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ABSTRACT

Understanding how transformers learn and utilize hidden connections between
words is crucial to understand the behavior of large language models. To study
this mechanism, we consider the task of two-mixture of linear classification which
features a hidden correspondence structure between words, and study the training
dynamics of a symmetric two-headed transformer with ReLU neurons. Motivated
by the stage-wise learning phenomenon observed in our experiments, we design
and theoretically analyze a three-stage training algorithm, which can effectively
characterize the actual gradient descent dynamics when we simultaneously train
the neuron weights and the softmax attention. The first stage is a neuron learning
stage, where the neurons align with the underlying signals. The second stage is
an attention feature learning stage, where we analyze the feature learning process
of how the attention learns to utilize the relationship between the tokens to solve
certain hard samples. In the meantime, the attention features evolve from a nearly
non-separable state (at the initialization) to a well-separated state. The third stage
is a convergence stage, where the population loss is driven towards zero. The
key technique in our analysis of softmax attention is to identify a critical sub-
system inside a large dynamical system and bound the growth of the non-linear
sub-system by a linear system. Along the way, we utilize a novel structure called
mean-field infinite-width transformer. Finally, we discuss the setting with more
than two mixtures. We empirically show the difficulty of generalizing our analysis
of the gradient flow dynamics to the case even when the number of mixtures equals
three, although the transformer can still successfully learn such distribution. On
the other hand, we show by construction that there exists a transformer that can
solve mixture of linear classification given any arbitrary number of mixtures.

1 INTRODUCTION

Since the invention of self-attention (Vaswani et al., 2017), transformers have become the dominat-
ing backbone architecture in many machine learning applications such as computer vision (Doso-
vitskiy et al., 2020; Liu et al., 2021), natural language processing (Devlin et al., 2018) and protein
structure prediction (Jumper et al., 2021). Within the past two years, ChatGPT and GPT-4 (OpenAI,
2023; Bubeck et al., 2023) along with other large language models (LLMs) (Touvron et al., 2023;
Manyika & Hsiao, 2023; Gemini, 2023; Anthropic, 2024) have demonstrated astonishing abilities
in language understanding, math Olympiad (AlphaProof & AlphaGeometry, 2024) and coding, etc.

Despite the wide range of success of transformers, how those models can achieve such impressive
performance still remains largely unknown. One mystery lies in how transformers are trained to
utilize the connections between words to solve various tasks. For example, consider the prompt

∗Work done while visiting Princeton University
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“Bob is watching television in the living room. Where is Bob?”. To answer the question, the model
must utilize the (hidden) correspondence between “Where” and “living room”.

There are many previous works studying the mechanism of self-attention under different settings
through training dynamics such as (Li et al., 2024b; Huang et al., 2024; Li et al., 2022; Tarzanagh
et al., 2023b;a; Vasudeva et al., 2024). However, many of those previous works were either focusing
on attentions that are position-based or studying a setting where the words in the dictionary don’t
have explicit relationships between each other. The goal of this work is to study some simple yet
informative setting such that we can get a clear understanding how the softmax attention learns and
utilizes certain connections between words to solve tasks through training. To achieve this goal, we
consider the task of mixtures of linear classification. In this task, we have a dictionary consisting
of group identifiers and classification features, and there is a hidden correspondence structure:
each group identifier is associated with one classification feature. Each input contains a group
identifier and a corresponding signed classification feature. The rest of tokens are sampled from
signed classification features from other groups. The label of the sequence is determined by the sign
of the classification feature corresponding to the group identifier. Thus, a model needs to capture the
correspondence structure between group identifiers and classification features to solve this task. To
see how attention can solve this task, later in our training dynamics analysis, we are going to show
that the softmax attention builds such correspondence structure by allocating more weights on the
group identifier when it sees classification feature queries.

Although the intuition suggests that we can construct a transformer to solve this task, it is still
unknown that how the transformer models can be trained to learn such a hidden correspondence
structure. This inspires the following intriguing question:

How do transformers learn and utilize the hidden correspondence structure to
solve mixture of linear classification via gradient descent?

Our contributions. In this work, we study the training dynamics of a two-headed transformer given
two mixtures. Our contributions are summarized as follows:

1. As a guidance for our theory, we first conduct experiments to observe the training dynamics
of the transformer where we train all the weights simultaneously. Our experiment results
show a clear stage-wise learning phenomenon where the neuron weights learn before the
attention modules.

2. Motivated by our experimental observations, we design a three-stage layer-wise training al-
gorithm and further analyze its gradient flow dynamics. We characterize the feature learn-
ing process where the attention features evolve from a nearly non-separable state to a well-
separated state. In particular, our analysis captures how the self-attention associates the
group signals and classification signals to solve this task. Our analysis closely reflects the
actual behavior of the gradient descent dynamics when we train all weights simultaneously.

3. In order to analyze the change in softmax attention, we formulate a set of relevant variables
whose evolution can be characterized by a large non-linear dynamical system of ordinary
differential equations. To make the analysis of the dynamical system tractable, we reduce
the dimension of the system by identifying some key variables and forming a smaller sub-
system. We are able to relate the evolution of the smaller system with a linear dynamical
system to track its dynamics. Our proof techniques can be of independent interest.

4. We explore the training dynamics of the transformers when the number of mixtures goes
beyond two. We empirically show the difficulty of analyzing training dynamics even when
the number of mixture equals three, although the two-headed transformer model can still
learn this distribution. On the other hand, we give a general two-headed transformer con-
struction that can solve mixture of linear classification given arbitrary number of mixtures.

1.1 RELATED WORK

Mixture of linear regression/classification. Mixture of linear regression/classification is a classi-
cal model in statistics and machine learning (De Veaux, 1989; Jordan & Jacobs, 1994) which was
applied in areas such as object recognition (Quattoni et al., 2004) and machine translation (Liang
et al., 2006). This problem can be solved by tensor-based methods (Anandkumar et al., 2014; 2012;

2



Published as a conference paper at ICLR 2025

Hsu et al., 2012; Chaganty & Liang, 2013) and the expectation-maximization algorithm (Khalili &
Chen, 2007; Yi et al., 2014; Balakrishnan et al., 2017; Wang et al., 2015). Previously, mixture of
linear classification has been used in studying mixtures of experts (Chen et al., 2022).

Training dynamics of transformers. The training dynamics of transformers have been studied
under various settings. One particular category is in-context learning. For example, in-context linear
regression has been studied under linear attention (Zhang et al., 2024), softmax attention (Huang
et al., 2023), non-linear embedding (Yang et al.), and multi-task with multiple heads (Chen et al.,
2024). Other in-context learning settings include classification (Li et al., 2024b), causal structure
(Nichani et al., 2024), Markov chain or n-gram (Edelman et al., 2024; Makkuva et al., 2024; Chen
et al.), nearest neighbor (Li et al., 2024c) and chain-of-thought (Li et al., 2024a).

For non-in-context settings, it has been shown that trained transformer can learn spatial structures
(Jelassi et al., 2022), topic models (Li et al., 2023b), and feature-position correlation (Huang et al.,
2024). In addition, (Tian et al., 2023) showed that self-attention behaves like a discriminative scan
algorithm. There is one line of works studying a setting where the attention weight can converge
to a SVM solution (Tarzanagh et al., 2023b;a; Vasudeva et al., 2024). In addition, (Li et al., 2022)
studied a classification task with label-relevant and label-irrelevant tokens. (Li et al., 2023a) pro-
vided analysis of training graph transformers for node classification tasks. (Wang et al.) showed
transformers can learn a sparse token selection task which lead to an optimization-based separation
between transformers and MLPs. There are also works trying to prove convergence of transformer
training via NTK (Wu et al., 2023; Deora et al.) and mean-field (Kim & Suzuki, 2024; Gao et al.).

Our work also study a non-in-context learning setting. However, many of the previous works were
either considering attentions that are position-based or studying a setting where the words don’t
have explicit relationships with each other. Our study complements the above work by considering
a setting where the dictionary possesses a correspondence structure.

2 SETTINGS

Notations. For a vector v ∈ Rd, we use diag(v) to denote a diagonal matrix with v being the
diagonal entries. When we subtract the vector v by a scalar a, we subtract each entry of v by a, i.e.,
v − a ∈ Rd and (v − a)i = vi − a. For a set S with elements in R and |S| = n, we can vectorize
the set S in any arbitrary but fixed order and denote the vector as vec(S) ∈ Rn. We use Ω̃, Θ̃, Õ to
hide polylogarithmic factors.

2.1 DATA DISTRIBUTION

Definition 2.1 (Mixture of linear classification). Define the K-mixture of linear classification data
distribution D as follows: Assume d ≥ 2K. Let C = {ck}Kk=1 ⊂ Rd denote the group signals and
V = {vk}Kk=1 ⊂ Rd denote the classification signals, where C ∪ V is orthonormal. Let L be the
number of tokens per sample. Each data entry (X, y) ∈ Rd×L × {±1} is created as follows:

1. Sample y ∼ Uniform({±1}).

2. Sample k ∼ Uniform([K]) and l0 ∼ Uniform([L]). Set Xl0 = ck.

3. Sample l1 ∼ Uniform([L] \ {l0}) and set Xl1 = yvk.

4. For each l2 ∈ [L] \ {l0, l1}, sample k′ i.i.d.∼ Uniform([K] \ {k}) and set Xl2 = ϵvk′ , where

ϵ
i.i.d.∼ Uniform({±1}).

Based on our data distribution, the model needs to utilize the correspondence between the group
signals and classification signals to solve this task. We further elaborate our data model as follows.
Take the sequence X = [c1, y2v2, y1v1, y3v3] with y1, y2, y3 ∈ {±1} as an example. Based on the
form of X , the token c1 indicates that this instance is in group 1. Then the label of this sequence
depends on the sign associated with v1 (that shares the same index with c1), and hence is given by
y1.
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For the training dynamics part of this work, we consider K = 2 and L = 3, and we discuss the
setting with arbitrary number of mixtures in Section 6. Since the samples are invariant of permu-
tation between tokens, we can ignore the order of the tokens and define Xk,s,s′ := (ck, svk, s

′vk′)
for k ̸= k′ ∈ [2], s, s′ ∈ {±1}. We refer to the samples Xk,s,s as consistent samples and samples
Xk,s,−s as conflicting samples.

2.2 TRANSFORMER ARCHITECTURE AND LOSS FUNCTION

Given inputs X ∈ Rd×L, we first define a single softmax attention head H : Rd×L → R as

H(X) =
L∑

l=1

w⊤Xsoftmax
(
X⊤W⊤KWQxl

)
where w ∈ Rd, b ∈ R, WK ,WQ ∈ Rm×d, and xl denotes the l-th token in X . Then, we define our
one-layer symmetric two-headed transformer with ReLU neurons f : Rd×L → R as

f(X) = σ (H+(X) + b)− σ (H−(X) + b) (1)

where b ∈ R and σ is the ReLU activation function. We denote the weights in H+ as
w+,WK+,WQ+ and similarly for H−. We introduce a shorthand notation K+ = WK+X
and Q+ = WQ+X . For µ, ν ∈ X , we define the output of attention, or softmax probabil-

ity, as p
(+)
q←µ,k←ν(X) := softmax

(
X⊤W⊤K+WQ+µ

)
l(ν)

, where l(ν) denotes the index such that

Xl(ν) = ν.

Loss Function. We train w±,WK±,WQ± to minimize the population loss E(X,y)[ℓ(yf(X))] where
ℓ(x) = log (1 + exp (−x)) is the binary cross-entropy loss. The gradient of the cross-entropy loss
is given as ℓ′(x) = − 1

1+ex and we denote g(x) := 1/(1 + ex).

3 GUIDING EXPERIMENTS AND ALGORITHM

3.1 EXPERIMENT RESULTS

To understand the dynamics of the training process, we train the two-headed transformer in Equa-
tion (1) on the data distribution in Definition 2.1. In our experiments, all the weights in the trans-
former are trained simultaneously via gradient descent with learning rate 0.1.
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Figure 1: Experiment results. The attention scores and neuron alignment are of the positive head.

We make the following observations from our experimental results in Figure 1, which will guide us
to further develop our three-stage training algorithm and our analysis in Section 4:

• Learning for different types of samples follows different orders. From Figure 1a, the loss
for the samples with consistent signs drops in the early stage of training, while the loss for
the samples with conflicting signs only start to drop after sufficient amount of training.

• There is also a learning order of the weights. From Figure 1b, the neuron weights start to
align with the underlying signals since the beginning of the training. On the other hand, by
Figure 1c, only after sufficient amount of training, the attention scores start to exhibit no-
ticeable change. We further conduct experiments by fixing the neuron weights as Gaussian
and only training the attention. Our results show that the model is not trainable in this case.
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• The time when the attention scores exhibit noticeable change coincides with the time when
the loss for samples with conflicting signs drops. This suggests that attentions play a central
role in learning those samples.

• The attention weights are positively associating the group signals and classification signals
from the same group and negatively associating them from different groups. This can
be seen from Figure 1c that the score c⊤1 W

(t)⊤
K+ W

(t)
Q+v1 is increasing to a large positive

magnitude and the score c⊤1 W
(t)⊤
K+ W

(t)
Q+v2 is decreasing to a large negative magnitude.

In order to understand the mechanism of neurons and attentions separately, the second observation
suggests to decompose the training process into stages: neurons are trained first, followed by training
the attention. The process can be finished by training neurons again to drive the loss towards zero.

3.2 THREE-STAGE TRAINING ALGORITHM

Motivated by our experiment results, we introduce our three-stage layer-wise training algorithm in
Algorithm 1. In our layer-wise training algorithm, in the first stage we train the neuron weights
w+, w−. In the second stage, we train the attention weights WK+,WQ+,WK−,WQ− on the sam-
ples with conflicting signs. In the third stage, we train the neuron weights again. Our algorithm
design closely reflects our experimental observation in Section 3.

Algorithm 1 Three-stage Training

Initialize w
(0)
± = 0, W (0)

K±,W
(0)
Q± ∼ N (0, ω2 1

m ) and b to be a sufficiently small positive constant
such as 1/2.
while t ≤ T1 do ▷ Stage 1: training the neuron weights with all samples

dw(t)
±

dt = −E(X,y)[∇w±ℓ(yf
(t)(X))].

[W
(t)
K±,W

(t)
Q±] = [W

(0)
K±,W

(0)
Q±].

end while
while t ∈ [T1, T2] do ▷ Stage 2: training the softmax attention with the conflicting samples

d[W (t)
K±,W

(t)
Q±]

dt = −E(X,y)[∇[WK±,WQ±]ℓ(yf
(t)(X))|X = Xk,s,−s].

w
(t)
± = w

(T1)
± .

end while
while t ∈ [T2, T3] do ▷ Stage 3: training the neuron weights to minimize the population loss

dw(t)
±

dt = −E(X,y)[∇w±ℓ(yf
(t)(X))].

[W
(t)
K±,W

(t)
Q±] = [W

(T2)
K± ,W

(T2)
Q± ].

end while

4 MAIN RESULTS

Before we state the main results, we first introduce the parameter conditions used in our analysis.

Condition 1. We use the following parameter conditions:

• The attention initialization scale satisfies ω < C < 1 for some small constant C.

• The attention weight embedding dimension m ≥ poly(1/ω).

We now state the guarantee for Algorithm 1 under an idealized infinite-width transformer model
which we will introduce later in Definition 5.1. Our experiment results show that this idealized
model is indeed an accurate model that captures the real training dynamics.

Theorem 4.1 (Main theorem). Under Condition 1 and the infinite-width transformer model in Def-
inition 5.1, there exists T1 = Θ(1), T2 − T1 = O(log(1/ω)), T3 − T2 = O(1/ϵ) such that after
running Algorithm 1, we have E[ℓ(yf (T3)(X))] ≤ ϵ. The neuron weights of the transformer satisfies
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• Positive alignment with the signed classification signals w
(T3)⊤
+ vk = Θ̃(1) and

w
(T3)⊤
− (−vk) = Θ̃(1).

• Positive alignment with the group signals w(T3)⊤
± ck = Θ̃(1).

• Symmetry between heads and groups: w
(T3)⊤
+ vk = w

(T3)⊤
− (−vk), w

(T3)⊤
+ v1 =

w
(T3)⊤
+ v2, w

(T3)⊤
+ ck = w

(T3)⊤
− ck, w

(T3)⊤
+ c1 = w

(T3)⊤
+ c2.

In particular, the output of the softmax attention for sample X1,+,− satisfies the following properties:

• Concentration on the group signal key:

p
(+,T3)
q←v1,k←c1

(X1,+,−)− p
(−,T3)
q←v1,k←c1

(X1,+,−) = Θ(1)

p
(+,T3)
q←−v2,k←c1

(X1,+,−)− p
(−,T3)
q←−v2,k←c1

(X1,+,−) = Θ(1)

p
(+,T3)
q←c1,k←c1

(X1,+,−)− p
(−,T3)
q←c1,k←c1

(X1,+,−) ≥ 0

• Near symmetry within a single attention head:∣∣∣p(+,T3)
q←v1,k←v1

(X1,+,−)− p
(+,T3)
q←v1,k←−v2

(X1,+,−)
∣∣∣ ≤ Õ(ω)∣∣∣p(+,T3)

q←−v2,k←v1
(X1,+,−)− p

(+,T3)
q←−v2,k←−v2

(X1,+,−)
∣∣∣ ≤ Õ(ω)∣∣∣p(+,T3)

q←c1,k←v1
(X1,+,−)− p

(+,T3)
q←c1,k←−v2

(X1,+,−)
∣∣∣ ≤ Õ(ω).

We now describe how the transformer can correctly classify the sample X1,+,−. Based on Theo-
rem 4.1, the output of the transformer f (T3)(X1,+,−) can be analyzed as follows: by the attention’s
concentration on the group signal key, we have

w
(T3)⊤
+ c1

(
p
(+,T3)
q←v1,k←c1

(X1,+,−) + p
(+,T3)
q←−v2,k←c1

(X1,+,−) + p
(+,T3)
q←c1,k←c1

(X1,+,−)
)

− w
(T3)⊤
− c1

(
p
(−,T3)
q←v1,k←c1

(X1,+,−) + p
(−,T3)
q←−v2,k←c1

(X1,+,−) + p
(−,T3)
q←c1,k←c1

(X1,+,−)
)
≥ Ω(1).

On the other hand, due to attention’s near symmetry property, regardless of queries, we have
w

(T3)⊤
+ v1 and w

(T3)⊤
+ (−v2) approximately cancelling each other:

w
(T3)⊤
+ (−v2)

(
p
(+,T3)
q←v1,k←−v2

(X1,+,−) + p
(+,T3)
q←−v2,k←−v2

(X1,+,−) + p
(+,T3)
q←c1,k←−v2

(X1,+,−)
)

+ w
(T3)⊤
+ v1

(
p
(+,T3)
q←v1,k←v1

(X1,+,−) + p
(+,T3)
q←−v2,k←v1

(X1,+,−) + p
(+,T3)
q←c1,k←v1

(X1,+,−)
)
≈ 0.

Therefore, the positive head can output a value larger than the negative head and thus the sample can
be correctly classified. Our results on the behavior of the softmax attention in Theorem 4.1 agrees
with our experiment results in Figure 1c. By symmetry, the trained transformer will behave similarly
on other samples with conflicting signs.

We now introduce another interpretation of Theorem 4.1 that relates to logistic linear regression.
Notice that the transformer architecture in Equation (1) can be rewritten as

f(X) = [w⊤+ , w
⊤
−, 1]

 σ̇(H+(X) + b)
∑L

l=1 Xsoftmax
(
X⊤W⊤K+WQ+xl

)
−σ̇(H−(X) + b)

∑L
l=1 Xsoftmax

(
X⊤W⊤K−WQ−xl

)
σ̇(H+(X) + b)b− σ̇(H−(X) + b)b


︸ ︷︷ ︸

F(X)

(2)

We define the vector F(X) ∈ R2d+1 to be the attention feature of input X . Thus, if the transformer
model can successfully learn the data distribution D, we must have the set of attention features
{F(X)}X∈D linearly separable. We show in Lemma 5.4 that the attention features under uniform
attention is not linearly separable and we describe how the attention features evolve and become
well-separated after training in Section 5.2.

Finally, for samples with consistent signs, although their attention features also change after stage
2, we are able to show that those changes do not affect the separability of their attention features.
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5 PROOF OUTLINE

In order to analyze the training dynamics of the softmax attention, first of all, we need to keep track
of the dynamics of the score variables µ⊤W⊤KWQν for µ, ν ∈ C ∪ V . However, upon writing down
the gradient flow updates for µ⊤W⊤KWQν, it can be seen that their updates are governed by the
variables in the form of µ⊤W⊤KWKν and µ⊤W⊤QWQν which we call key and query self-score
variables. By keeping track of the gradient flow updates for those three types of variables all at
once, we now have a complete dynamical system where all the terms appearing in the updates are
tracked. The gradient flow dynamical system can be found in Appendix B.2.

Before we analyze the training dynamics, we observe one complication brought by random ini-
tialization: from our data distribution in Definition 2.1, the two mixtures are symmetric to
each other and thus, ideally, the transformer’s behavior should be the same for each class, e.g.,
c⊤1 W

(t)⊤
K+ W

(t)
Q+v1 = c⊤2 W

(t)⊤
K+ W

(t)
Q+v2. However, due to random initialization, c⊤1 W

(0)⊤
K+ W

(0)
Q+v1 ̸=

c⊤2 W
(0)⊤
K+ W

(0)
Q+v2. In order to solve the above complication, we consider the infinite-width trans-

former where the embedding dimension m of the softmax attention goes to infinity. Within this
model, we can derive nice symmetry properties between two groups and between two heads (Ap-
pendix C), that are convenient for our analysis.
Definition 5.1 (Infinite-width transformer). The infinite-width transformer is defined as the archi-
tecture in Equation (1) with m → ∞.

Our experiment results show that as long as the initialization scale ω is small enough, and the
embedding width is large enough, the infinite-width transformer can indeed serve as an accurate
model reflecting the true dynamics. For clarity, we present all of our results and analysis under
the infinite-width transformer model. The finite-width transformer is a discretized version of the
infinite-width transformer. Thus, the actual gradient flow dynamics can be seen as the infinite-width
dynamics with perturbation introduced by finite-width discretization. We discuss how to take the
discretization into account in Appendix G.

5.1 STAGE 1: NEURONS ALIGN WITH THE SIGNALS

In stage 1 of Algorithm 1, we train the neuron weights and keep the attention weights fixed at their
random initialization. Since the neuron weights are zero-initialized, the outputs of the two attention
heads are both zero at initialization. Recall that we fix the bias term b in our transformer (Equa-
tion (1)) to be some small positive constant. Thus, there exists a period of time from initialization
that the outputs of ReLU will be positive for all samples. We first characterize how the neuron
weights align with the signals in such a case.
Lemma 5.2 (Neuron alignment, stage 1.1). Under Definition 5.1, for t ∈ [0, T1], if
H

(t)
+ (X), H

(t)
− (X) > −b for all X ∈ D, then for k ∈ {1, 2},

dw(t)⊤
+ vk

dt
=

1

8

 ∑
k′∈[2],s=s′

g(t)(Xk′,s,s′)

 ,
dw(t)⊤
− vk

dt
= −1

8

 ∑
k′∈[2],s=s′

g(t)(Xk′,s,s′)

 .

At the same time, for k ∈ {1, 2},

dw(t)⊤
+ ck

dt
= 0,

dw(t)⊤
− ck

dt
= 0.

From the above lemma, we can see that when the output of ReLUs are positive for all samples, the
neuron weights will align with the signed classification signals while not aligning with the group
signals at all. A direct consequence is that the attention head output H(t)

+ (X1,−,−) will keep de-
creasing until it becomes smaller than −b, as long as b is not too large. Then the neuron weight w+

is no longer able to receive gradient from sample X1,−,−. We can show that when this happens, the
neurons start to positively align with the group signals.
Lemma 5.3 (Neuron alignment with group signals, stage 1.2). Under Definition 5.1, for t ∈ [0, T1],
if H(t)

+ (Xk,−,−) < −b for k ∈ {1, 2}, then

dw(t)⊤
+ ck

dt
=

1

8
g(t)(Xk,+,+).
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At the same time, the neurons still keep aligning with the signed classification signals. Thus, if
T1 = Θ(1), then we have w

(t)⊤
+ vk = Θ(1) and w

(t)⊤
+ ck = Θ(1) after stage 1.

Although the neuron weights can learn the signals in stage 1, it is not hard to show that the trans-
former will output zero for samples with conflicting signs like X1,+,− and thus those samples are
not correctly classified. In fact, we can show that under the averaged initial value model, our data
distribution D is not learnable by merely training the neuron weights.
Lemma 5.4 (Non-separability of uniform attention feature). There exist no neuron weights w± such
that yf(X) > 0 for all X ∈ {Xk,s,−s}k∈[2],s∈{±1} when the softmax attention is uniform.

Recall our definition of attention feature in Equation (2). Lemma 5.4 can be interpreted as that the
uniform attention feature is not linearly separable. Due to randomness, the actual attention feature
at initialization is not exactly uniform. However, by a simple continuity argument, Lemma 5.4 can
be translated as the maximum margin of the initial attention feature is at most Õ(ω2/

√
m). 1

5.2 STAGE 2: ATTENTION LEARNS FROM THE SAMPLES WITH CONFLICTING SIGNS

Since by Lemma 5.4, the samples with conflicting signs are hard to learn by merely training the
neuron weights, in stage 2, we directly train the softmax attention weights WK±,WQ± on those
hard samples. As we mentioned in the beginning of Section 5, in order to keep track of how the
softmax attention changes during training, we need to analyze a dynamical system with all the score
variables µ⊤W (t)⊤

K+ W
(t)
Q+ν, key self-score variables µ⊤W (t)⊤

K+ W
(t)
K+ν and query self-score variables

µ⊤W
(t)⊤
Q+ W

(t)
Q+ν. From the gradient flow update in Appendix B.2, observe that we can write the

dynamical system in the following form:

d
dt

vec({µ⊤W (t)⊤
K+ W

(t)
Q+ν}µ,ν∈C∪V)

vec({µ⊤W (t)⊤
K+ W

(t)
K+ν}µ,ν∈C∪V)

vec({µ⊤W (t)⊤
Q+ W

(t)
Q+ν}µ,ν∈C∪V)

 = A(t)

vec({µ⊤W (t)⊤
K+ W

(t)
Q+ν}µ,ν∈C∪V)

vec({µ⊤W (t)⊤
K+ W

(t)
K+ν}µ,ν∈C∪V)

vec({µ⊤W (t)⊤
Q+ W

(t)
Q+ν}µ,ν∈C∪V)


where A(t) is a square matrix with dimension |{µ⊤W (t)⊤

K+ W
(t)
Q+ν}µ,ν |+ |{µ⊤W (t)⊤

K+ W
(t)
K+ν}µ,ν |+

|{µ⊤W (t)⊤
Q+ W

(t)
Q+ν}µ,ν | = 16 + 10 + 10 = 36. Thus, directly analyzing the dynamical system can

easily become intractable. We need to come up with ways to utilize the structure of the problem to
reduce the dimension we need to analyze.

One observation from Figure 1c is that the score variables c⊤1 W
(t)⊤
K+ W

(t)
Q+v1 and c⊤1 W

(t)⊤
K+ W

(t)
Q+v2

exhibit the maximum magnitude change compared with all other score variables. In fact, these two
quantities play a key role in making H+(X1,+,−) > H−(X1,+,−). Thus, if we are able to prove
that c⊤1 W

(t)⊤
K+ W

(t)
Q+v1 will become sufficiently large at the end of stage 2, then we can make good

progress on proving that the attention features become separable.

To make our presentation simpler, for a moment, assume we have the near symmetry properties:

c⊤1 W
(t)⊤
K+ W

(t)
Q+v1 ≈ −c⊤1 W

(t)⊤
K+ W

(t)
Q+v2

c⊤1 W
(t)⊤
K+ W

(t)
K+c1 ≈ −c⊤1 W

(t)⊤
K+ W

(t)
K+c2

v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1 ≈ −v⊤1 W

(t)⊤
Q+ W

(t)
Q+v2

which can indeed be made rigorous in Lemma E.4. Applying this near symmetry property to the
gradient of c⊤1 W

(t)⊤
K+ W

(t)
Q+v1 at t = T1 (see Appendix E.5.1), we have

dc⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt

∣∣∣∣∣
t=T1

≈ 1

3
g(T1)4

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v1

)(2

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)4

(
c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1

)(2

3
w

(T1)⊤
+ c1

)
.

1Recall that the maximum margin of a set S is defined as γ := max∥w∥2=1 minx∈S w⊤x.
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Due to symmetry and cancellation at initialization, it only depends on 2 self-score variables:
c⊤1 W

(t)⊤
K+ W

(t)
K+c1 and v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1. At the same time, the gradient of c⊤1 W

(t)⊤
K+ W

(t)
K+c1 and

v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1 at t = T1 also depends only on c⊤1 W

(t)⊤
K+ W

(t)
Q+v1. Thus, if this simpler depen-

dence can hold through the rest of stage 2, then we get a much smaller 3 × 3 system to analyze.
Unfortunately, this is not true. Take the gradient of c⊤1 W

(t)⊤
K+ W

(t)
Q+v1 as an example. Training the

attention weights can break the symmetry that holds at T1, and the gradient of c⊤1 W
(t)⊤
K+ W

(t)
Q+v1 will

start to depend on other self-score variables. The way to overcome this issue is to realize that as
long as the maximum change in the output of the softmax is not too large, we can bound the effects
from other self-score variables and the gradient of c⊤1 W

(t)⊤
K+ W

(t)
Q+v1 is still mainly contributed by

c⊤1 W
(t)⊤
K+ W

(t)
K+c1 and v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1.

Now, we have successfully reduce the dimension of the system that we need to analyze to 3 × 3.
However, there is still a problem we need to handle: the system has a matrix with non-linear depen-
dence on those 3 variables. Generally, it is impossible to derive a close-form solution. Fortunately,
we can show that (1) those 3 variables are increasing throughout the training and (2) when the change
of the softmax attention (from initialization) is within a certain range, the growth of those 3 variables
can be lower bounded by a linear dynamical system.
Lemma 5.5 (Informal version of Lemma E.2). For t ≥ T1, when all the score variables are bounded
within some range, there exists a constant b > 0 such that

d
dt

c⊤1 W
(t)⊤
K+ W

(t)
Q+v1

c⊤1 W
(t)⊤
K+ W

(t)
K+c1

v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1

 ≥ b

[
0 1 1
1 0 0
1 0 0

]c⊤1 W
(t)⊤
K+ W

(t)
Q+v1

c⊤1 W
(t)⊤
K+ W

(t)
K+c1

v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1

 .

With Lemma 5.5, we can prove that the score c⊤1 W
(t)⊤
K+ W

(t)
Q+v1 will become sufficiently large at the

end of stage 2.

On the other hand, when the query token is the group signal, we can prove

v⊤1 W
(t)⊤
K+ W

(t)
Q+c1 < 0, v⊤2 W

(t)⊤
K+ W

(t)
Q+c1 > 0.

By symmetry, this implies p(+,t)
q←c1,k←c1

(X1,+,−) > p
(−,t)
q←c1,k←c1

(X1,+,−). This finishes the proof of
the trained attention’s property on the concentration on the group signal token in Theorem 4.1.

Finally, when v1 and v2 are the keys, we can prove the near symmetry property between scores:

v⊤1 W
(t)⊤
K+ WQ+v1 ≈ −v⊤2 W

(t)⊤
K+ WQ+v1,

v⊤1 W
(t)⊤
K+ WQ+v2 ≈ −v⊤2 W

(t)⊤
K+ WQ+v2

v⊤1 W
(t)⊤
K+ WQ+c1 ≈ −v⊤2 W

(t)⊤
K+ WQ+c1

which can be translated to the near symmetry property within a single head in Theorem 4.1.

5.3 STAGE 3: CONVERGENCE

In stage 3, we train the neuron weights again. At the end of stage 2, the attention features for samples
with conflicting signs becomes well-separated. In addition, we can show that the attention features
for the samples with consistent signs are still well-separated. Thus, the training in stage 3 behaves
like logistic linear regression on linearly separable data and training the neuron weight can drive
the population loss towards zero. This proves the part in Theorem 4.1 that the population loss can
become sufficiently small after training.

6 GENERAL NUMBER OF MIXTURES

In this section, we study the case when the mixtures have more than two groups. Our experiment
results can be found in Appendix A.4. We summarize our experimental findings below.
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Observation 1. The transformer architecture in Equation (1) can learn the data distribution for
K ≥ 3. However, the near symmetry property in the attention no longer holds. In addition, the
training takes longer with more groups.

On the other hand, we observe that for K = 3, the training dynamics is still stage-wise and there
are score variables exhibiting major growth compared with others. Thus, the techniques developed
in our work can be used to study the training dynamics for K ≥ 3.

Although the training dynamics for K ≥ 3 has some differences from the K = 2 case, we are able
to provide a construction of transformers that can solve any arbitrary K mixtures.

Lemma 6.1. There exists a transformer architecture solving K-mixture of linear classification.

Proof. The construction is given as follows. Let

W⊤K+WQ+ = 2C ·
K∑

k=1

vkc
⊤
k + C ·

K∑
k=1

ckc
⊤
k + C ·

K∑
k=1

vkv
⊤
k ,

W⊤K−WQ− = −2C ·
K∑

k=1

vkc
⊤
k + C ·

K∑
k=1

ckc
⊤
k + C ·

K∑
k=1

vkv
⊤
k

The transformer is given as

f(X) =
∑
l1

K∑
k=1

v⊤k Xsoftmax(X⊤W⊤K+WQ+Xl1) +
∑
l1

K∑
k=1

−v⊤k Xsoftmax(X⊤W⊤K−WQ−Xl1)

Let C → ∞. First of all, consider classification signal query vk. Then,

K∑
k=1

v⊤k Xsoftmax(X⊤W⊤K+WQ+vk) +
K∑

k=1

−v⊤k Xsoftmax(X⊤W⊤K+WQ+vk)

= v⊤k vk − v⊤k vk = 0

Similar analysis for query −vk. On the other hand, for group signal query ck, suppose the corre-
sponding classification signal in X is vk, we have

K∑
k=1

v⊤k Xsoftmax(X⊤W⊤K+WQ+ck) +
K∑

k=1

−v⊤k Xsoftmax(X⊤W⊤K+WQ+ck)

= v⊤k vk − v⊤k ck = 1

Similar analysis if the corresponding classification signal is −vk. Thus, we have yf(X) > 0 for all
(X, y) ∈ D.

7 DISCUSSION

In this work, we studied the training dynamics of a two-headed transformer solving two-mixture
of linear classification. We characterized the feature learning process of how the softmax attention
utilizes the relationship between the class signals and their corresponding classification signals in
this task. One open problem is that the current proof techniques critically utilize the fact that both
the transformer architecture and the data distribution are symmetric. Can we discover some hidden
structures of the problem such that we can analyze the training dynamics for K ≥ 3? More interest-
ingly, we demonstrated that during training, the attention features evolved from a near non-separable
state to a well-separated state, i.e, the maximum margin of the attention features increases during
training. What properties does the data distribution need to have such that the maximum margin can
increase in training? We leave those interesting questions as future works.
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A ADDITIONAL EXPERIMENT RESULTS

A.1 SOFTMAX ATTENTION

We provide the softmax probability of the positive head on different samples.
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Figure 2: Softmax attention of the positive head on different samples. The vertical axis denotes the
query tokens and the horizontal axis denotes the key tokens.

A.2 ONLY TRAIN THE ATTENTION

Recall that in Section 3, we observed there is a learning order when all the weights are trained
simultaneously: the attention weights learn after the neuron weights. To further study whether
this learning order is necessary, we conduct another experiment where we initialize the neurons as
Gaussian and only train the attention. Our result suggests that in this case, the transformer is no
longer trainable.
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(a) Loss

Figure 3: The loss for training only the attention while keeping the neurons fixed at initialization.
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A.3 FULL ATTENTION SCORES OF TWO MIXTURES
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Figure 4: Full attention scores for K = 2.

A.4 EXPERIMENTS ON MULTI-MIXTURE MODELS

In this section, we provide experiment results on synthetic data for multi-mixture models. Specifi-
cally, Figure 5, Figure 6 and Figure 7 respectively indicate that the training dynamics of 3-mixture,
4-mixture and 8-mixture models are all showing some similarities as that for 2-mixture model,
demonstrating the broad applicability of our developed theoretical results.
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Figure 5: The experiment results for the case with K = 3 mixtures.
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Figure 6: The experiment results for the case with K = 4 mixtures.
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Figure 7: The experiment results for the case with K = 8 mixtures.

A.5 REAL WORLD EXPERIMENT

In this section, we present our real world experiment results. In our experiments, we use MNIST
dataset and extract the images with label 1 and label 2 to play the role of classification signals.
We create two random vectors to play the role of group signals. We plot the training loss curves for
both simultaneously training all the weights and separately training the neuron weights and attention
weights in Figure 8. In separate weight training, the three stages are set to 100 steps each.
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Figure 8: The experiment results for simultaneous weight training and separate weight training.

B GRADIENT FLOW

B.1 GRADIENTS OF EACH WEIGHT MATRICES
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B.2 GRADIENT FLOW DYNAMICAL SYSTEM

Let µ, ν ∈ V ∪ C. We have
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C SYMMETRY

In this section, we derive symmetry results for the infinite-width transformer model. We first char-
acterize the initial values of the softmax attention weights:
Lemma C.1. The initial values of the attention weight in the infinite-width transformer satisfy:
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where ŴK , ŴQ ∈ Rm×d and (ŴK)ij , (ŴQ)ij ∼ N (0, ω2 1
m ).

Proof. Let (WK+)i, (WQ+)i denote the i-th row of WK+,WQ+, respectively. Then,
we have ν⊤W
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The rest can be proved similarly with an additional fact that for w ∼ N (0, I), w⊤µ is independent
of w⊤ν if µ ⊥ ν.
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The symmetry results contain two parts: symmetry between two groups and symmetry between two
attention heads.

Lemma C.2 (Symmetry between two groups). Under the infinite-width transformer model in Def-
inition 5.1, let µ1, ν1 ∈ {c1, v1} and µ2, ν2 ∈ {c2, v2} such that µ1, µ2 are the same type signals
(i.e., either µ1, µ2 ∈ C or µ1, µ2 ∈ V) and ν1, ν2 are the same type signals. For all t,
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The symmetry between the two groups also holds for the negative head.

Corollary C.3. Let s, s′ ∈ {±1}. For all t,
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Proof of Lemma C.2. First of all, by Definition 5.1, all the equalities hold at t = 0. Thus, we only
need to show the gradient flow updates satisfy all the equalities if all the equalities hold at time t.

Assume all the equalities hold at time t. This implies that p(+,t)(X1,s,s′) = p(+,t)(X2,s,s′) (recall
that since our model doesn’t have any positional encoding, we can consider ordered inputs in our
analysis), which further implies that H(t)
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and f (t)(X1,s,s′) = f (t)(X2,s,s′) for all s, s′ ∈ {±1}.

First, we prove Equation (3):
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]

+
1

2
Es,s′

[
g(t)sσ̇

(t)
+

L∑
l=1

ν⊤2 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤2,s,s′w+ − w⊤+X2,s,s′p

(+,t)
l

)
p
(+,t)
l (X2,s,s′)

⊤
l µ2

]

+
1

2
Es,s′

[
g(t)sσ̇

(t)
+

L∑
l=1

ν⊤2 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤1,s,s′w+ − w⊤+X1,s,s′p

(+,t)
l

)
p
(+,t)
l (X1,s,s′)

⊤
l µ2

]

=
dν⊤2 W

(t)⊤
K+ W

(t)
Q+µ2

dt

The rest equalities in Equation (4), Equation (5) and Equation (6) can be proved similarly.

Symmetry between two heads: notice that for the negative head, we can view it as training
the model −f(X) on the dataset where the label is −y and the set of classification signals is
{−v1,−v2}.

Lemma C.4 (Symmetry of two heads). Suppose Definition 5.1 holds. Let µ1, µ2 ∈ V ∪C. For all t,

w
(t)⊤
+ µ1 = w

(t)⊤
− µ1 · (−1)I(µ1∈V) (7)

µ⊤2 W
(t)⊤
K+ W

(t)
Q+µ1 = µ⊤2 W

(t)⊤
K− W

(t)
Q−µ1 · (−1)I(µ2∈V)(−1)I(µ1∈V) (8)

µ⊤2 W
(t)⊤
K+ W

(t)
K+µ1 = µ⊤2 W

(t)⊤
K− W

(t)
K−µ1 · (−1)I(µ2∈V)(−1)I(µ1∈V) (9)

µ⊤2 W
(t)⊤
Q+ W

(t)
Q+µ1 = µ⊤2 W

(t)⊤
Q− W

(t)
Q−µ1 · (−1)I(µ2∈V)(−1)I(µ1∈V) (10)

Corollary C.5. Let s, s′ ∈ {±1}. For all t,

p(+,t)(Xk,s,s′) = p(−,t)(Xk,−s,−s′)

H
(t)
+ (Xk,s,s′) = H

(t)
− (Xk,−s,−s′)

sf (t)(Xk,s,s′) = −sf (t)(Xk,−s,−s′).

Proof of Lemma C.4. First, all the equalities are satisfied when t = 0 by Definition 5.1. Assume all
the equalities hold at time t and we are going to show that the gradients with respect to t also satisfy
the equalities. Equation (8) implies that p(+,t)(Xk,s,s′) = p(−,t)(Xk,−s,−s′), which further implies
H

(t)
+ (Xk,s,s′) = H

(t)
− (Xk,−s,−s′) and sf (t)(Xk,s,s′) = −sf (t)(Xk,−s,−s′).

Define µ′ := µ · (−1)I(µ∈V) for µ ∈ V ∪ C and X ′k,s,s′ := [c′k, v
′
k, v
′
k′ ] = [ck,−vk,−vk′ ] =

Xk,−s,−s′ .

We first prove Equation (7):

dw(t)⊤
+ µ1

dt
= Ek,s,s′

[
g(t)sσ̇

(t)
+

L∑
l=1

(
Xk,s,s′p

(+,t)
l

)⊤]
µ1

22



Published as a conference paper at ICLR 2025

dw(t)⊤
− µ′1
dt

= −Ek,s,s′

[
g(t)sσ̇

(t)
−

L∑
l=1

(
Xk,s,s′p

(−,t)
l

)⊤]
µ′1

= Ek,s,s′

[
g(t)sσ̇

(t)
−

L∑
l=1

(
X ′k,s,s′p

(−,t)
l

)⊤]
µ′1

which implies

dw(t)⊤
+ µ1

dt
=

dw(t)⊤
− µ′1
dt

.

We next prove Equation (8):

dν⊤W (t)⊤
K+ W

(t)
Q+µ

dt

= Ek,s,s′

[
g(t)sσ̇

(t)
+

L∑
l=1

µ⊤W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ Xk,s,s′ − w

(t)⊤
+ Xk,s,s′p

(+,t)
l

)
X⊤k,s,s′ν

]

+ Ek,s,s′

[
g(t)sσ̇

(t)
+

L∑
l=1

ν⊤W
(t)⊤
K+ K

(t)
+ diag

(
X⊤k,s,s′w+ − w⊤+Xk,s,s′p

(+,t)
l

)
p
(+,t)
l (Xk,s,s′)

⊤
l µ

]
d(ν′)⊤W (t)⊤

K− W
(t)
Q−µ

′

dt

= −Ek,s,s′

[
g(t)sσ̇

(t)
−

L∑
l=1

(µ′)⊤W
(t)⊤
Q− q

(t)
−lp

(−,t)⊤
l diag

(
w

(t)⊤
− Xk,s,s′ − w

(t)⊤
− Xk,s,s′p

(−,t)
l

)
X⊤k,s,s′ν

′

]

− Ek,s,s′

[
g(t)sσ̇

(t)
−

L∑
l=1

(ν′)⊤W
(t)⊤
K− K

(t)
− diag

(
X⊤k,s,s′w− − w⊤−Xk,s,s′p

(−,t)
l

)
p
(−,t)
l (Xk,s,s′)

⊤
l µ
′

]

= Ek,s,s′

[
g(t)sσ̇

(t)
−

L∑
l=1

(µ′)⊤W
(t)⊤
Q− q

(t)
−lp

(−,t)⊤
l diag

(
w

(t)⊤
− X ′k,s,s′ − w

(t)⊤
− X ′k,s,s′p

(−,t)
l

)
X

′⊤
k,s,s′ν

′

]

+ Ek,s,s′

[
g(t)sσ̇

(t)
−

L∑
l=1

(ν′)⊤W
(t)⊤
K− K

(t)
− diag

(
X

′⊤
k,s,s′w− − w⊤−X

′
k,s,s′p

(−,t)
l

)
p
(−,t)
l (X ′k,s,s′)

⊤
l µ
′

]
which implies

dν⊤W (t)⊤
K+ W

(t)
Q+µ

dt
=

d(ν′)⊤W (t)⊤
K− W

(t)
Q−µ

′

dt
.

The rest of equalities Equation (9) and Equation (10) can be proved similarly.

D STAGE 1: TRAINING NEURONS TO LEARN THE SIGNALS

D.1 STAGE 1.1: GROWTH OF NEURON ALIGNMENT WITH CLASSIFICATION SIGNALS

Due to our zero-initialization on the neuron weights, both attention heads are outputting zero. Since
we add a small positive bias in the ReLU, for a short amount of time from the random initialization,
we can ignore the ReLU activation.
Lemma D.1 (Neuron alignment with the classification signal, stage 1.1). Under Definition 5.1, for
t ∈ [0, T1], if H(t)

+ (X), H
(t)
− (X) > −b for all X ∈ D, then for k ∈ {1, 2},

dw(t)⊤
+ vk

dt
=

1

8

 ∑
k′∈[2],s=s′

g(t)(Xk′,s,s′)


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dw(t)⊤
− vk

dt
= −1

8

 ∑
k′∈[2],s=s′

g(t)(Xk′,s,s′)

 .

Proof. Take k = 1. By the gradient flow update, we have

dw(t)⊤
+ v1

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

(
Xp

(+,t)
l

)⊤]
v1

= E

[
g(t)y

L∑
l=1

(
Xp

(+,t)
l

)⊤]
v1

=
1

8

(∑
s=s′

g(t)(X1,s,s′)
L∑

l=1

p
(+,t)
q←l,k←v1

(X1,s,s′)

)
+

1

8

∑
s̸=s′

sg(t)(X1,s,s′)
L∑

l=1

p
(+,t)
q←l,k←sv1

(X1,s,s′)


+

1

8

(∑
s=s′

g(t)(X2,s,s′)
L∑

l=1

p
(+,t)
q←l,k←v1

(X2,s,s′)

)
− 1

8

∑
s̸=s′

s′g(t)(X2,s,s′)
L∑

l=1

p
(+,t)
q←l,k←s′v1

(X2,s,s′)


=

1

8

 ∑
k′∈[2],s=s′

g(t)(Xk′,s,s′)

 . (by Corollary C.3)

Lemma D.2 (No neuron alignment of group signals, stage 1.1). Under Definition 5.1, as long as
H

(t)
+ (X), H

(t)
− (X) > −b for all X , and for k ∈ {1, 2},

dw(t)⊤
+ ck

dt
= 0,

dw(t)⊤
− ck

dt
= 0.

Proof. By the gradient flow update, we have

dw(t)⊤
+ ck

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

(
Xp

(+,t)
l

)⊤]
ck

= E

[
g(t)y

L∑
l=1

(
Xp

(+,t)
l

)⊤]
ck

=
1

8

(∑
s′

g(t)(Xk,+,s′)
L∑

l=1

p
(+,t)
q←l,k←ck

−
∑
s′

g(t)(Xk,−,s′)
L∑

l=1

p
(+,t)
q←l,k←ck

)
= 0 (by and Corollary C.5)

Corollary D.3 (Duration of stage 1.1). There exists a time T0.5 = Θ(1) such that
H

(T0.5)
s (Xk,−s,−s) ≤ −b for s ∈ {±1}.

Proof. Lemma D.1 and Lemma D.2 imply that g(t)(X) = Ω(1) for t ≤ O(1). Since b is chosen to
be a sufficiently small constant, there exists a time T0.5 = Θ(1) such that H(T0.5)

s (Xk,−s,−s) ≤ −b
for s ∈ {±1}.

D.2 STAGE 1.2: GROWTH OF NEURON ALIGNMENT WITH GROUP SIGNALS

In this sub-stage, we are going to show that (1) the neuron weight will keep positively aligning with
the signed classification signal and (2) the neuron weights start to positively align with the group
signal.
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Lemma D.4 (Growth of classification signals, stage 1.2). Under Definition 5.1, for t ∈ [0, T1], if
H

(t)
+ (Xk,−,−) < −b for all k ∈ [2], then

dw(t)⊤
+ vk

dt
=

1

8

∑
k′∈[2]

g(t)(Xk′,+,+)

 .

Similarly, if H(t)
− (Xk,+,+) < −b for all k ∈ [2], then

dw(t)⊤
− vk

dt
= −1

8

∑
k′∈[2]

g(t)(Xk′,−,−)

 .

Proof. Take k = 1. If H(t)
+ (Xk′,−,−) < −b for all k′ ∈ [2], then

dw(t)⊤
+ v1

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

(
Xp

(+,t)
l

)⊤]
v1

=
1

8

(
g(t)(X1,+,+)

L∑
l=1

p
(+,t)
q←l,k←v1

(X1,+,+)

)
+

1

8

∑
s̸=s′

sg(t)(X1,s,s′)

L∑
l=1

p
(+,t)
q←l,k←sv1

(X1,s,s′)


+

1

8

(
g(t)(X2,+,+)

L∑
l=1

p
(+,t)
q←l,k←v1

(X2,+,+)

)
− 1

8

∑
s̸=s′

s′g(t)(X2,s,s′)
L∑

l=1

p
(+,t)
q←l,k←s′v1

(X2,s,s′)


=

1

8

∑
k′∈[2]

g(t)(Xk′,+,+)

 . (by Corollary C.3)

Lemma D.5 (Growth of group signals, stage 1.2). For t ∈ [0, T1], if H(t)
+ (Xk,−,−) < −b for

k ∈ {1, 2}, then

dw(t)⊤
+ ck

dt
=

1

8
g(t)(Xk,+,+).

Similarly, if H(t)
− (Xk,+,+) < −b for k ∈ {1, 2}, then

dw(t)⊤
− ck

dt
=

1

8
g(t)(Xk,−,−).

Proof. If H(t)
+ (Xk,−,−) < −b, then

dw(t)⊤
+ ck

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

(
Xp

(+,t)
l

)⊤]
ck

=
1

8

(∑
s′

g(t)(Xk,+,s′)
L∑

l=1

p
(+,t)
q←l,k←ck

(Xk,+,s′)− g(t)(Xk,−,+)
L∑

l=1

p
(+,t)
q←l,k←ck

(Xk,−,+)

)

=
1

8
g(t)(Xk,+,+). (by Corollary C.5)

Similarly, if H(t)
− (Xk,+,+) < −b for k ∈ [2], then

dw(t)⊤
− ck

dt
= −E

[
g(t)yσ̇

(t)
−

L∑
l=1

(
Xp

(−,t)
l

)⊤]
ck
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= −1

8

(
−
∑
s′

g(t)(Xk,−,s′)
L∑

l=1

p
(−,t)
q←l,k←ck

(Xk,−,s′) + g(t)(Xk,+,−)
L∑

l=1

p
(−,t)
q←l,k←ck

(Xk,+,−)

)

=
1

8
g(t)(Xk,−,−). (by Corollary C.5)

D.3 PROPERTIES AT THE END OF STAGE 1

Corollary D.6 (Activation of different types of samples). For t ∈ [T0.5, T1] and s ∈ {±1}, k ∈ [K],
only σ̇

(t)
s (Xk,−s,−s) = 0 and all the rest of cases equal 1.

Proof. First of all, by the neuron signal alignment lemma stage 1.2 (Lemma D.4 and Lemma D.5),
we have

dw(t)⊤
+ (v1 + v2)

dt
>

dw(t)⊤
+ c1

dt
.

Since the attention is uniform during stage 1, by Corollary D.3, we continue to have σ̇+(Xk,−,−) =
0 in stage 1.2.

Corollary D.7 (Neuron alignments at the end of stage 1). There exists a time T1 = Θ(1) such that
w

(T1)⊤
+ µ = Θ(1) for all µ ∈ V ∪ C.

Proof. This is a direct consequence of Lemma D.4 and Lemma D.5.

As a result of stage 1, we can show that the transformer model now can produce a positive margin
on the consistent samples but it fails to classify the conflicting samples.

Theorem D.8 (Stage 1). Under Definition 5.1, we have f (T1)(Xk,s,s) = s · Ω(1) and
f (T1)(Xk,s,−s) = 0.

Proof. Since the attention during stage 1 is uniform, this is a direct consequence of Lemma D.1,
Lemma D.4, Lemma D.5 and the symmetry between two heads in Lemma C.4.

E STAGE 2: SELF-ATTENTION LEARNS FROM THE CONFLICTING (HARD)
SAMPLES

E.1 GROWTH OF SCORES

The following result states that there exists a range where (1) the growth of
c⊤k W

(t)⊤
K+ W

(t)
Q+vk and −c⊤k W

(t)⊤
K+ W

(t)
Q+vk′ dominates other score variables; (2) the growth of

v⊤k W
(t)⊤
Q+ W

(t)
Q+vk,−v⊤k W

(t)⊤
Q+ W

(t)
Q+vk′ dominates other query self-score variables; and (3) the

growth of c⊤k W
(t)⊤
K+ W

(t)
K+ck,−c⊤k W

(t)⊤
K+ W

(t)
K+ck′ dominates other key self-score variables.

Lemma E.1. For t ≥ T1, there exists a constant C > 0 such that as long as
maxµ,ν∈V∪C |µ⊤W (t)⊤

K+ W
(t)
Q+ν| ≤ C, then there exist a constant 0 < c < 1 such that

c · min
k ̸=k′∈[K]

(
c⊤k W

(t)⊤
K+ W

(t)
Q+vk,−c⊤k W

(t)⊤
K+ W

(t)
Q+vk′

)
≥ max

 ⋃
µ,ν∈C∪V

{∣∣∣µ⊤W (t)⊤
K+ W

(t)
Q+ν

∣∣∣}
 \

 ⋃
k ̸=k′∈[K]

{∣∣∣c⊤k W (t)⊤
K+ W

(t)
Q+vk

∣∣∣ , ∣∣∣c⊤k W (t)⊤
K+ W

(t)
Q+vk′

∣∣∣}


(11)

c · min
k ̸=k′∈[K]

(
v⊤k W

(t)⊤
Q+ W

(t)
Q+vk,−v⊤k W

(t)⊤
Q+ W

(t)
Q+vk′

)
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≥ max

 ⋃
k ̸=k′∈[K]

{∣∣∣v⊤k W (t)⊤
Q+ W

(t)
Q+ck

∣∣∣ , ∣∣∣v⊤k W (t)⊤
Q+ W

(t)
Q+ck′

∣∣∣ , ∣∣∣c⊤k W (t)⊤
Q+ W

(t)
Q+ck′

∣∣∣}
 (12)

c · min
k ̸=k′∈[K]

(
c⊤k W

(t)⊤
K+ W

(t)
K+ck,−c⊤k W

(t)⊤
K+ W

(t)
K+ck′

)
≥ max

 ⋃
k ̸=k′∈[K]

{∣∣∣v⊤k W (t)⊤
K+ W

(t)
K+ck

∣∣∣ , ∣∣∣v⊤k W (t)⊤
K+ W

(t)
K+ck′

∣∣∣ , ∣∣∣v⊤k W (t)⊤
K+ W

(t)
K+vk′

∣∣∣}
 (13)

and

∥W (t)
Q+vk∥

2
2 ≥ ∥W (t)

Q+ck∥
2
2, ∥W (t)

K+ck∥
2
2 ≥ ∥W (t)

K+vk∥
2
2. (14)

Proof. The proof is by inspecting the gradient flow updates in Appendix E.5 and proving by induc-
tion. At t = T1, all the scores equal 0 and further, we have

dc⊤k W
(t)⊤
K+ W

(t)
Q+vk

dt

∣∣∣∣∣
t=T1

, −
dc⊤k W

(t)⊤
K+ W

(t)
Q+vk′

dt

∣∣∣∣∣
t=T1

=
4

3
g(T1)ω2m

(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

4

3
g(T1)ω2 2

3
w

(T1)⊤
+ c1

On the other hand, we have

argmax
d
dt

∣∣∣∣
t=T1

 ⋃
µ,ν∈C∪V

{∣∣∣µ⊤W (t)⊤
K+ W

(t)
Q+ν

∣∣∣}
 \

 ⋃
k ̸=k′∈[K]

{∣∣∣c⊤k W (t)⊤
K+ W

(t)
Q+vk

∣∣∣ , ∣∣∣c⊤k W (t)⊤
K+ W

(t)
Q+vk′

∣∣∣}


=
dv⊤1 W

(t)⊤
K+ W

(t)
Q+c1

dt

∣∣∣∣∣
t=T1

and

dv⊤1 W
(t)⊤
K+ W

(t)
Q+c1

dt

∣∣∣∣∣
t=T1

=
4

3
g(T1)ω2w

(T1)⊤
+ Xp

(+,T1)
l =

4

3
g(T1)ω2 1

3
w

(T1)⊤
+ c1

Thus, Equation (11) is satisfied at t = T1.

Next, we have ∥W (T1)
Q+ vk∥22 = ω2, v⊤k W

(T1)⊤
Q+ W

(T1)
Q+ vk′ = 0, v⊤k W

(T1)⊤
Q+ W

(T1)
Q+ ck = 0,

v⊤k W
(T1)⊤
Q+ W

(T1)
Q+ ck′ = 0 and c⊤k W

(T1)⊤
Q+ W

(T1)
Q+ ck′ = 0. Further,

dv⊤k W
(t)⊤
Q+ W

(t)
Q+vk′

dt

∣∣∣∣∣
t=T1

,
dv⊤k W

(t)⊤
Q+ W

(t)
Q+ck

dt

∣∣∣∣∣
t=T1

,
dv⊤k W

(t)⊤
Q+ W

(t)
Q+ck′

dt

∣∣∣∣∣
t=T1

,
dc⊤k W

(t)⊤
Q+ W

(t)
Q+ck′

dt

∣∣∣∣∣
t=T1

= 0

Hence, Equation (12) is satisfied at t = T1.

Similarly, we have ∥W (T1)
K+ ck∥22 = ω2, c⊤k W

(T1)⊤
K+ W

(T1)
K+ ck′ = 0, v⊤k W

(T1)⊤
K+ W

(T1)
K+ ck =

0, v⊤k W
(T1)⊤
K+ W

(T1)
K+ ck′ = 0 and v⊤k W

(T1)⊤
K+ W

(T1)
K+ vk′ = 0. In addition,

dc⊤k W
(t)⊤
K+ W

(t)
K+ck′

dt

∣∣∣∣∣
t=T1

,
dv⊤k W

(t)⊤
K+ W

(t)
K+ck

dt

∣∣∣∣∣
t=T1

,
dv⊤k W

(t)⊤
K+ W

(t)
K+ck′

dt

∣∣∣∣∣
t=T1

,
dv⊤k W

(t)⊤
K+ W

(t)
K+vk′

dt

∣∣∣∣∣
t=T1

= 0

Thus, Equation (13) is satisfied at t = T1. Finally, Equation (14) is also satisfied at t = T1.

Now, assume Equation (11), Equation (12) and Equation (13) hold at some t > T1. We are going to
show that the gradients at t also satisfy those inequalities. We are going to prove the inequality be-
tween c⊤k W

(t)⊤
K+ W

(t)
Q+vk and v⊤1 W

(t)⊤
K+ W

(t)
Q+c1. The proof for the rest of cases is similar by checking

the gradient flow dynamical system in Appendix E.5 as they all follow similar structures.
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First of all, notice that if we replace p(+,t) with p(+,T1) in
dc⊤1 W

(t)⊤
K+ W

(t)
Q+v1

dt and
dv⊤

1 W
(t)⊤
K+ W

(t)
Q+c1

dt , it
holds that there exists a constant 0 < c′ < 1 such that

c′ · 1
3
g(t)2

(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1 − v⊤1 W

(t)⊤
Q+ W

(t)
Q+v2

)(
w

(t)⊤
+ c1 − w

(t)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(t)2

(
c⊤1 W

(t)⊤
K+ W

(t)
K+c1 − c⊤1 W

(t)⊤
K+ W

(t)
K+c2

)(
w

(t)⊤
+ c1 − w

(t)⊤
+ Xp

(+,T1)
l

)
≥

(
1

3
g(t)2

(
c⊤1 W

(t)⊤
Q+ W

(t)
Q+c1 − c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2

)(
−w

(t)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(t)2

(
v⊤1 W

(t)⊤
K+ W

(t)
K+v1 − v⊤1 W

(t)⊤
K+ W

(t)
K+v2

)(
−w

(t)⊤
+ Xp

(+,T1)
l

))
since w

(t)⊤
+ c1 − w

(t)⊤
+ Xp

(+,T1)
l = 2

3w
(t)⊤
+ c1 and w

(t)⊤
+ Xp

(+,T1)
l = 1

3w
(t)⊤
+ c1. Next, we calculate

the deviation of replacing p(+,t) with p(+,T1) in the gradients

dc⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt

−

(
E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,T1)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,T1)
l

)
X⊤c1

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,T1)
l

)
p
(+,T1)
l x⊤l v1

])

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+l

(
p
(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
− p

(+,T1)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,T1)
l

))
X⊤c1

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ K

(t)
+

(
diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l

− diag
(
X⊤w+ − w⊤+Xp

(+,T1)
l

)
p
(+,T1)
l

)
x⊤l v1

]
Thus, there exists a constant C > 0 not too large such that maxµ,ν∈V∪C |µ⊤W (t)⊤

K+ W
(t)
Q+ν| ≤ C,

and thus ∥p(+,t) − p(+,T1)∥∞ = O(1) and then∣∣∣∣∣dc⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt
−

(
E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,T1)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,T1)
l

)
X⊤c1

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,T1)
l

)
p
(+,T1)
l x⊤l v1

])∣∣∣∣∣
≤ c′′

(
1

3
g(t)2

(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1 − v⊤1 W

(t)⊤
Q+ W

(t)
Q+v2

)(
w

(t)⊤
+ c1 − w

(t)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(t)2

(
c⊤1 W

(t)⊤
K+ W

(t)
K+c1 − c⊤1 W

(t)⊤
K+ W

(t)
K+c2

)(
w

(t)⊤
+ c1 − w

(t)⊤
+ Xp

(+,T1)
l

))
for some sufficiently small constant c′′ > 0. This implies that if c satisfies c′ +Θ(1) < c < 1 then

c
dc⊤1 W

(t)⊤
K+ W

(t)
Q+v1

dt ≥ dv⊤
1 W

(t)⊤
K+ W

(t)
Q+c1

dt .

Based on Lemma E.1, we can show that there exists a time range where the dynamical system
exhibits exponential growth.
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Lemma E.2 (Score growth lemma). For t ≥ T1, there exists a constant C > 0 such that as long as
maxµ,ν∈V∪C |µ⊤W (t)⊤

K+ W
(t)
Q+ν| ≤ C, then there exists a constant b > 0 such that

d
dt

c⊤1 W
(t)⊤
K+ W

(t)
Q+v1

c⊤1 W
(t)⊤
K+ W

(t)
K+c1

v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1

 ≥ b

[
0 1 1
1 0 0
1 0 0

]c⊤1 W
(t)⊤
K+ W

(t)
Q+v1

c⊤1 W
(t)⊤
K+ W

(t)
K+c1

v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1


Proof. First, as long as ∥p(+,t)

l (X) − p
(+,T1)
l (X)∥∞ = O(1) for all X and l, we have g(t)(X) ≥

Ω(1). Now, applying Lemma E.1 to the update of c⊤1 W
(t)⊤
K+ W

(t)
Q+v1 in Appendix E.5.1, we can

derive that there exists a constant b1 > 0 such that

dc⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt
≥ b1

(
c⊤1 W

(t)⊤
K+ W

(t)
K+c1 + v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1

)
and similarly, there exists b2, b3 such that

dc⊤1 W
(t)⊤
K+ W

(t)
K+c1

dt
≥ b2 · c⊤1 W

(t)⊤
K+ W

(t)
Q+v1

dv⊤1 W
(t)⊤
Q+ W

(t)
Q+v1

dt
≥ b3 · c⊤1 W

(t)⊤
K+ W

(t)
Q+v1

Take b = min(b1, b2, b3) we finish the proof.

Lemma E.3. There exists a T2 such that T2 − T1 = O(log 1
ω2 ) and

c⊤1 W
(T2)⊤
K+ W

(T2)
Q+ v1,−c⊤1 W

(T2)⊤
K+ W

(T2)
Q+ v2 = Θ(1).

Proof. We can define a process x(t) by

x(0) =

 0
ω2

ω2

 ,
dx
dt

=
b√
m
Ax, A =

[
0 1 1
1 0 0
1 0 0

]
and by Lemma E.2, we have

x(t) ≤

c⊤1 W
(T1+t)⊤
K+ W

(T1+t)
Q+ v1

c⊤1 W
(T1+t)⊤
K+ W

(T1+t)
K+ c1

v⊤1 W
(T1+t)⊤
Q+ W

(T1+t)
Q+ v1

 .

Now, we analyze x(t). We can compute the eigen-decomposition of A as

det (A− λI) = det

([−λ 1 1
1 −λ 0
1 0 −λ

])
= −λ3 + 2λ = 0 ⇒ λ = 0,±

√
2.

The eigenvectors can be found by finding the null space of A− λI:[−λ 1 1
1 −λ 0
1 0 −λ

][
x1

x2

x3

]
=

[
0
0
0

]
Thus, the eigenvector for λ = 0 is

C ·

[
0
−1
1

]
and the eigenvectors for the non-zero eigenvalues are

C ·

[
λ
1
1

]
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Therefore, plugging in the initial value x(0), we have

x(t) =
ω2

2

exp
(√

2bt
)√2

1
1

+ exp
(
−
√
2bt
)−√

2
1
1


Hence, there exists T2 − T1 ≤ O(log 1

ω2 ) such that c⊤1 W
(T2)⊤
K+ W

(T2)
Q+ v1 ≥ x(T2 − T1) ≥ Ω(1).

E.2 GROWTH OF ASYMMETRY

The following result shows that there exists a near-symmetry between the score and self-score vari-
ables.

Lemma E.4. For t ≥ T1, there exists a constant C > 0 such that as long as
maxµ,ν∈V∪C |µ⊤W (t)⊤

K+ W
(t)
Q+ν| ≤ C, if we define

∆(t) :=

max
µ∈V∪C

{ ∣∣∣(c1 + c2)
⊤W

(t)⊤
K+ W

(t)
Q+µ

∣∣∣ , ∣∣∣(v1 + v2)
⊤W

(t)⊤
K+ W

(t)
Q+µ

∣∣∣ , ∣∣∣µ⊤W (t)⊤
K+ W

(t)
Q+(c1 + c2)

∣∣∣ , ∣∣∣µ⊤W (t)⊤
K+ W

(t)
Q+(v1 + v2)

∣∣∣∣∣∣(c1 + c2)
⊤W

(t)⊤
K+ W

(t)
K+µ

∣∣∣ , ∣∣∣(v1 + v2)
⊤W

(t)⊤
K+ W

(t)
K+µ

∣∣∣ , ∣∣∣(c1 + c2)
⊤W

(t)⊤
Q+ W

(t)
Q+µ

∣∣∣ , ∣∣∣(v1 + v2)
⊤W

(t)⊤
Q+ W

(t)
Q+µ

∣∣∣ }
then

d∆(t)

dt

dc⊤1 W
(T ′)⊤
K+ W

(T ′)
Q+ v1

dt

≤ Õ (ω).

and

∆(t) ≤ Õ (ω)

Proof. First of all, by the symmetry between two groups in Lemma C.2, we have

(c1 + c2)
⊤W

(t)⊤
K+ W

(t)
Q+v1 = c⊤1 W

(t)⊤
K+ W

(t)
Q+(v1 + v2)

(c1 + c2)
⊤W

(t)⊤
K+ W

(t)
Q+c1 = c⊤1 W

(t)⊤
K+ W

(t)
Q+(c1 + c2)

(v1 + v2)
⊤W

(t)⊤
K+ W

(t)
Q+v1 = v⊤1 W

(t)⊤
K+ W

(t)
Q+(v1 + v2)

(v1 + v2)
⊤W

(t)⊤
K+ W

(t)
Q+c1 = v⊤1 W

(t)⊤
K+ W

(t)
Q+(c1 + c2)

Thus,

∆(t) = max
µ∈V∪C

{
(c1 + c2)

⊤W
(t)⊤
K+ W

(t)
Q+µ, (v1 + v2)

⊤W
(t)⊤
K+ W

(t)
Q+µ,

(c1 + c2)
⊤W

(t)⊤
K+ W

(t)
K+µ, (v1 + v2)

⊤W
(t)⊤
K+ W

(t)
K+µ, (c1 + c2)

⊤W
(t)⊤
Q+ W

(t)
Q+µ, (v1 + v2)

⊤W
(t)⊤
Q+ W

(t)
Q+µ

}

At t = T1, we have ∆(T1) = ω2 and by the updates in Appendix E.5, we have

d∆(t)

dt

∣∣∣∣
t=T1

= 0

Define ∆p(t) = maxl1,l2∈[L],X∈D |p(t)l1,l2
(X) − 1

3 |. For t ≥ T1, from the gradients of the score
variables in Appendix E.5 and Appendix E.6, we have∣∣∣∣d∆(t)

dt

∣∣∣∣ ≤ O
(∣∣∣∆(t)∆p(t)

∣∣∣) (15)
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This can be seen from the following. Take
dc⊤1 W

(t)⊤
K+ W

(t)
Q+v1

dt as an example: Define

dc⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt

∣∣∣∣∣
p(+,t)=p(+,T1)

:= E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,T1)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,T1)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,T1)
l

)
p
(+,T1)
l x⊤l v1

∣∣∣∣∣Xk,s,−s

]
Then, following similar steps in deriving Appendix E.5, it is not hard to derive that if we replace

p(+,t) by p(+,T1) in
dc⊤1 W

(t)⊤
K+ W

(t)
Q+v1

dt , we have

dc⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt

∣∣∣∣∣
p(+,t)=p(+,T1)

=
1

3
g(t)2

(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1 − v⊤1 W

(t)⊤
Q+ W

(t)
Q+v2

)(2

3
w

(T1)⊤
+ c1

)
+

1

3
g(t)2

(
c⊤1 W

(t)⊤
K+ W

(t)
K+c1 − c⊤1 W

(t)⊤
K+ W

(t)
K+c2

)(2

3
w

(T1)⊤
+ c1

)
and thus,

dc⊤1 W
(t)⊤
K+ W

(t)
Q+(v1 + v2)

dt

∣∣∣∣∣
p(+,t)=p(+,T1)= 1

3

= 0.

Further, by the chain rule, we have

dc⊤1 W
(t)⊤
K+ W

(t)
Q+(v1 + v2)

dt
= c⊤1 W

(t)⊤
K+

dW (t)
Q+(v1 + v2)

dt
+

dc⊤1 W
(t)⊤
K+

dt
W

(t)
Q+(v1 + v2)

Therefore, expanding
dW (t)

Q+(v1+v2)

dt via Appendix E.6, we have∣∣∣∣∣dc⊤1 W
(t)⊤
K+ W

(t)
Q+(v1 + v2)

dt

∣∣∣∣∣ =
∣∣∣∣∣∣dc
⊤
1 W

(t)⊤
K+ W

(t)
Q+(v1 + v2)

dt
−

dc⊤1 W
(t)⊤
K+ W

(t)
Q+(v1 + v2)

dt

∣∣∣∣∣
p(+,t)=p(+,T1)= 1

3

∣∣∣∣∣∣
≤ O

(∣∣∣∆(t)∆p(t)
∣∣∣)

Applying similar analysis to all other asymmetry variables, we get Equation (15).

Now, we analyze the growth of ∆(t). Consider a specific time T ′ such that c⊤1 W
(T ′)⊤
K+ W

(T ′)
Q+ v1 =

Θ(ω) for the first time and by Lemma E.1, we have |∆p(t)| ≤ O(ω) for all t ≤ T ′. Further, by
Lemma E.2 and similar analysis in Lemma E.3, we have T ′ − T1 ≤ O(log(1/ω)). Thus,∣∣∣∆(T ′)

∣∣∣ ≤ ∣∣∣∆(T1)
∣∣∣+ ∫ T ′

T1

∣∣∣∣d∆(t)

dt

∣∣∣∣ dt ≤ ω2 + Õ(ω2).

This implies that

∆(T ′)

c⊤1 W
(T ′)⊤
K+ W

(T ′)
Q+ v1

≤ Õ(ω2)

Θ(ω)
≤ Õ (ω) ,

Finally, comparing the gradient of ∆(t) with the gradient of c⊤1 W
(t)⊤
K+ W

(t)
Q+v1 for t ∈ [T ′, T2] (fol-

lowing similar analysis in Lemma E.1), we have
d∆(t)

dt

dc⊤1 W
(T ′)⊤
K+ W

(T ′)
Q+ v1

dt

≤ Õ (ω) .
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where the Õ is independent of t. Notice that this inequality on the ratio of gradients also
holds for t ≤ T ′ since ∆p(t) ≤ O(ω) for t ≤ T ′. This implies that |∆(T2)| ≤ |∆(T ′)| +
Õ(ω)|c⊤1 W

(T2)⊤
K+ W

(T2)
Q+ v1 − c⊤1 W

(T ′)⊤
K+ W

(T ′)
Q+ v1| ≤ Õ(ω).

E.3 WHEN THE QUERY IS THE GROUP SIGNAL

The main goal of this section is to analyze the group signal queries. To do this, we need to know the
sign of the group signal queries. This can be analyzed by induction-like argument over all the scores
and self-scores below.
Lemma E.5 (Sign of all the score and self-score variables). For t ∈ [T1, T2],

c1W
(t)⊤
K+ W

(t)
Q+v1 ≥ 0, c1W

(t)⊤
K+ W

(t)
Q+v2 ≤ 0

v1W
(t)⊤
K+ W

(t)
Q+v1 ≤ 0, v1W

(t)⊤
K+ W

(t)
Q+v2 ≥ 0

c1W
(t)⊤
K+ W

(t)
Q+c1 ≥ 0, c1W

(t)⊤
K+ W

(t)
Q+c2 ≤ 0

v1W
(t)⊤
K+ W

(t)
Q+c1 ≤ 0, v1W

(t)⊤
K+ W

(t)
Q+c2 ≥ 0

c1W
(t)⊤
Q+ W

(t)
Q+v1 ≥ 0, c1W

(t)⊤
Q+ W

(t)
Q+v2 ≤ 0

c1W
(t)⊤
Q+ W

(t)
Q+c1 ≥ 0, c1W

(t)⊤
Q+ W

(t)
Q+c2 ≤ 0

v1W
(t)⊤
Q+ W

(t)
Q+v1 ≥ 0, v1W

(t)⊤
Q+ W

(t)
Q+v2 ≤ 0

c1W
(t)⊤
K+ W

(t)
K+v1 ≤ 0, c1W

(t)⊤
K+ W

(t)
K+v2 ≥ 0

c1W
(t)⊤
K+ W

(t)
K+c1 ≥ 0, c1W

(t)⊤
K+ W

(t)
K+c2 ≤ 0

v1W
(t)⊤
K+ W

(t)
K+v1 ≥ 0, v1W

(t)⊤
K+ W

(t)
K+v2 ≤ 0

Proof. First of all, at t = T1, all the variables are zero and thus the results are satisfied. Now,
assume all the inequalities hold for some t ≥ T1, we show that the gradients of those score variables
also satisfy those inequalities. We first prove the inequalities in the first column. First of all, by
Lemma E.2, we have

dc1W
(t)⊤
K+ W

(t)
Q+v1

dt
,

dc⊤1 W
(t)⊤
K+ W

(t)
K+c1

dt
,

dv⊤1 W
(t)⊤
Q+ W

(t)
Q+v1

dt
≥ 0.

We now prove v⊤1 W
(t)⊤
K+ W

(t)
Q+c1 ≤ 0 as an example and the signs of all the other score variables can

be analyzed similarly. By Appendix E.7, we have

dv⊤1 W
(t)⊤
K+ W

(t)
Q+c1

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,+,−

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,−,+

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]
We first analyze the sign of the sum of the first two terms.

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,+,−

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,−,+

]

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
Q+v1

(
p
(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ p

(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))
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+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v2)

(
p
(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
+ p

(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2w

(t)⊤
+ v1

(
−p

(+,t)
q←−v2,k←v1

(X1,+,−) + p
(+,t)
q←v2,k←−v1

(X2,+,−)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(X1,+,−)w
(t)⊤
+ v1 + c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(X2,+,−)w
(t)⊤
+ v1

)

+ g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)

(
p
(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
+ p

(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)w

(t)⊤
+ (−v1)

(
p
(+,t)
q←−v1,k←−v1

(X1,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←c2

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2

(
p
(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

)
+ p

(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←−v2

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2 · w

(t)⊤
+ (−v1)

(
p
(+,t)
q←v2,k←−v1

(X1,−,+)− p
(+,t)
q←−v2,k←v1

(X2,−,+)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(X1,−,+)w
(t)⊤
+ (−v1)− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(X2,−,+)w
(t)⊤
+ v1

)
Define

∆s(t) := max
µ∈V∪C

{ ∣∣∣(c1 + c2)
⊤W

(t)⊤
K+ W

(t)
Q+µ

∣∣∣ , ∣∣∣(v1 + v2)
⊤W

(t)⊤
K+ W

(t)
Q+µ

∣∣∣ ,∣∣∣µ⊤W (t)⊤
K+ W

(t)
Q+(c1 + c2)

∣∣∣ , ∣∣∣µ⊤W (t)⊤
K+ W

(t)
Q+(v1 + v2)

∣∣∣ }
Notice that

p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−) = O(∆s(t))

p
(+,t)
q←v1,k←v1

w
(t)⊤
+ X1,+,−p

(+,t)
q←v1

= p
(+,t)
q←v1,k←c1

(X1,+,−)(1− p
(+,t)
q←v1,k←c1

(X1,+,−))/2 +O(∆s(t))

p
(+,t)
q←−v1,k←−v1

w
(t)⊤
+ X1,−,+p

(+,t)
q←−v1

= p
(+,t)
q←−v1,k←c1

(X1,−,+)(1− p
(+,t)
q←−v1,k←c1

(X1,−,+))/2 +O(∆s(t))

Now consider the function y(x) = (1 − x)x/2. Notice that if x1 < 1
3 and 1

3 < x2 < 2
3 , then

y(x2) > y(x1). Therefore, there exists a constant C > 0 such that if |c⊤1 W
(t)⊤
K+ W

(t)
Q+v1| ≤ C, we

have

p
(+,t)
q←v1,k←c1

(X1,+,−)(1− p
(+,t)
q←v1,k←c1

(X1,+,−))/2 > p
(+,t)
q←−v1,k←c1

(X1,−,+)(1− p
(+,t)
q←−v1,k←c1

(X1,−,+))/2

Next,

p
(+,t)
q←v1,k←c1

(X1,+,−)(1− p
(+,t)
q←v1,k←c1

(X1,+,−))/2− p
(+,t)
q←−v1,k←c1

(X1,−,+)(1− p
(+,t)
q←−v1,k←c1

(X1,−,+))/2

= Θ(c⊤1 W
(t)⊤
K+ W

(t)
Q+v1) > O(∆s(t))

where the inequality is by Lemma E.4. Thus,

c⊤1 W
(t)⊤
Q+ W

(t)
Q+v1

(
p
(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ p

(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+(−v1)

(
p
(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
+ p

(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)w

(t)⊤
+ (−v1)

(
p
(+,t)
q←−v1,k←−v1

(X1,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)
)
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≤ 0

Similarly,

c⊤1 W
(t)⊤
Q+ W

(t)
Q+(−v2)

(
p
(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
+ p

(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2w

(t)⊤
+ v1

(
−p

(+,t)
q←−v2,k←v1

(X1,+,−) + p
(+,t)
q←v2,k←−v1

(X2,+,−)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+v2

(
p
(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

)
+ p

(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←−v2

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2 · w

(t)⊤
+ (−v1)

(
p
(+,t)
q←v2,k←−v1

(X1,−,+)− p
(+,t)
q←−v2,k←v1

(X2,−,+)
)

≤ 0

Finally, since v⊤1 W
(t)⊤
K+ W

(t)
Q+c1 ≤ 0, v⊤2 W

(t)⊤
K+ W

(t)
Q+c1 ≥ 0,

c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(X1,+,−)w
(t)⊤
+ v1 + c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(X2,+,−)w
(t)⊤
+ v1

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(X1,−,+)w
(t)⊤
+ (−v1)− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(X2,−,+)w
(t)⊤
+ v1

≤ 0

Thus,

dv⊤1 W
(t)⊤
K+ W

(t)
Q+c1

dt
≤ 0.

The inequalities in the second column can be proved by noticing the symmetric structure of the
gradients of score variables in Appendix E.6. Thus, the gradient of the variables in the second
column has the exact opposite sign of the corresponding variables in the first column.

E.4 PROPERTIES AT THE END OF STAGE 2

Lemma E.6 (Activation in stage 2). For t ∈ [T1, T2],

∀k ∈ [2], s ∈ {±1} : σ
(t)
+ (Xk,s,−s) > 0

Proof. This is a direct consequences of Corollary D.7 and Lemma E.4.

Theorem E.7 (Attention at the end of stage 2). There exists a T2 = O(log(1/ω)) such that

• For samples X1,+,+ and X1,−,−,

– when the query token is the group signal c1,∣∣∣p(+,T2)
q←c1,k←c1

(X1,+,+)− p
(+,T2)
q←c1,k←c1

(X1,−,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,T2)

q←c1,k←v1
(X1,+,+)− p

(+,T2)
q←c1,k←−v2

(X1,−,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,T2)

q←c1,k←v2
(X1,+,+)− p

(+,T2)
q←c1,k←−v1

(X1,−,−)
∣∣∣ ≤ Õ (ω)

– when the query token is the classification signal,∣∣∣p(+,T2)
q←v1,k←c1

(X1,+,+)− p
(+,T2)
q←−v2,k←c1

(X1,−,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,T2)

q←v1,k←v1
(X1,+,+)− p

(+,T2)
q←−v2,k←−v2

(X1,−,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,T2)

q←v1,k←v2
(X1,+,+)− p

(+,T2)
q←−v2,k←−v1

(X1,−,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,T2)

q←v2,k←c1
(X1,+,+)− p

(+,T2)
q←−v1,k←c1

(X1,−,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,T2)

q←v2,k←v2
(X1,+,+)− p

(+,T2)
q←−v1,k←−v1

(X1,−,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,T2)

q←v2,k←v1
(X1,+,+)− p

(+,T2)
q←−v1,k←−v2

(X1,−,−)
∣∣∣ ≤ Õ (ω)
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• For samples X1,+,− and X1,−,+,

– when the query is the group signal c1,

p
(+,T2)
q←c1,k←c1

(X1,+,−) > p
(+,T2)
q←c1,k←c1

(X1,−,+)∣∣∣p(+,T2)
q←c1,k←v1

(X1,+,−)− p
(+,T2)
q←c1,k←−v2

(X1,+,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,T2)

q←c1,k←−v1
(X1,−,+)− p

(+,T2)
q←c1,k←v2

(X1,−,+)
∣∣∣ ≤ Õ (ω)

– when the query is the classification signal,

p
(+,t)
q←v1,k←c1

(X1,+,−)− p
(+,t)
q←−v1,k←c1

(X1,−,+) = Θ(1)

p
(+,t)
q←−v2,k←c1

(X1,+,−)− p
(+,t)
q←v2,k←c1

(X1,−,+) = Θ(1)∣∣∣p(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←v1,k←−v2

(X1,+,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,t)

q←−v2,k←v1
(X1,+,−)− p

(+,t)
q←−v2,k←−v2

(X1,+,−)
∣∣∣ ≤ Õ (ω)∣∣∣p(+,t)

q←−v2,k←c1
(X1,+,−)− p

(+,t)
q←v1,k←c1

(X1,+,−)
∣∣∣ ≤ Õ (ω)

Proof. The proof is a direct consequence of Lemma E.3, Lemma E.4 and Lemma E.5.

E.5 THE UPDATES OF THE SOFTMAX ATTENTION AT t = T1

In this section, we give out the explicit updates for the scores and self-scores at t = T1.

The equations in this section are derived by the following:

1. Notice that p(+,T1)
l1,l2

= 1
3 for l1, l2 ∈ [L] and thus w(T1)

+ Xk,s,−sp
(+,T1)
l = 1

3w
(T1)⊤
+ ck where

s ∈ {±1}.

2. Therefore, by Corollary D.7, w
(T1)⊤
+ ck = Ω(1) and thus σ̇

(T1)
+ (X1,+,−) =

σ̇
(T1)
+ (X1,−,+) = σ̇

(T1)
+ (X2,+,−) = σ̇

(T1)
+ (X2,−,+) = 1.

3. By symmetry between two groups and two heads in Lemma C.2 and Lemma C.4, we
have w

(T1)⊤
+ c1 = w

(T1)⊤
+ c2 and g(T1)(X1,+,−) = g(T1)(X1,−,+) = g(T1)(X2,+,−) =

g(T1)(X2,−,+). Thus, we denote g(T1) = g(T1)(X1,+,−).

E.5.1 THE SCORES

dc⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1 − c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v2

)(2

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1 − c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)
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dc⊤1 W
(t)⊤
K+ W

(t)
Q+v2

dt

∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
v⊤2 W

(T1)⊤
Q+ W

(T1)
Q+ v1 − v⊤2 W

(T1)⊤
Q+ W

(T1)
Q+ v2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
−c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1 + c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,t)
l

)
=

1

3
g(T1)2

(
v⊤2 W

(T1)⊤
Q+ W

(T1)
Q+ v1 − v⊤2 W

(T1)⊤
Q+ W

(T1)
Q+ v2

)(2

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
−c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1 + c⊤1 W

(T1)⊤
K+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)

dc⊤1 W
(t)⊤
K+ W

(t)
Q+c1

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v1 − c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v2

)(
w

(T1)
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
K+ v1 − c⊤1 W

(T1)⊤
K+ W

(T1)
K+ v2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v1 − c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v2

)(2

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
K+ v1 − c⊤1 W

(T1)⊤
K+ W

(T1)
K+ v2

)(
−1

3
w

(T1)⊤
+ c1

)
dc⊤1 W

(t)⊤
K+ W

(t)
Q+c2

dt

∣∣∣∣∣
t=T1

=
1

3
g(t)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v2 − c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v1

)(
w

(T1)
+ c2 − w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
K+ v2 − c⊤1 W

(T1)⊤
K+ W

(T1)
K+ v1

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(t)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v2 − c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ v1

)(2

3
w

(T1)⊤
+ c2

)
+

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
K+ v2 − c⊤1 W

(T1)⊤
K+ W

(T1)
K+ v1

)(
−1

3
w

(T1)⊤
+ c1

)

dv⊤1 W
(t)⊤
K+ W

(t)
Q+c1

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c1 − c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
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+
1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
K+ v1 − v⊤1 W

(T1)⊤
K+ W

(T1)
K+ v2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c1 − c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c2

)(
−1

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
K+ v1 − v⊤1 W

(T1)⊤
K+ W

(T1)
K+ v2

)(
−1

3
w

(T1)⊤
+ c1

)
dv⊤2 W

(t)⊤
K+ W

(t)
Q+c1

dt

∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
−c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c1 + c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
v⊤2 W

(T1)⊤
K+ W

(T1)
K+ v1 − v⊤2 W

(T1)⊤
K+ W

(T1)
K+ v2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
−c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c1 + c⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c2

)(
−1

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
v⊤2 W

(T1)⊤
K+ W

(T1)
K+ v1 − v⊤2 W

(T1)⊤
K+ W

(T1)
K+ v2

)(
−1

3
w

(T1)⊤
+ c1

)

dv⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1 − v⊤1 W

(T1)⊤
K+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
Q+ c2

)(
−1

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1 − v⊤1 W

(T1)⊤
K+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)
dv⊤1 W

(t)⊤
K+ W

(t)
Q+v2

dt

∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
v⊤2 W

(T1)⊤
Q+ W

(T1)
Q+ c1 − v⊤2 W

(T1)⊤
Q+ W

(T1)
Q+ c2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
−v⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1 + v⊤1 W

(T1)⊤
K+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
v⊤2 W

(T1)⊤
Q+ W

(T1)
Q+ c1 − v⊤2 W

(T1)⊤
Q+ W

(T1)
Q+ c2

)(
−1

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
−v⊤1 W

(T1)⊤
K+ W

(T1)
K+ c1 + v⊤1 W

(T1)⊤
K+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)
E.5.2 THE KEY SELF-SCORES

dv⊤1 W
(t)⊤
K+ W

(t)
K+v2

dt

∣∣∣∣∣
t=T1
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= E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v2

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤2 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c1 − v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c2

)
w

(T1)⊤
+ Xp

(+,T1)
l

+
1

3
g(T1)2

(
−v⊤2 W

(T1)⊤
K+ W

(T1)
Q+ c1 + v⊤2 W

(T1)⊤
K+ W

(T1)
Q+ c2

)
w

(T1)⊤
+ Xp

(+,T1)
l

=
1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c1 − v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c2

) 1

3
w

(T1)⊤
+ c1

+
1

3
g(T1)2

(
−v⊤2 W

(T1)⊤
K+ W

(T1)
Q+ c1 + v⊤2 W

(T1)⊤
K+ W

(T1)
Q+ c2

) 1

3
w

(T1)⊤
+ c1

dv⊤1 W
(t)⊤
K+ W

(t)
K+v1

dt

∣∣∣∣∣
t=T1

=
1

3
g(T1)4

(
v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c1 − v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)4

(
v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c1 − v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c2

)(
−1

3
w

(T1)⊤
+ c1

)

dc⊤1 W
(t)⊤
K+ W

(t)
K+c2

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤c2

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤2 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v2 − c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v1

)(
w

(T1)⊤
+ c2 − w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
c⊤2 W

(T1)⊤
K+ W

(T1)
Q+ v1 − c⊤2 W

(T1)⊤
K+ W

(T1)
Q+ v2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v2 − c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v1

)(2

3
w

(T1)⊤
+ c2

)
+

1

3
g(T1)2

(
c⊤2 W

(T1)⊤
K+ W

(T1)
Q+ v1 − c⊤2 W

(T1)⊤
K+ W

(T1)
Q+ v2

)(2

3
w

(T1)⊤
+ c1

)
dc⊤1 W

(t)⊤
K+ W

(t)
K+c1

dt

∣∣∣∣∣
t=T1

=
1

3
g(T1)4

(
c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v1 − c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)4

(
c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v1 − c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v2

)(2

3
w

(T1)⊤
+ c1

)

dc⊤1 W
(t)⊤
K+ W

(t)
K+v1

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

38
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+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c1 − c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v1 − v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c1 − c⊤1 W

(T1)⊤
K+ W

(T1)
Q+ c2

)(
−1

3
w

(T1)⊤
+ Xc1

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v1 − v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v2

)(2

3
w

(T1)⊤
+ c1

)
dc⊤2 W

(t)⊤
K+ W

(t)
K+v1

dt

∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
c⊤2 W

(T1)⊤
K+ W

(T1)
Q+ c1 − c⊤2 W

(T1)⊤
K+ W

(T1)
Q+ c2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v2 − v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v1

)(
w

(T1)⊤
+ c2 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
c⊤2 W

(T1)⊤
K+ W

(T1)
Q+ c1 − c⊤2 W

(T1)⊤
K+ W

(T1)
Q+ c2

)(
−1

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v2 − v⊤1 W

(T1)⊤
K+ W

(T1)
Q+ v1

)(2

3
w

(T1)⊤
+ c2

)

E.5.3 THE QUERY SELF-SCORES

dv⊤1 W
(t)⊤
Q+ W

(t)
Q+v2

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v2

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤2 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
−v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1 + v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
v⊤2 W

(T1)⊤
Q+ W

(T1)
K+ c1 − v⊤2 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
−v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1 + v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
v⊤2 W

(T1)⊤
Q+ W

(T1)
K+ c1 − v⊤2 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)
dv⊤1 W

(t)⊤
Q+ W

(t)
Q+v1

dt

∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)
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+
1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)

dc⊤1 W
(t)⊤
Q+ W

(t)
Q+c2

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c2

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤2 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v2 − c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v1

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
c⊤2 W

(T1)⊤
Q+ W

(T1)
K+ v1 − c⊤2 W

(T1)⊤
Q+ W

(T1)
K+ v2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v2 − c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v1

)(
−1

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
c⊤2 W

(T1)⊤
Q+ W

(T1)
K+ v1 − c⊤2 W

(T1)⊤
Q+ W

(T1)
K+ v2

)(
−1

3
w

(T1)⊤
+ c1

)
dc⊤1 W

(t)⊤
Q+ W

(t)
Q+c1

dt

∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
−c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v2 + c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v1

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v1 − c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
−c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v2 + c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v1

)(
−1

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v1 − c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v2

)(
−1

3
w

(T1)⊤
+ c1

)

dc⊤1 W
(t)⊤
Q+ W

(t)
Q+v2

dt

∣∣∣∣∣
t=T1

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v2

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤2 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]∣∣∣∣∣
t=T1

=
1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2 − c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T−1)
l

)
+

1

3
g(T1)2

(
v⊤2 W

(T1)⊤
Q+ W

(T1)
K+ v1 − v⊤2 W

(T1)⊤
Q+ W

(T1)
K+ v2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2 − c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1

)(2

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
v⊤2 W

(T1)⊤
Q+ W

(T1)
K+ v1 − v⊤2 W

(T1)⊤
Q+ W

(T1)
K+ v2

)(
−1

3
w

(T1)⊤
+ c1

)
dc⊤1 W

(t)⊤
Q+ W

(t)
Q+v1

dt

∣∣∣∣∣
t=T1
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=
1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1 − c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(
w

(T1)⊤
+ c1 − w

(T1)⊤
+ Xp

(+,T1)
l

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v2

)(
−w

(T1)⊤
+ Xp

(+,T1)
l

)
=

1

3
g(T1)2

(
c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c1 − c⊤1 W

(T1)⊤
Q+ W

(T1)
K+ c2

)(2

3
w

(T1)⊤
+ c1

)
+

1

3
g(T1)2

(
v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v1 − v⊤1 W

(T1)⊤
Q+ W

(T1)
K+ v2

)(
−1

3
w

(T1)⊤
+ c1

)
E.6 SUM OF PARTIAL GRADIENTS

dW (t)
Q+v1

dt
+

dW (t)
Q+v2

dt
:

E

[
g(t)yσ̇

(t)
+

L∑
l=1

K
(t)
+ diag

(
X⊤w

(t)
+ − w

(t)⊤
+ Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣X1,+,−

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

K
(t)
+ diag

(
X⊤w

(t)
+ − w

(t)⊤
+ Xp

(+,t)
l

)
p
(+,t)
l x⊤l v2

∣∣∣∣∣X2,+,−

]

= g(t)

(
W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

+W
(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c1

+W
(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

+W
(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
p
(+,t)
q←v2,k←v2

+W
(t)
K+c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
p
(+,t)
q←v2,k←c2

+W
(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
p
(+,t)
q←v2,k←−v1

)

dW (t)
Q+(c1 + c2)

dt
:

E

[
g(t)yσ̇

(t)
+

L∑
l=1

K
(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l (c1 + c2)

∣∣∣∣∣Xk,+,−

]

= g(t)

(
W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+W
(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

+W
(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

+W
(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
p
(+,t)
q←c2,k←v2

+W
(t)
K+c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
p
(+,t)
q←c2,k←c2

+W
(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
p
(+,t)
q←c2,k←−v1

)

dW (t)
K+v1

dt
+

dW (t)
K+v2

dt
:
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E

[
g(t)yσ̇

(t)
+

L∑
l=1

q
(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣X1,+,−

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

q
(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v2

∣∣∣∣∣X2,+,−

]

= g(t)

(
W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
+W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
+W

(t)
Q+v2p

(+,t)
q←v2,k←v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
+W

(t)
Q+c2p

(+,t)
q←c2,k←v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
+W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))

dW (t)
K+(c1 + c2)

dt
:

E

[
g(t)yσ̇

(t)
+

L∑
l=1

q
(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤(c1 + c2)

∣∣∣∣∣Xk,+,−

]

= g(t)

(
W

(t)
Q+v1p

(+,t)
q←v1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+W

(t)
Q+c1p

(+,t)
q←c1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
+W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
+W

(t)
Q+v2p

(+,t)
q←v2,k←c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
+W

(t)
Q+c2p

(+,t)
q←c2,k←c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
+W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))

E.7 EXPANDING THE UPDATES

To help us analyze the sign of the scores and self-scores in Lemma E.5, we rearrange the gradient
flow updates for those variables into forms that are convenient for such analysis.

E.7.1 THE KEY SELF-SCORE

dc⊤1 W
(t)⊤
K+ W

(t)
K+v1

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,s,−s

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,+,−

]
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= g(t)

(
c⊤1 W

(t)
K+W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ c⊤1 W

(t)
K+W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
+ c⊤1 W

(t)
K+W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
− c⊤1 W

(t)⊤
K+ W

(t)
Q+v2p

(+,t)
q←v2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
− c⊤1 W

(t)
K+W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
− c⊤1 W

(t)
K+W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))

= g(t)

(
c⊤1 W

(t)
K+W

(t)
Q+v1

(
p
(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ p

(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))
+ c⊤1 W

(t)
K+W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)
)

+ c⊤1 W
(t)
K+W

(t)
Q+(−v2)

(
p
(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
+ p

(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

))
+ c⊤1 W

(t)
K+W

(t)
Q+(−v2)w

(t)⊤
+ v1

(
p
(+,t)
q←−v2,k←v1

(X1,+,−)− p
(+,t)
q←v2,k←−v1

(X2,+,−)
)

+ c⊤1 W
(t)
K+W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
− c⊤1 W

(t)
K+W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
+ c⊤1 W

(t)
K+W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(X1,+,−)w
(t)⊤
+ v1 + c⊤1 W

(t)
K+W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(X2,+,−)w
(t)⊤
+ v1

)

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,−,+

]

= g(t)

(
c⊤1 W

(t)⊤
K+ W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
+ c⊤1 W

(t)⊤
K+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
+ c⊤1 W

(t)⊤
K+ W

(t)
Q+v2p

(+,t)
q←v2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

)
− c⊤1 W

(t)⊤
K+ W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←−v2

)
− c⊤1 W

(t)⊤
K+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←c2

)
− c⊤1 W

(t)⊤
K+ W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

))

= g(t)

(
c⊤1 W

(t)⊤
K+ W

(t)
Q+(−v1)

(
p
(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
+ p

(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

))
+ c⊤1 W

(t)⊤
K+ W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←−v1,k←−v1

(X1,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)
)

+ c⊤1 W
(t)⊤
K+ W

(t)
Q+v2

(
p
(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

)
+ p

(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←−v2

))
+ c⊤1 W

(t)⊤
K+ W

(t)
Q+v2w

(t)⊤
+ (−v1)

(
p
(+,t)
q←v2,k←−v1

(X1,−,+)− p
(+,t)
q←−v2,k←v1

(X2,−,+)
)

+ c⊤1 W
(t)⊤
K+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
− c⊤1 W

(t)⊤
K+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←c2

)
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+ c⊤1 W
(t)⊤
K+ W

(t)
Q+c1w

(t)⊤
+ (−v1)p

(+,t)
q←c1,k←−v1

(X1,−,+)− c⊤1 W
(t)⊤
K+ W

(t)
Q+c2w

(t)⊤
+ v1p

(+,t)
q←c2,k←v1

(X2,−,+)

)

E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
Q+v1p

(+,t)
q←v1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ v⊤1 W

(t)⊤
K+ W

(t)
Q+c1p

(+,t)
q←c1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
+ v⊤1 W

(t)⊤
K+ W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
− v⊤1 W

(t)⊤
K+ W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
− v⊤1 W

(t)⊤
K+ W

(t)
Q+c1p

(+,t)
q←c1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
− v⊤1 W

(t)⊤
K+ W

(t)
Q+v2p

(+,t)
q←v2,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

))

dv⊤1 W
(t)⊤
K+ W

(t)
K+v1

dt
= 2E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,s,−s

]

E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,+,−

]

= g(t)

(
v⊤1 W

(t)
K+W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ v⊤1 W

(t)
K+W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
+ v⊤1 W

(t)
K+W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
− v⊤1 W

(t)⊤
K+ W

(t)
Q+v2p

(+,t)
q←v2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
− v⊤1 W

(t)
K+W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
− v⊤1 W

(t)
K+W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))

= g(t)

(
v⊤1 W

(t)
K+W

(t)
Q+v1

(
p
(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ p

(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))
+ v⊤1 W

(t)
K+W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)
)

+ v⊤1 W
(t)
K+W

(t)
Q+(−v2)

(
p
(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
+ p

(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

))
+ v⊤1 W

(t)
K+W

(t)
Q+(−v2)w

(t)⊤
+ v1

(
p
(+,t)
q←−v2,k←v1

(X1,+,−)− p
(+,t)
q←v2,k←−v1

(X2,+,−)
)

+ v⊤1 W
(t)
K+W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
− v⊤1 W

(t)
K+W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
+ v⊤1 W

(t)
K+W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(X1,+,−)w
(t)⊤
+ v1 + v⊤1 W

(t)
K+W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(X2,+,−)w
(t)⊤
+ v1

)
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E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ q

(t)
+lp

(+,t)⊤
l diag

(
w⊤+X − w⊤+Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,−,+

]

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
+ v⊤1 W

(t)⊤
K+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
+ v⊤1 W

(t)⊤
K+ W

(t)
Q+v2p

(+,t)
q←v2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

)
− v⊤1 W

(t)⊤
K+ W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←−v2

)
− v⊤1 W

(t)⊤
K+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←c2

)
− v⊤1 W

(t)⊤
K+ W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

))

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
Q+(−v1)

(
p
(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
+ p

(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

))
+ v⊤1 W

(t)⊤
K+ W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←−v1,k←−v1

(X1,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)
)

+ v⊤1 W
(t)⊤
K+ W

(t)
Q+v2

(
p
(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

)
+ p

(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←−v2

))
+ v⊤1 W

(t)⊤
K+ W

(t)
Q+v2w

(t)⊤
+ (−v1)

(
p
(+,t)
q←v2,k←−v1

(X1,−,+)− p
(+,t)
q←−v2,k←v1

(X2,−,+)
)

+ v⊤1 W
(t)⊤
K+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
− v⊤1 W

(t)⊤
K+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←c2

)
+ v⊤1 W

(t)⊤
K+ W

(t)
Q+c1w

(t)⊤
+ (−v1)p

(+,t)
q←c1,k←−v1

(X1,−,+)− v⊤1 W
(t)⊤
K+ W

(t)
Q+c2w

(t)⊤
+ v1p

(+,t)
q←c2,k←v1

(X2,−,+)

)

E.7.2 THE QUERY SELF-SCORE

dc⊤1 W
(t)⊤
Q+ W

(t)
Q+v1

dt

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,s,−s

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,+,−

]

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c1

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

− c⊤1 W
(t)⊤
Q+ W

(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←v2

− c⊤1 W
(t)⊤
Q+ W

(t)
K+c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←c2
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− c⊤1 W
(t)⊤
Q+ W

(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←−v1

)

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
K+v1

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

+
(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←−v1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
K+v1w

(t)⊤
+ v1

(
p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+(−v2)

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

+
(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←v2

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
K+v2w

(t)⊤
+ v2

(
p
(+,t)
q←v1,k←−v2

(X1,+,−)− p
(+,t)
q←−v1,k←v2

(X2,+,−)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c1

− c⊤1 W
(t)⊤
Q+ W

(t)
K+c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←c2

)

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,−,+

]

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←−v1

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←c1

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←v2

− c⊤1 W
(t)⊤
Q+ W

(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

− c⊤1 W
(t)⊤
Q+ W

(t)
K+c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c2

− c⊤1 W
(t)⊤
Q+ W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

)

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
K+(−v1)

((
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←−v1

+
(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
K+v1w

(t)⊤
+ v1

(
p
(+,t)
q←−v1,k←−v1

(X1,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+v2

((
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←v2

+
(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
K+v2w

(t)⊤
+ v2

(
p
(+,t)
q←−v1,k←v2

(X1,−,+)− p
(+,t)
q←v1,k←−v2

(X2,−,+)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←c1

− c⊤1 W
(t)⊤
Q+ W

(t)
K+c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c2

)

E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]

= g(t)

(
v⊤1 W

(t)⊤
Q+ W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+ v⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1
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+ v⊤1 W
(t)⊤
Q+ W

(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

− v⊤1 W
(t)⊤
Q+ W

(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v1

− v⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

− v⊤1 W
(t)⊤
Q+ W

(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v2

= g(t)

(
v⊤1 W

(t)⊤
Q+ W

(t)
K+v1

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+
(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v1

)
+ v⊤1 W

(t)⊤
Q+ W

(t)
K+v1w

(t)⊤
+ v1

(
p
(+,t)
q←c1,k←v1

(X1,+,−)− p
(+,t)
q←c1,k←−v1

(X1,−,+)
)

+ v⊤1 W
(t)⊤
Q+ W

(t)
K+(−v2)

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

+
(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v2

)
+ v⊤1 W

(t)⊤
Q+ W

(t)
K+v2w

(t)⊤
+ v2

(
p
(+,t)
q←c1,k←−v2

(X1,+,−)− p
(+,t)
q←c1,k←v2

(X1,−,+)
)

+ v⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

− v⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

)

dc⊤1 W
(t)⊤
Q+ W

(t)
Q+c1

dt
= 2E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

− c⊤1 W
(t)⊤
Q+ W

(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v1

− c⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

− c⊤1 W
(t)⊤
Q+ W

(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v2

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
K+v1

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+
(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
K+v1w

(t)⊤
+ v1

(
p
(+,t)
q←c1,k←v1

(X1,+,−)− p
(+,t)
q←c1,k←−v1

(X1,−,+)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+(−v2)

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

+
(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v2

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
K+v2w

(t)⊤
+ v2

(
p
(+,t)
q←c1,k←−v2

(X1,+,−)− p
(+,t)
q←c1,k←v2

(X1,−,+)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

− c⊤1 W
(t)⊤
Q+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

)
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E.7.3 THE SCORES

dc⊤1 W
(t)⊤
K+ W

(t)
Q+c1

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤c1

∣∣∣∣∣Xk,s,−s

]

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
Q+v1p

(+,t)
q←v1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)p

(+,t)
q←(−v1),k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2p

(+,t)
q←v2,k←c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

))

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]

= g(t)

(
c⊤1 W

(t)⊤
K+ W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+ c⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

+ c⊤1 W
(t)⊤
K+ W

(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

− c⊤1 W
(t)⊤
K+ W

(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v1

− c⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

− c⊤1 W
(t)⊤
K+ W

(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v2

)

= g(t)

(
c⊤1 W

(t)⊤
K+ W

(t)
K+v1

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+
(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v1

)
+ c⊤1 W

(t)⊤
K+ W

(t)
K+v1w

(t)⊤
+ v1

(
p
(+,t)
q←c1,k←v1

(X1,+,−)− p
(+,t)
q←c1,k←−v1

(X1,−,+)
)

+ c⊤1 W
(t)⊤
K+ W

(t)
K+(−v2)

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

+
(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v2

)
+ c⊤1 W

(t)⊤
K+ W

(t)
K+v2w

(t)⊤
+ v2

(
p
(+,t)
q←c1,k←−v2

(X1,+,−)− p
(+,t)
q←c1,k←v2

(X1,−,+)
)

+ c⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

− c⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

)
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dv⊤1 W
(t)⊤
K+ W

(t)
Q+v1

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,s,−s

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,s,−s

]

E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,+,−

]

= g(t)

(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ v⊤1 W

(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
+ v⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
− v⊤1 W

(t)⊤
Q+ W

(t)
Q+v2p

(+,t)
q←v2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
− v⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
− v⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))

= g(t)

(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1

(
p
(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ p

(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))
+ v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)
)

+ v⊤1 W
(t)⊤
Q+ W

(t)
Q+(−v2)

(
p
(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
+ p

(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

))
+ v⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v2)w

(t)⊤
+ v1

(
p
(+,t)
q←−v2,k←v1

(X1,+,−)− p
(+,t)
q←v2,k←−v1

(X2,+,−)
)

+
(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

+ v⊤1 W
(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

)
w

(t)⊤
+ v1

+ v⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
− v⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

))

E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,−,+

]

= g(t)

(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)
+ X1,−,+p

(+,t)
q←−v1

)
+ v⊤1 W

(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)
+ X1,−,+p

(+,t)
q←c1

)
+ v⊤1 W

(t)⊤
Q+ W

(t)
Q+v2p

(+,t)
q←v2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)
+ X1,−,+p

(+,t)
q←v2

)
− v⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)
+ X2,−,+p

(+,t)
q←−v2

)
− v⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
w

(t)⊤
+ v1 − w

(t)
+ X2,−,+p

(+,t)
q←c2

)
− v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)
+ X2,−,+p

(+,t)
q←v1

))
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= g(t)

(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)

(
p
(+,t)
q←−v1,k←−v1

(
−w

(t)
+ X1,−,+p

(+,t)
q←−v1

)
+ p

(+,t)
q←v1,k←v1

(
−w

(t)
+ X2,−,+p

(+,t)
q←v1

))
+ v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←−v1,k←−v1

(X1,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)
)

+ v⊤1 W
(t)⊤
Q+ W

(t)
Q+v2

(
p
(+,t)
q←v2,k←−v1

(
−w

(t)
+ X1,−,+p

(+,t)
q←v2

)
+ p

(+,t)
q←−v2,k←v1

(
−w

(t)
+ X2,−,+p

(+,t)
q←−v2

))
+ v⊤1 W

(t)⊤
Q+ W

(t)
Q+v2w

(t)⊤
+ (−v1)

(
p
(+,t)
q←v2,k←−v1

(X1,−,+)− p
(+,t)
q←−v2,k←v1

(X2,−,+)
)

+
(
v⊤1 W

(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

+ v⊤1 W
(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

)
w

(t)⊤
+ (−v1)

+ v⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
−w

(t)
+ X1,−,+p

(+,t)
q←c1

)
− v⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
−w

(t)
+ X2,−,+p

(+,t)
q←c2

))

E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,+,−

]

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
K+v1

(
w

(t)
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

+ v⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c1

+ v⊤1 W
(t)⊤
K+ W

(t)
K+(−v2)

(
w

(t)
+ (−v2)− w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

− v⊤1 W
(t)⊤
K+ W

(t)
K+v2

(
w

(t)
+ v2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←v2

− v⊤1 W
(t)⊤
K+ W

(t)
K+c2

(
w

(t)
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←c2

− v⊤1 W
(t)⊤
K+ W

(t)
K+(−v1)

(
w

(t)
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←−v1

)

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
K+v1

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

+
(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←−v1

)
+ v⊤1 W

(t)⊤
K+ W

(t)
K+v1w

(t)
+ v1

(
p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)
)

− v⊤1 W
(t)⊤
K+ W

(t)
K+v2

((
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

+
(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←v2

)
+ v⊤1 W

(t)⊤
K+ W

(t)
K+v2w

(t)
+ v2

(
p
(+,t)
q←v1,k←−v2

(X1,+,−)− p
(+,t)
q←−v1,k←v2

(X2,+,−)
)

+ v⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)
+ c1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c1

− v⊤1 W
(t)⊤
K+ W

(t)
K+c2

(
w

(t)
+ c2 − w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←c2

)

E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l v1

∣∣∣∣∣Xk,−,+

]

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←−v1

+ v⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←c1

+ v⊤1 W
(t)⊤
K+ W

(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←v2
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− v⊤1 W
(t)⊤
K+ W

(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

− v⊤1 W
(t)⊤
K+ W

(t)
K+c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c2

− v⊤1 W
(t)⊤
K+ W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

)

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
K+(−v1)

((
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←−v1

+
(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←v1

)
+ v⊤1 W

(t)⊤
K+ W

(t)
K+v1w

(t)⊤
+ v1

(
p
(+,t)
q←−v1,k←−v1

(X1,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)
)

+ v⊤1 W
(t)⊤
K+ W

(t)
K+v2

((
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←v2

+
(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←−v2

)
+ v⊤1 W

(t)⊤
K+ W

(t)
K+v2w

(t)⊤
+ v2

(
p
(+,t)
q←−v1,k←v2

(X1,−,+)− p
(+,t)
q←v1,k←−v2

(X2,−,+)
)

+ v⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
p
(+,t)
q←−v1,k←c1

− v⊤1 W
(t)⊤
K+ W

(t)
K+c2

(
w

(t)⊤
+ c2 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

)
p
(+,t)
q←v1,k←c2

)

dv⊤1 W
(t)⊤
K+ W

(t)
Q+c1

dt
= E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,s,−s

]

+ E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,+,−

]

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2p

(+,t)
q←v2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
Q+v1

(
p
(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←v1

)
+ p

(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←−v1

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v1w

(t)⊤
+ v1

(
p
(+,t)
q←v1,k←v1

(X1,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←c1

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←c2

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v2)

(
p
(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X1,+,−p

(+,t)
q←−v2

)
+ p

(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X2,+,−p

(+,t)
q←v2

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2w

(t)⊤
+ v1

(
−p

(+,t)
q←−v2,k←v1

(X1,+,−) + p
(+,t)
q←v2,k←−v1

(X2,+,−)
)
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+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←v1

(X1,+,−)w
(t)⊤
+ v1 + c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←−v1

(X2,+,−)w
(t)⊤
+ v1

)

E

[
g(t)yσ̇

(t)
+

L∑
l=1

c⊤1 W
(t)⊤
Q+ q

(t)
+lp

(+,t)⊤
l diag

(
w

(t)⊤
+ X − w

(t)⊤
+ Xp

(+,t)
l

)
X⊤v1

∣∣∣∣∣Xk,−,+

]

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)p

(+,t)
q←−v1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2p

(+,t)
q←v2,k←−v1

(
w

(t)⊤
+ (−v1)− w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v2)p

(+,t)
q←−v2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←−v2

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←c2

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+v1p

(+,t)
q←v1,k←v1

(
w

(t)⊤
+ v1 − w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

))

= g(t)

(
c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)

(
p
(+,t)
q←−v1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←−v1

)
+ p

(+,t)
q←v1,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←v1

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+(−v1)w

(t)⊤
+ (−v1)

(
p
(+,t)
q←−v1,k←−v1

(X1,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←c1

)
− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←c2

)
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2

(
p
(+,t)
q←v2,k←−v1

(
−w

(t)⊤
+ X1,−,+p

(+,t)
q←v2

)
+ p

(+,t)
q←−v2,k←v1

(
−w

(t)⊤
+ X2,−,+p

(+,t)
q←−v2

))
+ c⊤1 W

(t)⊤
Q+ W

(t)
Q+v2 · w

(t)⊤
+ (−v1)

(
p
(+,t)
q←v2,k←−v1

(X1,−,+)− p
(+,t)
q←−v2,k←v1

(X2,−,+)
)

+ c⊤1 W
(t)⊤
Q+ W

(t)
Q+c1p

(+,t)
q←c1,k←−v1

(X1,−,+)w
(t)⊤
+ (−v1)− c⊤1 W

(t)⊤
Q+ W

(t)
Q+c2p

(+,t)
q←c2,k←v1

(X2,−,+)w
(t)⊤
+ v1

)

E

[
g(t)yσ̇

(t)
+

L∑
l=1

v⊤1 W
(t)⊤
K+ K

(t)
+ diag

(
X⊤w+ − w⊤+Xp

(+,t)
l

)
p
(+,t)
l x⊤l c1

∣∣∣∣∣Xk,s,−s

]

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
K+v1

(
w

(t)⊤
+ v1 − w

(t)
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+ v⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

+ v⊤1 W
(t)⊤
K+ W

(t)
K+(−v2)

(
w

(t)⊤
+ (−v2)− w

(t)
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

− v⊤1 W
(t)⊤
K+ W

(t)
K+(−v1)

(
w

(t)⊤
+ (−v1)− w

(t)
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v1

− v⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

− v⊤1 W
(t)⊤
K+ W

(t)
K+v2

(
w

(t)⊤
+ v2 − w

(t)
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v2

)

= g(t)

(
v⊤1 W

(t)⊤
K+ W

(t)
K+v1

((
−w

(t)
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v1

+
(
−w

(t)
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v1

)
+ v⊤1 W

(t)⊤
K+ W

(t)
K+v1w

(t)⊤
+ v1

(
p
(+,t)
q←c1,k←v1

(X1,+,−)− p
(+,t)
q←c1,k←−v1

(X1,−,+)
)
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+ v⊤1 W
(t)⊤
K+ W

(t)
K+(−v2)

((
−w

(t)
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←−v2

+
(
−w

(t)
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←v2

)
+ v⊤1 W

(t)⊤
K+ W

(t)
K+v2w

(t)⊤
+ v2

(
p
(+,t)
q←c1,k←−v2

(X1,+,−)− p
(+,t)
q←c1,k←v2

(X1,−,+)
)

+ v⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)
+ X1,+,−p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

(X1,+,−)

− v⊤1 W
(t)⊤
K+ W

(t)
K+c1

(
w

(t)⊤
+ c1 − w

(t)
+ X1,−,+p

(+,t)
q←c1

)
p
(+,t)
q←c1,k←c1

(X1,−,+)

)

F STAGE 3

In stage 3, we show that training the neuron weights can drive the training loss to be arbitrarily small.
This is possible since the attention features now are linearly separable with at least a constant margin.
This can be seen by considering the neuron weight w+ = c1+c2+v1+v2 and w− = c1+c2−v1−v2.
Simple calculation can show that this will make yf(X) ≥ Ω(1) for all (X, y) ∈ D.

Lemma F.1 (Growth of classification token alignment). Let g(t)+ := g(t)(X1,+,+) and g
(t)
− :=

g(t)(X1,+,−). For t ∈ [T2, T3], k ∈ [2],

dw(t)⊤
+ vk

dt
= Θ(g

(t)
+ ) + Õ

(
ωg

(t)
−

)
.

Proof. First of all, by symmetry, we have g(t)+ = g(t)(X2,+,+) = g(t)(X1,−,−) = g(t)(X2,−,−) and
g
(t)
− = g(t)(X2,+,−) = g(t)(X1,−,+) = g(t)(X2,−,+). In stage 3, we have

dw(t)⊤
+ v1

dt

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

(
Xp

(+,t)
l

)⊤]
v1

=
1

8
g
(t)
+

(
p
(+,t)
q←c1,k←v1

(X1,+,+) + p
(+,t)
q←v1,k←v1

(X1,+,+) + p
(+,t)
q←v2,k←v1

(X1,+,+)

+ σ̇
(t)
+ (X1,−,−)

(
p
(+,t)
q←c1,k←−v1

(X1,−,−) + p
(+,t)
q←−v1,k←−v1

(X1,−,−) + p
(+,t)
q←−v2,k←−v1

(X1,−,−)
)

+ p
(+,t)
q←c2,k←v1

(X2,+,+) + p
(+,t)
q←v1,k←v1

(X2,+,+) + p
(+,t)
q←v2,k←v1

(X2,+,+)

+ σ̇
(t)
+ (X2,−,−)

(
p
(+,t)
q←c2,k←−v1

(X2,−,−) + p
(+,t)
q←−v1,k←−v1

(X2,−,−) + p
(+,t)
q←−v2,k←−v1

(X2,−,−)
))

+
1

8
g
(t)
−

(
p
(+,t)
q←c1,k←v1

(X1,+,−) + p
(+,t)
q←v1,k←v1

(X1,+,−) + p
(+,t)
q←−v2,k←v1

(X1,+,−)

+ p
(+,t)
q←c1,k←−v1

(X1,−,+) + p
(+,t)
q←−v1,k←−v1

(X1,−,+) + p
(+,t)
q←v2,k←−v1

(X1,−,+)

− p
(+,t)
q←c2,k←−v1

(X2,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)− p
(+,t)
q←v2,k←−v1

(X2,+,−)

− p
(+,t)
q←c2,k←v1

(X2,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)− p
(+,t)
q←−v2,k←v1

(X2,−,+)

)
By Theorem E.7, we have

p
(+,t)
q←c1,k←v1

(X1,+,+) + p
(+,t)
q←v1,k←v1

(X1,+,+) + p
(+,t)
q←v2,k←v1

(X1,+,+)

+ σ̇
(t)
+ (X1,−,−)

(
p
(+,t)
q←c1,k←−v1

(X1,−,−) + p
(+,t)
q←−v1,k←−v1

(X1,−,−) + p
(+,t)
q←−v2,k←−v1

(X1,−,−)
)

+ p
(+,t)
q←c2,k←v1

(X2,+,+) + p
(+,t)
q←v1,k←v1

(X2,+,+) + p
(+,t)
q←v2,k←v1

(X2,+,+)

+ σ̇
(t)
+ (X2,−,−)

(
p
(+,t)
q←c2,k←−v1

(X2,−,−) + p
(+,t)
q←−v1,k←−v1

(X2,−,−) + p
(+,t)
q←−v2,k←−v1

(X2,−,−)
)

= Θ(1)
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and by symmetry between two groups Lemma C.2

p
(+,t)
q←c1,k←v1

(X1,+,−) + p
(+,t)
q←v1,k←v1

(X1,+,−) + p
(+,t)
q←−v2,k←v1

(X1,+,−)

+ p
(+,t)
q←c1,k←−v1

(X1,−,+) + p
(+,t)
q←−v1,k←−v1

(X1,−,+) + p
(+,t)
q←v2,k←−v1

(X1,−,+)

− p
(+,t)
q←c2,k←−v1

(X2,+,−)− p
(+,t)
q←−v1,k←−v1

(X2,+,−)− p
(+,t)
q←v2,k←−v1

(X2,+,−)

− p
(+,t)
q←c2,k←v1

(X2,−,+)− p
(+,t)
q←v1,k←v1

(X2,−,+)− p
(+,t)
q←−v2,k←v1

(X2,−,+)

= Õ (ω)

Thus,

dw(t)⊤
+ v1

dt
= Θ(g

(t)
+ ) + Õ

(
ωg

(t)
−

)
.

Lemma F.2 (Growth of group token alignment). Let g(t)+ := g(t)(X1,+,+) and g
(t)
− := g(t)(X1,+,−).

For t ∈ [T2, T3], k ∈ [2],

dw(t)⊤
+ ck

dt
≥ Ω(g

(t)
− ) + Õ

(
ωg

(t)
+

)
Proof. In stage 3, by Theorem E.7, we have

dw(t)⊤
+ c1

dt

= E

[
g(t)yσ̇

(t)
+

L∑
l=1

(
Xp

(+,t)
l

)⊤]
c1

=
1

8
g
(t)
+

(
p
(+,t)
q←c1,k←c1

(X1,+,+) + p
(+,t)
q←v1,k←c1

(X1,+,+) + p
(+,t)
q←v2,k←c1

(X1,+,+)

− σ̇
(t)
+ (X1,−,−)

(
p
(+,t)
q←c1,k←c1

(X1,−,−) + p
(+,t)
q←−v1,k←c1

(X1,−,−) + p
(+,t)
q←−v2,k←c1

(X1,−,−)
))

+
1

8
g
(t)
−

(
p
(+,t)
q←c1,k←c1

(X1,+,−) + p
(+,t)
q←v1,k←c1

(X1,+,−) + p
(+,t)
q←−v2,k←c1

(X1,+,−)

− p
(+,t)
q←c1,k←c1

(X1,−,+)− p
(+,t)
q←−v1,k←c1

(X1,−,+)− p
(+,t)
q←v2,k←c1

(X1,−,+)

)
≥ Θ(g

(t)
− ) + Õ

(
ωg

(t)
+

)

Theorem F.3 (Convergence). There exists T3 such that T3−T2 = O(1/ϵ) and E[ℓ(yf (t)(X))] ≤ ϵ.

Proof. Let g(t)+ := g(t)(X1,+,+) and g
(t)
− := g(t)(X1,+,−). For consistent samples Xk,s,s, we have

df (t)(X1,+,+)

dt
=

dw(t)⊤
+ v1

dt

(
p
(+,t)
q←c1,k←v1

+ p
(+,t)
q←v1,k←v1

+ p
(+,t)
q←v2,k←v1

)
+

dw(t)⊤
+ v2

dt

(
p
(+,t)
q←c1,k←v2

+ p
(+,t)
q←v1,k←v2

+ p
(+,t)
q←v2,k←v2

)
+

dw(t)⊤
+ c1

dt

(
p
(+,t)
q←c1,k←c1

+ p
(+,t)
q←v1,k←c1

+ p
(+,t)
q←v2,k←c1

)
−

dw(t)⊤
− v1

dt
σ̇
(t)
−

(
p
(−,t)
q←c1,k←v1

+ p
(−,t)
q←v1,k←v1

+ p
(−,t)
q←v2,k←v1

)
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−
dw(t)⊤
− v2

dt
σ̇
(t)
−

(
p
(−,t)
q←c1,k←v2

+ p
(−,t)
q←v1,k←v2

+ p
(−,t)
q←v2,k←v2

)
−

dw(t)⊤
− c1

dt
σ̇
(t)
−

(
p
(−,t)
q←c1,k←c1

+ p
(−,t)
q←v1,k←c1

+ p
(−,t)
q←v2,k←c1

)
By symmetry, we have

−
dw(t)⊤
− v1

dt

(
p
(−,t)
q←c1,k←v1

(X1,+,+) + p
(−,t)
q←v1,k←v1

(X1,+,+) + p
(−,t)
q←v2,k←v1

(X1,+,+)
)

−
dw(t)⊤
− v2

dt

(
p
(−,t)
q←c1,k←v2

(X1,+,+) + p
(−,t)
q←v1,k←v2

(X1,+,+) + p
(−,t)
q←v2,k←v2

(X1,+,+)
)

−
dw(t)⊤
− c1

dt

(
p
(−,t)
q←c1,k←c1

(X1,+,+) + p
(−,t)
q←v1,k←c1

(X1,+,+) + p
(−,t)
q←v2,k←c1

(X1,+,+)
)

=
dw(t)⊤

+ v1

dt

(
p
(+,t)
q←c1,k←−v1

(X1,−,−) + p
(+,t)
q←−v1,k←−v1

(X1,−,−) + p
(+,t)
q←−v2,k←−v1

(X1,−,−)
)

+
dw(t)⊤

+ v2

dt

(
p
(+,t)
q←c1,k←−v2

(X1,−,−) + p
(+,t)
q←−v1,k←−v2

(X1,−,−) + p
(+,t)
q←−v2,k←−v2

(X1,−,−)
)

−
dw(t)⊤

+ c1

dt

(
p
(+,t)
q←c1,k←c1

(X1,−,−) + p
(+,t)
q←−v1,k←c1

(X1,−,−) + p
(+,t)
q←−v2,k←c1

(X1,−,−)
)

Thus,

df (t)(X1,+,+)

dt
= Ω

(
dw(t)⊤

+ v1

dt
+

dw(t)⊤
+ v2

dt

)
+ Õ

(
ω

dw(t)⊤
− c1

dt

)
= Ω(g

(t)
+ ) + Õ

(
ωg

(t)
−

)
(by Lemma F.1)

For conflicting samples Xk,s,−s, we have

df (t)(X1,+,−)

dt
=

dw(t)⊤
+ v1

dt

(
p
(+,t)
q←c1,k←v1

+ p
(+,t)
q←v1,k←v1

+ p
(+,t)
q←−v2,k←v1

)
−

dw(t)⊤
+ v2

dt

(
p
(+,t)
q←c1,k←−v2

+ p
(+,t)
q←v1,k←−v2

+ p
(+,t)
q←−v2,k←−v2

)
+

dw(t)⊤
+ c1

dt

(
p
(+,t)
q←c1,k←c1

+ p
(+,t)
q←v1,k←c1

+ p
(+,t)
q←−v2,k←c1

)
+

dw(t)⊤
− v1

dt
σ̇
(t)
−

(
p
(−,t)
q←c1,k←v1

+ p
(−,t)
q←v1,k←v1

+ p
(−,t)
q←−v2,k←v1

)
−

dw(t)⊤
− v2

dt
σ̇
(t)
−

(
p
(−,t)
q←c1,k←−v2

+ p
(−,t)
q←v1,k←−v2

+ p
(−,t)
q←−v2,k←−v2

)
−

dw(t)⊤
− c1

dt
σ̇
(t)
−

(
p
(−,t)
q←c1,k←c1

+ p
(−,t)
q←v1,k←c1

+ p
(−,t)
q←−v2,k←c1

)
= Ω

(
dw(t)⊤
− c1

dt

)
+ Õ

(
ω

dw(t)⊤
+ v1

dt

)
= Ω(g

(t)
− ) + Õ

(
ωg

(t)
+

)
(by Lemma F.2)

Thus,

dE[ℓ(yf (t)(X))]

dt
=

1

2

dℓ(f (t)(X1,+,+))

dt
+

1

2

dℓ(f (t)(X1,+,−))

dt

=
1

2
ℓ′(f (t)(X1,+,+))

df (t)(X1,+,+)

dt
+

1

2
ℓ′(f (t)(X1,+,−))

df (t)(X1,+,−)

dt

55



Published as a conference paper at ICLR 2025

= −Ω
(
(g

(t)
+ )2 + (g

(t)
− )2

)
= −Ω

(
ℓ2(f (t)(X1,+,+)) + ℓ2(f (t)(X1,+,−))

)
which implies that

E[ℓ(yf (t)(X))] ≤ O

(
1

t− T2 + 1

)
.

G HANDLING THE FINITE-WIDTH DISCRETIZATION

In this section, we describe how to incorporate the finite-width discretization. As we mentioned
in the beginning of Section 5, the gradient flow for the finite width transformer can be seen as the
gradient flow for infinite-width transformer model with perturbation. Thus, we need to calculate
the deviation of the finite-width gradient flow from the infinite-width gradient flow. Since we only
train the neuron weights in stage 1 and stage 3, we only need to consider how the finite-width
discretization will affect stage 2.

First, at initialization, by the standard concentration bound, we have the following:

Lemma G.1. With probability at least 1− δ over the randomness of the initialization of WK ,WQ,
for any µ, ν ∈ C ∪ V , ∣∣∣〈W (0)

K µ,W
(0)
Q ν

〉∣∣∣ ≤ ω2

(√
4

m
log

8

δ
+

4

m
log

8

δ

)
∣∣∣〈W (0)

K µ,W
(0)
K ν

〉∣∣∣ ≤ ω2

(√
4

m
log

8

δ
+

4

m
log

8

δ

)
,

∣∣∣〈W (0)
Q µ,W

(0)
Q ν

〉∣∣∣ ≤ ω2

(√
4

m
log

8

δ
+

4

m
log

8

δ

)
,

and for any µ ∈ C ∪ V ,

∥W (0)
K µ∥22 = ω2

(
1±

(√
4

m
log

8

δ
+

4

m
log

8

δ

))

∥W (0)
Q µ∥22 = ω2

(
1±

(√
4

m
log

8

δ
+

4

m
log

8

δ

))

Proof. Since W
(0)
K µ,W

(0)
Q ν ∼ N (0, ω2I), we apply Lemma H.2 to get the corresponding bound.

Next, recall that from Section 5.2 the score and self-score variables evolve according to the dynam-
ical system

d
dt

vec({µ⊤W (t)⊤
K+ W

(t)
Q+ν}µ,ν∈C∪V)

vec({µ⊤W (t)⊤
K+ W

(t)
K+ν}µ,ν∈C∪V)

vec({µ⊤W (t)⊤
Q+ W

(t)
Q+ν}µ,ν∈C∪V)

 = A(t)

vec({µ⊤W (t)⊤
K+ W

(t)
Q+ν}µ,ν∈C∪V)

vec({µ⊤W (t)⊤
K+ W

(t)
K+ν}µ,ν∈C∪V)

vec({µ⊤W (t)⊤
Q+ W

(t)
Q+ν}µ,ν∈C∪V)


for some matrix A(t) with ∥A(t)∥∞ = O(1). By Lemma E.3, stage 2 lasts O(log(1/ω)) time.
Then, we can bound the effect of the perturbation to the dynamical system as follows. Consider the
dynamical system

dx(t)

dt
= A(t)x(t), x(0) = x0
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and the perturbed dynamical system

dxϵ(t)

dt
= (A(t) + ∆A(t))xϵ(t), xϵ(0) = x0 + ϵ

where ϵ and ∆A(t) are the perturbation introduced by the finite-width discretization. Notice that we
have ||∆A(s)|| ≤ c||δx(s)|| for some constant c for all s ∈ [T1, T2]. Define δx(t) = xϵ(t) − x(t).
We have

dδx(t)

dt
= A(t)δx(t) + ∆A(t)xϵ(t)

This implies that

||δx(t)|| ≤
∫ t

0

||A(s)δx(s) + ∆A(s)xϵ(s)||ds

≤
∫ t

0

||A(s)||||δx(s)||+ ||∆A(s)||||xϵ(s)||ds

≤
∫ t

0

||δx(s)||(||A(s)||+ c||xϵ(s)||)ds

Applying Grönwall’s inequality, we have

||δx(t)|| ≤ ||δx(0)|| exp
(∫ t

0

||A(s)||+ c||xϵ(s)||
)

= poly(1/ω)/
√
m

since ||A(t)|| ≤ O(1) and ||xϵ(s)|| ≤ O(1) and t ≤ O(log(1/ω)). Thus, picking m ≥ poly(1/ω)
can make the perturbation to the gradient flow system at most O(ω).
Proposition G.2. For t ≤ T2,

||xϵ(t)|| ≤ O(1).

Proof. We are going to show that in the infinite-width case, ||x(t)|| = O(1) for t ≤ T2. Later, we
are going to show that ||δx(t)|| < 1 and by triangle inequality, we have ||xϵ(t)|| ≤ O(1). The key
observation is to use Lemma E.1 which provides an upper bound on the score variables after stage
2. However, there is an issue: x will also contain self-score variables whereas Lemma E.1 only
provides an upper bound on the score variables.

To solve this issue, we refine our analysis for the infinite-width case. We are going to
show that v⊤1 W

(t)⊤
Q+ W

(t)
Q+v1 and c⊤1 W

(t)⊤
K+ W

(t)
K+c1 are within (multiplicative) constant factor of

c⊤1 W
(t)⊤
K+ W

(t)
Q+v1. First of all, a direct consequence of Lemma E.1 is that it also provides an up-

per bound of the growth of the 3 dominating variables and thus Lemma E.2 can be modified as

d

dt

c⊤1 W
(t)⊤
K+ W

(t)
Q+v1

c⊤1 W
(t)⊤
K+ W

(t)
K+c1

v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1

 = Θ(1)

[
0 1 1
1 0 0
1 0 0

]c⊤1 W
(t)⊤
K+ W

(t)
Q+v1

c⊤1 W
(t)⊤
K+ W

(t)
K+c1

v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1


Notice that there is a self-balancing property of this dynamical system: there exists a constant
C > 0 such that if c⊤1 W

(t)⊤
K+ W

(t)
K+c1 > C · c⊤1 W

(t)⊤
K+ W

(t)
Q+v1, then d

dtc
⊤
1 W

(t)⊤
K+ W

(t)
Q+v1 >

d
dtc
⊤
1 W

(t)⊤
K+ W

(t)
K+c1. Thus, if those variables are already within constant factor of each other, they

will maintain this relationship.

Then, the base case can be established by the existence of a time T1.5 such that T1.5 − T1 = Θ(1)

and c⊤1 W
(T1.5)⊤
K+ W

(T1.5)
Q+ v1, c

⊤
1 W

(T1.5)⊤
K+ W

(T1.5)
K+ c1, v

⊤
1 W

(T1.5)⊤
Q+ W

(T1.5)
Q+ v1 = Θ(ω2). This finishes

the proof of v⊤1 W
(t)⊤
Q+ W

(t)
Q+v1 and c⊤1 W

(t)⊤
K+ W

(t)
K+c1 are within constant factor of c⊤1 W

(t)⊤
K+ W

(t)
Q+v1

during stage 2.

Finally, for the finite-width case, as long as ||δx(t)|| ≤ 1 for t ≤ T2, we can apply Grönwall’s
inequality as before and get ||δx(t)|| ≤ poly(1/ω)/

√
m < 1 as long as m ≥ poly(1/ω). This

argument is proved in a way similar to Section 1.3 in Tao (2006).
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H PROBABILITY

Lemma H.1 (Bernstein’s inequality for bounded random variables). Assume Z1, . . . , Zn are n i.i.d.
random variables with E[Zi] = 0 and |Zi| ≤ M for all i ∈ [n] almost surely. Let Z =

∑n
i=1 Zi.

Then, for all t > 0,

P[Z > t] ≤ exp

(
− t2/2∑n

j=1 E[Z2
j ] +Mt/3

)
≤ exp

(
−min

{
t2

2
∑n

j=1 E[Z2
j ]
,

t

2M

})
which implies with probability at least 1− δ,

Z ≤

√√√√2
n∑

j=1

E[Z2
j ] log

1

δ
+ 2M log

1

δ
.

Lemma H.2. For w1, w2 ∈ Rm with w1, w2
i.i.d.∼ N (0, Im/m),

P

[∣∣∥w1∥22 − 1
∣∣ ≥√ 4

m
log

2

δ
+

4

m
log

2

δ

]
≤ δ

P

[
|⟨w1, w2⟩| ≥

√
4

m
log

2

δ
+

4

m
log

2

δ

]
≤ δ

Proof. We have

E
[
∥w1∥22

]
= E

[
m∑
i=1

w2
1,i

]
= 1

Notice that w2
1,i is a sub-Gamma random variable with parameters ( 4

m2 ,
4
m ). Thus, by Bernstein’s

inequality,

P

[∣∣∥w1∥22 − E
[
∥w1∥22

]∣∣ ≥√ 4

m
log

2

δ
+

4

m
log

2

δ

]
≤ δ

Next,

E[⟨w1, w2⟩] = E

[
m∑
i=1

w1,iw2,i

]
= 0

By Bernstein’s inequality,

P

[
|⟨w1, w2⟩| ≥

√
4

m
log

2

δ
+

4

m
log

2

δ

]
≤ δ
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