq and o
increases, whereas that between one target signal ;41 or uo and the common token p3 decreases.
Lemma 4.7 (Abbreviated from Lemma F.16). For p,v € {u1, a2}, p # v, and fort € [Ty, Ts],
)T

0 T (t) 1 ~ ~ 1 0 T

n L
> > ng W e T - diag (GO (X) — (@O (X)) XOT .
i=1 =1

- 1~ - 1

),

32

Lemma 4.7 is keeping track of the attention coefficients Cz(f

, in Theorem 3.3 via gradient flow,
which proves the second item of Theorem 3.3.

5 Discussion and Future Directions

In this work, we developed a novel gradient flow based framework for analyzing the training
dynamics of a one-layer transformer to recognize co-occurring tokens. We provided a two-phase
characterization of the training process. In Phase 1, the linear MLP layer is trained to classify samples
correctly, with attention weights almost unchanged. In Phase 2, both attention matrices and the linear
MLP jointly evolve to enlarge the classification margin, thus reducing the loss to near minimum.

As future work, it will be interesting to analyze more general transformer architectures such as
multi-headed attention, multi-layer transformer, etc. Further, it is of interest to study the dynamics of
more advanced gradient descent algorithms such as gradient descent with adaptive learning rate, with
momentum, etc., and explore how the hyperparameters will affect the training dynamics. Another
direction is to study more practical language sequences where tokens are generated in a correlated
fashion. Then the next token prediction becomes an intriguing problem.
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A Setup of Synthetic Experiment

We conduct synthetic experiment to verify our theoretical results. We create a dataset following our
data distribution in Definition 2.1 with 60 training samples: 30 samples have both z; and ps in it, 10
samples have only p1, 10 samples have only 9, and 10 samples have neither p; nor ps. Each data
consists of 5 patches and each patch has dimension 64. The embedding dimension m is set to be 128
and the number of neurons is set to be 256. We use Kaiming initialization to initialize the transformer
weights. The transformer is trained by gradient descent with learning rate 0.01 for 30000 epochs.

B Gradient Flow Update for Weight Matrices

We provide the gradient flow update for each weight matrix as follows.

P (t) n
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C Gradient Flow Dynamical System

We first provide our complete dynamical system. The derivation of each equation is provided in
Appendix C.1.

‘
oul T
ot

16



n L ms n
1 t t t in) (tiz)) | 1 t ti) T (i t
== Z gl(z)y22 Z Z aj, < ](1)7 (2)> (X< 2) z(z 12)) pt Z gfl)yh Z %p( DTyt Ty ®,,

in=1 lo=1jo=1 i1=1 =1
(6)

T
v W(t) Wc(gt),u

ot
n L m;
1 i i T (L) (£ A ()T
_ n\/rnzgz@y"zza v TR . diag <V(t DT w w§t) vt )pl(t ))pl(t )xl() "
i=1 =1 j=1
n\/» Zg(t)yz Z Za w t)T l(t %) (t T diag (wj(-t)TV(t’i) — w§-t)TV(t’i)pl(t’i)) X®Ty,
=1 j=1
(7
a<w(t> w(t)> I
71777 i i i i
# Zg“’yzZ% (t)TV(t )p (t )+ Zg(t)ylz%wng(t, )pl(t )
1=1
oW, t)TW‘(/t)u
ot
. (0T 00 0, N @)
T t t t,% t T t t,e
Z g ylzzaj W j q<—lk<—,u Z 9; ylzzau W i qelkeu
i€ X (9 =1 j=1 1yeX() =1 j=1
T
8VTW5) Wg)u
8t
i DT ®T i), (£:1) (t,3)
n\ﬁ Z g y12a v )T R @9 - diag (V(t i) — w; 1742 )pl ”L))pl(Z )
ipeX (1)
t)T i . J t t)T i), (t,i t,i
n\ﬁ Z()g yi;ajuTWég) K®D . diag (V@ )Tw§ ) 7w§> vt )Pz(@ Z))pg(iyi)
pveX J=
al/TW]((t)TWI((t),LL
ot

L ma

T (4, )% T (t,i T Ji Ji
g X o e WA - (w0 ) TV )
iip€ X (1) =1 j=1

L ma

N N T i T i Ji
b Y S e WA - (e 0) TV )
iveX (@) =1 j=1

C.1 Derivation of the Dynamical System

Lemma C.1. Let pn € {p;}L . Forall j € [m], we have
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Proof. Let (i, 1) denote the index such that X l((l) py = He By the gradient flow update, we have
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Lemma C.2. The following equation on the gradient flow holds:
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Proof. By gradient flow update, we have
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Lemma C.3. Let pi,v € {,uz 1. Then the following equation on gradient flow holds:
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Proof. The gradient flow update can be derived as follows:
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Lemma C4. Let pi,v € {,uz 1. Then the following equations on gradient flow hold.

Tyr@ T ()
v Wo' Wo'p
875
N Jt T (t)T i), (%) (t,9)
xf Z<>g y’za v TG T KD diag (V) vy ) el
ipeX
t)T i) 1: i t T i t,i t,i
n\F Z()g yi;ajMTWé) K diag (V(t’ )Tw§) () VD z(ZZ))Pz((z 1)/)7
iveX J=
T
8Z/TW](() Wl(()u
ot
L ma
)T 7 7 T i T i N
\/» S gt ylzz% TwOT g )p((ItJ e (w§t) o9 () _w§t) vt ))
ipe X (1) =1 j=1
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L ma

1 T (6i) (b T, (i Tt (b
o > 0 >N a W g Ol o, (T ) - w TV )
e X (@) I=1j=1
8VTW](§)TW$);L
ot
1 H t )T 1, (t,0), (ti tyi
= 2w alOIE (0T - ol TV ) o
ip,veX (@ Jj=1
m L
1 ¢ - OT (L LT (t DT v r(e.4) (4 L b
+ 'I”L\/TifI, Z gz( )yizajZVTWI(() Kl( ) (Vl( ) w§ ) 7w§) V(t} )pl((i,ZL)>p((]<—L,k<—l]I(Kl( )7& k(t)(y))
ipeX @ j=1 i=1
1 t — t,i t)T i )T i t,3
o~ S 0 Y ala e e, (0l o () = W TV D )
iiw,u€X () Jj=1
L ma
1 T (ti) (ti T, (ti Ty (ti), (ti i
tagm 2 90w W R (w700 @) = TV Y 1(g D £ g0 ().
iwveX @ I=1j=1
Proof. To prove the first result, we have
Ty ®OT @)
o Wo' Wa'p
ot
1 n L my
t 0T D) 1 i t 0T 1, (t,0), (ti ti) ()T
— nglg )yizzawTWé) K9 diag (V(t, )T%( ) _ w§) v )p§ z)) Pz( z)xl(z) 1
i=1 =1 j=1
n L m;
! T 1 (69 g i Ty (t,3), (b ) ()T
+ n/m Zg@w ZZajMTWS) K® )d1ag (V(t’ )ij(t) — wj(.t) 148 )pl(t )> pl(t )xl( )Ty,
i=1 1=1 j=1
1 (0, Ny T OT D) g (VDT 0 OT e, (60 (L)
= i Z 9; yizaju WQ K(’)dlag (V( %) w; —w; V( ,Z)pl(i,u))pl(i,u)
GpeX® j=1
1 O, N TrrOT i) g (7 00T, O OT ), 0 ), @0
+ ny/m Z 9i inaju Wy’ K" diag (V( D) —wi? v )pl(i,y)) Pi(ivy-
iweX (@) j=1
To prove the second result, we have
8Z/TW](§)TWI(;),LL
ot
1 n L my
T X )T 4. T i T t.q K i
- mng)inZajvTW}? " pt0T diag (w§-t> Vi) _wy) yEpt )) x0T,
i=1 1=1 j=1
n L my
1 i) ()T 4 i i), (. i
o= o Y D W T diag (wf VD Ty EOp) XOT,
i=1 =1 j=1
1 L mi
t T (t,3), (t,i DT (i 0Ty, (¢,7), (ti
— v 2w e WA e (T 00 - TV )
e X ® =1 j=1
L ma
1 T (t1) (t,1 T (i T i), (£,
S AD DI DD DL IR e Y (w70 ) — w00
e X () =1 j5=1
To prove the third result, we have
8UTW[(§)TWC(;)M
ot
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L mi

_ e Zgz(t)yi Z Z ajuTWI(f)TK(“)diag (V(t,z)Tw§t) _ w§t)TV(t,z)p§ta )) pl(t,z)xl( )TM
=1 =1 j=1

1 n L m; ; ; . ) ; .

+ — Z gz(t)yi Z Z ajMTWg)qu(t’ )pl(t’ )Tdiag (w§t)—|—v(t,z) _ ’wj(-t)TV(t’l)pl(t’ )) x@®HT,
VIt =1 j=1

mi

1 , . Ny i
_ Z glgt)yi ZajVTWI(;)TK(t,z)diag (V(t,z)Tw§t) _ w§t)TV(t,z)p(t, ) )p(t, )
j=1

1(i,pm) ) FU(,m)
nm ipeX @) a .
L my
1 ¢ T (T (£,3) (£ 0T (ti DT v (+.4) (£
T 05 >0 W T e, (w0 ) Ty ()
i:veX () =1 j=1
1 H t DT/ (4i) (4 tyi
= 2w alO0IE (0T 0 - ol ) o
ip,reX () Jj=1
m L
1 ¢ - T (OT 7o (2,0 )T (1) DT (t.4)(£,0) ) )
+’ﬂ\/T7L Z g'f )y’Z%ZV WI(( Kl )(‘/l( ) ’UJ§ _w.g) V(t )pl((z,p,)>pz(1<—p,,k<—l]l(Kl( #k(t)(y))
GEX () =1 1=1
1 t — t,i )T i )T i t,1
tom 2 o u Y ailld e e, (T w) - w T, )
iw,pe X () j=1
L ma
1 ¢ 0T (44) (L 0T (b OT v r(t4) (L b
gm0 W (w700 @) = TV Y 1D £ g0 ().
e X (@) I=1j5=1

O

D Initialization

Lemma D.1. With probability at least 1 — 0 over the randomness of the initialization of W and
W, for any 11,1y € [d], we have

[ 4 2d 4 2d
<WI((O)MZ17WC(QO)/”LIQ> < J(Q)m ( Elog? + Elog 5) )

4 2d 4 2d
(Wi, W) Soém< ml‘)g(s*ml‘)ga)’ hrt

(0) (0) 2 4 4. 2
<WQ g, W le> Sffom< m10g5+m10g6>’ li # 12

0 4 24 4. 2d
HWI(()IU'IH% = ogm <1 + ( ElogF + Elog? )
o 4 24 4. 2d
HWC(Q)/”Hg = ogm <1 + ( Elog? + Elog? :

Proof. Note that W]((O)/u’ll , Wéo)m2 ~ N(0,021). The rest of proof applies Lemma H.2. O

and for any | € [d],

Corollary D.2. Foralli € [n), I,k € [L], we have



Proof. Following from Lemma G.2 and from the first-order Taylor approximation on the softmax
function from 0, we have

y 1 ogm 4 2d 4 2d
pl(’O];)LiO<Lfﬁ< —log 5 +m10g5>>.

The corollary then follows from Condition 1. O

Lemma D.3. With probability at least 1 — § over the randomness of the initialization of W and Wy,
then for 1y # ly € [d], we have

0 0 4. 2d 4 2
’<W‘(/)M1’W‘(/)M2>‘Sagm<m+1 Nk

for j1 # ja2 € [my), we have

4 2mi 4. 2mi
‘<w(-0) w(-0)>‘ <oim ( " log L 4 Zog m1> )
m m

J1 7 )2

and for all j € [m4], 1 € [d], we have

4 2mad 4 2mad
’<w§.0)7W‘(/0)m>‘ < aoa1m< L >
m m

2d 4. 2d
W w3 = o3m <1i< —log = + —log 5))

Proof. The proof is similar to that for Lemma D.1 and is omitted. O

Lemma D.4. Conditioned on the success of the event in Corollary D.2, for all i € [n], | € [L], with
probability at least 1 — § over the randomness in the initialization of Wy,

. ; o2m 2nL 2nL
W X Op "3 = == <1:|:\/1g5 i—l 5)

Proof. First of all, by Corollary D.2 and Assumption 2.3,

0 i), (0, 0 3) (0,0 ) (0,6 ogm
(1w x O] =5 |3 (W) X009} | = omllxOpf13 = T,

Jj=1

Finally, applying Bernstein’s inequality and taking a union bound over [n] and [L] we finish the
proof. O

Corollary D.5. Conditioned on the success of Lemma D.4, with probability at least 1 — 0§ over the
randomness of W, for all j € [ma], i € [n], | € [L], we have

mi nL

0

’LUJ(-O)TV(O’i)pl(O’i) <

T log

Proof. Conditioned on V() p(®" we have w§-0)TV(O’i)pl(O’i) ~ N (0, 02|V ©DpPD|2) Thus, by
Gaussian tail bound and a union bound over j € [m4], i € [n], | € [L], with probability at least
1 — 4, we have

w(O)TV(O’i)pl(O’i)

m minL
; S g100 —log

L é
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Lemma D.6. With probability at least 1 — § over the randomness in the initialization of a, we have

1 2log(4/6
Sual = L [2l8W) )
my

1 2log(4/6
IS_1| = ma §i 2log(4/6)
m

Proof. The proof follows by applying Hoeffding’s inequality. O

Lemma D.7 (Initial sub-network output). Assume that the success of the events in Lemma D.3 holds.
For all i € [d], with probability at least 1 — § over the randomness in the weight initialization, we
have

1GO (113)] < O(o100y/mmy).

Proof. Consider a fixed ¢ € [d]. By Lemma D.3, we have ||W‘(/0) wil|3 = ©(o2m). Thus, conditioned

on W‘(,O)ui, we have Z;nzll w§O)W‘(/O)ui ~ N(0,0%02mm,). Thus, by Gaussian concentration

bound, we have |G (11;)| < O(o100/mimy). O

Lemma D.8 (Initial network output). Assume that the success of the events in Lemma D.3 and
Lemma D.4 holds. For all i € [n], with probability at least 1 — & over the randomness in the weight
initialization, we have

|FO(XD)| < 2001 v/2Lmimlog(2Ln/8) < 0.01.

Proof. Forfixedl € L, j € [m], i € [n], by Corollary D.5, we have

0. L
w§O)TV(O’l)pZ(O’ ) < o109 m log i

L 0

Thus, this implies that ajw(»O)TV(O*i) pl(o’i) is a sub-Gaussian random variable with variance proxy

j
odo? ™ log "L Therefore, the following inequality holds.

- N (0 2 log ™.2L) log(2/6
. ZWWWWWW>MQ¢WW%5)%”’<&
j=1

Taking a union bound over ¢ € [n], [ € [L], with probability at least 1 — ¢, for all ¢ € [n], we have

minL

|[FO(XD)] < 2000, \/QLm1m(log )log(2Ln/4).

Finally, by Condition 1, we can make |F'(®)(X®))| < 0.01. O

E Training Dynamics: Phase 1

During Phase 1 of training, the linear layer quickly aligns with the target signals and all the remaining
quantities stay roughly the same. The analysis need to keep track of the evolution of the above
quantities with respect to the two signals f1, i2, the common token 3 and the random tokens.

Definition E.1 (Radius of keys and queries). Define the radius of keys and queries R, Rq respec-
tively to be

Ry := max

T T
max wd Wi Wiy = Wi W

9

= Imax
i,5€[d]

T 0)T 0
W W Wy =l WS TWE s
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Definition E.2 (Phase 1). Define the range of Phase 1 to be [0,T1]), where T; =
min{t', Cr, /(c3mmy)} for some sufficiently large constant Cr, and t' is defined to be the maximum
time such that for all t < t', all of the following hold:

§t)W‘(/t)u - w](-O)W‘(/O)u’ < Rwhere R < O(1/mq);

1o max;e ) pe fu}2_,

0) 1170
2. MAXje ] g ()2, w§t)W‘(/t)u - w; )W‘(/ )u’ <O(R/n+ R/\/m);

3. max, yequya uTWg)TW[((t)V - NTWSJ)TWI(?)V‘ < Rg where Rg < O(1/(m+/m));

4. Rg,Ro < O(a2y/m).

Based on this definition, we can further obtain the maximum softmax probability change as follows.
Proposition E.3. Define

(¢,9) (0,9
q—p, kv pq<—u k«v|"

Rp = max ’p
i€ln), preXx®

1 L
RP:‘)(m*m)'

Proof. By Lemma G.2, we have Rp < O(Rg/L + RAL) = O (

Then

h
—
O

1
7L T m
Initially, the loss for the samples with one signal will increase.

E.1 Initial Gradients

Lemma E.4 (Signal updates, same as Lemma 4.1). At ¢ =0, for u € {1, p2}, we have
Bajw(o)W‘(,O)u
SV 6((0 + oym).

Proof. Take p = p,. First of all, by the gradient flow update in Lemma C.1, we have

o (t)TWof) ,
— 2912%222%< wwl) (X
22— la=1j2=1
T .
+= Zg“ thalpl(f“) VT,
21 1 ll 1
1 (ti2)
I ",y 5 ()l
’ig:yGX(iZ) lo=1j2=1
L
(t, (t,
+= Zg“ Vi Z%Z< e o ()
71 1 =1 la=1
1 L
t @  (t tyi
=~ > e Y el B+ D @ () ) ) Bl
ig: peX(i2) l2=1 Je#j1
1 L L
t t, t,
LD DR SYU Z<pz(1,32) PR “(M)>
i1:#¢X(il> I1=1 lo=1
1 2 (t, t, t,3 t
LY 00 S (OB S G, 00)
ip:peX (i) l1=1 loAl(i1,1)
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t t t,1
LY 4y Zajl (13 + 10O )13) P s

ipeX () =1
() () O\ (5D
Z Yi ylz Z a32< Wy, > Wi, >pq<—zl,k<—u
ipeX (@) =1 ja#j1
1
L
t ti), (t, t,i
+- Zg( 'y, Zaﬁ > (el v () ) e # 0O ().
ll 1 l2:1

€2

Now, by Lemma D.3, Corollary D.2 and Lemma D.8, we have

0
= > 4 yzzah (13 + 10O ) 13) P2

’L,LL1€X()
L
(0 0) 0) (0,3
zgnzow I3+ 100 G)I3) 22k — = 30 0” S (013 + 0@ B) 2%k,
1611 16[2 =1

1
:<:1))j:0.01>L-(ofm+o(2)m)<lj:< i1g6d —lo )) (14o0(1

On the other hand, by Proposition E.5, we have

(0) (0) (0) (0,7)
‘51| Z 9i %Z Z a12< Wiy > Wy, >pq<—l,k<—m

zuleXU I=1 ja#j1

2 2mi
SU%\/nTlm(\/ log—? +—1 ?) log%;

L L
0 0,7 0,7 0,2
Zg‘ i a3 (B w0 ) ) 1w )¢v<°><u1>>|

l1=1 lo=1

/ 2nL 4 2nL
<00m\/>< —lg%—i——l 7;)

If m > C'my log® ™ in Condition 1 for some sufficiently large C, then |;| < 0.010%m; and if
m > C'Llog 2L for some sufficiently large C’, then |e5| < 0.0102m. O

|ea| =

Proposition E.5. Assume the events in Lemma D.3 and Corollary D.2 succeed. With probability at
least 1 — 0 over the randomness in the weight initialization, for all j; € [m,], we have

0 (0 2m 2 4m1
Z aj2<w;1),wj2)> < oiym m( — Tl—i——l 51 logT.
J2:j2#h1

Further, for all ji € {p;}%_,, we have

Z gz yzz Z ajz< Wy, W )>pz(1(<)—ll)k<—,u

ipeX () =1 ja#j1

li: pe X9, / 4 2m? m% my
<P 1 = 2 e
< - o2\ /mim log 5 + 1 5 log 5

Zg(o)yz Z aj, Z (P02 0 0 (1)) TP £ 0 (u))‘

=1 la=1

and
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4 2nld 4 2nLd
<U§mﬁ< Elog n6 +glog n5 >

Proof. First, fix 4,1, and consider the randomness of a. By Lemma D.3, a;, <w§?)7 w§g)> is a sub-

2
Gaussian random variable with variance proxy o{m? (\/ L og 2m1 + 2 log 2?%> . This implies
that with probability at least 1 — §/2, for all j; € [m4], we have

jz:jgéjlajz <w§?),wp > <o \/7m< — 25&—1——1 5) logz%h.
Thus, by Corollary D.2, for all € {11;}L,, we have

(0) (0) (0) (0,9)
~ > . %Z > (wl ol

iy €X (1) I=1 j2:ja#j1
e X [ 4 2 4 2m?
< Mﬂ'a%/myn( Elo %—i— — log 7:; log%.

‘We next derive the second inequality. Consider the randomness in W( ). Note that

sz(?ii oy VT # 0O () ~ (0 %Z ) 0’“7&@@(#))1)'

lo=1 l2=1

Thus, by Lemma H.2 and Corollary D.2 and taking a union bound over i € [n], I € [L], 1 €
{ui}%_,, we have with probability at least 1 — §/2,

<Zp§?52vzz (W % v (), (0)(u)>

lo=1

9 1 4 2nLd 4 2nLd
S Uomﬁ EIOgT‘FEIOg 5 .

Therefore,

n .
LS g > a3 (D o ()G #000)
=1

l1=1 lo=1

4 2nLd 4 2nLd
<08m\FL< — log n + —1lo i >
m

5 Tm TS

O
Lemma E.6 (Random token updates). For p € {u;}%_,, we have
Jda »w(-O)W(O) 1
% O( (02 + o?)ym + o} mL> .

Proof. Following the proof of Lemma E.4, we have

Ba;uwO WO

Y 3 3 (w22 ()

12 1 lo=1j2=1
0 T 0
+ = Zg“ i Z%p( Ty Ty O,
11 1 l1 1
0,
Ly g yzzah (ho13 + 110 ()113) P s
z;LGXU

26



(0) (0 @\ (0.0)
D SIS 9D ST LR VL I

zuEX( i) I=1 j2:j2#71

€1

n L L
Z i Y as Y (Pl 0@ ) ) I # 0O )

=1 l2=1

€2

By Proposition E.5 and the fact that only one X (*) satisfies 1 € X (), we have

Ly yzzah (ol + 160 01 2 = © (3l + ).

ipe X ()

and
1 4 2m? 4 2m? 4
le1] < Eaf\/mlm ( Elog % + - log m1> log ﬂ,

4 2nLd 4 2nLd
|€2§crgm\/z< — log o + —log r )
m m

E.2 Maximum Perturbation of Neuron Outputs

Lemma E.7. Forallt < T, foralli € [n], | € [L], we have

’w§t)W$)X<i>p§t’i) —w WP xOp"| < O(LRpoyorv/m) + 4R/ L.

Proof. By Definition E.2, we have
‘w§_t)v(t,i)pl(t»i) _ w§0)v(o,z’)pl(0,i)

L
)y (,9) (t,9) (0)7,(0,3),_(0,i)
SZ’U’j Vil —wi Ve gy

r=1

IN

> (RpO(ogo1v/m) + R/L) + (RpO(ogo1v/m) + R/(nL))

U:Vy€ev(pr,pe,p3) U:Vir¢o(pr,pe,ps)
< O(Rpogoiv/m + R/L) + O(LRpoooy/m + R/n)
= 6<LRPO'00'1\/E) + 4R/L

By our choice of parameters in Condition 1 and Definition E.2, we have O(LR pogo\/m)+4R/L <
0001 m/L O

E.3 Perturbation Term Involving Correlation of Value-transformed Data

Proposition E.8. With probability at least 1 — 6, for all ju € {j1;}¢_,, we have

my
Z ajuTW‘(,O)Twﬁ-O) < O(ogo1y/mmy).

j=1
Proof. The proof is similar to Proposition E.22, and is omitted. O
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Lemma E.9 (Value correlation change). For all ji,v € {p;}&,, we have

0000w | _ [{izne XY +|fiive XOY )
ot - ’

n

and thus,

(4) (2)

() &0 _ pe XOF +[{i:vext }l
(20,00 0)) = (0O, 0O )| < . o)

for all t < Ty. Thus, for u # v, we have |(v® ()0 (v))| < O(o2y/m) and ||[v® ()| =
O(o2m) fort < Ty.

Proof. By Lemma C.3, we have

WP Twi ®) T Opt)
VLI LS 0,5 S
lMGX() =1 j=1
L maq
.
D DIV B SEAT AR Ut CEpo
" vex =1 j=1

Further,

Zaj TWV wj Zau O)T (O) <miR.

Thus, by Proposition E.8, we have

Z“J DTy, Z“a 5O wOTw Oy ZGVTW(UT ) ZGVTW(O)T )
j=1 j=1

< O(ogo1y/mmy) +mi R,

which implies

L maq
t DT () (i
TED IV D) SUL AL P

z/_LGX(l) =1 j=1
mi
t tT (). (t,9)
) g ):%ZZG Wy wj )péH,kH
iveX () =1 j=1
1 4 , ~
< — (‘{Z U E X(l)}‘ + ‘{Z vV E X(l)}D (O(Uooh/mml) +m1R)
n
i rpe XOUW 4+ ive x®
MisnexO) v fisvexyl
where the last inequality applies Lemma E.7. O

Corollary E.10. For allt < Tl, we have

Zgl Yi Z aj, Z <plf,2 ﬁl),v(”(m)ﬂ(vfﬁ’“ # v ()| <L

=1 l2=1

6 (aivim) .

Proof. We derive the following bound:

n

L L
%Zgz 2 3 (plel? 016 200 0)

N (o, 00 (0 ) 127 0 ()
l1=113=1

< L-0(o5vm),

where the last inequality follows from Lemma E.9 and Lemma D.3. O
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E.4 Perturbation Term Involving Correlation of Neurons

Lemma E.11. Forallt < T}, we have

t t ti H{i:m EX(i)HN
Z g( )3/72 Z aJ2< 3(1)7 2)>p(geg,keu1 < f()(of mmy).

zmex(” =1 jo#j1

Proof. We first derive:

Z g(t)ylz Z aJ2< (?’ (Z)>p<(1t<,—ig,k<—ul

zuleX( i) =1 j2#j1
(t) ) () (t,1)
BT Y F () e
z;uEX( i) =1 ja2#j1
(t) (0) (0) (t,3)
= Z i ylz Z a]2< Wi Wi, > maquH kepa
zu16X< i) =1 j2#j1
(1)
1 L
(t) (t) (t) ) , (0) (t,3)
ﬁ Z 9i ylz Z Ajz << Wiy s Wi, > < Wi, "> Wiy >) 'H%%Xpm—l,l“—ul ’
iy €X (D) =1 ja#j1 ’

(2)
For term (1), by Proposition E.5, we have

L ‘ ,
t 0 (0 {i: g e XD} <
LT 5 el < M XN
zuleX( i) =1 j2#j1
For term (2), note that

L
(t) ) . (t) ) , (0)
o auy > ap ((w ) - () wl))

i1 €X (D) =1 j2#j1
) e X 1
g'{’ € X, (1),
n m

where the inequality is by Lemma D.3, Proposition E.12.

(&) + + - + Rp, combining the upper bound for both terms (1) and (2),

Finally, since p, ., < £

we have

Z gi(t)yzz Z @j,0 Zlyz< 1)’w(t)>pgti)l’k‘_’“

i €X () =1 ja#j1
jpq € X ~
< QM -0 (o3 \/mmiL) .
n
O

Proposition E.12 (Neuron correlation change, Phase 1). For ¢ < Ty, for all jy, jo € [m1], we have

9 <w( )’ (t)> 7N

leJZ < 2L ((710'0 % log ml(;n + O(LRPO'()O'l\/’rT’L) + 4R/L> R
and thus,

m minL  ~
(w0 = (w0 <120 <0100 T log A + O(LRpoyorv/m) + 4R/L> .
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Proof. By the gradient flow update in Lemma C.2, we have

® , @®
B<wﬁ’ 2> () (m vy tz) ATy, (ti"), (1)
Zg yz/za w; +— Zng yz/z%% Ve

z’ 1 I'=1 z/ 1 '=1
n L
1 0)T i’y (0,4 T i’ i 0T iy (0,i
:Ezgy)yyz% (w§1) v, )pz(/ >+(w§? v >p§; )_wj(_l) V. )Pz(/ )))
i'=1 '=1

0T 0, HT i (4,4 0)T iy, (0,i
+2 zgl, e 3 a5, (w0TVOORON) 4 UTYO 0Ty 0.,00).
=1

Now, since by Lemma E.7 we have

(w;.wwyxwpgm —wP WP XxOp"| < O(LRpogorv/m) +4R/L,

by Definition E.2 and Corollary D.5, we have

3l Y, (VO )TV T 002)

'=1

L
<L <0100 m log mn

. s+ O(LRpoooiv/m) + 4R/L>

J2
1/1 I'=1

L3 3o (VOO VOO < TN 2)

L ~
<L (0100 % log ml(;” + O(LRpoooiv/m) + 4R/L> .

Thus,
(gt i) = ()|

(r) (1)
¢ 8< Wi, Wy, > m minlL ~
< ———— 1 < t2L | 01004/ — log + O(LRpogo1v/m) +4R/L | .

—0 or L 1)

Corollary E.13 (Neuron Norm Change, Phase 1). For allt < Ty and all j € [m], we have

L ~
‘||w§t) 13 — ™ Hg‘ < 12L(o1001/ % log ml{;‘ + O(LRpooo1y/m) + 4R/L).

E.5 Neuron Weights Align with Signal Value

Theorem E.14 (Signal correlation growth, phase 1). Fort < Ty, for u € {p1, ua},

daw Wy 1 0N~ (@ i) o (t.0)
: L 2 2
jait ~n < Z 9i qu<—l7k<—u - Z quel k<—u> ((og +o7)m) +¢

i:uEX“’), =1 i:,uGX( &
yi=1 yi=—1

where
le| < O(Lodv/m + o2 /mmy).
Proof. We take . = pq and the proof is similar for ;4 = po. By Lemma C.1, we have

dajwl Wi 1
ot
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L
1 t t t,
=~ > 9O (1 + O (a)) P

i:ulex(’),yi:]_ =1

- % > g

i €X @ y;=—1 l

M=

t £t
(Hué )|I§ + IIU(t)(ﬂl)H%) P((H_Z;,/«—m +e

I
—

L
t 1 t t,i (t t,
= (I 13+ 10PB) = (D 6D, - X g Epéiiw
i €X @, =1 i ex®)
yi=1 yi=—1

where

(®) (1) @Y D)
Z 9i y’Z Z a32< Wy," Wy, >pq<—zl,k<—u1

i €X (1) =1 ja#j1
1 - (t,2) (t,i t,1
o> ISDS (Pl 0 () Il # 0 ().
i=1 l1 1 lz 1

We can now bound the magnitude of € by Corollary E.10, Lemma E.11 and Proposition E.5 and
obtain:

le|] <L-O (o5v/m) + O(o2\/mmy).

Finally, by Lemma D.3 and Corollary E.13, we have ij(-t) |2 = ©(c?m) and by Lemma E.9, we
have ||[v® (111)||3 = ©(c2m). The proof is completed. O

Theorem E.15 (Random token growth, Phase 1). Fort < T4, for u € R, we have

oau®WO 1 _
W O( (08 +0%)m >+O(J§L\/ﬁ).

Proof. Fix a i € R. By our Assumption 2.3, p appears at most once in the training data set. Now,
assume f is in the training set and let ¢* be the index of the sample containing ;.. Applying Lemma C.1
on the random token y, we have

aajw(-t)W‘(f)u 1 L ¢ t,i*
— L = g0 Y ay (I + o) e + <
=1

where

_ 1w O\, (i)
i Yir Z Z Gz < Wy, W >pqélyk%u

I= 1J275]1
+= Zg% Z aj, Z (Pl ol 0 () ) Tl # 00 (1)),
ll 1 12 1

We can now bound the magnitude of € by Corollary E.10 and Lemma E.11 as follows:

~ 1 ~
le|] < L-O (0gv/m) + EO(Uf\/mml).
Finally, by Lemma D.3 and Corollary E.13, we have

da;w WP ~
J]aitv'u =0 <1(O'(2) + crf)m) + O(a2 Ly/m).
n
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E.6 Alignment of Common Token

Lemma E.16 (Initial Per Neuron Gradient of Common Token, same as Lemma 4.2). Let F' =
max; F; (0) We have
Oa;w (O)W )

5 zé(ofa/mml —&-U%VmL—&—(U%—l—U%)mF) .

Proof. Following from the proof of Lemma E.4, we have
0)11,(0
daj,w; w) )WV )N

0 0 0,2
i SO 40y, Z(W>\|2+||v<°><m>u2)pgdw
’L}L3€X(")
(0 0,7
fa s Y 4 ’%ZZM ) o)
zugeX(” I=1 ja#j1

€1

+a, Zgﬂ’yz Z Z (Pl o ) ) 1wl # 0 113).

=1 lo=1

€2
For the first term, we have

L
S o> (13 + 10 ) 13) P2

TS <) =1
L
0 0,7

S5 05 (e + 10 () 13) P2
yl—l =1

1 (0) 2 (0) (0,9)
Lyl Z(nw 13+ 1@ )I3) P
yz:—

Z 91(0) Zpé(:l kps Z 2 Zpg?—zz k—pus

0
= (113 + 10 (15) 1)
yi=1 yi=—1

By Lemma D.8, and Corollary D.2, we have

Z glo) prl?—ll kps Z gl Zpg?—ll k<—p3
yi=—1

> (i) £, G-%G-5)

L

IN
7 N
N

+

|
N——
N
SIe

+
§\~
N———
2o

|
7 N
N

|
N——
7N

| —

|
3=
N—
2o

< 2F 4+ O(1/m).

By Lemma D.3, we have ||w; 0)H2 = O(c?m) and ||v(© (u3)||2 = ©(c2m), and thus,

DI yzZaﬁ (o3 + 10 ) 3) ) | < Olr(o + 0Fym).

ipuzeX (1)
Further, by Proposition E.5, we have

(0) 0)\  (0,i)
A= Y yzZZM 5wl ) o,

z;LsEX( i) =1 ja#j1
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4 2m?2 2m? m
< 2 — 71 1 71
< oiy/mim (\/ = 5 + 1 5 ) log 3

L L
0 0,2 0,2 0,2
62I—‘ Zg< i 3 @ Y (Rl o (ae)) 1, >¢v<°><u3>>|

l1=1 lo=1

4 2nL 2nL
SangZ(\/ml %—i——l 7;)

Finally, we have

Oy oW |

( \/7+00\/7+(00+01)mF>

ot
O
Lemma E.17 (Per neuron gradient of common token). Fort < T4, we have
3ajw(-O)W‘(,0),u3 ~
JT < O(oim)
Proof. The proof is similar to that for Theorem E.14 and we omit it here. O
Definition E.18 (sub-network). Define the sub-network structure as
my
G(p) = ZajijV,u.
j=1
We can compute the gradient of the sub-network as
m (t) mi (t)
90G(p) L a0 W 3WV by Ow; ®,
= _— Wy,
ot ; z:: T4
1 (t) (t) (t’i )
Ly 0 P e (w2 )
in: p€X (i2) l2=1j1=1j2=1
(t,2 (t,2
+ = Z gzl Yi, Z Z <pl1 l;)UZQ v U (t) (/’L)>
iz Li=11=1

Theorem E.19 (Complete version of Lemma 4.3). There existsaTy 5 < 11 and a constant0 < C' < 1
such that for all Ty 5 < t < T7,

5G(”(u1)75G(”(uz) < 960 (uy) <1-0) 0GM () | 9GM (n2)
ot ot ot ot ot

(1+C)max(

Further,

5G(t)(#1) aG(t)(M)

) S > (08 + 0 mmy).

Proof. First of all, we have

g <M(WX . f"f"?fii)

=> > Z piv, + sl WP X, ot

h=1j=11=1
By Lemma E.4 and Lemma E.16, we have
daw (O)W(O) 6‘a w(O)W(O)
ot ot

= 0((0g +ai)m),
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Oa; wj(-o) W‘(,O) 142 aaj () W‘(,O) 13

2 2
ot ot = O((og + o7)m).

By Theorem E.15 and Corollary E.24, we have

my Hasw t)W(t)X ; "
Z Z Z <112 I(Xy, ¢ {/ii}?:ﬂpl(f 2 + ajw t)W(t)X plhl2

ot
li=1j=1ly=1

_0 (L(UO + al)mm1>

8gL

Thus, forallt € I; U I, U 13, > 0 for
1€ 1o U I3.

. . O ) o
Next, we show that there must exist a time such that —w = max(2¢ 8t(’“), 9¢ at(“"‘)).

. . () () ...
Without loss of generality, assume oG 5 t(“ ) 5 9G 5 t(“ 2) We now analyze the condition when the

magnitude of the update of the common token is less than the magnitude of the update of the signals.
By Lemma C.1, we have

j=1 315 B j=1 815
1 . ti . ti mi
& o (WO + o o) ) (ng 'S e~ >zp;;zw +3 e
1€lh i€l j=1
L mi
1 t tz t tz
> = (WO +ma o <u3>||§)< DRI DY VL zgnzp;H b | 0 1550 (113)
1€loUIsUly =1 i€ly Jj=1
(t) (t)
t) (t,0) 1 W®NE 4+ ma v (us)l3 oo
< —
1621191 quelkem nHW(t 12+ ma|[o® (uy) ”27,621:1 quelke;@
LW 3 4 ma 0 (15)[13 ) S (t) 5 (b0)
e 9 D Pyl =D 0 ) Polihem
n||W<t>|\2F+m1\\v<f><m>|\%ZE,QUZ,SUM ; @bk Z Z aelke
i Z;'n:ll aje™ (u3) 2221 aje® ()

HW“ 5 +mafo® (/~L1)||2 IWEZ + malo® ()3

1+o Zglt)—&— (14 0(1 Zg(t)

i€l i€ly

%(1+o(1)) S+ 1+0 Zg(t)ﬂ:O(\/>)

1€laUl3Uly i€l

where the last equality applies Corollary E.24. If m is sufficiently larger than m; (by some large
®
constant factor '), then the last term is negligible. Note that the above implies that if aGT(‘”) >
(t) .
G (1) at(’”’) then ZZEI gft) Zzeb gft) Q(1) since Zi613UI4 gl(t) Q(1) forall t < T3y. Now, by
Proposition E.21, if the initialization level is small enough, then ) _, I gi(t) - Yie Is gzt) > Q(1).

t (
Thus, if 8G(8)t(’“) > — 6G( ( 2) then L Zzell Zi— = —O((o§ + of)mmy). Therefore, there
()
must exist a time ¢ = @(l/m) such that 2 Bt(#l) = % tat(’”) Further, for ¢ > O(F/m),
we have yZF(t) > 0 foralli € Iy and ), gl( ) < min(d e, gl(t), icls gf )) where F =

maxX;c|n] Jasl
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. . . " "
Now, consider a time point ¢ when mait(‘“) — _9¢ () At ¢/, we must have

ot
. t t t’
min(Yier, 9 Sier, 0) = Yier, o) = Q(1). Thus,

2) g -2 g = aq),
iel i€ly
which implies
9 @) _ 9 ()
—2 - 7 =0(1
GF2L 9 " gp 29
i€l i€y

For ¢ € I;, we have

(") ) (" )
OF; ~ _ 0G" () | 0GT(p2) | OGT(ps) +O<iafmm1)

a ot ot ot
G (u
— % +0 ( almm1>
Fori € I,
3Fz‘(t) B OG™) (1) N 9G) (u3) +0 £02mm =0 £02mm
8t _ at at n 1 1 - n 1 1) -

For ¢ € I3, by Proposition E.21,

(1) (t" "
O _ 06 ()  0G (ws) (i’g%mml) — 0 (Fo?mm,),

ot ot ot
and for 7 € I,

(t) (.
oF" _ oG <ud>+O<L2 )

ot ot p
O]
Thus, by chain rule 2 dt = g% 81; , we have
(z O 2y g - Y g(ﬂ) Ofo2mm,).
i€l i€ls 1€l3Uly

This implies that there exists a constant L such that

% (Z g - Zgz@ +(1+1) (Z g - > gf”)) = —0(oimmy),

el i€ly i€l 1€l UIsUly

which implies that there must exist a time Ty 5 < O(1/m) such that for all ¢t > T} 5,
aG™ (13) aG" (11)
ot ot
Moreover, by Theorem E.26, if Cr, is sufficiently large, we have Tp 5 < 77.

>(1+1L)

. . . (t) (t) (t) (.
Finally, consider the time when 9G (%(’“) 4 06 (w2) o, 9G (ua)

ot ot
have
aG™ (11) 5G(t)(#2)
e 5 > O(ommy).
Further, if 2% a)t(’”) + 06 (ua) _ 8G(8 (#3) then gtgft) —O(o?mmy) foralli € I, U I3 U Iy,

ot
Thus, there must exist a constant U such that

_aG(t)(M?)) <(1-1U) (aG(t)(Ml) + 8G<t)(u2)>

ot = ot ot
forallt <Tj.
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Corollary E.20. There exists a small positive constant C' such that if we define T' := min{t :
minger,ur, F\” > CY, then T' < O(1/m).

Proposition E.21. Let F' = max;c|y |Fi(0)|. Fort < Ty, we have

AT LT <o

i€1o i€l3

Proof. First of all, by Lipschitzness of g, we have

:L 34! () _ Z po

i€l L€I3

FZFO)\ +o(1)

<G (1) = GO (1) = (G () = GO (pa2))| + 2max
€|n

Without loss of generality, assume G(*) (u1) > G(t)(ug) for all t < T}; otherwise, we can break the
interval [0, 7} ] into sub-intervals by the time points when G) (111) — G (1) changes its sign and
then apply the analysis below to each sub-interval. We first derive

aG™ (11) . aG™ (12)

ot ot
L mi
(t) (®) (t) (tiz2) (t) (t,i1) i)T (t)
Z ( Z iy Yiz Z Z @ A < Wiy W, > Q<—§2J€<—M1 += Z 9iy Yix ZP . i Wy
J1=1 o€l Ul lo=1j2=1 11 1 I1=1
] 1 n L ) 4
t t t,i t tyi1)T i t
5 603 35w (), - L 30 3V 1>Twm>
i2€L Ul lo=1 jo=1 =1 li=1
) - (t,3) ) - (t,3)
_ (t t,i (t t,i
Z Z 2 42 < Wi g > ( Zg ylzptﬂ—l,/ﬂ—m n Zg ylzpw—l,lﬂ—uz>
J1=1j2=1 i€l =1 ze]1 =1
ma ma L L
@ @) (t) (t,9) (t) (t,9)
+ Z Z 42 <wj1 » Wi, > ( Zg ylzpcﬂ—zl,/«—m Zg ylzpm—zl,k«—uz>
ji=1ja2=1 i€l = 1613 =1
n L
1 K i i i
TEPIVIS W EMTIAEED WL o AN
11=1 11=1 21 1 I1=1
e (0 ) _
DD WRIETREINES SRR DOV ERRL)
J1=1j2=1 i€ls 1612
L L
yi1) T i 1) T i
( Z g(t)yl1 Zpl(fz ) V@ I)TW‘(/t)/Ll _ Z g(t)y21 Zpl(ltl ) 1742 I)TW‘(}),LQ)
11=1 11=1 21 1 I1=1
<30S s, (wlf ) (G“) (1) = GO1) — (G 112) = GO (1)
Jji=172=1
+ G () + GO (u2) + O (HEHﬁIF )I) o(1 ))
1 ¢ )Tt 1 ¢ i i /
TED TS oF ER AT IIRED o S |
=1 =1 =1 =1

By Theorem E.14, we have

i1)T i 1 - 1) T i
ml/ ngf)y“ Zahp(t TVEDTW O~ =37 g Za;lp(t Ty ETw O g dt

i1=1 =1 i1=1 =1

< T-O(Lo2v/mmy),
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T
/ (G(")(MHG(“ (n2) + O <maX|F( )|> +o(1 ) Z Z aj1a32< wy), J(?> dt
0

J1=1j2=1
<0 (6 + 6ua) + x| ) Tt )
i€[n

and

mi

T mi
exp / Z Z a]1a32< wi, j(z)> dt | =0(1).

J1=1j2=1

By Gronwall’s inequality, we have
G(T)(lh) - G(O)(Ml) - (@™ (p2) — G (k2))

< 7 O(wayimm) +0 (6 + 6 ) + max |1 ) Totmm )

T
+ / (t - O(Lo2y/m) + O ((G(O)(ul) + GO (ug) + max F;0>|) wfm» -O(1) dt
0 i€[n

<0 (G(O)(m) + GO (ua) + s | O ) .
€N

This implies that

Z o0 = Z o0

1612 ie[;;

<0 (G(O)(Ml) + G (u2) + mfw]c |Fi(0)|) .
i€n

Thus, if the initialization scale is sufficiently small, 2 >~ I gm and L3~ Iy g(t) are only differed

by a small constant. ' ' O

E.7 Small Score Movement in Phase 1

Proposition E.22. Conditioned on the success of Lemma D.1 and Lemma D.3, with probability at
least 1 — & over the randomness of a, for all i € [n] and p,v € X we have

1d d
Za 16© () ||2w (O)Tv(o)(y) <O<00m0100\/mm110g6 logn )

0

d
Za G 3w;” v @) <O<Jom0100\/mmllog\/ ; )

and for all 1,1 € [L] with Kl(o’i) # kO (v) and ql(o’i) # Q) (v), we have

m1
Z ajVTWI(?)TKl(O’Z)Vlgo’z)—rwj(»o) < O(o3v/maogoy/mmy),

j=1

mi
ZajVTWC(?O)qu(O’z)Vlso’l)—rwg»o) < O(odv/mogoy/mmy).

Jj=1

Proof. Fixi € [n] and p, v € X, Consider the randomness of a. By Lemma D.1, Corollary D.2
and Lemma D.3, a;{|k() (1) ||§w§O)Tv(O) (v) is a sub-Gaussian random variable with variance proxy

O((e¢may09y/m+/log(dmy/5))?). Then the following inequality holds.

Za 16 (1 |2 o7 v ) <0 (Uomolao\/mml log\/lo >
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Finally, take a union bound over i € [n], u,v € {u;}%_,. The analysis for the second term is similar.

Next, note that ajl/TWI((O K l(o’i) Vlgo’iﬁwgo) is a sub-Gaussian random variable with variance proxy

O((02\/mooo1y/m)?). Thus,
Zaj O)T (0 i)Vlso’i)TuéO) Sé(aéﬁaoah/mml).

O
Lemma E.23 (Score change). Forallt < Ty, forall v, pu € {j;}L,, we have
auTWI((t)TWS),u _ 1 [{i: pe X +{i: veX( )}‘ 1,1
ot = Vm n L ym
and thus,
;. (%) i)
T OT O 0T 0 L {i: pe XU+ [{i: ve XD} 5 1
’1/ Wy Wo'n—v Wy WQulgtﬁ - LJF\f
Proof. First of all, by Lemma C.4, we expand the per step gradient descent update as follows:
81/TW](§)TW5)M
ot
1 t )T i t,1 t,3
=m X %Ejaﬂw VI (vOT Wyl — VD B L
ip,reX ()
e
IR T e T, 0 ) ) )
T (0T p-(i )T (¢ 0T 1 (t,4), (ti tyi tyi
n m Z g 1/1 Zaj ZV WI(( Kl ) (‘/l( ’LU§ ( V(t ) l((z /L)) pf](—p, k<—l (Kl( 7é k(t)(l/))
peX® j=1 1=l
(2)
1 (t,1) OT (t.i )T i), (t,i
o~ Z Dy; Za]”qt) gpqﬁhkey (wj) o) (1) — ( 1742 l((l L))
iw,peX ()
3)
mi
t T (4i) (i 0T (4 OT 1 (t,0), (b ti
Mﬁjzsw%ZEEM Tl e (w00 ) = TV 1D £ ¢ ()
iiveX () =1 j=1

)
Analysis of (1): By triangle inequality, we have

1 i
(1)] < 3 mmzmw 3O ()wPpls)

ﬂ\/T?L ip,veX (1)
(a)
1 )T i) (t,2)
o > 4 yzZaJHk“ R A R S

ip,veX (1)

(b)
To analyze (a), since (a + €1)(b+ €2) = ab+ aga + bey + €1€2, we have

mi

tT o)T 0,7
Zawﬂw OT® @yt L~ ZaW”|MJWMWJWV
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Zauk“) 3w oy ZaHk(O) NZw® T @ @) p2
q—pkv

(t59) (0,9)

pqeu,k(—u - pqeu k«v| -

Za 169 ()30’ T @ ()] -

Further, by Lemma D.1, Lemma D.3, Definition E.1 and Definition E.2, we have

- t)T 0)T
> a0 ) 3wy T v Za 1K @) g T w)
j=1

< mae |6 )30 () = KO @) 3wl v )
<my (RKOV(UoUlm) + Ré(agm) + RKR) . ©)]

Combining with Proposition E.22, this implies

T OT 0,7
Zank“ 3wl T @)l Za 1K @) 3w To@ w)pl%) |,

(t,4)

q(—u,k(—l/

gml-ma,x\nk(”( 3w o ) - ||k°>< J3ws™ v ()] p
v,j

q—p kv pq<—,u kv

Za Hk(O) |2 0T (0) ‘p(tz (0,3)

~ ~ 2 ~
S ma (RKO(O'le\/TTL) + RO(agm) + RKR) (L + RP) + O (RPJSmUonm) .

.
(a)| = Zajnk ) [3wl? T @)l

IN

T OT 0,7
Zajnk D) Bw T w)plt Zank@ 3w @ @)plh

)T 0,7
Zauk(“ 3wl T @ )l

~ ~ 2
< ma (RKO(anlﬁ) + RO(O’Sm) + RKR) (L

+ i)

~ 1
+ 0 (Rpogmalom/ ) +0 (Uomalam/ mlL) .

On the other hand, to analyze (b), we have

i 7 O 0,2
Za||k<f> 3w TV ED D D e~ Zauw 3w TV O )

Za |k_(t) ”2 t)TV(m)plw Za ‘k,(o) |2 0T V(Oz) (0,3) ~p(t’i)

l (i,p0) q—p kv

ma

Za ||k(0) ||2 0)TV(O 1)p(?lll1) . ‘p(t»i) (0,7) ) (10)

g kv pq<—,u kv
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Note that

mi
% 2 OT i
Z“ KO @)y VDRl Za K@ @) [Bwy” TV OOp)
L my L m
) 9) SRS ES 9) SO LG LT
I=1j=1 =1 j=1
s )t (0,9), (0.4)
tl t1 0,i 0,i
- zz: Za KO H2 l(w Za 1K (v H2 Vz Pyt
=1
L
“ 0,i ti
<> Za 50 ;T Za KO 0BV pl{,
1=1
0) 2 (0)T (0,9) (t,5) (0,)
+Z Za |k( v)|w V ’ ‘pl 12“)1 pl(llﬂ)l
=1 |j=1
<max Za ||k t) )||2w (t)TV(tz) Za Ik o) )ngj(‘O)TVl(QU
: =
my
+ LRp ?elfiL)]( Zaj||k(0)(V)||§’LU](»O)TVl(O’Z) ’ an
j=1
which implies
|(0)]
®T 7 t,t
- Za]Hk v)lI3 J) v )pl((zzb)péezikey
(T i t,i 5 (0,0)
< Z%“k )l TV OB P e Za KO VO R0 b0

0 T i 0,2
Za 15 (v zw; Ty )pl((z Z)péel kv

Za 1D (v |2 OARVACOMGD) Za 1£© (v Hz V(‘“)( ) (t,4)

Pi(i,u (iyu) pq%u kv

(t,2) (0,3)

g, kv pqeu kv

OT i) (0,2
+ Za IO @) Fu® Ty 00 |

OT 0,i
O VO

@)
(max Za 15 ) |30 TV, Za £ () 3O Ty,

g kv

LR NP0 2, 0T ) ()
+ LEp mex ;%H W)lzw;” Vv, P
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T Za ||k(° H2 v, i)p(oji) . p(t 1) (0,)

1(4,p) g kv _pqeu,keu

+ Za ||]<}(O H2 (Oz)p( i), (0,7)

(1, u)pqeu k+v

(#4%) ~ ~
< (ml (RKO(Uodl\/TTL) + RO(CT?)m) + RKR)

~ 1 1
+LRPO(03m0001\/mm1)> . (L +RP) + O <Jomc7001\/mm1 (L +RP>>

where (i) follows from Equation (10), (i) follows from Equation (11) and (éi7) follows from
Equation (9) and Proposition E.22. Combining the upper bound for both (a) and (b), we obtain

|(1)‘ < L ‘{Z PV E X(z)}’Ov((ml (RK’OV(O'()O'l\/E) + Ré(agm) + RKR)

N n

~ 1 1
+ LRPO(ngaoalw/mm1)> . (L + Rp) + 02mogo/mmy (L + Rp) )

_m‘{z MaVnGX(ZH 1/L)

Analysis of (2): (2) can be analyzed similarly as (1) with ||k(9) ()||2 replaced by VTWS)Kl(t’i).

Thus, we only need to replace o3m with o3/m and then take a sum over /. We have

{i: pe X35

(o)) <« =R

<<m1 (RKé(O'()Ul\/TZ) + Ré(dg\/%) + RKR>

+ LRpé(US\/EO'Oo'l\/mml)> . (]. + LRP) + J%\/ﬁdoUls/mml (1 + LRP)>

L [{i: ne x5
~Vm
Analysis of (3): (3) can be analyzed similarly to (1), and we obtain

Uiy e X9}

O(1/v/m).

3)| < O(1/L
@) < = (/1)
Analysis of (4): (4) can be analyzed similarly to (2) and we obtain
4)| < _— 1
@) < VS /)

Finally, combining the bounds on (1) — (4), we have

oW W (i pre X9} 5 L [{i: e XO}+|{i: ve XU} 5
|8t gﬁ - O(1/L) + 7= - O(1/vm)
< LM ne XOY i v XN

Corollary E.24 (Softmax change). Fort < Tj, we have the following:
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« ifboth X\ X\ € R, then

4t <ot
ot |~ L(L?2 +n)ym)’
* otherwise,
%ﬁi<5(l->
ot |~ L2y/m)’
Thus,
« ifboth X\, X\ € R, then
it -l <0 ((5+7) oz (74 73) )
* otherwise,

(t,1) (0,1)
P, — Py,

cofiks (b )

Proof. Consider fixed 4, (1, ;. By Lemma G.2, we have

(t,1) 51 (t,3)
aph l2 (t,9) ll l2 + p(t i) | ()T 85
ot l1,l2 ot l1,l2 [Pl 8t

By Lemma E.23, we have the following cases:
« if both X", X" € R, then

1
t,i
dsi, 1y
ot

<0 (27 m)):

So(1(t, L
- m\L vm))’
Next, during Phase 1, we have p(t’ 2

IS L + L + Rp. Therefore,

e otherwise,

(t,3)
s 1152
ot

« if X € R, then

Os ~ 1 1\1 /1 1
(t,ZT ll <O - _ _ _ .
=0 (1) m ()
e otherwise,
.07 08 Y

Thus,
« if both X;”, X" € R, then

(t,3)
apzl,l2

ot




¢ otherwise,

apyLy)

ot

ol (i )

This implies that
« if both X;”, X" € R, then

(t,7) (0,7)
’pll,lz pll,lz

co((3+2) (i)
o (i)

Lemma E.25 (K, Q self-correlation change). Fort < Ty, for p,v € {u;}d_, we have
e X® c X
‘MT OTy 0, Ty OT o ‘<t [{i: p i v o ( )
Wi Wic Wi < tm N

m n

e otherwise,

(t,2) (0,7)
P, — Py,

O

n

BT 170 (0)T 11(0) 1 {i: pe XD+ {i:veXWi /1

Proof. By Lemma C.4, we only need to replace 6(0(2)m) by 6(08 \/m) in the proof of Lemma E.23.
Thus, we omit the proof here. O

E.8 All Variables are within Range in Definition of Phase 1

Finally, we prove that at the end of Phase 1, all the variables in Definition E.2 stay in the range.

Theorem E.26. Fort < Cr, /(03mmy) (where the constant Cr, is from the definition of Ty in
Definition E.2), all of the following hold:

)1y (t 0) 117(0
L MaX;c ) ue {ui)2_, w]( )W‘(,)u — wj( )W‘(, )u' < R, where R = O(1/my);

OWP = 0O WPl < OR/n+ Rvm);

2. MAX e ] g {ps )3,

3. max, yequd uTWS)TW[((t)V - uTWéO)TWI(?)V’ < Rg, where Rg < O(1/m+/m);
)T 1/ (t 0)T17,(0

4. MAaX, e (e, ‘,uTW ) Wé)u—uTWé) Wé)u’ < Rg;

5. Max, ye gy uTWI({t)TW[((t)V — MTWI(?)TWI((O)V’ < Rg.

Thus, Ty = Cr, /(0?mmy).

Proof. The first two results are proved by Theorem E.14, Theorem E.15, Lemma E.17. The third
result is proved by Lemma E.23, The fourth and fifth results are proved by Lemma E.25. O

Theorem E.27 (End of Phase 1). Att = T}, we have yiFZ-(Tl) =0(1) foralli € [n], and
G () =0(1), G () =0(1), —GT)(us) =06(1),
Ve R: GT () = O(ogor/mimy).

Z Z <aj1 (T) ajzwj(jl)> O(oimmy).

J1=1j2=1

Further,
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Proof. By Theorem E.26, we have yiFi(Tl) = O(1) and
G () =0(1), G (ue) =0(1), —G"(uz) =0(1).
Further, by Theorem E.14 and Theorem E.19, we have y; Fi(Tl) > Q(1) fori € I and

G () > Q1) G (ua) > Q(1).

Finally, by Theorem E.26, we have that T} = Cp,/m. And note that if the constant Cp, in
Definition E.2 is sufficiently large, then by Corollary E.20, we have 7" < Tj. Thus, we have

yiFi(Tl) > Q(1) fori € I, U I3 U Iy and —G T (uz) > Q(1).
By Lemma D.7 and Theorem E.15, we have

Ve R: G () = O(ogoy/mmy).
Finally, by Lemma D.3, Proposition E.5 and Proposition E.12, we have

ma maq
> <aj1w§f1),aj2w§fl)> = O(oimm).

J1=1j2=1

O

Theorem E.28 (Phase 1, formal restatement of Theorem 3.1). With probability at least 1 — 0 over
the randomness of weight initialization, there exists a time Ty = O(1/m) such that

« G (1) > Q(1), GT(ug) > Q(1), GT () < —Q(1).

e All the training samples are correctly classified: yiFi(Tl) = Q1) foralli € [n).
» Fort € [0,Ty],

(s~ (w2 <0 ()
|

T (0T (t) Ty (0T 157(0) ~( 1 (1 1
Z/WK WQ,LL*Z/ WK WQ#SO<W<L+\/%

~ (1
MTWI(;)TW[(?V — MTWI((O)TW[((O)V <0 ()

~ (1
MTWS)TWS)V — ,uTWCg])TWCg))V <0 (

« The training loss satisfies L(T") = O(1).

Proof. The first two results are proved in Theorem E.27. The third result is proved by Lemma E.9,
Proposition E.12, Lemma E.23, and Lemma E.25. The result on the training loss is a direct conse-
quence of Definition E.2. O

F Training Dynamics: Phase 2

The idea of the proof is to first define conditions for Phase 2, which guarantees that the small training
loss can be achieved. Then we will show that those conditions can be satisfied starting from the end
of Phase 1 and up to at least Q(poly(m)) time, which will serve as the end of Phase 2.

Definition F.1. We define Phase 2 of the training to be t € [Ty, Ts| such that
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The change of K, Q self-correlation is small:

s 0T W W WD = Ol
187

LTWOT O, Ty OT 30 52
maxie Ve Wa @ Wov ‘ ovm)

The change of softmax probability satisfies:

(t,1) (0,7)
max Py, — Py,

l1,l2€[L], i€[n]

< O(1/L?)

The sum of neuron correlation satisfies

3 3 (a . as0l?) < Oommy)

Jj1=172=1

The gradient of W, Wy, satisfies

w()

mi w; W(t) ‘

max ]1](.%

pe{pitd
¢ ¢ =
Z;l 1232 1<ah ;1)7%2“’52)> niG[n]

(t9)
L, GO(X z( )3173112

< —
m m (t) (t)
Zjll 1 E]zl 1 <a31 Wy, Gy Wy, > i€[n]

maX;e[n

The gradients ) ;. ; g; )forI € {1, I, I3, 1,} satisfies

" g < min (Z ey g<t>> < max (Z o, ng) <3 g <

1€1y i€l i€1l3 €12 i€13 i€l
and

t
< Zielz gf )

1
3= 0 <2.
ZLEIg gz

yiFi(t) > C for all i € [n] for some fixed constant C.
GO ()] < O(logm) for p € {pi}i—y

L (8)y,,(£:%)
2ii=1 2y xP e, GO(X3, )Pl ks, < O(1).

Ty < O(poly(m)).

Corollary F.2. Fort € [T1,Ts), ifi,j € I where I € {11, 15, 13,14}, then

®

9,
0 0 < 0@).

>

1€lUI3Uly

Proof. Take I = I; and the proof is similar for the remaining cases. For fixed ¢, j € I, we have

where the inequality is due to y; F

g 1+exp(y;FY) _ exp(y; Fi")
g(,t) 1+ exp(yiF,(t)) B exp(y,»F.(t)) ,
(

) > (' in Definition F.1. Now we consider

exp(y; F1")
exp(y; F\")
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L L ;
exp(y; Zl =1 212 1 G X(g))pgzzl keb)
exp(y le 1212 G (X( )) E;<_)zl k<—12)

t t,2
= &Xp Z Z G (u )pz(zgzl kp Z Z GV (n >p£(e%1 ke p

h=1pe{u}3_, h=1pe{u}y_y
(1)
I L
- exp Z Z G(t)(Xl(gj))pr(zijl)l,kHz - Z Z G(t)(Xl(;))pgiﬁ)h,kHz
ST =11 X
2

By Definition F.1, it is easy to see that |(2)| < O(1). For (1), we have

I L
Z Z G(t)( )pz(]i’—jl)l ke | — Z Z G(t)( ) qezl,keu

b=l pe{p}i_, L=lpel{pr}i_,

<| Y Gmatem) - Y GO o) <0,

pe{pn}i_, ne{pr}i_y
Thus, we have
exp(y; ")
)
fort € [Ty, Ts). O

<0(1)

Lemma F.3. Phase 2 in Definition F.1 is well-defined.

Proof. We need to show that the definition is valid at £ = 77 with conditions satisfied with strict
inequality. Then since everything changes continuously, there naturally exists a 75 > T} such that
Definition F.1 is well-defined.

First of all, by Lemma E.25, for u, v € {p;}¢_,, we have

max‘uTW}((Tl)TW}((TI) TW(O)TWIQ ‘ ( avm),
v
max HTWéTl)TWqSTI) TW(O)TWé ‘ ( \/*)
v

Next, by Proposition E.12, Proposition E.5 and Lemma D.3, we have

ma may

T1 T1
$5 S (ap ™ ) = Olotmmy)

Jj1=1j2=1

Recall that £ 37 | gZ(Tl) = O(1). On the other hand, by Corollary E.10, Lemma D.3, we have

Ty)
J (T1) 2
max a; W, = O(ogmm
el 32:; 1T ot v M (99 1)

Ow (Tl)

m T
MaXy, e {1, Zj:ll a5 —3; W‘(/ 1)“’ o2 ~/m
0 1
— <0 <2) =0 (1)
o3 Lm

T T
DDHEED DiE 1<%“’§1 )’aﬁzw§21)>

46



Also, by Corollary E.24, we have
(Tlv )

op ~ /1
G(Tl) X( i) lisla | o ——
i lz_:l ;_:1 )" Jm
7 (9;0 1)
maXicin Zzl 1 le GM(X ( )> létZQ

~ 1 ™)
<0 < ) <o(1) Y g™,
Z;Tl ) 232 . <CL]1 ( 1) a32w531)> m3/2 Z

Further, by Corollary E.24, we have

(T1,9) (0,3)

l1,l2 pl1 lo < 0(1/L2)

max
l1,l2€[L], i€[n]

Now, by Proposition E.21, if F' is small enough (which can be achieved by making the initialization
scale small enough), then

(T1)
< 21612 gv

1

— < 2.
T

2 ZlEIS gz( R

Lastly, by Theorem E.27, we have ylF( D> Q(1). And it is straightforward to see that |G(T") ()| <
O(logm) for i € {ju},.
(T,i)

Finally, we prove 211:1 212: XOetmit_, G(Tl)(Xl(;))pq<—11,k<—lz < O(1). A simple corollary

from Lemma D.7 and Lemma D.8 is that

L
Z Z el (Xl(;))pgell)l,kelg <O(1).

I1=1 Iy Xl(?e{“’k}z:Al

Next, we have

L L
Ty [ 0,7
SRS DENCCUSTOMC NS SEND DENRCCIE L N

b=ty XD efuni, b=l XV efm i,

L
<Y X |Emx)) -0y

P X el

L
0) (x| (719 @
+ Z § GO X, ‘pm—lll,l«—b T Pacti ket
hLi=1y,. Xl(;)e{ﬂk}i:AL

L
i Z Z ‘G(Tl)(Xl(zz)) _ G(O)(Xl(;))’ D
h=liy: X[ efur}i_,
<0(1)

which proves that

(0,4)

q<—l1 ,k(—lg

(T1,i) (0,)
gitiskly — Pty kets

L

) i T1,i
YooY AW, <o)
b=l x(Vefun}i_,

O

In Phase 2, we will analyze the dynamical system in a different way since all the variables now might
change dramatically from their values at initialization.
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Lemma F4. Fort ¢ [Tl, Ty), we have

t t 2ml t
= Z Z<% ) aj,w 52)> - ()ylF()>O

ji=1j2=1 i=1
and thus,

t t
55 5 (wn? 2y = tmms),

Jj1=172=1

Proof. By Lemma C.2, we obtain

ot Z Z <C‘J1 Wjy > Qa0 ;(?>

Jji1=1j72=1
miy L
T i 7 T i K
-5 Z( LS WIRTILTENEEES WPV W ALER )
Jj1=172=1 I1=1 lo=1

2m1 Z

Then, note that the final term is positive since by Definition F.1, we have y; I i(t) > 0 foralli € [n].
Finally, by Theorem E.27, we have for all ¢ € [T}, T3],

mi mi

S5 (a0 0wl > 0(otmm),

Jji=1j2=1

F.1 Automatic Balancing of Gradients
Lemma F.5 (Same as Lemma 4.4). Fort € [Ty, T3], there exists a small constant C < 1 such that
‘Zielg gz@ - 27,6]3 gz(t)

. t t
mln(ZLEIQ gz( )a iels gz( ))

<C.

Proof. Without loss of generality, assume ;- gz ) > > ) . Then, we have

1613
S g oy gW (t) (t) (t)
i€l Ji i€lz Ji 1612 9; — Elelg 9; Elelg g;
~ ® 0) ®) - @ 1
mm(ZzeIQ 9i " 2ier; 9i ) Zzeh 9; 21615 9;
(
Now by the quotient rule, we have 2, (?%) < 0if and only if
icrz 9

% (Z gﬁ”) (Z g(t)> <Z g§t)> % (Z 95”) <0
1€ls i€ls ie€ls i€ls
®)
F ayl ) (Zg ) —~ (ngt)> (Zg yzlj ) <0
1612 i€l i€lq 1613

(t) 3 (t)) < Ja) Qi ki FO) Ay F
< 9 (t Z (t Z 1 < 0
<L612 ) <z€[d ZzEIz 9; ®) i€ly t 22613 9; @ i€l3 8t
(t)
FO) Ay F; (t) Oy by~
( (t) Zg ot (t) Z Ot ) <0

ZGIz i 1€ly Zzels 9; i€l3

=

¢
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Sien 0 7 (1 + exp(yi FD)) (1 + exp(—yi FV)) O

( 1 -1 8yzF(t)> 0
Sien 0 G A+ exp(y ) (1 +exp(—yFY)) 0t ) T

1 1 dy; F
< ® @ Oy ot
Yien, 9 iery (L+exp(yily”))(1 +exp(—yi F; "))

1 1 dy, F
= (t) (t) ®) ot ' 12)
Yien, 9 ier, L exp(uily7))(1 + exp(—y: F; ™))
Note that
Z g( ) 1 Z g(t)
el Ji > > el Ji

1+ mingerexp(—yiF) 57 (L exp(iFL7) (1 + exp(—y:F7) — 1+ maxjer exp(—yiFy)

By Definition F.1, we have that for i’ € I,

By FY)
ot
L my L ) 137 () (&) (t,i")
Oajw; " Wy," X, . op;.”;
:yz,z Z J at 2 l(l 12)"“1] ()W( )X( ) 811;2

L i’
G (x)) . 0P
=y Y (L o(1) + E § yr GO(X) gt’l?

lo=1 ot l1=112=1
ma ma 1
t t t t t t t
S 3 SR ORTINTLEY oV SIPILED oL oY CRRD oF L
j1=1j2=1 i€l i€laUlz3Uly i€l i€ls i€[n]

Similarly, for i’ € I3, we have

8y1’FL(/t)
ot
mi mi
t 1 t (t t t t
-3 S o) L (Sl S Tl Sl ot
ji=172=1 i€l i€laUlz3Uly i€l i€l 1€ [n]

Now, we analyze Equation (12). Note that for t € [T1, T3], if > ;) gl is sufficiently larger

than >, ;. g; ® (., Y icl, glt)/zzeld () s bigger than some threshold), then % <

) . oy; FY y; £ . . -
6087;“2) and min;ey, ylait‘ > maxer, y’T Thus, the ratio will decrease. Similarly,

if > ey, gft)/ D el g(t) is too small, the ratio will increase. Next, we compute a bound on

3 J1
er, 9P (t)
Yiel, ggt)/ziel3 gt so that 2 (gebg}t)) = 0. Substituting % in Equation (12), we
icr3 i

have

Sien 0 S5 (1 + exp(y D)) (1 + exp(—yiF))

my  my
S () [T B 0 T Tl ety X4
i€[n]

J1=1j2=1 i€ly ZGIQUI3UI4 i€l i€l

_ ( 1 Z 1 >
Yicl " jer, (L+ exp(yi F)) (1 + exp(—y: FY))
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ma ma
EDIDICRTRURT Y DIV DD DVAED BVAESICD DL
i€[n]

J1=1j2=1 i€ly iEIQUIS.ULL i€l i€ls
1 4+ min;ey, exp(— yLF( ) (t) (t) ()
- SICOIEED DRVIED VLD S SRRO O
1+ maX;ej, eXP( yiF, i€l ze12u13u14 i€l i€l i€[n]

B ST LD DRP IS 2P LES SP LY o

i€l 1€lUI3UIY i€l i€l3 1€[n]

=

1
Yict, 9" =1+ (qug g.” Lier, (1+exp(y; F‘”))(Hexp( yiFY))

(t) 1
Yier, % Tier, 91" 2ier, <1+exp<y1F<”))<1+exp( v )
(t) (t) (t)
- 21611 + 21612U13U14 9; 21611 gz + ZZGIQ 9; + (1) Zze[n] 9; )
(t) ’
Eielg 9;
Since
1 Z 1
t t t
Sier0? 5 (1 + exp(yF7)) (1 + exp(—yiF))
1 1
€ O ®
1+ max;erexp(—y:F; ') 1+ minserexp(—y, F; )
we have

1
ng 9" e, (1+exp(yi F{7)) (1+exp(—y; F["))

i
Zléfz a;” EZEIQ (1+exp(yi F\V)) (L+exp(—y: FV))

1+ min;ep, exp(— yzF(t)) 1 + max;ey, exp(— F(t))

1+ max;er, exp(— F(f)) 1+ min;ez, exp(— F(t))

By Definition F.1, we have

' ~Sier, 0 + Sienonon 0 = Sien 08 + Tier, 67 % 0() Tic 91| _
Sier, 9t o
Thus,
Tien 0 €1+6- ( 1+ mingey, exp(—y: L") 1+ maxier, exp(—yF\) | 1>
el g 1+ maxier, exp(—y:F.”) 1+ minger, exp(—yi F\”) '

Lemma F.6 (Complete version of Lemma 4.5). Fort € [11, T3], we have

(t) (t)
icn g? i€ln gl
= =< @ = o), z%tf[ : @ =00
ZZ€12U13U14 9; Zie[l 9; Eie]l 9i — 21612 9;

() G (41)
g; —

Z(tzf[n] @ = o), ac<?>t(u2> =6(1).
Zzell 9; Zz’e[3 9; — ot

Further, there exists a constant C such that

3G(t)(u1)) 3G(“(u2) < _8G(t) (13) <(1-0) 5G(”(u1) + oG (p12) )
ot ot ot ot ot

(1 +C)max<
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. , ® 0) , ..
Proof. Without loss of generality, assume 2% :%(” D 5 96 ;t(“ 2) First of all, by Definition F.1, we
have

aG(t) m
9G" (1) ZZ<% w, aj, ;Z)>n S0 =Y g ko) Y g |,

j1=1j2=1 i€l i€l i€[n]

mq

®( o
8G Mz ZZ<% j(? aj, J(Z)>n Zg(t) Zg(t +o(1 Zg ’

Jji=1j2=1 i€l i€l3 i€[n]

G“ G (ps) _ § (® ) _ (® (®
ZZ<% IROEY DSV SRS SELERTOD By
j1=1j2=1 i€l i€lUT3UIy i€[n]

This implies that

(t) t t t
BGTSM) _ Eie[l gz( - Zielz .gz( )£ o(1) Zie[n] gz( )
oG () - t t)?
gaa) 5 g = ier, 9 £ 0(1) Y 91

) t t t

-~ Bt(%) - Zzeh ( ) + Z’LEIZUI;;UI4 ( ) + 0(1) Zie[n] 91( )
oG () - t t
at(lll) EiGh gl( ) - 21612 gz( ) + 0(1) ZzG[n] gz( )

ac(")(ug) 2 ier,uIsul g(t) Dier g<®
We next analyze £ —2——. We first define the ratio R(t) = ='S2lala ™ ‘£ Since
ot M 21611 9i 21612 9i

the dependence of R on 't is clear and for the ease of notation, we omit this dependence below.
Rearranging this definition, we obtain

(1+R) (ng) Zg(”>: > g (13)

i€l i€ly i€lz3Uly

We consider the range of R € [1, 3]. By Definition F.1, we have

t t
ZZE[’I’L] gz( ) Zie[n] gz( )
ZiEIQUI3UI4 gi - Zzell 9 Zze]l 91 21,6[2 9;
where the second equation follows from Lemma F.5. This implies that
) (t)
oG at(ul) o) Zie[n] 9; — o(1)
aG® ’ (t) (t) ’
% Zieh 9; — 27,6[3 g;
which proves the first result and
ag® (t) (t)
— at(%) B Zzell + Zi612u13u14 g;
9GD (u) @ w ol
ot Zie[l 9; " — ZiEIz 9;
_ 06 (ug)
Thus, to analyze % Wa&l) we can instead analyze
26t w1)
(t) (t)
o Yienunun 9~ 2ien 9i >0
(t) (t) -
ot Zzeh 9; ZZEIQ 9;
0
cn( 3z W) (s za)
iEIzUIgUI4 iel iel i€l,
(t) (t) (t) (t)
(> s} (T s 2o
i€laUlz3Uly i€l i€l i€l
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ag( ag(”
(I+R L
o > o > (14 R) o (15)
1€l UlsUly iels i€l

Recall that by Definition F.1, we have for ¢; € I,

8%1 11 Z Z<a]1 _g?vajzw(t)> 1 32 (t) _ Z gZ(t)i Z gt)+ Zg(t) :

J1=1j2=1 i€l 1€lUI3UIY 1€1UIl3
for is € I,
aylz i (t) (t)
= ZZ<% IR DOVAENED DI LD SFLED DYLRRID O]
J1=172=1 i€l ZEIQU[3U14 1€l i€ly e[n]
for iz € I3,
ayzg p ®
= ZZ<% ERRTEY D SYLEIED SEIFLRD SPLED DY 0D BY’
J1=1j2=1 i€l i€laUl3Uly i€l i€l3 G[n]

and for i4 € 1y,

0y; 1 i
y4 Yty Z Z <a'J1 ])15 ) A, Wy, > Zgzt) Z gl(t) +o(1) Z gz(t)

J1=172=1 i€y i€l UlsUly ze[n]

The above implies that for 1 € I,

ByilFflt) ) (t) _ ™ (t)
- B8 st} (v Bl

t t J1 j ’ J2 ] t t )
Zze[l gi ) ZZEIz gz( ) J1=172=1 ' ’ n Zie]l gz( ) - Zze]z gl( )

for io € I,
Bys, PO s
(t) o - Z Z <aJ1 Ji ) Qg W J(i)> (I-R+o(1));
Ezell 9; Zieb gz J1=1j2=1 "
for iz € I3,

By, F)

(t) (t)
—or (t) @\ 1 Ziel 9; _Ziel 9; _
(t) (t) Z Z <CL11 ]1 ) Ajp, W J2 > n ( L 0] 3 0) — R+O(1) )

Zieh 9; " — Zz’eb 9i J1=1j2=1 Zzeh 9; ZiEIQ 9i

and for 74 € 1y,

83111F(t)
ot <a @ (t)> (=R +0(1)).
E E J 2 &g
Zieh gi(t) - 21612 gl(t) Ji1=1j2=1 1 jl ’ j2

Substituting the above into Equation (15) and divide both sides by
t ¢
Eh lzjg 1<aJ1 51)?a_]2w§2)>, we have

) () _ (t)
(1 +R) Z g'(Fi(;))(R— 1 +0(1)) + Z g/(Fz‘(_:)) (R— Zzeh gz(t) Zzels gz(t) +0(1)>

io€1> is€l3 Zzeh 9; Zze[z 9;
+ 3 g ED)RA+o(1))

ia€14

O ®
>(1+R) Y g (F) (HZ“ " Sen, —R+o(1)>. (16)

(t) (t)
i€l Zze]l 9; ZLEIQ 9;
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By Lemma E.5, we obtain
(t) (t)
Zieh 9, — Eielg 9;

t
Zze]l gz( ) Zzelg 91( :

where we use ¢ to denote the small deviation. Note that Equation (16) is a quadratic inequality in R
and can be rearranged as aR? + bR + ¢ > 0, where

a= > g ED+ Y JED),

-1 <¢,

1€l io€1l2
b= Z g/(Fi(;)) + Z g/(FS)) - Z gl(Fz‘(lt))’
i3€l3 i4€14 i1€11
c=(1+o0(1)) ( S yED) -1t Y JED) - 2xe) Y g'(F;j))) .
io€l i3€l3 €l

Now we analyze the equality condition in Equation (16) where we calculate the root of the equation
aR? + bR + ¢ = 0. We have

t t t
b Nier, o' (F) i (F) = Yier 9 (FL)
= < 7
“ Zi1€llg ( +212€Iz F7,(2))
t t t

o Qo) (- Liero <F§2>> —(146) Y 0 (FY) = 2%6) 5y, er, 9 (F1))

a t t :

‘ Shen 0 FED) + Cier, o' ()
Note that

®) (®)y ®) 1
g; mln— g F < g; maX—

By Equation (14), we have ,ZL > 71/4 and

Sien 9ED) =5, cr 9(FD)
Sien 0F) + X0 cr, a(FY)

i

ol

(t)
(1+ O(In%u](exp( yi F (t)))) max ( e, 9F,7) D
€|n

Zil el g(Fz(1t)) + ZizGIz g(Fi(;))

<C<1,
and
’2‘ = (1+O(e) £ O(maxexp(— F(t)))) 2.

1€[n]
Recall that we are considering the case of R € [1,3]. Thus, we only need to consider the
root that is positive and we can calculate the root R* = —% + 4/ 4a2 —< € (1,2)if ¢ and

max;eiy exp(fyiFi(t)) are both suffiently small.

Next, since ¢’ (Fi(t)) < 0, the root R* is contractive (i.e., if R(t) > R* then R(¢) is decreasing and if
R(t) < R* then R(t) is increasing).

Finally, the result at the end of Phase 1 implies that R(71) € [1, 3], which completes the proof. [
Corollary E.7. Fort € [Ty, Ts], we have
GO(m) GO(m) GO(uo)

) ) = @ 1 .
GO (2)’ =G (1) —CO ()
G(t>(ﬂl) . 36‘@(#1)
Proof. We first prove T (n) = O(1). Following from Lemma F.6, we have e = ©(1). By

ot

(1)
Theorem E.27, we have 2(27)82; = O(1). Thus, for t € [T}, T»], we obtain

<> "
GO(m) ) + [y, 25 dr

GO(u) G(Tl) Jrft aGm(M) 0 =0(1).
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G (uy)

(T1)

Note that Lemma F.6 and Definition F.1 imply that —=p5— = ©(1). Since % = 0(1),
- Jeld) . a® ‘ Gt
similarly, we have ﬁ’&iz) = O(1). Finally, G<t>EZ;; = O(1) and G(,)(’(“) = O(1) imply that
G (pg) _
—G(f)(;g) @( ) ]
F.2 How Fast the Loss Decreases
Theorem E.8. Fort € [T, Ts], we have

~ 1

L(t) = 5 = .

O(otmma)(t —Th) + (1/L(T1))

Proof. First of all, the gradient flow update for the empirical loss is given by %

S Uy F )81”7 By Definition F.1, we have for iy € Iy,

0y;, F, Z
y1 OYi L'y, Zz<% Jf’%wj(z)> 329;) Z gl(t)_ Z glt)Jr Z (t) ;

J1=172=1 i€l i€lsUl3Uly i€lsUls ZG[’n]

for io € I,

Dy,
D ZZ<% . aj, ]2> S = > e +Y 0" =Yg+

J1=1j2=1 i€l i€laUlzUl, i€l i€ls

for ig € I3,

813 7
b“ZZ@n Jf’aﬂ? J2> Zg Z g +Zg(t) Zg +oll

J1=172=1 i€l 1€loUIsUly 1€l i€l3

and for i4 € Iy,

i PD I T | POULE SRR o

Ji=1j2=1 €1y i€laUI3UI,

By Lemma F.6, we have

0y; 1
i = 35 sl e (£ 3

Jji=1j2=1 i€[n]

for all i € [n]. Therefore,

@:lze, t) 0yz

ot Ei 815
1< 1
13§55 e (15
J1=1j2=1 i’ €[n]
2
1
S e [ (L g
Jj1=1j2=1 i€[n]
=33 (a0 (22),
Jji=1j2=1
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where the last equality follows from the property of binary cross-entropy loss that £(z) = ©(—¢'(x))
for z > 0. By Definition F.1 and Lemma F.4, we have for all ¢ € [T}, T3],

S 5 (a0, a5u?) = (otmm).

Jj1=1j2=1
Thus, we have
oL

i —O(o?mmy)L2.

Now, consider the differential equation 42 = —(CL?. Note that this is a separable differential

dt
equation in ¢ and we can solve it by
1 dL d 1
Ci=0 = —(Cit—Lt'4+C)=0 = L{t)=—-—-.
Za Y i (& +C2) ®) Cit + Cy
This implies for ¢ € [Ty, T»], we have
1
O(ofmmy)(t —T1) + (1/L(T1))

Corollary F.9. The following bound holds:

DD BCITCRIBEIED D) DEORTLT )

J1=1j2=1 J1=1j2=1

IN

o(™).
m
Proof. This is a direct consequence of Lemma F.4 and Theorem F.8. O

F.3 Growth of Neuron Correlation
Lemma F.10. Fort € [T1,T5], we have

i i <aj1 ;j)7a]2 ](z)> Z Z <(1J1 ( ) a]zw(T1)>

J1=1j2=1 Ji=1j2=1

_0 <m1 l(;gmlogt> _0 <m1210g2m)

oymmy oymmy

and thus,

Z Z <a31 () ) @y W j(i)> @(J%mml).

Jj1=172=1

Proof. By Lemma F.4, we have

322@1 Wiy Aja W0 J2>_ ;

J1=1j2=1

1 - LY — 1 ~
By Theorem F.8, we have £ 3" | g o(L"Y) =0 ((Uzmml)(t7T1)+1/L(T1))' Further, by

Definition F.1, we have |F} t)| < O(logm). Thus, for t € [Ty, T»], we obtain

mi  mi

Z Z <aJ1 @ ) Qjp W (t)> Z Z <G‘J1 - ay2wfl)>

Jj1=1j2=1 j1=1j2=1

= 2m1/ ng Yy F. ) dr
=1
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t

1
O(my logm 0 L §
< O log )/;1 <<a%mm1><T—T1>+1/L<T1>>

_0 <m1 lzgmlogt) _0 (m1210g2m>
oymmy aiming

where the last line follows because T> < O(poly(m)) in Definition F.1. Finally, by Theorem E.27
we have

553 aputt ) = Ofotmm)

j1=1j2=1

O
F.4 Growth of Correlation of Value-Transformed Data
We now analyze the correlation term with value-transformed data.
Lemma F.11 (Growth of correlation of value-transformed data). For p,v € { ui}le, we have
L
O TwOTw®, — (1) (*) (t.0)
okt v v Z 9.y me_z ke T Z 9 2Pl
i€ X (1) i:veX (9 =
Thus, fort € [Ty, T, we have
max [ TWOT WOy TW(Tl)TWm)V‘ <o (logmlogty
v v v - oimmy
Proof. By the gradient flow update, we have
oW Twy
ot
0 (07 00 0, NN (), ()
T 2 2
DITLTS D) D DU NS R DY ) ST
ipeX (D) I=1j=1 iwveX(® I=1j=1
(t) (t,7) (t,2)
=G Z 9i yi pr_z ke + GO u Z 9"y me_z -
ip€X (4 iweX ()

Thus, we obtain

’MW‘(/T)TW‘(;)V _ MW‘(/Tl)TW‘(/Tl)V

L
(t,7)
pq(—l,k‘(—,u pq<—l k<+v
=1

By Definition F.1, for t € [T}, T3], we have |G (u)| < O(logm) and ZzL:1 p((;_z)l e < O(1).
Further, by the property of the cross-entropy loss, we have

Z g(t) _ L(t))_

zMEX(”

EOIE S

z/LGX()

IR gf)yz

zuEX()

T

Therefore, by Theorem F.8, we obtain

o?mmy

MW‘(/T)TW‘(/T)I/ ,uW(Tl)T (T1) ‘< O( 1ogm)/

_ 1
IWdt < O(logm)-O( 08T )
T
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Corollary F.12. Fort € [Th,Ts], we have
m ,-t t
i=1% 5t W\(/)N‘ 1

G <o/D) > gl
Z]l 1 E]g 1 <aJ1 ]1 7a’]2w]2 > iE[n]
Proof By Lemma E.9 and and Lemma F.11, for all u # v € {u1;}¢_, we have |u" Wy, Tyt v| <
O(o2\/m + 1/m) and ||W(t v||2 = O(62m + 1/m). Thus, by Lemma F.11, we have

MaX,efp.yd_,

mas, oW T <0 f+ 1/m
Zgl 1 Zh 1 <a]1 g?,ahw(t)> ( Olmml ) ’
max,, ||W( )1/||2 <O(a§m—|—1/m>
2 hm 2am <ULJ1 ](),aj2w§t)> - oimm, )’

Recall that

L

i) T i

ZG’J J W(t) Z g(t)yZl Zpl(f ) V(t, 1)TW‘(/t)M
i1=1 I1=1

This implies that
9 ‘

mi du;it)

Jj= 14

MaXy e {pubd
<
- o?m

5 (03%L+L/m+a§m+ l/m) . ligy).
[t

t
Zh 12]2 1<ah J(l)’ajzw§2)>

Corollary F.13 (Complete version of Corollary 4.6). Fort € [T}, T3], we have

gt W TWP > 0, gl il WETW Py > 0, %@W&”W&M >0
g JTWOTIO 0 < o, 83 TWOTW Oy < 0.
Proof. This is a direct consequence of Lemma F.11, Lemma F.6 and Definition F.1

F.5 Change of Random-Token Sub-Network

Lemma F.14. Fort € [T}, T] and pu € {j1;}L_,, we have
) + O(LWYmy (L(o2v/m + 1/m) + o2m)).

)
’aG(N)‘ <0 ( 20 o2mmy
ot n

¢+um+%mv

Thus,
~ /1
60 - 6| < 6 (5 +
n Jlmml

Proof. By Lemma C.1 and Definition F.1, we have

G| _IN™, é)u -

2 = [ P g W

1 L ma
t t,i
Y Y 3 S wn (w0 ),
ig: peX (i2) l2=17j1=1j2=1
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t, t
LS Oy 303 (e ot )(u)>| .

11 1 ll 1l2 1

By Definition F.1 and Corollary F.2,

1 t ti 1~
ﬁ Z gzz Yiz Z Z Z Aj, Ay < ]1 ’ J(2)>pge?2)$keu < (0] (nL(t)a%mml) .

ig: pEX (2) la=1j1=1ja=1

By Lemma E.9 and and Lemma F.11, we have |MTW\(})TW‘(})V| < O(o2\/m + 1/m) for u # v
and | W ul|3 = O(o3m). Thus,

LS Sy (i o™ 0O )

7,1 1 ll 1l2 1
9]

< O(LWmy(L(o2v/m + 1/m) + o2m)).

Thus, by Theorem E.8, for ¢ € [T}, T»], we have

/ ag(T)
n 0T

IA

‘G(t)(u) _ G(Tl)(ﬂ)‘ =

(Ulmm) + O(ma L(ogv/m + 1/m))> /Tt
1 mi(Lodym+ 1/m)+oom>>

| /\

+ 2
oimmy

0]
Corollary F.15. Fort € [Ty, T3], we have

L
>y G“MX“U@ZLM <0(1).

ll:llz: (”E{Mk}

Proof. By Lemma F.3, we have

L
> G<T1><X£2>>p§T;z?,kH2 <0(1)

l1:1l2: (l)e{uk}

By Lemma F.14, for t € [T}, Ty}, G® () = O(1) for u € {p;}¢,. On the other hand, by the
triangle inequality, we have

L
(@)y,,(T1,1) (@)y,,(t,7)
Z Z G(Tl)(Xl pq<—11 k1o Z Z G(t)(Xlz )pq<—luk<—lz

b=l X0 e, b=, X e,

L
<Y X emx)) -

P X el i

L
@)y |, (T1,9) (t2)
+ > GO(X,,; )‘pqill,keb Pty et
hLi=1y,. Xl(;)e{#k}i:4

(t,4)

q<—l1 ,k(—lg

L
i () T1,d) ti
+ > ‘G(Tl)(Xl(z)) - G(X, )’ Py ety = Pl ety
l1:1l2: (l)e{uk}
<0(1),
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where the last inequality applies Definition F.1. This implies that, for ¢t € [T}, T3], by Lemma F.14,

we have

L
S a0, Ll < o).

hi=1y,. Xl(2i>€{“k}z:4

F.6 Change of Score and Softmax Probability
Lemma F.16 (Change of score, complete version of Lemma 4.7). For t € [T1, T3], the attention
scores are changing in the following way:

o For p,v € {1, ua}, 1o # v, the query-key-correlation score between the two target signals
increases, while the query-key-correlation score between one target signal and the common

token decreases, i.e.,

0 1 ~ ~ 1
STWOTWD = ﬁ@(m)ggm)z,

ot Q@
9 LT WOT O, Lo~ 2~g o 1

* The change of score satisfies:

(st * et )

T @O0 Ty Ty (1) ’_
W' W, —v Wi 'W, =
VK o TV e e H \/mLJ%mml Vmo?mmy

max
wve{piys_y

o Forall i € {juy, pa, 3}, v € {1y, the query-key-correlation score changes as follows:

1 ~/ 1 =~
%G(L(t)aom)L + O (\/EL(f)O'g\/E) 5

‘ 9 TW(t)TWC(;),Y‘ _
n

315

and
2 2
Ty (OT (t) Ty (T T 7 (Th) ‘ 3 opm Jovm
W W W W <O
‘M K —H K @ = (n\/mLmeml + \/mo%mml ’

2 2
Ty Ty (@) (T) Ty (T1) ‘ Gom govm
Wi Wy W We 9] .
‘7 K =7 (n\/mLofmml Vmo?mm,

Proof. By Lemma C.4, we have
aVTW[((t)TWg),LL
ot
(t) (t)TV(t i), (t:1) (t,7)

1
— T X ylzank 2 HCEMO B ) P
i, v € X (1)

mi
3 9Py, S a Z y T WO gD (Vl(t’z)ng»t) —

\F e X () j=1 1=1
OT (00 (1) — Ty 010

1 0. X0 12t
o 2w el e (T () - i)
1V, K =

wTVEDpED ) p MY 2 KO W)

L mq

t T (t3) (¢, DT (ti T 1 (t0), (4 t)i

nf > o 30w W w o (T ) = TV OO ) T g ().
e X (@) I=1j=1

Now, we take p = p1, v = pa. By Theorem E.27, we have GV (u5) > Q(1). A consequence of

Definition F.1 and Lemma F.6 is that 2 (“2) > 0 fort € [T1, T»). Thus, we have G (1) > Q(1).
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Further by Theorem E.27, we have G(™) (1) = O(0go1+/mim;) for i € R and then by Lemma F.14,
we have G(t)(ﬂ) _ 6(0001 ) + 0O (l + 7m(L(a§\/T§+1/m)+a§m)) for ¢t € [Ty, Ts). Also,

oimm

Definition F.1 implies that G(*) (115) — i w(t)V( )pl(é l)) > Q(1). Now, this yields

oW Wi 1 - 1~
Q :@(L<t>a§m)L+o<ﬁ LWg \F)

at Jm

On the other hand, by the analysis similar to the above, we obtain

a ®T (t),ul 1 1 -
sWi' Wo'm £0,2 )2
5 \/ﬁ@(L )L +0 <\/%L O'O\/m) .

Next, to prove the maximum change of the score, we have

1

< o=

wTwWEWY
ot

max
8%

~ /1 ~
(L(t)UQm)L +0 (mL(t)ag m) .

By Theorem F.8, we have

t 1 ~/ 1 ~
VTWI(;?)TWg)u—VTWI((TI)TWC(QT”#‘S/ ﬁ@( T)crgm)L—FO(m \F)
co( g _dbm )
vmLoimmy — /moimmy

Finally, for v € {u;}& 4, 1 € {pi}9_,, we have

0 1 ~ - 1 ~ 1 -~

‘(’Jt TW“)TW%‘ —nﬁ@(ﬂt)agm)z +0 <mL<t>03m),
which implies that

2 2
T OT . T T T T | 5 agm og/m
wOTw O, T Ty, ‘ <0 .
‘ﬂ K Q TR WK Q = <n«/mLo%mm1 * \/mo%mnn)

O

Corollary F.17 (Change of softmax). Fort € [T1,T5), the softmax probability is changing in the
following way:

o For p,v € {u1,p2}, p # v, the softmax probability between the two target signals

increases, whereas the softmax probability between one target signal and the common token
decreases, i.e.,

9 () 1 570,52,y 1
(‘%pqeu,keu = ﬁe([’ agm) 2’
9 (1)

1
otPacnkens = _7@( Waim) 13 2

o Forall pn € {pa, p2}, v € {1y, the softmax probability between one target signal and
a random token changes as follows:

1 =~

~ 1 =~
®) 520 — t) 2./

)

Eptﬂ—wﬁ—’y =

Furthermore, we have

(t,2) (0,7)
’pl17l2 pll Iy

<0(1/L?).

i€[n], ll,lge[L]
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Proof. Take p = py, v = po. First of all, by Definition F.1 and Lemma F.16, we have

oxOTwHTw 1 1 1 (1 =
t,i Q t) 2 t t) 2
p((1<_m 9% < ﬁO(L( Jo2m)— 2t \/m@(L( )aom)L +0 (ﬁL( )UO\/ﬁ) :
Thus, by Lemma G.1 and Lemma F.16, for ¢ € I;, we obtain
8 (t 1) ].
atpq<—u1,k<—u2 = 7@( JOm)ﬁv
9 (ta)

1~ 1
— —8(IW02m) =
@( aom)L

3P
ot a1 ks m 2

On the other hand, for v € {y;}%_,, we have

R -y O )L12+5(L1nz<t>ag\/m>.

(')tp‘“_“ ke nm

Finally, by Lemma F.16, we have

2 2
T Oy @ Ty (T (Th) ‘ A gom govm
Wi'Wo'p—v Wet'W, <0 .
R Qe M= (\/mLU%mml + Vmoimm,

max
v

Thus, by Lemma G.2, we obtain

(t,9) (T1,)
max Pl s 1”11,1122

i,01,l2
" 2 2 2 2 2
<0 ( opm " Uom +L< opm i 002\/5 ) ) _ O(l/L2).

mLZGfmml ma%mmlL mLU%mm1 moimmg

O
Corollary F.18. Fort € [T}, T3], we have
(1)) OPiy iy
maX;c[n] le 1 212 1 (X ) ot 1 )
<o(l)— N
O ® <o)y Z Ji
Z]l 1 Z]g 1 aJl J1 7a]2w]2 ZE[TL]

Proof. This is a direct consequence of Definition F.1, Lemma F.10 and Corollary F.17. O

F.7 Change of Self-Correlation of Key/Query-Transformed data

Lemma F.19 (Change of self-correlation). For pu,v € {m}le, we have

2
T O T 1r-(8) T (T)T 15-(Th) A Opvm
’u WQ WQ w—v WQ WQ u‘ §O<>,

Vmo?mmg
2
T Ty @) Ty (T) Ty (Th) A govm

Proof. We prove the result for I/TWg )TWg)u and the proof for VTWI((t)TWI((t)u is similar. By
Lemma C.4, we have
T
5VTWC(; ) Wg)u
8t

miy

N3 K )T i t,3 t,0
> yzZa T K Ddiag (VW =TV ) )
tu€X<)

S 0P Z 0y WET K diag (v<t,i>Tw§t> B wf”v(“)pf@fl)) D
j=1

ive X (9)

nf

f
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A simple result from Lemma F.16 is that |VTWI(§)TWS)M\ < O(02y/m) for t € [Ty, Ts] and
p,v € {u;i}¢_,. Therefore, by Definition F.1,

T
81/TWS) Wg),u

- 1 ~
5 <0 (\/EL(t)USﬁlogm) ,

which implies
t 2
Ty Ty () Ty (PO T g (T1) S 1 2@ o ~ ([ ogvm
VIWTW = TWE W ‘</O<L o2ymlogm ) dr <O [ Y™
Qo Won Q n o \Ym 0vmlog JmoZmm,
where the inequality follows from Theorem F.8 and Definition F.1. O
F.8 Small Loss is Achieved
Theorem F.20. Define T* = min,{t : L) = O(1/poly(m))}. Then, T* € [Ty, T).

Proof. The following results altogether show that Phase 2 can last for at least ©(poly(m)) time:

* Lemma F.19 proves that the change of K, () self-correlation as follows:

MTWI(;)TWI(;)V_MTWI((O) 0) ‘ 2\/>)

max
v

max
v

uTW(g)TWg)I/ — ,uTWéO) WQ 1/‘ = O(o2v/m).

Corollary F.9 proves that

Z Z <a31 x ) Qjp W §§)> < O(oimmy).

J1=1j2=1

 Corollary F.12 proves that

my o dwi )
MaXye 34 [225=1% 3¢ Wy 1t § (1/L)1 Z “
S s Ty = O 2 0
ji=1 jo=1 71 ]1’ g2 Yia 1€[n]

 Corollary F.15 proves that

L
S e L] < 0.

l1=1 lo: X{;)E{Hk}g:4

* Corollary F.17 proves that

s ‘pu D _ 09
i€[n],l1,l2€[L] ERL SR

<O(1/L?).

* Corollary F.18 proves that
8p 12
Y1 e GO (X)) gt’
mi mi (t) t
Zﬁ:l ij):l <aj1 Wi ’aJ?wJ(2)>

max;c [n]

Z g(t)

e Lemma E.5 implies that

(t)

1. dier, Yi <9
— t — .

2 Ziels gz( )
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* Lemma F.6 implies that the gradients ) _,_; g(t) for I € {I1, 15,15, I} satisfies

%

Z gi; < min (Z gft), Z gf”) < max (Z g§t)7 Zg§”> < Zg%@ < Z

i€y i€l i€l icly icls i€l i€l UlUlL
* Lemma F.6 and Corollary F.17 proves that yiFl-(t) >y Fi(Tl) > C.

The above shows that all the requirements needed to satisfy the definition of Phase 2 (Definition F.1)
can hold for at least Q(poly(m)) time. Thus, T5 — T} > Q(poly(m)). Further, by Theorem E.8, we

have that L) < O(1 /poly(m)) implies t = O(poly(m)). O
F.9 Proof of Theorem 3.2

Proof. This is proved in Corollary F.13 and Lemma F.16. O

F.10 Proof of Theorem 3.3

Proof. This is proved as a direct consequence of Lemma F.6 and Theorem F.20.

For the generalization loss, since the training loss satisfies LT <1 /poly(m), for each class I €
{I1, I, I3, I} there exists a sample X} such that £(X}) < 1/poly(m). Note that by Definition F.1

the random tokens only contributes to O(1) in F(T")(X). Thus, given a fixed new sample X ~ D,
we have |[F(T")(X) — F(T")(X7)| < O(1) which implies £(yF(T") (X)) < 1/poly(m). Since this
holds for all X ~ D, we have L(T") < 1/poly(m). O

G Auxiliary Results

The gradient of p(x); = Softmax(z); for x € R™:

exp(z;) exp(z;) _

ap(x); 9 explw) ) TS e Seeten — _P@iP(@); i#J
Owj — Ou; Yoy explan) zi"élfﬁf{iw - (zixfx(;(;k))z =p@)i(1 —p(x))) i=j
= p(x)i(1(i = j) — p(x);)
= J(p(x)) = diag(p(x)) — p(z)p(z) . (17)

Lemma G.1 (Gradient of softmax). Let s(t) € R! be differentiable in t and p(s) = Softmax(s).
Denote p;(s) = Softmax(s);. Then

Op(s(t)) _ Op(s) 9s(t)

- — (diag(p(s)) — p(s)p(s)T) 20

ot 0s Ot ot -
Proof. By the chain rule and the gradient of softmax in Equation (17), we obtain
dp(s(t)) _ Op(s) Os(t) os(t) . +, 0s(t)

O

Lemma G.2 (Perturbation of softmax). Let s € R! and p(s) = Softmax(s). Denote p;(s) =
Softmax(s);. Consider a small perturbation ¢ € R! to s. Then

p(s +e) —p(s) = (diag(p(s)) — p(s)p(s) e + €,
where [|¢][sc = O([le]13)-

Proof. By Taylor’s expansion theorem on softmax and the gradient of softmax in Equation (17), we
have

pls +¢) = p(s) = J(p(s))e + € = (diag(p(s)) — p(s)p(s) e +¢,
where [|¢[|oc = O([e][3)- 0
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H Probability

Lemma H.1 (Bernstein’s inequality for bounded random variables). Assume Z1,...,Z, aren i.i.d.
random variables with E[Z;] = 0 and |Z;| < M for all i € [n] almost surely. Let Z =Y | Z;.
Then, for all t > 0,

/2 . #2 '
PIZ >t < oxp (‘ ST EZ Mt/3> < oxp (‘ min {2Z=E[Z2] m}) ’

which implies with probability at least 1 — 9,

n

1 1
Z < |2) E[Z%]log 5+ 2Mlog .
j=1

Lemma H.2. For wi,wy € R™ with wy, ws i N(0, I,,/m), we have

4 2 4 2
21>/ —log=+—log=| <
|||wl|\2 1|_ mloga—#mlog&]_é,
4 2 4 2
> /—logZ+—log=| <4
]P’l|<w1,w2>|_ mlogé—&—mlogé]_&

P

Proof. We first have

E [||w1||§] =E

i w%zl =1

i=1

Note that w%Z is a sub-Gamma random variable with parameters (%, %) Thus, by Bernstein’s
inequality,
4 2 4 2
P 3-E 2] > \/17 —log | < 4.
l“wlz [leHQH “\'m 0g 5 + - og§ <
Next,

E[(w1,w)] = E

m
E wiwe;| =0
i=1

By Bernstein’s inequality, we obtain

42 4 2
P[|<w1,WQ>| > \/E—‘rmlog&] <6
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA|
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The experiments are done with synthetic data of small scale and the behavior
of the experiment results are pretty consistent.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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