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Abstract

We introduce two complementary techniques for
efficient optimization that reduce memory require-
ments while accelerating training of large-scale
neural networks. The first technique, Subset-
Norm step size, generalizes AdaGrad-Norm and
AdaGrad(-Coordinate) through step-size sharing.
Subset-Norm (SN) reduces AdaGrad’s memory
footprint from O(d) to O(

√
d), where d is the

model size. For non-convex smooth objectives
under coordinate-wise sub-gaussian noise, we
show a noise-adapted high-probability conver-
gence guarantee with improved dimensional de-
pendence of SN over existing methods. Our sec-
ond technique, Subspace-Momentum, reduces the
momentum state’s memory footprint by restrict-
ing momentum to a low-dimensional subspace
while performing SGD in the orthogonal comple-
ment. We prove a high-probability convergence
result for Subspace-Momentum under standard as-
sumptions. Empirical evaluation on pre-training
and fine-tuning LLMs demonstrates the effective-
ness of our methods. For instance, combining
Subset-Norm with Subspace-Momentum achieves
Adam’s validation perplexity for LLaMA 1B in
approximately half the training tokens (6.8B vs
13.1B) while reducing Adam’s optimizer-states
memory footprint by more than 80% with mini-
mal additional hyperparameter tuning.

1. Introduction
Adaptive optimizers like Adam (Kingma & Ba, 2014), Ada-
Grad (Duchi et al., 2011), and RMSProp (Tieleman et al.,
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Optimizers comparison for LLaMA 1B pre-training for 13.1B tokens

Adam (4.99 GB)
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AdamSN (ours) (2.62 GB)
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Figure 1. Validation perplexity for Adam, GaLore (Zhao et al.,
2024), AdamSN, and AdamSNSM (ours) during LLaMA 1B
model training for 13.1B tokens (100K steps). Optimizer memory
footprint is shown in parentheses. Adam achieves a perplexity of
16.00 at 100,000 steps, while AdamSN and AdamSNSM exhibit
lower perplexity earlier in training at 58,000 and 48,000 steps.

2012) are de facto methods for training large-scale deep neu-
ral networks. However, the optimizer states for the momen-
tum and second moment (or adaptive step size) terms are
memory intensive, consuming as much as twice the size of
the model. As deep neural networks continue to grow in the
era of large-language models (LLMs), concerns that were
previously overlooked, such as the memory consumption
of optimizer states, have become an active area of research.
Indeed, numerous methods have recently emerged to reduce
the memory footprint of optimizer states (e.g. Adam’s mo-
mentum and second moment terms) with approaches rang-
ing from quantization (Li et al., 2024a; Dettmers et al., 2021;
2024), low-rank decomposition (Hu et al., 2021; Lialin et al.,
2023; Zhao et al., 2024; Shazeer & Stern, 2018), sketching-
based dimensionality reduction (Muhamed et al., 2024; Hao
et al., 2024), etc. Existing methods either lacks theoretical
guarantees, requires strong assumptions, trades too much
performance, or requires expensive additional tuning for the
memory saving, especially in pretraining tasks.

Our contributions. We aim to reduce memory consump-
tion while maintaining strong performance and theoreti-
cal guarantees. To this end, we introduce two memory-
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efficient optimization algorithms for large-scale DNN train-
ing: Subset-Norm (SN) for adaptive step-size memory
reduction (Section 3) and Subspace-Momentum (SM)
for momentum compression (Section 4). While existing
approaches trade performance for memory savings, our
theoretically-grounded methods achieve both a reduced
memory footprint and faster training:

• Subset-Norm (SN): A memory-efficient adaptive step-
size algorithm with high-probability convergence guaran-
tees for non-convex objectives under coordinate-wise sub-
gaussian noise. By unifying AdaGrad-Coordinate’s and
AdaGrad-Norm’s analysis, we show that the SN adaptive
step size (Algorithm 2) achieves improved dimensional
dependence, while reducing the memory footprint from
O(d) to roughly O(

√
d). On LLaMA models’ pretrain-

ing tasks, SN step sizes achieves better perplexity than
coordinate-wise step size across a range of optimizers and
model sizes, while using significantly less memory and
introducing minimal additional hyperparameters.1

• Subspace-Momentum (SM): A momentum compression
method that applies momentum in a chosen subspace and
SGD in the orthogonal complement with high-probability
convergence guarantees under sub-gaussian noise for non-
convex smooth objectives. When combined with SN,
for some selected dimensionk less than d,2 our method
(SNSM) reduces the memory footprint of Adam and Ada-
Grad+momentum from 2d to k +

√
d (see Table 4) while

delivers improved training speed and performance.

Empirical evaluations on LLaMA models from 60M to
1B parameters demonstrate that our algorithms scale ef-
fectively and attain better performances than existing op-
timizers. Our proposed methods are simple to implement,
require minimal additional hyperparameter tuning, and
are compatible with modern distributed training frame-
works like FSDP (Zhao et al., 2023; Rajbhandari et al.,
2020). We provide an implementation in PyTorch at
https://github.com/timmytonga/sn-sm.

2. Preliminaries
2.1. Common Optimizers and Memory Footprint

Consider the generic template in Algorithm 1, which cap-
tures a broad range of first-order optimizers that leverage
either momentum or adaptive step sizes. Many standard
optimizers can be represented within this framework by
varying choices of momentum and adaptive step-size terms,
as shown in Table 1. Generally, optimizers with higher
memory requirements, such as Adam, tend to outperform

1Although the subset size can be tuned (Section 5.3), we pro-
vide a heuristic in Section 3.2 that works effectively across model
sizes, eliminating the need for additional tuning.

2Typically, k is chosen to be around d/4.

Algorithm 1 Generic Template for Stochastic Adaptive
Optimizers with Momentum

Input: Initial point x1 ∈ Rd, base step size η > 0,
constant ϵ > 0.
for t = 1 to T do

Obtain stochastic gradient ˆ︁∇f(xt)
mt = update momentum(ˆ︁∇f(xt);mt−1)

v2t = update adaptive stepsize(ˆ︁∇f(xt); v2t−1)
xt+1 = xt − η · mt

vt+ϵ
{Update step}

end for

Table 1. Update rules for common optimizers in the framework
of Algorithm 1. We omit bias correction terms and numerical
stabilizer ϵ for simplicity. Memory for optimizer state is shown for
model of size (and memory footprint) d.

Optimizer Memory Update Rules

Adam 2d
mt = β1mt−1 + (1 − β1)ˆ︁∇f(xt)
v2t = β2v

2
t−1 + (1 − β2) · ˆ︁∇f(xt)2

SGDm d
mt = βmt−1 + (1 − β)ˆ︁∇f(xt)
v2t = ID

AdaGrad-Coord d
mt = ˆ︁∇f(xt)
v2t = v2t−1 + ˆ︁∇f(xt)2

RMSProp d
mt = ˆ︁∇f(xt)
v2t = β1v

2
t−1 + (1 − β1) · ˆ︁∇f(xt)2

AdaGrad-Norm 1
mt = ˆ︁∇f(xt)
v2t = v2t−1 +

⃦⃦⃦ ˆ︁∇f(xt)⃦⃦⃦2

SGD 1
mt = ˆ︁∇f(xt)
v2t = ID

more memory-efficient alternatives like SGD and RMSProp.
We aim to design principled algorithms that achieve the best
of both worlds: strong performance and memory-efficient.

2.2. Assumptions and Notations

For our theoretical analysis, we consider the unconstrained
non-convex stochastic optimization problem minx∈Rd f(x)
where f : Rd → R is the objective function. We assume ac-
cess to an history independent, non-biased gradient estima-
tor ˆ︁∇f(x) for any x ∈ X , that is E

[︂ˆ︁∇f(x) | x]︂ = ∇f(x).
Furthermore, we assume that f is an L-smooth function:

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , for all x, y ∈ Rd.

Smoothness implies the following quadratic upperbound
that we will extensively utilize: for all x, y ∈ Rd we have
f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥
2
.

Notations. Let vi denote the i-th coordinate of a vector
v ∈ Rd. If a vector xt is already indexed as part of a
sequence of vectors (where xt denotes the t-th update) then
we use xt,i to denote xt’s i-th coordinate and xt,Ψ ∈ Rk to
denote the indexing with respect to an ordered subset Ψ ⊆

2
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[d] of size k where (xt,Ψ)k = xt,Ψ(k) with Ψ(k) denoting
the k-th element of Ψ. For gradients, we let ∇if(x) :=
∂f
∂xi

denote the partial derivative with respect to the i-th

coordinate. Similarly, for stochastic gradients ˆ︁∇f(x), we
let ˆ︁∇if(x) denotes its i-th coordinate. If a, b ∈ Rd, then ab
and a/b denotes coordinate-wise multiplication and division,
respectively i.e. (ab)i = aibi and (a/b)i = ai/bi.

Coordinate-wise sub-gaussian noise assumption. A ran-
dom variable X is σ-sub-Gaussian (Vershynin, 2018) if

E
[︁
exp

(︁
λ2X2

)︁]︁
≤ exp

(︁
λ2σ2

)︁
for all λ such that |λ| ≤ 1

σ
.

If we denote the stochastic gradient noise as ξt := ˆ︁∇f(xt)−
∇f(xt) and ξt,i as the i-th coordinate of ξt, then we assume
the noise is per-coordinate subgaussian i.e. there exists
σi > 0 for i ∈ [d] such that ξt satisfies

E
[︁
exp

(︁
λ2ξ2t,i

)︁]︁
≤ exp

(︁
λ2σ2

i

)︁
,∀ |λ| ≤ 1

σi
,∀i ∈ [d] .

(1)
Note that ∥ξt∥ being σ-subgaussian implies that each ξt,i
is also σ-subgaussian, so coordinate-wise sub-gaussian is
more general than standard scalar sub-gaussian noise as-
sumption. Furthermore, when ∥·∥ is used without explic-
itly specifying the norm, we assume it is the ℓ2 norm
∥·∥2. We also use the 0-indexing convention i.e. [n] :=
{0, 1, . . . , n− 1} for integer n ∈ N.

3. Subset-Norm (SN) Adaptive Step Size

Gradient State Gradient State Gradient State

Coordinate NormSubset-Norm (ours)

Figure 2. AdaGrad variants: Coordinate, Subset-Norm, and Norm.
Subset-Norm generalizes Coordinate (k = 1) and Norm (k = d).

Algorithm 2 SGD with Subset-Norm Adaptive Step Size
Input: Initial point x1 ∈ Rd, base step size η > 0, partition
function ψ : [d] → [c] that splits the coordinates into c subsets
Ψi = ψ−1(i) ⊂ [d], where

∐︁c
i=1 Ψi = [d], and b0,i > 0 for

i ∈ [c]
for t = 1 to T do

Obtain stochastic gradient ˆ︁∇f(xt)
b2t,i = b2t−1,i +

⃦⃦⃦ ˆ︁∇Ψif(xt)
⃦⃦⃦2

, for i ∈ [c] {Update

accumulated gradient norms}
xt+1,k = xt,k − η

bt,ψ(k)

ˆ︁∇kf(xt), for k ∈ [d]

end for

We compress the second moment adaptive step size by par-
titioning parameters into subsets for which they share the
same adaptive step size as AdaGrad-Norm (McMahan &
Streeter, 2010; Ward et al., 2019). Formally, we need to
specify a partition function ψ : [d] ↠ [c] that splits the d
coordinates into c non-empty subsets Ψi = ψ−1(i) ⊂ [d],
where

∐︁c
i=1 Ψi = [d]. For example, one can pick ψ(j) =

(j/c) mod k to get consecutive equipartitioned subsets
Ψi = {ik, ik + 1, . . . , ik + (k − 1)} for some subset-size
k ∈ N so that kc = d.3

Given a stochastic gradient ˆ︁∇f(xt) ∈ Rd at time t for
parameter xt, we denote ˆ︁∇Ψif(xt) ∈ Rk to be the subset
of the coordinates of the stochastic gradient with respect to
the subset Ψi. For example, given ψ(j) = (j/c) mod k as
above, we have

(︂ˆ︁∇Ψif(xt)
)︂
j
= ˆ︁∇ik+j−1f(xt). Similarly,

we can define ∇Ψif(xt) ∈ R|Ψi| to be ∂f(xt)
∂xΨi

.

Now, we define the subset-norm (SN) adaptive step size bt,i
for subset Ψi and the update rule for xt+1 (see Figure 2):

b2t,i = b2t−1,i +
⃦⃦⃦ ˆ︁∇Ψif(xt)

⃦⃦⃦2
, for i ∈ [c] (2)

xt+1,j = xt,j −
η

bt,ψ(j)
ˆ︁∇jf(xt), for j ∈ [d]. (3)

Note that choosing c = d and c = 1 recovers AdaGrad-
Coordinate and AdaGrad-Norm, respectively. We now show
a convergence guarantee on arbitrary partitions that will
inform us on how to select a good partition strategy.

3.1. High-Probability Convergence of Subset-Norm

We show the following high-probability convergence result
for the subset-norm adaptive step size:

Theorem 3.1. Suppose that f : Rd → R is L-smooth and
lower bounded by f∗. Given unbiased stochastic gradientsˆ︁∇f(xt) with stochastic gradient noise ξt := ˆ︁∇f(xt) −
∇f(xt) that is σi-per-coordinate subgaussian for i ∈ [d].
For partitions of the parameters into c ∈ N+ disjoint subsets
[d] =

⋃︁c−1
i=0 Ψi with Ψi ∩Ψj = ∅, for i ̸= j, the iterates xt

given by Algorithm 2 satisfies the following with probability
at least 1−O(cδ) (for failure probability δ > 0)

1

T

T∑︂
t=1

∥∇f(xt)∥22 ≤ G(δ) · Õ
(︃∑︁c−1

i=0 ∥σΨi∥2√
T

+
N(δ)

T

)︃
,

where

G(δ) := Õ

(︃c−1∑︂
i=0

∥σΨi∥
4
2 + ∥σ∥∞ (∥σ∥22 + c3/2) + cL

)︃
,

N(δ) := ∥σ∥22 +
c−1∑︂
i=0

∥σΨi∥2 + Lc.

3We use this strategy in all our implementations for simplicity.
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Polylog terms are hidden in Theorem 3.1 for simplicity.
The full result, Theorem E.1, and proofs are presented
in Appendix E. Theorem 3.1 provides guarantee for all
partitions of the parameters into arbitrary disjoint subsets
and generalizes AdaGrad-Norm (c = 1) and AdaGrad-
Coordinate (c = d) results. The result is noise-adapted:
if
∑︁c−1
i=0 ∥σΨi∥2 is small enough, the rate becomes the opti-

mal deterministic rate of O( 1
T ) regardless of the base step

size η. The next section explores implications of Theorem
3.1 and strategies for selecting subsets.

3.2. Coordinate-Noise Density and Subset-Norm’s
Improved Dimensional Dependency

Theorem 3.1 presents trade-offs between the partition strate-
gies and the stochastic gradient noise, where we need to bal-
ance between the number of subsets c and noise-reduction
benefits of parameters-grouping e.g., ∥x∥2 ≤ ∥x∥1.

Coordinate-noise density dβ . To make the intuition
above concrete, consider a scenario with various coordinate-
noise density rate: fix a rate β ∈ [0, 1], some dβ coordinates
have noise α > 0 while the rest are 0. The rate β controls
the density of coordinate noise. When β = 0, only 1 coordi-
nate have noise. When β = 1, all coordinates have noise. To
get a feel for β’s relationship to the fraction of coordinates
containing noise, half the coordinates contain noise when
β ≈ 0.96 for d = 60M and β ≈ 0.97 for d = 10B and
β ≈ 0.98 for d = 1015 (See also Figure 10). See Figure
3 for noise density of LLaMA 60M (details in Appendix
C.1). Furthermore, α upper bounds all coordinate noise, i.e.
∥σ∥∞ ≤ α, which is common in coordinate-wise analysis
(Défossez et al., 2022).

Derivation of convergence rate given coordinate noise
density dβ . Given β ∈ [0, 1], we can obtain a concrete
expression for the convergence rates of various methods
(different subset sizes) from Theorem 3.1. For SGD with
Subset-Norm, we consider an equipartition strategy, where
we divide the coordinates into c = d1−βk subsets of size
dβ/k each with the dβ noisy coordinates into just k subsets
so that the rest of the c − k subsets have no noisy coordi-
nate. We defer the derivation details to Appendix C.2 and
summarize the results in the first row of Table 2.

Subset Selection. In Table 2, the equal subset-size par-
tition strategy for Subset-Norm has better dependency on
the dimension d when the noise is not completely sparse i.e.
β = 0. Hence, if we expect the actual noise density β to be
around4 0.75 to 0.90, then compressing with a subset size
of around d0.45 to d0.66 is optimal. The dependency on d is

4Figure 11 shows that overall noise is quite sparse but varies
more when limited to a particular layer as in Figure 3. See Section
5.3 for more experiments on subset size selection.

important for modern neural network, since the number of
parameters d is typically greater than or on the same order
as the total number of iterations T .
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Figure 3. Noise density per parameter across layers for LLaMA
60M on pre-training task after 100 steps.

Subset-size heuristics to avoid additional hyperparame-
ters. Providing a useful and robust default setting for an
algorithm is important to justify claims of reduced costs.
We provide a simple partitioning scheme for SN for 2D
parameters p ∈ Rm×n: we simply group along the smaller
dimension. For example, if p is of shape (2048, 1024), we
group by rows to get a state of size 2048. This is a natural
grouping scheme that groups the latent dimension together
and aims for the rough d0.45 subset size discussed in the pre-
vious paragraph. Another simplification is that subset-norm
is applied only on linear modules, since 2D linear modules
makes up the vast majority of parameters in transformers.
This means we compress all the attention, MLP, and final
LM head weights. This implementation is presented in
more details in Appendix A.2. Section 5.3 shows that this
heuristic grouping, while simple, is not optimal and can be
improved by tuning the subset size, but we opt for simplicity
over performance-tuning in our experiments.

Generic Implementation. We provide pseudocode for the
generic equipartition strategy of Algorithm 2 in Section A.3
that we use for the subset sizes ablations in Section 5.3.

Furthermore, in contrast to methods like AdaFactor or Ga-
Lore that are limited to 2D parameters, the generic subset-
norm algorithm is coordinate-wise and admits an easy im-
plementation to FSDP (Zhao et al., 2023; Rajbhandari et al.,
2020), where parameters are flattened to 1D tensors for
efficient communication.

4. Subspace-Momentum
Existing algorithmic compression approaches like GaLore
(Zhao et al., 2024), GRASS (Muhamed et al., 2024), and
FLORA (Hao et al., 2024) project the gradient to a lower
dimensional space Rk for updating the optimizer state via
some bounded linear operator P : Rd → Rk such that
P ∗P : Rd → Rd is a projection, i.e. (P ∗P )2 = P ∗P ,
where P ∗ : Rk → Rd is the adjoint operator of P . More

4
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Table 2. Algorithms comparison between dimensional dependencies and convergence rates under different coordinate-noise density
settings. Given a density rate β, convergence rates’ dimensional dependency are highlighted in red and green to denote the worst and best
dependency on the dimension. Note that memory usage of AdaGrad-Coordinate is O(d) while SGD with Subset-Norm (with the partition
strategy presented here) is O(d/k), where k = d1.4β−0.6 is chosen as an optimal noise dependent subset size.

Density rate AdaGrad-Coordinate AdaGrad-Norm Subset-Norm (equipartition subsets)

β ∈ [0, 1] Õ
(︁
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√
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d0.3+1.8β

/
√
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/T
)︁
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Õ
(︁
d0.3+1.8β

/
√
T + d1.6β+0.6

/T
)︁
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√
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(︁
d2.5/

√
T + d2.5/T

)︁
Õ
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Figure 4. Subspace Momentum Illustration.

concretely, given a stochastic gradient ˆ︁∇f(xt) ∈ Rd at
time t, a low-dimensional version ct := P ˆ︁∇f(xt) ∈ Rk is
computed that is used to update the states before projecting
back to Rd for update:

mt = β1mt−1 + (1− β1) ct
v2t = β2v

2
t−1 + (1− β2) c2t (4)

xt+1 = xt − P ∗ (mt/vt) .

This update performs adaptive optimization in the row span
U ⊆ Rd of P when viewed as a linear operator, with
dim(U) = k. For example, GaLore (Zhao et al., 2024)
utilizes the top k singular vectors of stochastic gradients,
and FLORA (Hao et al., 2024) simply projects to a random
subspace using dense Gaussian matrices. Due to the opti-
mization operating in a low rank subspace, convergence is
not guaranteed unless stronger conditions are assumed.

We propose Subspace Momentum (SM) – presented in Al-
gorithm 3 and illustrated in Figure 4 – where SM guar-
antees convergence by incorporating the orthogonal com-
plement of P ∗P ˆ︁∇f(xt) ∈ U that lives in the orthogo-
nal complement U⊥ of U (with U ⊕ U⊥ = Rd). We
can compute the orthogonal complement of ˆ︁∇f(xt) via(︂ˆ︁∇f(xt)− P ∗P ˆ︁∇f(xt))︂ ∈ U⊥.

Subspace Momentum maintains the same memory foot-
print, O(k), as existing low-rank optimizers. However,
SM’s update step is full rank: it uses momentum only in

Algorithm 3 SGD with Subspace Momentum (SM)
Input: Bounded Linear Operator P : Rd → Rk, such that P ∗P
is a projection, where P ∗ is P ’s adjoint.
for t = 1, 2, . . . , T do

Obtain stochastic gradient ˆ︁∇f(xt)
mt = β1mt−1 + (1− β1)P ˆ︁∇f(xt) {Momentum in
subspace U = rowspan(P )}
rt = ˆ︁∇f(xt)− P ∗P ˆ︁∇f(xt) {Component in U⊥}
xt+1 = xt − η(P ∗mt + rt) {Step in both spaces}

end for

U := rowspan(P ) while performs SGD in U⊥. Unlike joint
compression techniques like GaLore (4), SM only affects
the momentum term. Hence, SM is modular and fits into the
framework of Algorithm 1: there, we can combine it with
different adaptive step sizes such as subset-norm.5

4.1. High-Probability Convergence of
Subspace-Momentum

We show that Subspace-Momentum, Algorithm 3, converges
with high-probability under the standard assumptions of
smoothness and σ-subgaussian gradient noise:
Theorem 4.1. Suppose that f : Rd → R is L-smooth and
lower bounded by f∗. Assume unbiased stochastic gradientsˆ︁∇f(xt) with σ-subgaussian stochastic gradient noise. Then,
the iterates xt given by SGD with Subspace-Momentum

(Algorithm 3) with step size η = min

{︃
1
2α ;
√︂

∆1

σ2αT

}︃
for

α := (3−β)L
2(1−β) satisfies the following with probability at least

1− δ

1

T

T∑︂
i=1

∥∇t∥22 ≤
8∆1α

T
+

7σ
√
α∆1√
T

+
48σ2 log (1/δ)

T
,

where ∆1 := f(x1)− f∗ is the initial function gap.

We observe that Theorem 4.1 has a similar rate to vanilla
SGD. Unlike adaptive algorithms, we need to know the

5Section B.9 contains a detailed ablation on different momen-
tum and adaptive step sizes combinations.
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problem parameters to get an adaptive convergence rate.
The proof is presented in Appendix D.2, where we also
provide some intuition for the algorithm.

4.2. Subspace Selection, Subspace Switching, and
Projection Updates

In our experiments, we use the top-k singular vectors of a
stochastic gradient snapshot as our main subspace, similarly
to GaLore (Zhao et al., 2024).

Algorithm 3 and the accompanying theory in Section 4.1 are
only for a fixed projection. However, from our experiments,
we find that performing subspace switching every G steps
(as in GaLore) can be beneficial, especially for smaller
ranks. Section B.7 contains an ablation studies on this. We
incorporate projection updates in our main algorithms by
picking a projection update gap and then fully resetting the
momentum term to zero when we switch (in contrast to
GaLore’s accumulated statistics when switching subspace).

5. Experiments
We evaluate Subset-Norm (SN) and Subspace-Momentum
(SM) on LLM pretraining and supervised fine-tuning tasks,
where memory is often a bottleneck. We compare against
several baselines, with memory estimates given for parame-
ters of size m× n, where we assume WLOG m ≥ n.

Baselines. We consider AdaGrad (Duchi et al., 2011),
AdaGradm where we incorporate momentum 0.9 to Ada-
Grad, Adam (Kingma & Ba, 2014), and RMSProp (Tiele-
man et al., 2012) as standard optimizers. We also consider
GaLore (Zhao et al., 2024) as a recent memory-efficient
method that projects the optimizer states into a low-rank
subspace (typically rank n/4), using 2(mn/4) memory but
requiring 6 hyperparameters including subspace rank, pro-
jection update frequency, and scaling parameters.

Our methods. We incorporate SN and SM to AdaGrad,
AdaGradm, Adam and RMSProp. SN reduces the adaptive
step size (e.g. Adam’s second moment term) memory from
mn to m for a parameter of size m × n. SNSM further
compresses the momentum term of momentum methods
like Adam and AdaGradm by adding SM with SVD at the
cost of additional hyperparameters (See Algorithm 6 for the
full implementation used in our experiments). RMSPropSN
and AdaGradSN achieves minimal memory footprint of
just m while requiring only 2 hyperparameters.

5.1. LLM Pre-Training Experiments

We test our method on the task of pre-training LLaMA
models (Dubey et al., 2024; Touvron et al., 2023) on the C4
dataset (Raffel et al., 2023) with a standard setup – details
in Appendix A.1. Table 3 presents the main pre-training

results and Table 4 shows the memory footprint6 of different
optimizers across a range of model sizes.

Additional Baselines. We provide additional comparisons
with FLORA (Hao et al., 2024), LoRA (Hu et al., 2021),
and ReLoRA (Lialin et al., 2023) in Table 8. Note that
these memory-efficient methods sacrifice performance (over
Adam) to save memory while our method, AdamSNSM,
achieves the best of both worlds.

5.1.1. DISCUSSIONS

Subset-Norm (SN) improves upon all existing adaptive
methods while reducing memory. Modifying Adam, Ada-
Gradm, AdaGrad, and RMSProp with the SN adaptive step
size not only reduces memory footprint but improves their
performance across different scales. Notably, AdaGrad and
AdaGradm benefit the most from the SN step size, pro-
viding empirical support for the theoretical benefits of SN
presented in Section 3.

Combining Subspace-Momentum (SM) with SN further
improves performance while saving additional memory.
Perhaps surprisingly, limiting the use of momentum to a
subspace improves performance in SN-adaptive step sizes
rather than degrading it. Our experiments show that SNSM,
combining SN and SM, gives the best performance for the
least amount of memory across model sizes. While adding
SM introduces additional hyperparameters, Section B.7 sug-
gests that these parameters are not too sensitive.

Furthermore, Section B.8 shows that the choice of the sub-
space matters i.e. the subspace spanned by a top-k singular
vectors of a snapshot of a stochastic gradient seems to be
the most beneficial for momentum as opposed to simpler
choices like a random subspace. Our current guarantee for
SM, presented in Section D, does not yet explain why or
when subspace momentum is useful, and theoretical under-
standing of (EMA style) momentum in stochastic optimiza-
tion is still limited (Kidambi et al., 2018). We believe this
could be related to how momentum is beneficial when noise
is low (and harmful when noise is high) and the choice of
the subspace could correlate to the amount of gradient noise
or optimization landscape that harm or benefit momentum
(Wang et al., 2024; Gitman et al., 2019).

Hyperparameter robustness. In Table 3, the best learning
rate (LR) found via grid search is displayed and is high-
lighted in red as the best LR changes across scales. This
indicates potential sensitivity to tuning for each respective
algorithm. We see that Adam requires smaller LR for larger
models, but using SN and SNSM does not. AdaGradm
seems less sensitive to the base LR overall.

6The memory footprint is the total parameters in the optimizer
states multiplied by 16 bits. See Listing 1 for more details.
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Table 3. Final perplexity (“Perpl.”) along with the number of tokens in parentheses of different optimizers on pretraining LLaMA models
task. Bolded methods are ours. Columns LR and #TP denote the learning rate and the number of tunable parameters of the corresponding
method, respectively. We only tune for the base learning and set other parameters as in previous implementations. The memory column
shows the optimizer’s states memory consumption given a parameter of shape m× n with m ≥ n. Red LR highlights instability.

Methods Memory #TP 60M (1.38B) 130M (2.62B) 350M (7.86B) 1B (13.1B)
(for m× n) Perpl. LR Perpl. LR Perpl. LR Perpl. LR

Adam 2mn 3 30.46 0.005 24.60 0.005 18.67 0.001 16.00 0.0005

AdamSN mn+m 3 29.75 0.05 22.90 0.05 17.49 0.05 14.96 0.05

AdamSNSM rn+m 5 29.74 0.05 22.43 0.05 16.91 0.05 14.05 0.05

AdaGradm 2mn 2 30.40 0.10 24.86 0.10 18.30 0.10 17.42 0.10

AdaGradmSN mn+m 2 29.73 2.00 22.58 2.00 17.14 2.00 14.48 2.00

AdaGradSNSM rn+m 4 29.81 1.00 22.43 1.00 16.99 1.00 13.96 1.00

AdaGrad mn 1 37.12 0.05 25.76 0.05 18.14 0.05 15.25 0.01

AdaGradSN m 1 29.85 2.00 24.19 1.00 17.72 1.00 14.82 1.00

RMSProp mn 2 35.51 0.001 25.94 0.001 20.01 0.001 17.03 0.001

RMSPropSN m 2 34.57 0.01 25.67 0.01 18.72 0.01 15.97 0.001

GaLore (Zhao et al., 2024) 2rn 6 34.73 0.01 25.31 0.01 18.95 0.01 16.76 0.001

Rank r / Dimension m 128/512 256/768 256/1024 512/2048

Table 4. Optimizer states memory footprint (in GB for BF16
dtype) for different LLaMA models. Our methods, AdamSN,
AdamSNSM, and RMSPropSN (RMSPSN), are modifications of
Adam and RMSProp (RMSP) to utilize Subset-Norm (SN) and
Subspace-Momentum (SM). For GaLore and AdamSNSM, the
subspace is of dimension2 d/r, where the memory accounts for
additional space for storing the projection matrices.

Opt. AdamW AdamSN RMSP GaLore AdamSNSM RMSPSN

Mem. 2d d +
√
d d 4d/r 2d/r +

√
d

√
d

60M 0.22 0.14 0.11 0.15 0.08 0.03
130M 0.50 0.30 0.25 0.29 0.16 0.05
350M 1.37 0.75 0.69 0.53 0.28 0.06
1B 4.99 2.62 2.49 1.61 0.84 0.12
3B 10.01 5.16 5.00 2.96 1.52 0.15
7B 25.10 13.04 12.55 7.01 2.73 0.49

Closing the theory-practice gap. While there is a non-
trivial performance gap between Adam and AdaGrad(m)
for larger models, using the SN step size closes this gap
across scales. This shows that AdaGrad style algorithms
can be competitive to Adam when using the SN step size.
Interestingly, vanilla AdaGrad seems to perform well as
model size increases. This is important because AdaGrad
enjoys stronger theoretical understanding than Adam and
has one fewer parameter – β2 – to tune.

5.2. LLMs Supervised Fine-Tuning (SFT) Experiments

We further evaluate on a supervised-fine-tuning task, where
we fine-tune a pre-trained LLaMA 7B model on the Ul-
traFeedback dataset (Cui et al., 2024) using the chosen re-
sponses with max sequence length of 1024. We train for 1
epoch with linear decay and gradient clipping of 1. Table 5
contains the result with the time and memory of one training
epoch on a single A100-80GB GPU. Note SNSM’s r de-
notes the dimension of SM but the optimization is full-rank.

Table 5. Last and minimum validation perplexity for SFT of
LLaMA 7B on the UltraFeedback dataset between Adam, LoRA,
and AdamSNSM for 2 different ranks. We also show the wall-
clock time and peak memory for batchsize 1 for these optimizers.

Adam LoRA (r=64) AdamSNSM (r=64) SNSM (r=32)

Last 2.622 2.632 2.584 2.580
Min. 2.401 2.410 2.392 2.390

Time (min.) 266 249 303 301
Memory (GB) 77.11 20.75 42.89 42.89

Discussion. We observe similar improvement over Adam
as in pre-training tasks. Surprisingly, the smaller rank (for
momentum) is more beneficial than the larger rank. In
contrast to LoRA, since we report peak-memory here, due
to the full parameter training of SNSM, the primary memory
bottlenecks are gradients and activations. Furthermore, we
note that the primary contributor to SNSM’s slower wall
clock time is the SVD computation on large dimension. We
try larger projection update gaps in Table 6 which reduce this
cost while maintaining good performance for our methods.
Furthermore, we discuss potential more efficient alternatives
in Section 5.3 and leave further exploration to future works.

GLUE Fine-tuning. Additional results on fine-tuning on
GLUE tasks with BERT models are in Appendix B.4.

5.3. Ablation Studies

In this section, we present ablation studies on various pa-
rameters of SN and SM.

Subset-Norm’s subset size ablation. While we use a
simple scheme to compress the adaptive step size of linear
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Figure 5. Subset size ablation for AdamSN on LLaMA 60M
trained for 1.38B tokens (batch size of 512 of max length 256
for 10,000 steps). The higher the subset size, the smaller the
memory footprint of the second moment optimizer state.

modules in the previous experiments, Table 2 suggests that
there is an optimal subset size that depends on the noise.
Figure 5 shows performance for various subset-size selec-
tion. Since the step size scales with the subset size, the
optimal base LR should be decreased as we decrease the
subset size closer towards Adam. We include additional
results for 130M model in Figure 8.

While one can use the heuristics discussed on models where
linear modules make up the vast majority, for arbitrary mod-
els with weights of d elements, we found that a subset size
of
√
d/2 is probably a reasonable choice. If more resources

are available, the subset size can also be tuned.

Subspace selection. While the top-k singular vectors of
stochastic gradients gives a subspace with strong perfor-
mance, performing SVD can be expensive for larger models
and storing the dense projection consumes non-negligible
memory for large ranks. Gradient-independent projections
like random gaussian as in FLORA (Hao et al., 2024) avoids
SVD and can save memory by storing the pseudorandom
seed (at the cost of recomputating the projection at every
step). One can further speed up the random projection
by using a fast subspace embedding like the Subsampled-
Randomized Hadamard Transform (SRHT) used in the Fast-
JL transform (Ailon & Chazelle, 2009). Random projections
like SRHT can also be used to approximate SVD (Appx-
SVD) computation (Halko et al., 2011) that can be much
faster than full SVD. Finally, the cheapest projection is
a subspace of random standard bases. Recently, GRASS
(Muhamed et al., 2024) explores this idea and tests sam-
pling random bases with large gradient norms. We examine
different choices for the subspace and compare their time,
space, and performance in Appendix B.8 (Table 13).

Larger projection update gaps. Frequently updating the
projection map using SVD can be expensive, especially
for larger models. Furthermore, updating the projection

Table 6. Effects of less frequent subspace update schedule (gap).
Compared to Table 3 where the gap is fixed to 200 across all scales.

Model Size 60M 130M 350M 1B

Gap/Steps (5%) 200/10K 1K/20K 3K/60K 5K/100K

AdamSNSM 29.84 22.71 18.43 15.28
AdaGradSNSM 30.28 22.76 17.02 13.90
GaLore 36.69 29.37 21.27 19.14

Fixed Subspace 10K/10K 20K/20K 60K/60K 100K/100K

AdamSNSM 30.65 23.65 18.94 15.16
AdaGradSNSM 31.43 24.85 18.04 14.62
GaLore 37.95 26.63 21.49 27.11

every 200 steps can be arbitrary. In Table 6, we examine
more structured schedules: (1) updating every 5% of the
total training steps (corresponding to 200/10K steps for the
60M model) and (2) only using a fixed subspace at the start.
Compared to Table, 3 where a fixed gap of 200 is used
across scales, we see SNSM’s performance stay relatively
similar when we increase the update gap to 5% of the total
training steps, whereas GaLore’s performance suffers more.

Table 7. Fixed Subspace Choices on LLaMA 60M. We examine
GaLore and SNSM with top-k singular vectors projections (SVD)
and random subspaces (Random) using dense gaussian projections.

GaloreSVD GaloreRandom SNSM+SVD SNSM+Random

Perplexity 37.95 38.23 30.65 40.15

Interestingly, for fixed subspace (100% gap), GaLore still
achieves decent performance even though the optimization
only happens in a small subspace up until the 1B model,
where the training stops improving after 50K/100K steps.
In Table 7, we see that a random subspace seems to work
decently well too. This suggests that a majority of progress
can be made in a small subspace in smaller models. In
contrast, this is not the same for restricting momentum to
a subspace. Furthermore, we notice that there are training
loss spikes at the times when we switch subspace for Ga-
Lore that impacts training with 5% gap, most likely due to
incompatible optimizers’ statistics between subspaces. This
could explain why GaLore’s 100% gap performs similarly
or even better than 5% gap for certain run. Finally, we note
that AdaGradSNSM performs the best here with the larger
gaps as the dimension increases.

Additional experiments and ablations. We provide addi-
tional experiments and detailed ablations on wall-clock time
speedup, peak-memory savings, the effect of clipping, batch
sizes, random seeds, combinations between adaptive step
sizes and momentum, and more in Appendix B.
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6. Related Works
As model sizes grow, memory-efficient training techniques
have become crucial. Following up on AdaFactor (Shazeer
& Stern, 2018), low-rank methods like Galore (Zhao et al.,
2024), LoRA (Hao et al., 2024), and ReLORA (Lialin et al.,
2023) reduce memory usage by approximating large weight
matrices with low-rank representations. Projection-based
approaches, such as GRASS (Muhamed et al., 2024) and
FLORA (Hao et al., 2024), compress gradients or combine
low-rank ideas with projections to reduce memory require-
ments. Recently, AdaMeM (Vyas et al., 2024a) proposes to
incorporate the orthogonal subspace to the AdaFactor opti-
mizer; this is related to but different from our simpler SM
algorithms, where we use subspace decompositions to de-
couple the momentum and SGD. BAdam (Luo et al., 2024),
a block coordinate descent method that utilizes Adam as
an inner solver, has been proposed for fine-tuning large lan-
guage models. In contrast to our proposed methods, these
methods are largely heuristic-driven and often lack conver-
gence guarantees under standard assumptions. On the other
hand, methods like SM3 (Anil et al., 2019), which uses sub-
set (cover) statistics to show convergence in online learning,
and MicroAdam (Modoranu et al., 2024), which provides
convergence guarantees for a gradient compression scheme
with error correction, offer theoretical guarantees.

Additional approaches to reducing memory during training
include optimizer quantization (Li et al., 2024a; Dettmers
et al., 2021; 2024), attention computation compression/op-
timization (Wu et al., 2022; Dao et al., 2022; Dao, 2023;
Shah et al., 2024), activation checkpointing (Chen et al.,
2016), and distributed training (Rajbhandari et al., 2020).
For inference, compression techniques are also actively be-
ing explored (Sakr & Khailany, 2024; Dettmers et al., 2022;
Xiao et al., 2024; Lin et al., 2024; Frantar et al., 2023).
These are orthogonal directions to our work and can be
combined. Another orthogonal direction is approximated
second-order optimization, where one aims to approximate
the Hessian preconditioner using only first-order informa-
tion in order to achieve faster convergence. Some works
in this area include (Gupta et al., 2018; Liu et al., 2023a;
Vyas et al., 2024b). These methods typically demonstrate
faster training but at the cost of super-linear memory and
additional computational overhead.

Convergence analysis of non-convex optimization methods
has seen significant progress, with recent works providing
convergence proofs for adaptive algorithms like Adam (Li
et al., 2024b; Défossez et al., 2022). Numerous studies have
explored convergence properties of various adaptive and
stochastic gradient methods (Chen et al., 2018; Défossez
et al., 2022; Ene & Nguyen, 2021; Liu et al., 2023c;b; Ward
et al., 2019; Zou et al., 2019; Reddi et al., 2018; Nesterov,
1983), while lower bound analyses (Arjevani et al., 2023)

have highlighted fundamental limits in non-convex opti-
mization. Here, obtaining convergence results for EMA
updates (Adam style) for subset-norm and under further re-
laxed assumptions like affine smoothness (Wang et al., 2023;
Attia & Koren, 2023), affine noise (Hong & Lin, 2024; Faw
et al., 2022), heavy-tailed noise (Zhang et al., 2019; 2020;
Nguyen et al., 2023a;b) are of great interest.

Comparison with Adam-mini. Very recently, Adam-mini
(Zhang et al., 2024) also uses shared step sizes as Subset-
Norm; however, the partition strategy is quite different from
ours. While Adam-mini also employs a grouping strategy
for the adaptive step size, it is primarily motivated empir-
ically and lacks a general grouping strategy for general
parameters. In contrast, our theory results show that group-
ing by noise magnitude leads to improvement. In experi-
ments, our AdamSNSM uses less memory than Adam-mini,
due to the fact that Adam-mini uses full momentum while
we use momentum only in a subspace (which outperforms
full momentum in many cases given a good choice of sub-
space). Furthermore, in terms of perplexity, Adam-mini
performs very closely to AdamW while our methods out-
perform Adam (which performs similarly to AdamW) on a
range of language tasks and model sizes.

7. Conclusion and Future Works
In this paper, we introduce two principled optimizer
states’ memory reduction methods —Subset-Norm (SN)
and Subspace-Momentum (SM)—designed to address the
high memory costs associated with adaptive optimizers in
large-scale deep learning. SN and SM achieve memory
savings without compromising performance and admit high-
probability convergence guarantees under relaxed assump-
tions. Extensive experiments pre-training and fine-tuning
LLMs validate our methods’ effectiveness and efficiency.

Future works. Promising directions include exploring SN
and SM on additional domains like Reinforcement Learning,
where high memory and high noise are also bottlenecks
when scaling up to large models. Fully generalizing our
methods involves developing general projections (beyond
matrix decomposition) for SM on higher order tensors for
use on additional architectures like CNNs. A more in-depth
investigation to more optimal subset partition strategies for
SN is also an interesting open question, since our analysis
in Section 3.2 only applies to equipartition subsets. Further
theoretical understanding for SM’s subspace dependency
for improving the subspace selection for SM is desirable.
Furthermore, the convergence of SNSM is still unknown.
Finally, the benefits of momentum in stochastic optimization
in general is still a mystery; using SM to study effects of
momentum on particular subspaces could open doors to
obtain a more fine-grained understanding for why or when
momentum helps.
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Algorithm 4 Adam-Subset-Norm with a Simple Partitioning Scheme
Input: Learning rate η, EMA parameters β1 and β2, ϵ > 0, optional weight decay wd ≥ 0
for each p ∈ Rm×n in params do

grad← p.grad
r ← 0 if m ≥ n else 1
k ← p.shape[r] {Set k = m if r = 0, else k = n}
gradN← grad.norm(dim=1− r) ∈ Rk {Subset norm}
m← β1m+ (1− β1) · grad ∈ Rm×n

v ← β2v + (1− β2) · gradN2 ∈ Rk {Omitting bias correction terms}
p← p+ η m√

v+ϵ
{Broadcast division}

p← p− η · wd {Weight decay}
end for

A. Experimental Details
In this section, we provide hyperparameters details, implementation details (pseudocode), and other practical considerations.

A.1. Experimental details

All of our pre-training experiments are conducted on NVIDIA RTX4090/3090 GPUs. Unless specified otherwise, we run all
experiments on BF16 format, weight decay of 0, gradient clipping of 1.0, cosine learning rate decay to 10% of the max
learning rate with 10% linear warmup steps, and batch size of 512 (similarly to (Zhao et al., 2024) and (Touvron et al.,
2023; Dubey et al., 2024)).7 For all our experiments, we use the default (β1, β2) = (0.9, 0.999) and only tune for the base
learning rate within a grid of {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.8 We train for 1.38B, 2.62B, 7.86B, and 13.1B tokens for
models of sizes 60M, 130M, 350M, and 1B parameters, respectively, following (Zhao et al., 2024) and matches roughly the
scaling laws in (Hoffmann et al., 2022).

For GaLore, we use the same hyperparameters as in (Zhao et al., 2024), where we use rank 128/512, 256/768, 256/1024,
and 512/2048 for the 60M, 130M, 350M, and 1B models, respectively (Table 2 of (Zhao et al., 2024)).9 For AdamSNSM,
we use the same ranks and projection update gap (of 200) as GaLore for all models.10 However, we do not tune for an
additional scaling parameter unlike GaLore, and we compresses the LM head (final linear layer) with SN and SM also.11

A.2. Adam-Subset-Norm Implementation

Algorithm 4 presents the pseudocode for Adam-Subset-Norm as mentioned in Section 3.2 where we partition the coordinates
(for each parameter) into subsets of equal sizes.

A.3. Generic Subset-Norm Adaptive Step Size Implementation

The heuristic implementation in Section A.2 is simple and does not require any tuning. However, to modify existing
algorithms to work with arbitrary subsets, one could utilize reshape as in Algorithm 5 as an example.

A.4. AdamSNSM Implementation Details

Algorithm 6 provides the pseudocode and implementation details for the version of AdamSNSM with SVD subspace
momentum and heuristics subset-norm (as described in Section 3.2) used in our experiments.

7Note that these addition improve the performance for all baselines. See Appendix B.10.
8Except AdaGradSNm where we find higher learning rates in {0.5, 1, 2, 5} to be better. We tune the lr on the 60M model and use the

same learning rate for the larger model, where the base learning rate is only reduced if the method fails to converge.
9Note that our reproduced results for GaLore and baselines are similar to (Zhao et al., 2024).

10Note that a smaller gap is more expensive than a larger gap. Our experiments below show that we can increase the projection update
gap without much performance loss. If data is not limited, one could use a larger gap to speed up training. However, if data is limited,
then a smaller gap to converge in fewer tokens is potentially more desirable.

11Existing methods typically do not compress the embedding layer and final LM head, while our methods seem robust to this choice.
Compressing these layers save additional memory.
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Algorithm 5 Generic Subset-Norm Adaptive Step Size Update Rule (PyTorch-y Notation)
Input: Parameter P ∈ Rd, step size η > 0, β, ϵ > 0, and partition size k such that k divides d
R← (∇P ).reshape(d/k, k) {Reshape gradient into shape d

k × k}
V ← βV + (1− β) · ((R**2).sum(dim=1)) ∈ Rd/k {Update state V via subset norm reduction on dim 1}
U ← R√

V+ϵ
∈ Rd/k×k {Broadcast addition and division for update step}

P ← P − η · U.view(d) {Reshape U back to Rd and update P}

Algorithm 6 AdamSNSM with Subspace Momentum via Top-k Singular Vectors from SVD
Input: Learning rate η, rank k, update gap G, momentum parameters β1, β2 ∈ (0, 1), and stability parameter ϵ
for t = 1, . . . , T do

Obtain stochastic gradient gt ∈ Rm×n {WLOG, assume m ≥ n}
if t mod G = 0 then
U, S, V = SVD(gt) {Compute singular value decomposition}
P = U [:, : k] ∈ Rm×k {Extract top k singular vectors}

end if
m = β1m+ (1− β1)PT gt ∈ Rk×n {Update subspace momentum}
r = gt − PPT gt {Compute orthogonal SGD component}
s = sum(gt, dim = 1) ∈ Rn {Sum all columns for subset-norm heuristic}
v = β2v + (1− β2)s2 ∈ Rn {EMA of subset-norm}
xt = xt−1 + η Pm+r√

v+ϵ
{Update with subspace momentum and subset-norm step size}

end for

A.5. Measuring Memory Footprint of Optimizers

In PyTorch, we can obtain the number of parameters in optimizer states using the code in Listing 1.

A.6. Peak memory measurement during training for different optimizers

We measure peak memory consumption directly via running nvidia-smi in Figure 6 while training as oppose to controlled
measurement as in Table 4. Note that these peak measurements incur additional memory from gradient computation and
algorithms’ overhead.

1 def get_optimizer_state_size(optimizer) -> Tuple[int, Dict[str, int]]:
2 total_state_size = 0
3 state_size_breakdown = {}
4 for group in optimizer.param_groups:
5 for p in group[’params’]:
6 state = optimizer.state[p]
7 for state_key, state_value in state.items():
8 if torch.is_tensor(state_value):
9 if state_value.numel() == 1:

10 # we do not count singleton
11 continue
12 total_state_size += state_value.numel()
13 if state_key not in state_size_breakdown:
14 state_size_breakdown[state_key] = 0
15 state_size_breakdown[state_key] += state_value.numel()
16 return total_state_size, state_size_breakdown

Listing 1. PyTorch function to calculate optimizer state size
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Figure 6. Peak GPU Memory Usage (Gb) for various model sizes, obtained with batch size 1 and activation checkpointing to measure the
optimizer state footprint.

B. Additional Experiments and Ablation Studies
B.1. Additional Comparisons with Memory Efficient Optimizers for Pre-Training LLaMA Models

Table 8 extends Table 3 to compare against other recent methods.

Table 8. Additional comparisons with other memory efficient optimizers

Method LLaMA 60M LLaMA 130M LLaMA 350M LLaMA 1B

AdamW 30.46 24.60 18.67 16.00

AdamSNSM (ours) 29.74 22.43 16.91 13.96

GaLore (Zhao et al., 2024) 34.73 25.31 20.51 16.76
FLORA (Hao et al., 2024) 32.52 – 23.69 –
LoRA (Hu et al., 2021) 34.99 33.92 25.58 19.21
ReLoRA (Lialin et al., 2023) 37.04 29.37 29.08 18.33

B.2. Wall-clock speedup and peak memory

We provide the per iteration time, peak memory (via nvidia-smi), and time to Adam’s val perplexity after 100K steps for the
1B model for each method on a 2x4090 machine with the same setup as in Table 3 (seq length 256, total batch size 512,
micro batchsize 16) in Table 9.

Table 9. Per iteration time, peak memory (via nvidia-smi), and time to Adam’s val perplexity after 100K steps for the 1B model for each
method on a 2x4090 machine with the same setup as in Table 3 (seq length 256, total batch size 512, micro batchsize 16) in Table 9

Adam AdamSNSM (Gap=5000) AdamSNSM (Gap=200) AdamSN GaLore (Gap=200)

Time for 1K iters 7426 s 7465 s 7624 s 7399 s 7827 s
Time per iteration 7.43 s/it 7.47 s/it 7.62 s/it 7.39 s/it 7.83 s/it
Time to perplexity< 16 ∼206.4 hrs (100K iters) ∼136.9 hrs (<66K iters) ∼101.6 hrs (<48K iters) ∼118.9 hrs (<58K iters) >217 hrs (>100K iters)
Peak mem 21.554 GB/GPU 16.642 GB/GPU 16.642 GB/GPU 19.193 GB/GPU 18.187 GB/GPU
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B.3. Vision Tasks

Diffusion Transformers. While our main focus is on large models that are more typical to language models where memory
is often a bottleneck, vision models are also increasing in size. Hence, we conduct further evaluations using the DiT-L/2
model (458M)12 on a setup with batch size 2048, image size 64, and 8×A6000 GPUs. We compared our method (SNSM)
with Adam. As shown in Table 10, SNSM outperforms Adam in FID similarly to LLM tasks.

Table 10. FID scores over training iterations for the DiT-L/2 model (458M parameters) on 64× 64 images.
FID / Iter 200k 300k 400k 500k 700k

Adam 56.69 56.63 40.69 41.15 39.61
AdamSNSM 66.76 66.31 34.05 32.31 32.26

CIFAR10 and CIFAR100. We further evaluate Adam, AdamSN, and AdamSNSM (rank 64 and no update gap) by training
vit base patch16 22413 (Dosovitskiy et al., 2020) (around 85M params) from the timm library14 on the CIFAR10
and CIFAR100 (Krizhevsky, 2009) datasets for 10 epochs with a batch size of 64 and weight decay 0 on a 2x4090 machine.
We tune the lr across {1e-3, 5e-3, 1e-4, 5e-4, 5e-5, 1e-5} grid for all methods. The results are shown in Table 11.

Table 11. Performance Comparison of Optimizers on Vision Transformers for CIFAR10 and CIFAR100

Best val accuracy (10 epochs) Adam AdamSN AdamSNSM (r=64, g=1000)

CIFAR100 43.30% 45.20% 45.60%
CIFAR10 69.02% 69.18% 71.21%

Peak Mem (bs 64) 9.288GB 8.886GB 8.878GB

These preliminary experiments show promising results for the application of our methods to vision tasks where models are
becoming larger.

B.4. Fine-tuning on GLUE Tasks

Table 12 presents results for fine-tuning on GLUE dataset for various methods. The SN step size maintains good performance
while reducing the memory footprint.

B.5. AdaGrad, AdaGrad-Norm, and AdaGrad-Subset-Norm

We examine the subset-norm step size for AdaGrad in Figure 7. We again see that subset-norm is slightly better than the full
coordinate version while using a lot less memory. This is consistent with our observations for Adam and RMSProp when we
replace the standard coordinate-wise step size with the subset-norm adaptive step size.

12https://github.com/facebookresearch/DiT
13https://huggingface.co/timm/vit_base_patch16_224.augreg2_in21k_ft_in1k
14https://timm.fast.ai/

Table 12. Performance metrics across GLUE tasks. QQP, RTE, SST-2, MRPC, STSB, QNLI, and MNLI use accuracy as the metric, while
CoLA uses the Matthews correlation coefficient. The best and runner-up results for each task and the average score are highlighted.

Method QQP RTE SST2 MRPC STSB QNLI MNLI COLA Avg

Adam 92.0 77.9 94.9 89.2 90.5 93.0 87.6 65.4 86.3
GaLore (r = 4) 90.9 79.4 95.2 88.7 90.8 92.4 86.9 61.9 85.8
RMSProp 91.9 79.4 95.2 91.4 90.3 92.8 87.6 65.1 86.7

RMSPropSN 91.9 80.1 95.1 90.0 90.7 93.1 87.5 63.8 86.5
AdamSN 91.2 74.4 94.5 89.5 90.4 92.0 86.7 64.4 85.4
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Figure 7. Pretraining LLaMA 60M on the C4 dataset for AdaGrad variants. Memory consumption estimate as a function of parameter
count d is shown in the legend.
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B.6. Additional Subset-Size Experiments for 130M model

We provide additional subset-size experiments similar to the ones in Section 5.3 for LLaMA 130M in Figure 8.

B.7. Subspace-Momentum Rank and Gap Ablations

Rank and gap ablations. We examine the impact of varying rank and update gap of subspace momentum, similarly to
(Zhao et al., 2024), in Figure 9. There, we see that the higher the rank, the better the results. For the update gap, it seems like
there is an optimal choice. However, due to the SVD computation, a larger gap will be cheaper than a more frequent gap.

B.8. Subspace-Momentum Projection Choice Ablations

Projection types. Table 13 tests different choices for projection in SM discussed in Section 5.3. Note that for memory
storage, SVD, Random Projection via dense Gaussian projection (Gaussian), and Approximated-SVD (Appx-SVD) need to
store the r × n projection matrix (unless we recompute at every step). The remaining methods only need to store the indices
for sampling and/or the random seed to regenerate any random choices.

Note that the choice of the projection is important as some projections are more computationally and memory expensive
than other, although trading other qualities for given the cost. Simple projections like selecting a subset of coordinates for
momentum (Subset-Momentum) are not only faster but enables simple distributed training like FSDP unlike more complex
subspace selection mechanism that requires additional priors about the parameters (shape, low-rank, etc.) that might not
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Table 13. Different projections selection for Subspace-Momentum and validation perplexity. All methods are evaluated on LLaMA 60M
with rank 128/512 and a projection update gap of 200. Time and space rows denote time and space to compute and store the projection.

AdamSNSM’s projection SVD Approx-SVD Gaussian SRHT Top-k Random-rows OPCA Oja

Time (form× n) O(mn2) O(mn log k + kn2) O(kn) O(max(m,n)) O(mn) O(k) O(kn) O(kn)
Space (for rank k) O(kn) O(kn) O(kn) O(k) O(k) O(k) O(kn) O(kn)

Validation Perplexity 29.74 31.51 42.48 33.33 31.42 33.17 29.63 30.69

always satisfied.

Online k-PCA and Streaming k-PCA for Up-to-date Subspace. Computing subspace from stochastic gradient snapshots
can be noisy. Recently, (Liang et al., 2024) proposes a formulation of online-PCA to handle the problem of staled top-k
components as the stochastic gradients evolve. We test this algorithm in the OPCA column. Another natural algorithm to
ensure the top-k components stay up-to-date is Oja’s algorithm for streaming k-PCA (Huang et al., 2021). We also test
this algorithm in Table 13. While we can maintain up to date projection using these schemes, more frequent updates suffer
from the same issue of transferring optimization statistics from one subspace to another. We only test for not resetting the
statistics in this setting and leave additional investigation for future works. Furthermore, these schemes are more expensive
computationally due to additional computation requirement at every step. OPCA further uses Adam for inner optimization
which incurs additional memory.

B.9. Step Sizes and Momentum Choices Full Ablations

We investigate various combinations of momentum and adaptive step size approaches in Table 14. For adaptive methods,
we compare EMA, which uses exponential moving average to accumulate the second moment (v2t = βv2t−1 + (1− β)g2t ),
with AdaGrad’s cumulative accumulation approach (b2t = b2t−1 + g2t ). Methods with the SN suffix utilize subset norm for
parameter grouping, contrasting with per-coordinate approaches that are standard. While EMA momentum follows the
standard momentum implementation, subspace momentum employs a reduced rank approximation with rank 128 for this
model size.

Table 14. Different combinations of momentum (columns) and adaptive step-size (rows) and the effect of the learning rate schedule on
each combination (cosine learning rate decay schedule with warmup “coslr” or constant learning rate “lr.”). Memory footprint for each
adaptive step size and/or momentum are shown. Green and red highlight runs with perplexity below 30 and above 50 respectively.

Final eval perplexity (lr) No momentum EMA momentum Subspace momentum
LLaMA 60M for 1.31B tokens Mem = 0 Mem = m · n Mem = max(m,n) · rank

SGD SGDm SGD+SM
No Adaptive Step-size 86.60 (coslr=1e-3) 55.76 (coslr=1e-3) 89.97 (coslr=1e-3)
Mem = 0 100.04 (lr=1.0) 56.07 (lr=1.0) 213.21 (lr=5e-4)

RMSProp Adam AdamSM
EMA Coordinate 35.01 (coslr=1e-3) 30.46 (coslr=5e-3) 32.34 (coslr=1e-3)
Mem = m · n 36.46 (lr=5e-4) 33.47 (lr=1e-2) 32.25 (lr=5e-4)

RMSPropSN AdamSN AdamSNSM
EMA Subset-Norm 34.86 (coslr=1e-2) 29.75 (coslr=5e-2) 29.74 (coslr=5e-2)
Mem = max(m,n) 34.57 (lr=1e-2) 33.69 (lr=1e-2) 32.49 (lr=1e-2)

AdaGrad AdaGradm AdaGradSM
AdaGrad Coordinate 37.12 (coslr=5e-3) 31.48 (coslr=5e-2) 30.99 (coslr=5e-2)
Mem = m · n 46.47 (lr=5e-4) 43.99 (lr=1e-2) 41.32 (lr=5e-4)

AdaGradSN AdaGradSNm AdaGradSNSM
AdaGrad Subset-Norm 33.19 (coslr=5e-3) 29.73 (coslr=5e-3) 29.81 (coslr=5e-3)
Mem = max(m,n) 41.23 (lr=0.1) 44.98 (lr=0.1) 40.11 (lr=0.1)
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Method 60M (no clipping) 60M (with clipping) 130M (no clipping) 130M (with clipping)

Adam 30.58 30.46 25.07 25.07
AdamSN 30.06 29.75 23.54 22.89
GaLore 34.91 34.73 25.43 25.31

Table 15. Pre-training LLMs ablation experiments for gradient clipping. We compare validation perplexity between LLaMA 60M and
130M with and without clipping. We use the same hyperparameters as in Section A.1 but just add clipping. .

Table 16. Batch size ablation for various optimizers along with optimal learning rate.

Batch size Adam GaLore AdamSN AdamSNSM
Perpl. LR Perpl. LR Perpl. LR Perpl. LR

1024 27.94 0.005 32.75 0.01 27.68 0.05 28.02 0.05
512 30.46 0.005 34.73 0.01 29.75 0.05 29.74 0.05
256 36.65 0.001 44.71 0.001 37.03 0.001 32.82 0.05
128 41.72 0.001 49.75 0.001 42.04 0.001 36.82 0.05

Discussions. From Table 14, Subset norm (SN) step sizes consistently outperform coordinate-wise implementations while
requiring less memory. Adaptivity proves crucial for optimization effectiveness, where the first row without adaptivity
perform consistently poorly. The addition of momentum is beneficial in all configurations while SM is more beneficial
for adaptive step sizes. The impact of learning rate scheduling is also evident across configurations, with cosine decay
consistently outperforming constant learning rates. Notably, we observe varying degrees of learning rate sensitivity: adaptive
methods demonstrate greater robustness to learning rate selection, while non-adaptive methods require more precise tuning.

B.10. Gradient Clipping

Gradient clipping is standard in training LLMs for many open source models like LLaMA, DeepSeek, OPT, etc. (DeepSeek-
AI et al., 2024; Touvron et al., 2023; Workshop et al., 2022; Zhang et al., 2022; Chowdhery et al., 2023; Ding et al.,
2023). Clipping has a strong connection to stochastic gradient noise being heavy-tailed (Zhang et al., 2019) and many
theoretical results have been shown to suggest some form of clipping is beneficial when the noise could follow a heavy-tail
distribution(Cutkosky & Mehta, 2021; Gorbunov et al., 2020; Li & Liu, 2022; Nguyen et al., 2023b;a). We present the
results with clipping equal to 1.0 for each method in Table 15.

In Table 15, we see that gradient clipping indeed helps most of the methods achieve slightly better perplexity. In our
experiments, we notice that adding some form of gradient clipping produces more stable training.

B.11. Batch Sizes and Random Seeds

Fixed number of steps. We measure the impact of different batch sizes on pre-training LLaMA 60M for 10,000 steps in
Table 16.15 We use the same configuration as in other experiments. Typically, smaller batch sizes require smaller learning
rates, but curiously, AdamSNSM seems to be stable with the choice of learning rates. Even more interestingly, AdamSNSM’s
final performance seems to be affected less by the smaller batch size as opposed to other methods, especially GaLore.

Fixed data quantity. In the previous section, we compare the performances on different batch sizes fixing the same
number of steps. In this section, we fix the amount of data to 1.3B tokens for pre-training LLaMA 60M. Hence, adjusting
the batch size would also adjust the number of steps. Table 17 contains the result where SNSM shows consistently better
performance than Adam across different batch sizes.

Random seeds. Throughout our experiments, we fix the random seed for all runs within a same table. In Table 17, we
investigate the effects of random seeds by running each batch size on 3 random seeds and report the mean and standard
deviation. We see that SNSM has better variance than Adam for many batch sizes overall. We also examine the random

15This reduces the amount of total tokens trained. However, we only compare optimizers against one another. To compare the same
optimizer against different batch sizes, one should train for the same amount of tokens.
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Figure 10. Fraction of coordinates with noise over noise density rate.

variation on the 130M model in Table 18.

Table 17. Mean and standard deviation (in parentheses) evaluation perplexities of Adam and AdamSNSM optimizers when pretraining
LLaMA 60M for 1.3B tokens over 3 random seeds. SNSM rank = 128 and gap = 200. Learning rates were tuned over a grid for each
batch size.

Batch size 1024 512 256 128 64 32 16 8 4

Adam 31.80 (1.87) 30.46 (0.29) 32.11 (1.32) 34.57 (0.16) 36.34 (0.16) 38.91 (0.12) 43.12 (0.26) 48.88 (0.17) 57.28 (0.80)

AdamwSN 30.11 (0.15) 29.81 (0.12) 30.32 (0.07) 31.30 (0.02) 32.72 (0.11) 35.38 (0.11) 40.46 (0.97) 45.81 (0.11) 51.01 (0.25)

AdamSNSM 31.39 (0.17) 29.93 (0.07) 30.08 (0.19) 30.57 (0.08) 32.35 (0.14) 34.51 (0.14) 37.05 (0.20) 39.39 (0.02) 44.27 (0.10)

Adam AdamSN Adagrad AdaGradSN

Mean 24.69 22.98 25.95 24.57
Stdev 0.07 0.07 0.16 0.37

Table 18. Mean and standard deviation across 3 runs for different optimizers on pretraining LLaMA 130M task.

C. Coordinate-Noise Density
This section further examine the coordinate-noise density model by providing additional empirical results across the train
progress. We also provide the full derivation for the convergence of AdaGrad algorithms under various noise density rate.

C.1. Empirical Validation

Coordinate-noise density experiments. To validate the coordinate-noise density model, we sample stochastic gradients
repeatedly (via different mini batches) to obtain a sample variance estimate for the true sub-gaussian parameter σi for each
coordinate: if g1, . . . , gn ∈ Rd are independent stochastic gradient samples, we can calculate the sample variance S2 as an
estimator for σ2 as S2 = 1

n−1

∑︁n
i=1 (gi − ḡ)

2
, where ḡ = 1

n

∑︁n
i=1 gi is the sample mean. We pick n = 200 samples (with

batch size equals 128) for estimating coordinate-noise on LLaMA 60M across various steps during the training process.
Figure 11 shows the aggregated noise distribution across all parameters for LLaMA 60M after 100 training steps. There, the
noise is quite low for the vast majority of coordinates except for some outliers. While the noise seems sparse in aggragate,
a more fine-grained analysis, presented in Figure 3, shows that noises are dense per parameter, except for the Q and K
attention projections in the deeper layers. Figures 12 to 17 in Appendix C.1 present more noise density rates across various
parameters throughout different points of the training progress.

Figure 12 to 16 show the normalized noise density ratio for different parameters of LLaMA 60M as described in Section 3.2.
The noise patterns show a clear layer-dependent structure, where early layers (like layer 0) maintain consistently high density
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Figure 11. Aggregated noise distribution across all parameters after 100 steps of training.
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Figure 12. Noise density for different parameters of LLaMA 60M at Step 0.

(close to 1.0) throughout training, while deeper layers start very sparse and gradually become denser as training progresses.
Notably, the embedding layer shows an opposite trend, starting relatively dense and becoming increasingly sparse by step
5000, suggesting different dynamics for embedding updates compared to attention layers. The middle layers show an
interesting transition pattern, starting sparse but rapidly becoming dense after about 1000 steps, indicating a potential critical
phase in training where these layers become more actively involved in learning.

C.2. Convergence Rate Derivation

We derive the dimensional dependency of convergence rates for different AdaGrad variants below.

AdaGrad-Coordinate. For c = d (AdaGrad-Coordinate), we get
∑︁c−1
i=0 ∥σΨi∥ = αdβ , ∥σ∥22 = α2dβ , and∑︁c−1

i=0 ∥σΨi∥
4
= α4dβ , so the bound from Theorem 3.1 becomes

1

T

T∑︂
t=1

∥∇t∥22 ≤ Õ
(︁
α4dβ + α3dβ + dL+ d1.5α

)︁
· Õ
(︃
αdβ√
T

+
α2dβ + αdβ + Ld

T

)︃
.

The dependency on d for the slow term O(1/
√
T ) is d1.5dβ = d1.5+β . The dependency on d for the fast term O(1/T ) is

d1.5d = d2.5. Note that there is an inherent d1.5 dependency for the slow term that does not reduce as the coordinate-noise
density decrease.
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Figure 13. Noise density for different parameters of LLaMA 60M at Step 10.
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Figure 14. Noise density for different parameters of LLaMA 60M at Step 100.
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Figure 15. Noise density for different parameters of LLaMA 60M at Step 1000.
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Figure 16. Noise density for different parameters of LLaMA 60M at Step 5000.
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Figure 17. Noise density for different parameters of LLaMA 60M at Step 9999.
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AdaGrad-Norm For c = 1 (AdaGrad-Norm), we get ∥σ∥22 =
∑︁d
i=0 ∥σi∥

2
= α2dβ , ∥σ∥2 = αdβ/2, and ∥σ∥4 = α4d2β .

This means that our bound from Theorem 3.1 becomes

1

T

T∑︂
t=1

∥∇t∥22 ≤ Õ
(︁
α4d2β + α3dβ + L+ α

)︁
· Õ
(︃
αdβ/2√

T
+
α2dβ + αdβ/2 + L

T

)︃
.

The dependency on d for the slow term O(1/
√
T ) is d2β · dβ/2 = d2.5β . The dependency on d for the fast term O(1/T ) is

d2β · dβ = d3β . Note that when β = 0, or when all the noise is on a single coordinate, we recover the dimension-free results
of previous works.

AdaGrad-Subset-Norm. Now, consider the following partition strategy, where we divide the coordinates into c = d1−βk
subsets of size dβ/k each with the dβ noisy coordinates into just k subsets so that the rest of the c− k subsets do not contain
any noisy coordinate. This is a reasonable choice due to the empirical validation from Section C.1: The noisy parameters
seem to cluster in groups corresponding to the architecture.

With this strategy, we have
⃦⃦
σΨj

⃦⃦2
2
= α2dβ/k =⇒

⃦⃦
σΨj

⃦⃦
2
= αdβ/2/k0.5 if j is a noisy subset. We can compute∑︁c−1

i=0 ∥σΨi∥ = αdβ/2k0.5, ∥σ∥22 =
∑︁c−1
i=0 ∥σΨi∥

2
2 = α2dβ , and

∑︁c−1
i=0 ∥σΨi∥

4
= α4d2β/k. From Theorem 3.1, we get a

bound of

1

T

T∑︂
t=1

∥∇t∥22 ≤ Õ
(︂
α4d2β/k + α3dβ + d1−βkL+

(︁
d1−βk

)︁3/2
α
)︂
·

Õ

(︃
αdβ/2k0.5√

T
+
α2dβ + αdβ/2k0.5 + Ld1−βk

T

)︃
.

Set k = d7β/5−3/5 so that
(︁
d1−βk

)︁3/2
= d2β/k = d3β/5+3/5. Then we can simplify

1

T

T∑︂
t=1

∥∇t∥22 ≤ Õ
(︂
α4d3(β+1)/5 + α3dβ + d2(β+1)/5L+ d3(β+1)/5α

)︂
·

Õ

(︃
αd(12β−3)/10

√
T

+
α2dβ + αd(12β−3)/10 + Ld2(β+1)/5

T

)︃
.

The dependency on d for the slow termO(1/
√
T ) is d3(β+1)/5 ·d(12β−3)/10 = d3(1+6β)/10 = d0.3+1.8β . The dependency on

d for the fast termO(1/T ) is a bit more complicated: For β ∈ [0, 23 ], we have the dependency on d is d3(β+1)/5 ·d2(β+1)/5 =

dβ+1. For β ∈ [ 23 , 1], we have the dependency on d is d3(β+1)/5 · dβ = d3(β+1)/5+β = d1.6β+0.6. Note that this is only
a possible partition strategy where the subset sizes are of equal size (which is probably the most natural and easiest to
implement). There, the optimal subset size is k = d1.4β−0.6, for which if we plug in β ∈ [0, 1] we get a range from 1 to d0.8.

C.3. From Theory to Practice

Our theory provides an optimal grouping strategy that depends on the noise density. However, in practice, we must trade off
the cost to figure out a good grouping and the performance gain from it. The key from the theory improvement is to group
the coordinates with similar noise magnitudes together. However, any expensive method to figure out these groups (e.g.
the Hessian in Adam-mini) would have detrimental effects on the wall clock time and memory. Instead, our heuristic as in
Section 3.2 is meant to be a simple method to capture most of these groups.

Intuitively, coordinates in the same row/column either act on the same input or are used to compute the same output. The
noise and normalization on each input and output would affect coordinates in the same row/columns in a correlated way. To
provide some evidence, we perform the experiments in Section C.1 again in Figure 18, but with the noise grouped by the
corresponding dimension according to the heuristics. There we see most groups have very low noise (very close to 0, namely
less than 10−12) while a small number of groups (top 1 percentile in the annotation) have much larger noises. Overall, our
heuristics aim to capture the similar noise coming from the same inputs and outputs. Our experiments suggest that this is
a major part of the gain. There might be other simple sources of correlation in the noise magnitudes, which we leave for
future work.
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Figure 18. Coordinate noise grouped by the corresponding dimension according to the heuristics

D. Subspace-Momentum Convergence Proof
In this section, we provide a high-probability convergence proof for SGD with Subspace-Momentum for non-convex smooth
objective under sub-gaussian gradient noise.

D.1. Setup and intuition

Notations. Given a linear operator P : Rd → Rk, we have P ∗ : Rk → Rd is P ’s adjoint16, and we consider P ∗P : Rd →
Rd is a projection operator i.e. P ∗P is a bounded linear operator such that (P ∗P )

2
= P ∗P . Given a space V ⊆ Rd, we

denote its orthogonal subspace by V ⊥ :=
{︁
v ∈ Rd : ⟨v, u⟩ = 0, ∀u ∈ V

}︁
.

Let U = row (P ) ⊆ Rd be the row span of P . Let Ψ : Rd → U be Ψ(x) = P ∗Px and Ψ⊥ : Rd → U⊥ be
Ψ⊥(x) = x− P ∗Px. Then for any vector x in Rd, have the orthogonal decomposition

x = Ψ(x) + Ψ⊥(x).

SGD with Subspace Momentum. Let gt := ˆ︁∇f(xt) denotes the stochastic gradient at time t. Let ĉt = Pgt, gUt =
Ψgt = P ∗Pgt ∈ U , and g⊥t = gt − gUt ∈ U⊥. Let ∇t := ∇f(xt) be a short hand for the gradient at time t and let
∇Ut := Ψ (∇f(xt)) ∈ U and ∇⊥

t := Ψ⊥ (∇f(xt)) ∈ U⊥ be the orthogonal decomposition of ∇f(xt) with respect to U
and U⊥, so that∇t = ∇Ut +∇⊥

t . Note that the superscript of a variable tries to suggest the space that it lives in (either U or
U⊥). We have the following update rule for subspace momentum:

m̂t = βm̂t−1 + (1− β)Pgt
g⊥t = gt − P ∗Pgt

mt = P ∗m̂t

xt+1 = xt − η
(︁
mt + g⊥t

)︁
.

Note that

mt = βP ∗m̂t−1 + (1− β)P ∗Pgt

= βmt−1 + (1− β)gUt .
16In Rd, the adjoint P ∗ of a linear operator P is the linear operator given by the transpose of the matrix representation of P . We can

also generalize Subspace-Momentum to general Hilbert spaces.
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Expanding the terms, we see that this is just momentum in U

mt = βP ∗m̂t−1 + (1− β)P ∗Pgt

= βP ∗m̂t−1 + (1− β)gUt
= β2P ∗m̂t−2 + (1− β)βgUt−1 + (1− β)gUt

= (1− β)
t∑︂
i=0

βigUt−i. (5)

Hence, we can think of the update of SGD-SM as performing two separate algorithms in the orthogonal subspaces:
momentum in the subspace U and SGD in the subspace U⊥ (see also Figure 4) i.e. if we decompose xt into its orthogonal
components xt = xUt + x⊥t , then

xUt+1 = xUt − ηmt

= xUt − η(1− β)
t∑︂
i=0

βigUt−i

x⊥t+1 = x⊥t − ηg⊥t .

For our analysis, let ξt := gt −∇t denote the stochastic gradient error at time t. We can further decompose the error into its
subspace components:

ξt = ξUt + ξ⊥t

=
(︁
gUt −∇Ut

)︁
+
(︁
g⊥t −∇⊥

t

)︁
.

Basic facts. We establish some facts for subspace momentum.

1. Pythagorean: ∥gt∥2 =
⃦⃦
gUt
⃦⃦2

+
⃦⃦
g⊥t
⃦⃦2

and ∥∇t∥2 =
⃦⃦
∇Ut
⃦⃦2

+
⃦⃦
∇⊥
t

⃦⃦2
and so on for these decompositions.

2. Subspace smoothness: If f is smooth ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, then due to contraction property of the
projection operator, we have that the projected gradients of f are also L-Lipschitz:

∥P ∗P∇f(x)− P ∗P∇f(y)∥2 = ∥∇f(x)−∇f(y)∥ (6)
≤ L ∥x− y∥ .

3. Subspace non-bias:

E
[︁
gUt −∇Ut

]︁
= E

[︁
ξUt
]︁

= E [P ∗P (gt −∇t)]
= 0,

and similarly for the orthogonal subspace

E
[︁
g⊥t −∇⊥

t

]︁
= E

[︁
ξ⊥t
]︁

= E
[︁
ξt − ξUt

]︁
= 0.

4. Subspace bounded variance: if the stochastic gradient’s variance is bounded, then its subspace components are also
bounded E

[︂
∥ξt∥2

]︂
:

E
[︂⃦⃦
gUt −∇Ut

⃦⃦2]︂
= E

[︂⃦⃦
ξUt
⃦⃦2]︂

= E
[︂
∥ξt∥2 −

⃦⃦
ξ⊥t
⃦⃦2]︂

≤ σ2 − E
[︂⃦⃦
ξ⊥t
⃦⃦2]︂

,

and similarly,
E
[︂⃦⃦
ξ⊥t
⃦⃦2]︂ ≤ σ2 − E

[︂⃦⃦
ξUt
⃦⃦2]︂

.

27



Subset-Norm and Subspace-Momentum

D.2. Subspace-Momentum convergence proof

Suppose that f : Rd → R is L-smooth and stochastic gradients ˆ︁∇f(xt) = gt is unbiased, i.e. E [gt] = ∇f(xt), and has
σ-sub-gaussian noise, i.e. E[exp(λ2 ∥gt −∇f(xt)∥2)] ≤ exp(λ2σ2) for all λ s.t. |λ| ≤ 1/σ. First, we will show an error
bound that is a starting point for the high-probability convergence results.

Lemma D.1. If f is L-smooth, then SGD with Subspace-Momentum (Algorithm 3) yields

f(xT+1)− f(x1) ≤ −η
T∑︂
t=1

∥∇t∥2 − η
T∑︂
t=1

⟨∇t, ξt⟩+
(3− β)Lη2

2 (1− β)

T∑︂
t=1

∥gt∥2 .

Remark D.2. Lemma D.1 shows that the optimization error of SGD-SM is quite similar to SGD-M.

Proof. Note that mt ∈ U and rt ∈ U⊥. Starting with smoothness, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= f(xt)− η
⟨︁
∇f(xt),mt + g⊥t

⟩︁
+
η2L

2

⃦⃦
mt + g⊥t

⃦⃦2
= f(xt)− η ⟨∇f(xt),mt⟩ − η

⟨︁
∇f(xt), g⊥t

⟩︁
+
η2L

2

⃦⃦
mt + g⊥t

⃦⃦2
.

We have

f(xt+1)− f(xt) ≤ −η
⟨︁
∇Ut ,mt

⟩︁
− η

⟨︁
∇⊥
t , g

⊥
t

⟩︁
+
η2L

2

⃦⃦
mt + g⊥t

⃦⃦2
= −η

⟨︁
∇Ut ,mt

⟩︁
− η

⟨︁
∇⊥
t , g

⊥
t

⟩︁
+
η2L

2
∥mt∥2 +

η2L

2

⃦⃦
g⊥t
⃦⃦2
. (Pythagorean)

Summing it up, we get

f(xT+1)− f(x1) ≤ −η
T∑︂
t=1

⟨︁
∇Ut ,mt

⟩︁
+
η2L

2

T∑︂
t=1

∥mt∥2⏞ ⏟⏟ ⏞
SGD with momentum error in U

−η
T∑︂
t=1

⟨︁
∇⊥
t , g

⊥
t

⟩︁
+
η2L

2

T∑︂
t=1

⃦⃦
g⊥t
⃦⃦2

⏞ ⏟⏟ ⏞
vanilla SGD error in U⊥

. (7)

We analyze −η
⟨︁
∇Ut ,mt

⟩︁
+ η2L

2 ∥mt∥2 and −η
⟨︁
∇⊥
t , g

⊥
t

⟩︁
+ η2L

2

⃦⃦
g⊥t
⃦⃦2

separately. Intuitively, the error within each
subspace is controlled by their respective algorithm. Investigating the momentum term, we have

−
⟨︁
∇Ut ,mt

⟩︁
= −

⟨︁
∇Ut , βmt−1 + (1− β)gUt

⟩︁
= −β

⟨︁
∇Ut ,mt−1

⟩︁
− (1− β)

⟨︁
∇Ut , gUt

⟩︁
= −β

⟨︁
∇Ut −∇Ut−1,mt−1

⟩︁
− β

⟨︁
∇Ut−1,mt−1

⟩︁
− (1− β)

⟨︁
∇Ut , gUt

⟩︁
.

We examine −
⟨︁
∇Ut −∇Ut−1,mt−1

⟩︁
:

−
⟨︁
∇Ut −∇Ut−1,mt−1

⟩︁
= −⟨∇t −∇t−1,mt−1⟩+

⟨︁
∇⊥
t −∇⊥

t−1,mt−1

⟩︁
= −⟨∇t −∇t−1,mt−1⟩
≤ ∥∇t −∇t−1∥ ∥mt−1∥
≤ L ∥xt − xt−1∥ ∥mt−1∥
= ηL

⃦⃦
mt−1 + g⊥t−1

⃦⃦
∥mt−1∥

≤ ηL
⃦⃦
mt−1 + g⊥t−1

⃦⃦2
.
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Now we have

−
⟨︁
∇Ut ,mt

⟩︁
≤ ηLβ

⃦⃦
mt−1 + g⊥t−1

⃦⃦2 − β ⟨︁∇Ut−1,mt−1

⟩︁
− (1− β)

⟨︁
∇Ut , gUt

⟩︁
≤ ηL

t−1∑︂
i=1

βt−i
⃦⃦
mi + g⊥i

⃦⃦2 − (1− β)
t∑︂
i=1

βt−i
⟨︁
∇Ui , gUi

⟩︁
.

Summing over t, we have

−η
T∑︂
t=1

⟨︁
∇Ut ,mt

⟩︁
≤ η2L

T∑︂
t=1

t−1∑︂
i=1

βt−i
⃦⃦
mi + g⊥i

⃦⃦2 − (1− β)η
T∑︂
t=1

t∑︂
i=1

βt−i
⟨︁
∇Ui , gUi

⟩︁
= Lη2

T∑︂
i=1

T∑︂
t=i

βt−i
⃦⃦
mi + g⊥i

⃦⃦2 − (1− β)η
T∑︂
i=1

T∑︂
t=i

βt−i
⟨︁
∇Ui , gUi

⟩︁
(swap the sum)

≤ Lη2
T∑︂
i=1

⃦⃦
mi + g⊥i

⃦⃦2 T∑︂
t=i

βt − (1− β)η
T∑︂
i=1

⟨︁
∇Ui , gUi

⟩︁ T∑︂
t=i

βt

≤ Lη2

1− β

T∑︂
i=1

⃦⃦
mi + g⊥i

⃦⃦2 − η T∑︂
i=1

⟨︁
∇Ui , gUi

⟩︁
=

Lη2

1− β

T∑︂
i=1

(︂
∥mi∥2 +

⃦⃦
g⊥i
⃦⃦2)︂− η T∑︂

i=1

⟨︁
∇Ui , ξUi

⟩︁
− η

T∑︂
i=1

⃦⃦
∇Ui
⃦⃦2
.

Now, we look at
∑︁T
i=1 ∥mi∥2:

T∑︂
t=1

∥mt∥2 =

T∑︂
t=1

⃦⃦
βmt−1 + (1− β)gUt

⃦⃦2
≤

T∑︂
t=1

β ∥mt−1∥2 + (1− β)
⃦⃦
gUt
⃦⃦2

(convexity of ∥·∥2)

≤
T∑︂
t=1

β ∥mt∥2 + (1− β)
T∑︂
t=1

⃦⃦
gUt
⃦⃦2

=⇒
T∑︂
t=1

∥mt∥2 ≤
T∑︂
t=1

⃦⃦
gUt
⃦⃦2
.

Examining the momentum error terms, we get

− η
T∑︂
t=1

⟨︁
∇Ut ,mt

⟩︁
+
η2L

2

T∑︂
t=1

∥mt∥2

≤
(︃
Lη2

1− β
+
η2L

2

)︃ T∑︂
i=1

∥mi∥2 +
Lη2

1− β

T∑︂
i=1

⃦⃦
g⊥i
⃦⃦2 − η T∑︂

i=1

⟨︁
∇Ui , ξUi

⟩︁
− η

T∑︂
i=1

⃦⃦
∇Ui
⃦⃦2

≤
(︃
(3− β)Lη2

2 (1− β)

)︃ T∑︂
i=1

⃦⃦
gUi
⃦⃦2

+
Lη2

1− β

T∑︂
i=1

⃦⃦
g⊥i
⃦⃦2 − η T∑︂

i=1

⟨︁
∇Ui , ξUi

⟩︁
− η

T∑︂
i=1

⃦⃦
∇Ui
⃦⃦2
. (8)

We consider the SGD error terms in the orthogonal subspace:

−η
⟨︁
∇⊥
t , g

⊥
t

⟩︁
+
η2L

2

⃦⃦
g⊥t
⃦⃦2

= −η
⟨︁
∇⊥
t ,∇⊥

t − g⊥t
⟩︁
− η

⃦⃦
∇⊥
t

⃦⃦2
+
η2L

2

⃦⃦
g⊥t
⃦⃦2

= −η
⟨︁
∇⊥
t , ξ

⊥
t

⟩︁
− η

⃦⃦
∇⊥
t

⃦⃦2
+
η2L

2

⃦⃦
g⊥t
⃦⃦2
. (9)
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Now we are ready to combine (8) and (9). First note the common terms
⃦⃦
g⊥i
⃦⃦2

in both equations combine to a sum similarly
to
⃦⃦
gUt
⃦⃦2

:

Lη2

1− β

T∑︂
t=1

⃦⃦
g⊥t
⃦⃦2

⏞ ⏟⏟ ⏞
momentum

+
η2L

2

T∑︂
t=1

⃦⃦
g⊥t
⃦⃦2

⏞ ⏟⏟ ⏞
SGD

=

(︃
(3− β)Lη2

2 (1− β)

)︃ T∑︂
t=1

⃦⃦
g⊥t
⃦⃦2
.

Combining both terms, we see that the terms are combined from both subspaces (red from (8) and blue from (9)):

−η
T∑︂
t=1

⃦⃦
∇Ut
⃦⃦2 − η T∑︂

t=1

⃦⃦
∇⊥
t

⃦⃦2
= −η

T∑︂
t=1

∥∇t∥2

−η
T∑︂
t=1

⟨︁
∇Ut , ξUt

⟩︁
− η

T∑︂
t=1

⟨︁
∇⊥
t , ξ

⊥
t

⟩︁
= −η

T∑︂
t=1

⟨∇t, ξt⟩

(3− β)Lη2

2 (1− β)

T∑︂
t=1

⃦⃦
gUt
⃦⃦2

+

(︃
Lη2

1− β
+
η2L

2

)︃ T∑︂
t=1

⃦⃦
g⊥t
⃦⃦2

=
(3− β)Lη2

2 (1− β)

T∑︂
t=1

∥gt∥2 .

Plugging everything back into (7), we have

f(xT+1)− f(x1) ≤ −η
T∑︂
t=1

∥∇t∥2 − η
T∑︂
t=1

⟨∇t, ξt⟩+
(3− β)Lη2

2 (1− β)

T∑︂
t=1

∥gt∥2 . (10)

D.2.1. PROOF OF THEOREM 4.1.

Our proof uses the technical tools from (Liu et al., 2023c), although the strategy here has been simplified. We use Lemma
A.1 from (Liu et al., 2023c):

Lemma D.3 (Lemma A.1 from (Liu et al., 2023c)). For any a ≥ 0, 0 ≤ b ≤ 1
2σ and a nonnegative σ-subgaussian random

variable X , we have

E

[︄
1 + b2X2 +

∞∑︂
i=2

1

i!

(︁
aX + b2X2

)︁i]︄ ≤ exp
(︁
3σ2

(︁
a2 + b2

)︁)︁
.

We present some useful tools:

Corollary D.4. Suppose that X is a mean zero random vector in Rd, where ∥X∥ is σ-subgaussian. For 0 ≤ a ≤ 1
4σ2 and

B ∈ Rd then
E
[︂
exp

(︂
a ∥X∥2 + ⟨B,X⟩

)︂]︂
≤ exp

(︂
3σ2(a+ ∥B∥2)

)︂
.

Proof. We have

E
[︂
exp

(︂
a ∥X∥2 + ⟨B,X⟩

)︂]︂
= E

[︄
1 + a2 ∥X∥2 + ⟨B,X⟩+

∞∑︂
k=2

1

k!

(︂
a ∥X∥2 + ⟨B,X⟩

)︂k]︄

= E

[︄
1 + a ∥X∥2 +

∞∑︂
k=2

1

k!

(︂
a ∥X∥2 + ⟨B,X⟩

)︂k]︄

≤ E

[︄
1 + a ∥X∥2 +

∞∑︂
k=2

1

k!

(︂
a ∥X∥2 + ∥B∥ ∥X∥

)︂k]︄
≤ exp

(︂
3σ2(a+ ∥B∥2)

)︂
.
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We can now control martingale via:

Lemma D.5. If we have a sequence of random variable Xt with Ft = σ(X1, X2, . . . , Xt−1) for t = 1, 2, . . . , T . If we can
bound E [exp (Xt) | Ft] ≤ exp(Yt), where Yt is Ft-measurable, then

T∑︂
t=1

Xt ≤
T∑︂
t=1

Yt + log (1/δ)

holds with probability at least 1− δ.

Proof. Define the Zt = Xt − Yt and St =
∑︁T
i=t Zi. Then

E [exp (Zt) | Ft] = E [exp (Xt − Yt) | Ft]
= exp (−Yt)E [exp (Xt) | Ft] (Yt is Ft-measurable)
≤ exp(−Yt) exp(Yt) = exp(0) = 1.

Then we show E [exp (S1)] ≤ 1 via an induction: we have E [exp (ST ) | FT ] = E [exp (ZT ) | FT ] ≤ 1. Suppose that
E [exp (St+1) | Ft+1]

E [exp(St) | Ft] = E [exp(Zt) exp(St+1) | Ft]
= E [exp (Zt)E [exp (St+1) | Ft+1] | Ft]
≤ E [exp(Zt) | Ft] ≤ 1.

Hence, this implies that E [exp(S1)] ≤ 1. By Markov’s inequality, this means that S1 ≤ log( 1δ ) with probability at least
1− δ:

S1 =

T∑︂
t=1

Zt =

T∑︂
t=1

Xt − Yt ≤ log (1/δ)

=⇒
T∑︂
t=1

Xt ≤
T∑︂
t=1

Yt + log (1/δ) .

We can now prove Theorem 4.1:

Proof of Theorem 4.1. Starting from Lemma D.1 and letting α = (3−β)L
2(1−β) and ∆1 := f(x1)− f∗ for simplicity, we have

∆T+1 −∆1

≤− η
T∑︂
i=1

∥∇t∥2 − η
T∑︂
i=1

⟨∇t, ξt⟩+ αη2
T∑︂
t=1

∥gt∥2

=− η
T∑︂
i=1

∥∇t∥2 − η
T∑︂
i=1

⟨∇t, ξt⟩+ αη2
T∑︂
t=1

∥ξt +∇t∥2

=η (αη − 1)

T∑︂
i=1

∥∇t∥2 + η (αη − 1)

T∑︂
i=1

⟨∇t, ξt⟩+ αη2
T∑︂
t=1

∥ξt∥2 .

Rearranging and defining some weight w > 0, we have

w (∆T+1 −∆1) + ηw (1− αη)
T∑︂
i=1

∥∇t∥2 ≤ ηw (αη − 1)

T∑︂
i=1

⟨∇t, ξt⟩+ αwη2
T∑︂
t=1

∥ξt∥2 .
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Let Ft := σ (ξ1, . . . , ξt−1) denote the natural filtration. Now, since E
[︂∑︁T

t=1 ⟨∇t, ξt⟩
]︂
= 0 and ξt is σ-sub-gaussian, we

have that ∇t ∈ Ft and so if 0 ≤ wαη2 ≤ 1
4σ2 , Corollary D.4 implies

E
[︂
exp

(︂
wη (αη − 1) ⟨∇t, ξt⟩+ wαη2 ∥ξt∥2

)︂
| Ft

]︂
≤ exp

(︂
3σ2

(︂
wαη2 + w2η2 (αη − 1)

2 ∥∇t∥2
)︂)︂

,

Then Lemma D.5 implies that with probability at least 1− δ, we have

wη (αη − 1)

T∑︂
t=1

⟨∇t, ξt⟩+ wαη2
T∑︂
t=1

∥ξt∥2 ≤ 3σ2
T∑︂
t=1

(︂
wαη2 + w2η2 (αη − 1)

2 ∥∇t∥2
)︂
+ log (1/δ)

= 3σ2wη2αT + 3σ2w2η2 (αη − 1)
2
T∑︂
t=1

∥∇t∥2 + log (1/δ) .

Then with probability at least 1− δ, we have

w (∆T+1 −∆1) + ηw (1− αη)
T∑︂
i=1

∥∇t∥2 ≤ ηw (αη − 1)

T∑︂
i=1

⟨∇t, ξt⟩+ αwη2
T∑︂
t=1

∥ξt∥2

≤ 3σ2wη2αT + 3σ2w2η2 (αη − 1)
2
T∑︂
t=1

∥∇t∥2 + log (1/δ)

=⇒ ηw (1− αη)
T∑︂
i=1

∥∇t∥2 ≤ w∆1 + 3σ2wη2αT + 3σ2w2η2 (αη − 1)
2
T∑︂
t=1

∥∇t∥2 + log (1/δ) .

Combining the ∥∇t∥2 terms, we get

(︂
ηw (1− αη)− 3σ2w2η2 (αη − 1)

2
)︂ T∑︂
i=1

∥∇t∥2 ≤ w∆1 + 3σ2wη2αT + log (1/δ) . (11)

Setting w = 1
12σ2η , then

ηw (1− αη)− 3σ2w2η2 (αη − 1)
2
= ηw

(︂
1− αη − 3σ2wη (αη − 1)

2
)︂

= ηw

(︃
1− αη − 1

4
(αη − 1)

2

)︃
≥ ηw1

4
.

if 1− αη ≥ 1/2. Furthermore, we have that wαη2 = αη
12σ2 ≤ 1

4σ2 if η ≤ 3
α , as required for Corr D.4. Hence, if η ≤ 1

2α
then both requirements are satisfied. Consider the LHS of 11, we can bound

(︂
ηw (1− αη)− 3σ2w2η2 (αη − 1)

2
)︂ T∑︂
i=1

∥∇t∥2 ≥ ηw
1

4

T∑︂
i=1

∥∇t∥2

Finally, we have

ηw

4

T∑︂
i=1

∥∇t∥2 ≤ w∆1 + 3σ2wη2αT + log (1/δ)

T∑︂
i=1

∥∇t∥2 ≤
4

η
∆1 + 3σ2ηαT + 48σ2 log (1/δ) .
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Setting η = min

{︃
1
2α ;
√︂

∆1

σ2αT

}︃
, we have that with probability at least 1− δ

T∑︂
i=1

∥∇t∥2 ≤
4

η
∆1 + 3σ2ηαT + 48σ2 log (1/δ)

=
4

min

{︃
1
2α ;
√︂

∆1

σ2αT

}︃∆1 + 3σ2 min

{︄
1

2α
;

√︃
∆1

σ2αT

}︄
αT + 48σ2 log (1/δ)

≤ 4

⎛⎝2α+

√︄
σ2αT

∆1

⎞⎠∆1 + 3σ2

√︃
∆1

σ2αT
αT + 48σ2 log (1/δ)

= 8∆1α+ 4σ
√︁
αT∆1 + 3σ

√︁
∆1αT + 48σ2 log (1/δ)

= 8∆1α+ 7σ
√︁
αT∆1 + 48σ2 log (1/δ)

=⇒ 1

T

T∑︂
i=1

∥∇t∥2 ≤
8∆1α

T
+

7σ
√
α∆1√
T

+
48σ2 log (1/δ)

T
.

We are done.

E. Subset-Norm adaptive step size full theorem and proof
We show the full result in Theorem E.1 with all the polylog terms omitted from Theorem 3.1.

Theorem E.1. Suppose that f : Rd → R is L-smooth and lower bounded by f∗. Given unbiased stochastic gradientsˆ︁∇f(xt) with stochastic gradient noise ξt := ˆ︁∇f(xt) − ∇f(xt) being σi-per-coordinate subgaussian for i ∈ [d]. For
partitions of the parameters into disjoint subsets [d] =

⋃︁c−1
i=0 Ψi with Ψi ∩Ψj = ∅, if i ̸= j, the iterates xt given by (3)

satisfies the following inequality with probability at least 1− 6cδ (for failure probability δ > 0):

1

T

T∑︂
t=1

∥∇t∥22 ≤ G(δ) ·

(︄
4
∑︁c−1
i=0 ∥σΨi∥√
T

+
I(δ)

T

)︄
, where G(δ) and I(δ) are polylog terms:

G(δ) :=
∆1

η
+H(δ) +

(︄
lnT/δ ∥σ∥22 + cηL+ 4c3/2σmax

√︃
log

1

δ

)︄
log

(︄
4
√
T
∑︁c−1
i=0 ∥σΨi∥+ I(δ)

b0,min

)︄

I(δ) := ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min
∥σ∥22 +

√︃
log

1

δ

c−1∑︂
i=0

∥σΨi∥+ 8ηLc log
4ηL

b0,min

H(δ) :=

c−1∑︂
i=0

(︂
ln (T/δ) ∥σΨi∥

2
+ 2α

)︂(︄8 ∥σΨi∥
2
log 1

δ

b20,i
+ 2 log

(︃
1 + ∥σΨi∥

2
T + ∥σΨi∥

2
log

1

δ

)︃)︄
.

where ∥σ∥22 =
∑︁d
i=1 σ

2
i , ∥σΨi∥

2
=
∑︁
j∈Ψi

σ2
j , σmax = maxi∈[d] σi, ∆1 = f(x1)− f∗, b0,min = mini∈[d] b0,i > 0.

E.1. Proof of Theorem E.1

For simplicity, in our analysis, we will use ˆ︁∇t,i := ˆ︁∇if(xt) and ∇t,i := ∇if(xt) to denote the i-th coordinate of
the stochastic gradients and gradients at iterate t, respectively. The proof utilizes techniques and follows the strategies
(Liu et al., 2023c), where the main effort is to adapt the techniques for handling subsets from the AdaGrad-Norm and
AdaGrad-Coordinate proofs in (Liu et al., 2023c).

Proof. We write ˆ︁∇t
bt

to denote
(︂ ˆ︁∇t
bt

)︂
k
=

ˆ︁∇kf(xt)
bt,i

for k ∈ Ψi (we will use this notation briefly to show some steps and will

not be crucial in the main analysis). We start with the smoothness of f and ∆t := f(xt)− f∗.
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∆t+1 −∆t ≤ ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= −η

⟨︄
∇t,

ˆ︁∇t
bt

⟩︄
+
η2L

2

⃦⃦⃦⃦
⃦ ˆ︁∇tbt

⃦⃦⃦⃦
⃦
2

(12)

= −η
c−1∑︂
i=0

∑︂
j∈Ψi

∇t,j ˆ︁∇t,j
bt,i

+
η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i

= −η
c−1∑︂
i=0

∑︂
j∈Ψi

∇t,j (ξt,j +∇t,j)
bt,i

+
η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i
(ξt,i = ˆ︁∇t,i −∇t,i)

= −η
c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
bt,i

+
η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i

= −η
c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑︂
i=0

∑︂
j∈Ψi

(︃
1

at,i
− 1

bt,i

)︃
∇t,jξt,j +

η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i
. (13)

Now, we analyze 1
at,i
− 1

bt,i
for i = 0, 1, . . . , c− 1:⃓⃓⃓⃓

1

at,i
− 1

bt,i

⃓⃓⃓⃓
=

⃓⃓⃓⃓
bt,i − at,i
at,ibt,i

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓ b2t,i − a2t,i
at,ibt,i (bt,i + at,i)

⃓⃓⃓⃓
⃓

=

⃓⃓⃓⃓
⃓⃓⃓b2t−1,i +

⃦⃦⃦ ˆ︁∇Ψif(xt)
⃦⃦⃦2
− b2t−1,i − ∥∇Ψif(xt)∥

2

at,ibt,i (bt,i + at,i)

⃓⃓⃓⃓
⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓⃓
⃦⃦⃦ ˆ︁∇Ψif(xt)

⃦⃦⃦2
− ∥∇Ψif(xt)∥

2

at,ibt,i (bt,i + at,i)

⃓⃓⃓⃓
⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓
(︂⃦⃦⃦ ˆ︁∇Ψif(xt)

⃦⃦⃦
− ∥∇Ψif(xt)∥

)︂(︂⃦⃦⃦ˆ︁∇Ψif(xt)
⃦⃦⃦
+ ∥∇Ψif(xt)∥

)︂
at,ibt,i (bt,i + at,i)

⃓⃓⃓⃓
⃓⃓ .

Since bt,i =

√︃
b2t−1,i +

⃦⃦⃦ ˆ︁∇Ψif(xt)
⃦⃦⃦2
≥
⃦⃦⃦ ˆ︁∇Ψif(xt)

⃦⃦⃦
and at,i =

√︂
b2t−1,i + ∥∇Ψif(xt)∥

2 ≥ ∥∇Ψif(xt)∥, we have

⃓⃓⃓⃓
1

at,i
− 1

bt,i

⃓⃓⃓⃓
≤

⃓⃓⃓⃓
⃓⃓
(︂⃦⃦⃦ ˆ︁∇Ψif(xt)

⃦⃦⃦
− ∥∇Ψif(xt)∥

)︂(︂⃦⃦⃦ˆ︁∇Ψif(xt)
⃦⃦⃦
+ ∥∇Ψif(xt)∥

)︂
at,ibt,i

(︂⃦⃦⃦ˆ︁∇Ψif(xt)
⃦⃦⃦
+ ∥∇Ψif(xt)∥

)︂
⃓⃓⃓⃓
⃓⃓

≤

⃓⃓⃓⃓
⃓⃓
⃦⃦⃦ ˆ︁∇Ψif(xt)

⃦⃦⃦
− ∥∇Ψif(xt)∥

at,ibt,i

⃓⃓⃓⃓
⃓⃓

≤

⃦⃦⃦ ˆ︁∇Ψif(xt)−∇Ψif(xt)
⃦⃦⃦

at,ibt,i

=
∥ξt,Ψi∥
at,ibt,i

.
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Hence, we have ⃓⃓⃓⃓
1

at,i
− 1

bt,i

⃓⃓⃓⃓
≤ ∥ξt,Ψi∥

at,ibt,i
.

Then from 13, taking the absolute value of
∑︁c−1
i=0

∑︁
j∈Ψi

(︂
1
at,i
− 1

bt,i

)︂
∇t,jξt,j , we can bound:

∆t+1 −∆t ≤ −η
c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑︂
i=0

∑︂
j∈Ψi

⃓⃓⃓⃓
1

at,i
− 1

bt,i

⃓⃓⃓⃓
|∇t,jξt,j |+

η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i

≤ −η
c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑︂
i=0

∥ξt,Ψi∥
at,ibt,i

∑︂
j∈Ψi

|∇t,jξt,j |+
η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i

(1)

≤ −η
c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑︂
i=0

∥ξt,Ψi∥
at,ibt,i

∥∇t,Ψi∥ ∥ξt,Ψi∥+
η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i

≤ −η
c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑︂
i=0

∥ξt,Ψi∥

(︄
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)︄
+
η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i
,

where (1) is due to
∑︁
j∈Ψi

|∇t,jξt,j | = ⟨|∇t,Ψi | , |ξt,Ψi |⟩ ≤ ∥∇t,Ψi∥ ∥ξt,Ψi∥ and |·| denotes coordinate-wise absolute value
when we apply to vectors. The last inequality is due to 2ab ≤ a2 + b2. Now, we can sum both sides for t = 1, . . . , T to
telescope the LHS:

∆T+1 −∆1 ≤
T∑︂
t=1

(︂
−η

c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑︂
i=0

∥ξt,Ψi∥

(︄
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)︄
+
η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i

)︂
.

Rearranging gives

T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
≤ ∆1 −∆T+1

η
−

T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i⏞ ⏟⏟ ⏞

A

+

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥

(︄
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)︄
⏞ ⏟⏟ ⏞

B

+
ηL

2

T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i⏞ ⏟⏟ ⏞
C

.

On the LHS, we note that

T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

bt,i
=

T∑︂
t=1

c−1∑︂
i=0

∥∇t,Ψi∥
2

bt,i
.
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We now bound each term separately. It’s easiest to bound C:
∑︁T
t=1

∑︁c−1
i=0

∑︁
j∈Ψi

ˆ︁∇2
t,j

b2t,i
:

T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i
=

c−1∑︂
i=0

T∑︂
t=1

∑︂
j∈Ψi

ˆ︁∇2
t,j

b2t,i
=

d∑︂
i=1

T∑︂
t=1

b2t,i − b2t−1,i

b2t,i
≤

d∑︂
i=1

2 log
bT,i
b0,i

.

=

c−1∑︂
i=0

T∑︂
t=1

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

=

c−1∑︂
i=0

T∑︂
t=1

b2t,i − b2t−1,i

b2t,i

=

c−1∑︂
i=0

T∑︂
t=1

1−
b2t−1,i

b2t,i

≤
c−1∑︂
i=0

T∑︂
t=1

log
b2t,i
b2t−1,i

= 2

c−1∑︂
i=0

log

T∏︂
t=1

bt,i
bt−1,i

= 2

c−1∑︂
i=0

log
bT,i
b0,i

.

We now have a useful inequality

T∑︂
t=1

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

≤ 2 log
bT,i
b0,i

, ∀i = 0, . . . , c− 1. (14)

Next, we deal with−
∑︁T
t=1

∑︁c−1
i=0

∑︁
j∈Ψi

∇t,jξt,j
at,i

via a martingale argument. Let Ft := σ (ξ1, . . . , ξt−1) denote the natural
filtration. Note that xt is Ft-measurable. For any w > 0, we have for each i ∈ [c]:

E

⎡⎣exp
⎛⎝−w ∑︂

j∈Ψi

∇t,jξt,j
at,i

− 2w2
∑︂
j∈Ψi

σ2
j∇2

t,j

a2t,i

⎞⎠ | Ft
⎤⎦

= exp

⎛⎝−2w2
∑︂
j∈Ψi

σ2
j∇2

t,j

a2t,i

⎞⎠E

⎡⎣exp
⎛⎝−w ∑︂

j∈Ψi

∇t,jξt,j
at,i

⎞⎠ | Ft
⎤⎦

≤ 1.

Then a simple inductive argument and using Markov’s inequality gives with probability at least 1− δ:

−w
T∑︂
t=1

∑︂
j∈Ψi

∇t,jξt,j
at,i

≤ 2w2
T∑︂
t=1

∑︂
j∈Ψi

σ2
j∇2

t,j

a2t,i
+ log

1

δ
.

By a union bound across all c subsets, we have w.p. at least 1− cδ:

−
T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

≤
T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

wσ2
j∇2

t,j

a2t,i
+
c

w
log

1

δ
. (15)
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Let’s call the event that (15) happens E1. Now, consider
∑︁T
t=1

∑︁c−1
i=0

∑︁
j∈Ψi

∇2
t,j

a2t,i
. We have

∑︂
j∈Ψi

∇2
t,j

a2t,i
=
∥∇t,Ψi∥

2

a2t,i
=

∥∇t,Ψi∥
2

b2t−1,i + ∥∇t,Ψi∥
2

(∗)
≤

2
⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2 + 2 ∥ξt,Ψi∥

2

b2t−1,i + 2
⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2 + 2 ∥ξt,Ψi∥

2

∥∇t,Ψi∥
2

a2t,i
≤ 2

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

+ 2
∥ξt,Ψi∥

2

b2t,i
.

For (∗) we use the fact that x
c+x is an increasing function and ∥∇t,Ψi∥

2
=
⃦⃦⃦ ˆ︁∇t,Ψi + ξt,Ψi

⃦⃦⃦2
≤ 2

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2 + 2 ∥ξt,Ψi∥
2.

Let σmax := maxi∈[d] σi, then under event E1, we have with probability at least 1− cδ:

−
T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

≤
T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

wσ2
j∇2

t,j

a2t,i
+
c

w
log

1

δ

≤ wσ2
max

T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

∇2
t,j

a2t,i
+
c

w
log

1

δ

≤ wσ2
max

T∑︂
t=1

c−1∑︂
i=0

⎛⎜⎝2

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

+ 2
∥ξt,Ψi∥

2

b2t,i

⎞⎟⎠+
c

w
log

1

δ

= σmax

√︃
c log

1

δ⏞ ⏟⏟ ⏞
=:α

T∑︂
t=1

c−1∑︂
i=0

⎛⎜⎝2

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

+ 2
∥ξt,Ψi∥

2

b2t,i

⎞⎟⎠+ σmax

√︃
c log

1

δ
(set w :=

√
c log 1

δ

σmax
)

= 2α

T∑︂
t=1

c−1∑︂
i=0

⎛⎜⎝
⃦⃦⃦ˆ︁∇t,Ψi ⃦⃦⃦2

b2t,i
+
∥ξt,Ψi∥

2

b2t,i

⎞⎟⎠+ α.

where the second to last equality is due to choosing w =

√
c log 1

δ

σmax
and the last equality is letting α := σmax

√︂
c log 1

δ for
readability.

Let MT,i = maxt≤T |ξt,i|. Using our notation, we can define MT,Ψi := maxt≤T ∥ξt,Ψi∥. Under event E1 (and our new
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bound for C), we have that with probability at least 1− cδ:

T∑︂
t=1

c−1∑︂
i=0

∥∇t,Ψi∥
2

bt,i

(C)
≤ ∆1

η
−

T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

+

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥

(︄
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)︄
+ ηL

c−1∑︂
i=0

log
bT,i
b0,i

≤ ∆1

η
−

T∑︂
t=1

c−1∑︂
i=0

∑︂
j∈Ψi

∇t,jξt,j
at,i

(16)

+

T∑︂
t=1

c−1∑︂
i=0

MT,Ψi

(︄
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)︄
+ ηL

c−1∑︂
i=0

log
bT,i
b0,i

(def of MT,Ψi )

(E1)

≤ ∆1

η
+ 2α

T∑︂
t=1

c−1∑︂
i=0

⎛⎜⎜⎜⎝
⃦⃦⃦ˆ︁∇t,Ψi ⃦⃦⃦2

b2t,i⏞ ⏟⏟ ⏞
bound with (C)

+
∥ξt,Ψi∥

2

b2t,i

⎞⎟⎟⎟⎠+ α+

T∑︂
t=1

c−1∑︂
i=0

MT,Ψi

(︄
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)︄
+ ηL

c−1∑︂
i=0

log
bT,i
b0,i

(17)

(C)
≤ ∆1

η
+ 2α

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥
2

b2t,i
+ α+

T∑︂
t=1

c−1∑︂
i=0

MT,Ψi

(︄
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)︄
+ (ηL+ 4α)

c−1∑︂
i=0

log
bT,i
b0,i

(18)

≤ ∆1

η
+ 2α

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥
2

b2t,i
+ α+ (19)

T∑︂
t=1

c−1∑︂
i=0

MT,Ψi

∥ξt,Ψi∥
2

2b2t,i
+

T∑︂
t=1

c−1∑︂
i=0

MT,Ψi

∥∇t,Ψi∥
2

2a2t,i
+ (ηL+ 4α)

c−1∑︂
i=0

log
bT,i
b0,i

. (20)

Let us turn our attention to MT,Ψi := maxt≤T ∥ξt,Ψi∥. Note that

Pr

[︃
max
t∈[T ]

∥ξt,Ψi∥
2 ≥ A

]︃
= Pr

[︄
exp

(︄
maxt∈[T ] ∥ξt,Ψi∥

2

w

)︄
≥ exp

(︃
A

w

)︃]︄
(for w > 0)

≤ exp

(︃
−A
w

)︃
E

[︄
exp

(︄
maxt∈[T ] ∥ξt,Ψi∥

2

w

)︄]︄
(Markov)

= exp

(︃
−A
w

)︃
E

[︄
max
t∈[T ]

exp

(︄
∥ξt,Ψi∥

2

w

)︄]︄

≤ exp

(︃
−A
w

)︃ ∑︂
t∈[T ]

E

[︄
exp

(︄
∥ξt,Ψi∥

2

w

)︄]︄
.
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We have

E

[︄
exp

(︄
∥ξt,Ψi∥

2

w

)︄]︄
= E

[︄
exp

(︄∑︁
j∈Ψi

ξ2t,j

w

)︄]︄

= E

[︄
exp

(︄∑︁
j∈Ψi

ξ2t,j

w

)︄]︄

= E

⎡⎣∏︂
j∈Ψi

exp

(︄
ξ2t,j
w

)︄⎤⎦
=
∏︂
j∈Ψi

E

[︄
exp

(︄
ξ2t,j
w

)︄]︄
. (independence)

Since sub-gaussianity give us

E
[︁
exp

(︁
λ2ξ2t,i

)︁]︁
≤ exp

(︁
λ2σ2

i

)︁
,∀ |λ| ≤ 1

σi
,∀i ∈ [d] ,

we have E
[︂
exp

(︂
ξ2t,j
w

)︂]︂
≤ exp

(︂
σ2
j

w

)︂
if
√︂

1
w ≤

1
σj

. We pick w := ∥σΨi∥
2
=
∑︁
j∈Ψi

σ2
j ≥ σ2

j , ∀j ∈ Ψi . Hence, we have

E

[︄
exp

(︄
∥ξt,Ψi∥

2

∥σΨi∥
2

)︄]︄
≤
∏︂
j∈Ψi

exp

(︄
σ2
j

∥σΨi∥
2

)︄

= exp

(︄
∥σΨi∥

2

∥σΨi∥
2

)︄
= 1. (21)

We have actually shown that ξt,Ψi is a ∥σΨi∥
2-subgaussian random variable in Rk (see Proposition 2.5.2 in (Vershynin,

2018)). This fact will come in handy later. Now, we have

Pr

[︃
max
t∈[T ]

∥ξt,Ψi∥
2 ≥ A

]︃
≤ exp

(︄
− A

∥σΨi∥
2

)︄ ∑︂
t∈[T ]

E

[︄
exp

(︄
∥ξt,Ψi∥

2

∥σΨi∥
2

)︄]︄

= exp

(︄
− A

∥σΨi∥
2

)︄
T.

Setting exp

(︃
− A

∥σΨi∥
2

)︃
T = δ gives A = ∥σΨi∥

2
lnT/δ. Hence, we have with probability at least 1− δ,

MT,Ψi = max
t∈[T ]

∥ξt,Ψi∥
2 ≤ ∥σΨi∥

2
lnT/δ. (22)

Union bounding across all i = 0, 1, . . . , c− 1, we have that with probability at least 1− cδ,

MT,Ψi ≤ ∥σΨi∥
2
lnT/δ, ∀i = 0, 1, . . . , c− 1. (23)

Let us denote the event in (23) by E2. Combining it with event E1 and starting from 19, we have that with probability
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1− cδ:

T∑︂
t=1

c−1∑︂
i=0

∥∇t,Ψi∥
2

bt,i
≤ ∆1

η
+ 2α

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥
2

b2t,i
+ α+

T∑︂
t=1

c−1∑︂
i=0

MT,Ψi

∥ξt,Ψi∥
2

2b2t,i
+

T∑︂
t=1

c−1∑︂
i=0

MT,Ψi

∥∇t,Ψi∥
2

2a2t,i
+ (ηL+ 4α)

c−1∑︂
i=0

log
bT,i
b0,i

≤ ∆1

η
+ 2α

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥
2

b2t,i
+ lnT/δ

T∑︂
t=1

c−1∑︂
i=0

∥σΨi∥
2 ∥ξt,Ψi∥

2

2b2t,i
+ α+

lnT/δ

T∑︂
t=1

c−1∑︂
i=0

∥σΨi∥
2 ∥∇t,Ψi∥

2

2a2t,i
+ (ηL+ 4α)

c−1∑︂
i=0

log
bT,i
b0,i

=
∆1

η
+

c−1∑︂
i=0

(︄
lnT/δ

∥σΨi∥
2

2
+ 2α

)︄
T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
+ α+

lnT/δ

c−1∑︂
i=0

∥σΨi∥
2

2

T∑︂
t=1

∥∇t,Ψi∥
2

a2t,i
+ (ηL+ 4α)

c−1∑︂
i=0

log
bT,i
b0,i

.

Recall that ∥∇t,Ψi∥
2

a2t,i
≤ 2
∥ˆ︁∇t,Ψi∥2

b2t,i
+ 2
∥ξt,Ψi∥

2

b2t,i
, we then have

lnT/δ

c−1∑︂
i=0

∥σΨi∥
2

2

T∑︂
t=1

∥∇t,Ψi∥
2

a2t,i
≤ lnT/δ

c−1∑︂
i=0

∥σΨi∥
2

2

T∑︂
t=1

⎛⎜⎝2

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

+ 2
∥ξt,Ψi∥

2

b2t,i

⎞⎟⎠
= lnT/δ

c−1∑︂
i=0

∥σΨi∥
2
T∑︂
t=1

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

+ lnT/δ

c−1∑︂
i=0

∥σΨi∥
2
T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i

≤ lnT/δ

c−1∑︂
i=0

∥σΨi∥
2
log

bT,i
b0,i

+ lnT/δ

c−1∑︂
i=0

∥σΨi∥
2
T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
. (from 14)

Hence, we have with probability at least 1− 2cδ:

T∑︂
t=1

c−1∑︂
i=0

∥∇t,Ψi∥
2

bt,i
≤ ∆1

η
+

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ 2α

)︂ T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
(24)

+ α+

c−1∑︂
i=0

lnT/δ ∥σΨi∥
2
log

bT,i
b0,i

+
c−1∑︂
i=0

(ηL+ 4α) log
bT,i
b0,i

=
∆1

η
+

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ 2α

)︂ T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
(25)

+ α+

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ ηL+ 4α

)︂
log

bT,i
b0,i

. (26)

Now, we bound
∑︁T
t=1
∥ξt,Ψi∥

2

b2t,i
and log

bT,i
b0,i

. We need to first lower bound
∑︁t
s=1

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2. We proceed by noting that

∥ˆ︁∇t,Ψi∥2 = ∥∇t,Ψi + ξt,Ψi∥2

= ∥∇t,Ψi∥2 + 2⟨ξt,Ψi ,∇t,Ψi⟩+ ∥ξt,Ψi∥2

⇒ ∥∇t,Ψi∥ − ∥ˆ︁∇t,Ψi∥2 + ∥ξt,Ψi∥2 = 2⟨ξt,Ψi ,∇t,Ψi⟩.
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Define for t ∈ {0, 1, · · · , T} and some constant vs to be specified later:

Ut+1 = exp

(︄
t∑︂

s=1

ws

(︂
∥∇s,Ψi∥ − ∥ˆ︁∇s,Ψi∥2 + ∥ξs,Ψi∥2)︂− vs∥∇s,Ψi∥2

)︄
= Ut · exp

(︂
wt

(︂
∥∇t,Ψi∥ − ∥ˆ︁∇t,Ψi∥2 + ∥ξt,Ψi∥2)︂− vt∥∇t,Ψi∥2)︂

= Ut · exp
(︁
wt (2⟨ξt,Ψi ,∇t,Ψi⟩)− vt∥∇t,Ψi∥2

)︁
.

First, note that Ut ∈ Ft. We show that Ut is a supermartingale

E [Ut+1 | Ft] = E
[︁
Ut · exp

(︁
wt (2⟨ξt,Ψi ,∇t,Ψi⟩)− vt∥∇t,Ψi∥2

)︁
| Ft

]︁
= Ut exp

(︁
−vt∥∇t,Ψi∥2

)︁
E [exp (2wt⟨ξt,Ψi ,∇t,Ψi⟩) | Ft]

(∗)
≤ Ut exp

(︁
−vt∥∇t,Ψi∥2

)︁
E
[︂
exp

(︂
4w2

t ∥σΨi∥
2 ∥∇t,Ψi∥2

)︂
| Ft

]︂
= Ut, (vt=4w2

t ∥σΨi∥
2)

where (∗) is due to Lemma 2.2 of (Liu et al., 2023c) and the fact that ξt,Ψi is ∥σΨi∥
2-subgaussian from (21). Hence, by

Ville’s supermartingale inequality, we have

Pr

[︃
max
t∈[T+1]

Ut ≥ δ−1

]︃
≤ δE [U1] = δ.

This implies w.p. ≥ 1− δ, ∀0 ≤ t ≤ T :

t∑︂
s=1

ws

(︂
∥∇s,Ψi∥ − ∥ˆ︁∇s,Ψi∥2 + ∥ξs,Ψi∥2)︂− vs∥∇s,Ψi∥2 ≤ log

1

δ

=⇒
t∑︂

s=1

(︂
ws − 4w2

s ∥σΨi∥
2
)︂
∥∇s,Ψi∥2 +

t∑︂
s=1

ws∥ξs,Ψi∥2 ≤
t∑︂

s=1

ws∥ˆ︁∇s,Ψi∥2 + log
1

δ

⇐⇒
t∑︂

s=1

(︂
1− 4ws ∥σΨi∥

2
)︂
∥∇s,Ψi∥2 +

t∑︂
s=1

∥ξs,Ψi∥2 ≤
t∑︂

s=1

∥ˆ︁∇s,Ψi∥2 + 1

ws
log

1

δ
.

Set ws = 1

4∥σΨi∥
2 to get

t∑︂
s=1

∥ξs,Ψi∥2 ≤
t∑︂

s=1

∥ˆ︁∇s,Ψi∥2 + 4 ∥σΨi∥
2
log

1

δ
, ∀t ≤ T. (27)

We are now ready to bound
∑︁T
t=1
∥ξt,Ψi∥

2

b2t,i
. Starting by applying (27), we have that with probability at least 1− δ

T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
=

T∑︂
t=1

∥ξt,Ψi∥
2

b20,i +
∑︁t
s=1

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
≤

T∑︂
t=1

∥ξt,Ψi∥
2

b20,i +
(︂∑︁t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2
log 1

δ

)︂+
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where (x)
+
= max {x, 0}. Let τ = max

(︂
{0} ∪

{︂
t ∈ N≤T |

∑︁t
s=1 ∥ξs,Ψi∥

2 ≤ 2C
}︂)︂

for some C ≥ 0. We have

T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
=

τ∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
+

T∑︂
t=τ+1

∥ξt,Ψi∥
2

b20,i +
∑︁t
s=1

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
≤ 1

b20,i

τ∑︂
t=1

∥ξt,Ψi∥
2
+

T∑︂
t=τ+1

∥ξt,Ψi∥
2

b20,i +
∑︁t
s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥

2
log 1

δ

≤ 2C

b20,i
+

T∑︂
t=τ+1

∥ξt,Ψi∥
2

b20,i +
∑︁t
s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥

2
log 1

δ

.

Now, since
∑︁t
s=1∥ξs,Ψi∥

2

2 ≥ C for t > τ , we have b20,i +
∑︁t
s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥

2
log 1

δ ≥ b
2
0,i − 4 ∥σΨi∥

2
log 1

δ + C +
1
2

∑︁t
s=1 ∥ξs,Ψi∥2. If b20,i − 4 ∥σΨi∥

2
log 1

δ ≥ 0, then we pick C = 0 and b20,i − 4 ∥σΨi∥
2
log 1

δ +C + 1
2

∑︁t
s=1 ∥ξs,Ψi∥2 ≥

1
2

∑︁t
s=1 ∥ξs,Ψi∥2. If b20,i−4 ∥σΨi∥

2
log 1

δ < 0, we pick C = 4 ∥σΨi∥
2
log 1

δ −b
2
0,i > 0, which gives b20,i−4 ∥σΨi∥

2
log 1

δ +

C + 1
2

∑︁t
s=1 ∥ξs,Ψi∥2 ≥

1
2

∑︁t
s=1 ∥ξs,Ψi∥2. In either case, we have b20,i − 4 ∥σΨi∥

2
log 1

δ + C + 1
2

∑︁t
s=1 ∥ξs,Ψi∥2 ≥

1
2

∑︁t
s=1 ∥ξs,Ψi∥2. Hence, letting C = max

(︂
0, 4 ∥σΨi∥

2
log 1

δ − b
2
0,i

)︂
≤ 4 ∥σΨi∥

2
log 1

δ , we have w.p. at least 1− δ:

T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
≤ 2C

b20,i
+ 2

T∑︂
t=τ+1

∥ξt,Ψi∥
2∑︁t

s=1 ∥ξs,Ψi∥2

≤ 2C

b20,i
+ 2

T∑︂
t=1

∥ξt,Ψi∥
2∑︁t

s=1 ∥ξs,Ψi∥2

≤
8 ∥σΨi∥

2
log 1

δ

b20,i
+ 2

T∑︂
t=1

∥ξt,Ψi∥
2∑︁t

s=1 ∥ξs,Ψi∥2
.

Let Xt = 1 +
∑︁t
s=1 ∥ξs,Ψi∥

2
= Xt−1 + ∥ξt,Ψi∥

2, where X0 = 1. Then,

T∑︂
t=1

∥ξt,Ψi∥
2∑︁t

s=1 ∥ξs,Ψi∥2
=

T∑︂
t=1

Xt −Xt−1

Xt
=

T∑︂
t=1

1− Xt−1

Xt

≤
T∑︂
t=1

log

(︃
Xt

Xt−1

)︃

= log

(︄
T∏︂
t=1

Xt

Xt−1

)︄

= log

(︃
XT

X0

)︃
= log

(︄
1 +

T∑︂
t=1

∥ξs,Ψi∥
2

)︄
.

Hence, with probability at least 1− δ:

T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
≤

8 ∥σΨi∥
2
log 1

δ

b20,i
+ 2 log

(︄
1 +

T∑︂
t=1

∥ξs,Ψi∥
2

)︄
. (28)
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It remains to bound
∑︁T
t=1 ∥ξs,Ψi∥

2. Note that

Pr

[︄
T∑︂
t=1

∥ξs,Ψi∥
2 ≥ u

]︄
= Pr

[︄
exp

(︄
T∑︂
t=1

∥ξs,Ψi∥2

∥σΨi∥
2

)︄
≥ exp

(︄
u

∥σΨi∥
2

)︄]︄

≤
E
[︃
exp

(︃∑︁T
t=1

∥ξs,Ψi∥
2

∥σΨi∥
2

)︃]︃
exp

(︃
u

∥σΨi∥
2

)︃
≤ exp(T )

exp

(︃
u

∥σΨi∥
2

)︃ (ξs,Ψi is ∥σΨi∥
2-subgaussian)

Choosing u = ∥σΨi∥
2
T + ∥σΨi∥

2
log 1

δ gives that with probability at least 1− δ, we have

T∑︂
t=1

∥ξs,Ψi∥
2 ≤ ∥σΨi∥

2
T + ∥σΨi∥

2
log

1

δ
. (29)

Having a high probability bound on the sum of the stochastic error of the subset-norm, we can combine both events from
(28) and (29) to get that with probability at least 1− 2δ:

T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
≤

8 ∥σΨi∥
2
log 1

δ

b20,i
+ 2 log

(︃
1 + ∥σΨi∥

2
T + ∥σΨi∥

2
log

1

δ

)︃
. (30)

Then we can also condition on the event that (30) happens and combine it with the event in (26) to get that with probability
at least 1− 2cδ (assuming c ≥ 2), we have

T∑︂
t=1

c−1∑︂
i=0

∥∇t,Ψi∥
2
2

bt,i
≤ ∆1

η
+

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ 2α

)︂ T∑︂
t=1

∥ξt,Ψi∥
2

b2t,i
(31)

+ α+

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ ηL+ 4α

)︂
log

bT,i
b0,i

(32)

≤ ∆1

η
+

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ 2α

)︂(︄8 ∥σΨi∥
2
log 1

δ

b20,i
+ 2 log

(︃
1 + ∥σΨi∥

2
T + ∥σΨi∥

2
log

1

δ

)︃)︄
⏞ ⏟⏟ ⏞

=:H(δ)

(33)

+ α+

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ ηL+ 4α

)︂
log

bT,i
b0,i

=
∆1

η
+H(δ) + α+

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ ηL+ 4α

)︂
log

bT,i
b0,i

. (34)

First, note that bT,i ≤ ∥bT ∥1 =
∑︁c−1
i=0 bT,i. Letting b0,min := mini b0,i, we then have

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ ηL+ 4α

)︂
log

bT,i
b0,i
≤ log

∥bT ∥1
b0,min

c−1∑︂
i=0

(︂
lnT/δ ∥σΨi∥

2
+ ηL+ 4α

)︂
= log

∥bT ∥1
b0,min

(︂
lnT/δ ∥σ∥22 + cηL+ 4cα

)︂
.
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Now, note the LHS term
∑︁T
t=1

∑︁c−1
i=0

∥∇t,Ψi∥
2

2

bt,i
of (32):

(︄
c−1∑︂
i=0

∥∇t,Ψi∥
2
2

bt,i

)︄(︄
c−1∑︂
i=0

bt,i

)︄
≥

(︄
c−1∑︂
i=0

∥∇t,Ψi∥2

)︄2

≥
c−1∑︂
i=0

∥∇t,Ψi∥
2
2 = ∥∇t∥22

=⇒
∥∇t∥22(︂∑︁c−1
i=0 bt,i

)︂ ≤ c−1∑︂
i=0

∥∇t,Ψi∥
2
2

bt,i
.

Now,
∑︁c−1
i=0 bt,i =

∑︁c−1
i=0 |bt,i| = ∥bt∥1, so with probability 1− 2cδ:

T∑︂
t=1

∥∇t∥22
∥bT ∥1

≤
T∑︂
t=1

∥∇t∥22
∥bt∥1

≤
T∑︂
t=1

c−1∑︂
i=0

∥∇t,Ψi∥
2
2

bt,i

=⇒
T∑︂
t=1

∥∇t∥22 ≤ ∥bT ∥1
T∑︂
t=1

c−1∑︂
i=0

∥∇t,Ψi∥
2
2

bt,i

≤ ∥bT ∥1

(︃
∆1

η
+ cH(δ) +

(︂
lnT/δ ∥σ∥22 + cηL+ 4cα

)︂
log
∥bT ∥1
b0,min

)︃
(35)

≤ ∥bT ∥1

(︃
∆1

η
+ cH(δ) +

(︂
lnT/δ ∥σ∥22 + cηL+ 4cα

)︂
log
∥bT ∥1
b0,min

)︃
. (36)

It remains to bound ∥bT ∥1. We start again from smoothness of f :

∆t+1 −∆t ≤ ⟨∇t, xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= −η

⟨︄
∇t,

ˆ︁∇t
bt

⟩︄
+
η2L

2

⃦⃦⃦⃦
⃦ ˆ︁∇tbt

⃦⃦⃦⃦
⃦
2

= −η

⟨︄ˆ︁∇t − ξt, ˆ︁∇t
bt

⟩︄
+
η2L

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,Ψj

b2t,i

= −η

⟨︄ˆ︁∇t, ˆ︁∇t
bt

⟩︄
+ η

⟨︄
ξt,
ˆ︁∇t
bt

⟩︄
+
η2L

2

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

= −η
c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

bt,i
+ η

c−1∑︂
i=0

∑︂
j∈Ψi

ξt,j ˆ︁∇t,j
bt,i

+
η2L

2

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

= −η
c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
bt,i

+
η2L

2

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

+ η

c−1∑︂
i=0

∑︂
j∈Ψi

ξt,j ˆ︁∇t,j
bt,i

. (37)

Note that

c−1∑︂
i=0

∑︂
j∈Ψi

ξt,j ˆ︁∇t,j
bt,i

≤ 1

2

c−1∑︂
i=0

∑︂
j∈Ψi

ξ2t,j
bt,i

+
1

2

c−1∑︂
i=0

∑︂
j∈Ψi

ˆ︁∇2
t,j

bt,i

=
1

2

c−1∑︂
i=0

∑︂
j∈Ψi

ξ2t,j
bt,i

+
1

2

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
bt,i

.

Plugging back in, we have
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∆t+1 −∆t ≤ −
η

2

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
bt,i

+ η2L

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

+
η

2

c−1∑︂
i=0

∥ξt,Ψi∥
2

bt,i
.

Summing over T and rearranging, we get

T∑︂
t=1

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
bt,i

≤ 2∆1

η
+

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥
2

bt,i
+ 2ηL

T∑︂
t=1

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

=⇒
T∑︂
t=1

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
bt,i

≤ 4∆1

η
+ 2

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥
2

bt,i
+

T∑︂
t=1

c−1∑︂
i=0

(︄
4ηL

b2t,i
− 1

bt,i

)︄ ⃦⃦⃦ˆ︁∇t,Ψi ⃦⃦⃦2 .
We can bound

∑︁T
t=1

∑︁c−1
i=0

(︂
4ηL
b2t,i
− 1

bt,i

)︂ ⃦⃦⃦ˆ︁∇t,Ψi ⃦⃦⃦2 as follows. Consider i ∈ [c]. Let τi = max {t ≤ T | bt,i ≤ 4ηL} so

that t ≥ τi implies bt,i > 4ηL ⇐⇒ 4ηL
b2t,i

< 1
bt,i

:

T∑︂
t=1

(︄
4ηL

b2t,i
− 1

bt,i

)︄ ⃦⃦⃦ˆ︁∇t,Ψi ⃦⃦⃦2 =

τi∑︂
t=1

(︄
4ηL

b2t,i
− 1

bt,i

)︄ ⃦⃦⃦ˆ︁∇t,Ψi ⃦⃦⃦2 + T∑︂
t=τi+1

⎛⎜⎜⎜⎝4ηL

b2t,i
− 1

bt,i⏞ ⏟⏟ ⏞
<0

⎞⎟⎟⎟⎠ ⃦⃦⃦ˆ︁∇t,Ψi ⃦⃦⃦2

≤
τi∑︂
t=1

(︄
4ηL

b2t,i
− 1

bt,i

)︄ ⃦⃦⃦ˆ︁∇t,Ψi ⃦⃦⃦2

≤ 4ηL

τi∑︂
t=1

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
b2t,i

≤ 8ηL log
bτi,i
b0,i
≤ 8ηL log

4ηL

b0,i
.

Hence, we have
T∑︂
t=1

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
bt,i

≤ 4∆1

η
+ 2

T∑︂
t=1

c−1∑︂
i=0

∥ξt,Ψi∥
2

bt,i
+ 8ηL

c−1∑︂
i=0

log
4ηL

b0,i
.

Consider the LHS

T∑︂
t=1

c−1∑︂
i=0

⃦⃦⃦ ˆ︁∇t,Ψi ⃦⃦⃦2
bt,i

=

T∑︂
t=1

c−1∑︂
i=0

b2t,i − b2t−1,i

bt,i
=

T∑︂
t=1

c−1∑︂
i=0

bt,i −
b2t−1,i

bt,i

≥
T∑︂
t=1

c−1∑︂
i=0

bt,i −
b2t−1,i

bt−1,i
=

T∑︂
t=1

c−1∑︂
i=0

bt,i − bt−1,i

=

c−1∑︂
i=0

T∑︂
t=1

bt,i − bt−1,i =

c−1∑︂
i=0

bT,i − b0,i

= ∥bT ∥1 − ∥b0∥1 .

Hence, we have

∥bT ∥1 ≤ ∥b0∥1 +
2∆1

η
+

c−1∑︂
i=0

T∑︂
t=1

∥ξt,Ψi∥
2

bt,i
+ 8ηLc log

4ηL

b0,min
.

It remains to bound
∑︁T
t=1
∥ξt,Ψi∥

2

bt,i
for each i ∈ [c]. Recall from (30), with probability at least 1− δ
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t∑︂
s=1

∥ξt,Ψi∥2 ≤
t∑︂

s=1

∥ˆ︁∇t,Ψi∥2 + 4 ∥σΨi∥
2
log

1

δ
, ∀t ≤ T.

We have with probability at least 1− 2cδ,

T∑︂
t=1

∥ξt,Ψi∥
2

bt,i
=

T∑︂
t=1

∥ξt,Ψi∥
2√︂

b20,i +
∑︁t
s=1 ∥ˆ︁∇s,Ψi∥2

(1)

≤
T∑︂
t=1

ξ2t,i√︃
b20,i +

(︂∑︁t
s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥

2
log 1

δ

)︂+
≤

8 ∥σΨi∥
2
log 1

δ

b0,i
+ 2
√
2

⌜⃓⃓⎷ T∑︂
s=1

∥ξs,Ψi∥2

(2)

≤
8 ∥σΨi∥

2
log 1

δ

b0,i
+ 4

√︃
∥σΨi∥

2
T + ∥σΨi∥

2
log

1

δ
,

where (1) is due to (27) and (2) is due to Lemma (29). Hence, we have that with probability at least 1− 2cδ,

∥bT ∥1 ≤ ∥b0∥1 +
2∆1

η
+

c−1∑︂
i=0

8 ∥σΨi∥
2
log 1

δ

b0,i
+

c−1∑︂
i=0

4

√︃
∥σΨi∥

2
T + ∥σΨi∥

2
log

1

δ
+ 8ηLc log

4ηL

b0,min

≤ ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min

c−1∑︂
i=0

∥σΨi∥
2
+ 4
√
T

c−1∑︂
i=0

∥σΨi∥+
√︃

log
1

δ

c−1∑︂
i=0

∥σΨi∥+ 8ηLc log
4ηL

b0,min

= 4
√
T

c−1∑︂
i=0

∥σΨi∥+ ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min
∥σ∥22 +

√︃
log

1

δ

c−1∑︂
i=0

∥σΨi∥+ 8ηLc log
4ηL

b0,min⏞ ⏟⏟ ⏞
=:I(δ)

.

Hence, we can combine (36) with the bound for ∥bT ∥1 to get that with probability 1− 6cδ:

T∑︂
t=1

∥∇t∥22 ≤ ∥bT ∥1

(︄
∆1

η
+H(δ) +

(︄
lnT/δ ∥σ∥22 + cηL+ 4cσmax

√︃
c log

1

δ

)︄
log
∥bT ∥1
b0,min

)︄

≤

(︄
4
√
T

c−1∑︂
i=0

∥σΨi∥+ I(δ)

)︄
·(︄

∆1

η
+H(δ) +

(︄
lnT/δ ∥σ∥22 + cηL+ 4c3/2σmax

√︃
log

1

δ

)︄
log

(︄
4
√
T
∑︁c−1
i=0 ∥σΨi∥+ I(δ)

b0,min

)︄)︄
.

Dividing both sides by T , we get the theorem that with probability 1− 6cδ:

1

T

T∑︂
t=1

∥∇t∥22 ≤ G(δ) ·

(︄
4
∑︁c−1
i=0 ∥σΨi∥√
T

+
I(δ)

T

)︄
, where G(δ) and I(δ) are polylog terms:

G(δ) :=
∆1

η
+H(δ) +

(︄
lnT/δ ∥σ∥22 + cηL+ 4c3/2σmax

√︃
log

1

δ

)︄
log

(︄
4
√
T
∑︁c−1
i=0 ∥σΨi∥+ I(δ)

b0,min

)︄

I(δ) := ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min
∥σ∥22 +

√︃
log

1

δ

c−1∑︂
i=0

∥σΨi∥+ 8ηLc log
4ηL

b0,min

H(δ) :=

c−1∑︂
i=0

(︂
ln (T/δ) ∥σΨi∥

2
+ 2α

)︂(︄8 ∥σΨi∥
2
log 1

δ

b20,i
+ 2 log

(︃
1 + ∥σΨi∥

2
T + ∥σΨi∥

2
log

1

δ

)︃)︄
.
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