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Abstract. The first main goal of this survey is to showcase the
celebrated Almgren monotonicity formula. Having provided different
examples of its far-reaching consequences, we apply the techniques
developed in [16] and [17] to show how one can prove a parabolic
Almgren monotonicity formula as a high-dimensional limit of elliptic
ones.
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1 Introduction

In this survey, we showcase the celebrated Almgren monotonicity for-
mula, [1], [2]. This groundbreaking result is a cornerstone in the study
of harmonic functions; it also plays a crucial role in studying unique con-
tinuation, and has been used extensively in free boundary problems. It is
usually stated as follows: let u : R® — R be a harmonic function and let
B, denote a ball of radius . Then

r g |Vu|?dx ) )
N(r) = 5= is non-decreasing.
/. op, W(x)?do
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One might let ¥ — 0 to deduce information from the limit. Conversely,
the presence of oscillation implies the existence of larger oscillations at a

larger scale.

Firstly, we will discuss the importance of this formula in the proof
of the regularity of energy minimizers and almost minimizers (and their
free boundaries, in the case of free boundary problems). Secondly, we
will discuss the techniques from [16] and [17], where the authors prove
parabolic results as high-dimensional limits of elliptic ones. We exemplify
the ideas from [16] and [17] by showing how to prove parabolic Almgren

monotonicity formulas, both in the constant and variable coefficient cases.

In Section 2, we discuss the Dirichlet problem for the Laplacian, show-
casing how Almgren’s monotonicity formula can be used to address the
regularity of local minimizers of the Dirichlet energy. An overview of the
classical obstacle problem is given in Section 3.1. In Section 3.2, we move
towards the thin obstacle problem, where an Almgren-type monotonicity
formula is again crucial. We discuss the variable coefficient case in more
detail, addressing both the regularity of solutions, and of the free bound-
ary. In Section 4, we introduce almost minimizers, first in the context of
the Laplacian, as considered by Anzellotti in [3], and in the context of the
Signorini problem. We discuss the most important results of [33] and [34],
which address the regularity of almost minimizers and their free bound-
aries for the Signorini problem for constant and variable coefficients, once

again using an Almgren-type monotonicity formula.

It is worth mentioning that Almgren monotonicity formulas further
appear in discrete settings. The recent paper [49], for example, proves
a discrete analogue of the Almgren monotonicity formula for harmonic

functions on infinite combinatorial graphs G = (V, E).

Finally, in Section 5, we discuss the techniques from [16] and [17], as
mentioned above. In Section 5.1, we address the constant coefficient case
(see [16]). In Section 5.2, we provide a sketch of the proof for the variable

coefficient case from [17].
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2 Dirichlet problem for the Laplacian

As a first motivation for the importance of Almgren-type monotonicity
formulas, we give a heuristic idea of how to prove that solutions of the
Dirichlet problem for the Laplacian are regular, see for example [50] for
another friendly introduction to these ideas. Here Q C R” is a bounded
domain. Given ¢ € C?(Q2)NC(Q), the Dirichlet problem consists of finding
u € C%(Q) N C(Q) such that

Au =0 in €,
uw=1 on J.

(2.1)

One can show (for example, using the divergence theorem), that if the
Dirichlet problem has a solution, it must be unique. This leads us to focus
on the question of existence. One way to address the question of existence
of a solution u € C%(2) N C(Q) is to notice that u solves (2.1) if and only

if 4 minimizes the energy functional
D(v,Q) = / \Vo|2dx
Q

in the space K (Q) = {v € C2(Q)NC(Q) : v|oq = ¥}

To prove that this energy attains a minimum, one enlarges the class
of candidate functions to the Sobolev space Wé’Z(Q) = {v € W2(Q)
v—1) € VVO1 2(9)} and equips it with an appropriate topology. This ensures
that the space is compact and D(-,2) is lower semi-continuous. Under
these conditions, if v, € WJP(Q) is such that

D(v,,Q?) - inf D(w,Q),
wew,*(Q)

then up to a subsequence, v, — v € Wuljz(Q) By the lower semi-continuity
of D(7 Q)7

v= min D(w,).
weWw,;%(Q)

The last step is then to show v € C?(Q) N C(Q), that is, one needs
to prove the regularity of minimizers. Instead of doing only that, one can

work with a more general class of functions:
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Definition 2.1. We say that u is a local minimizer of D in  if for all
B e,
D(u, B) < D(u+wv,B), Yve W,?B).

Notice that minimizers of D(-,2) in WJ}’Q(Q) are also local minimizers,
therefore it suffices to prove the regularity of local minimizers. One way

of doing that is through the use of Almgren’s monotonicity formula (see
[1]):
Theorem 2.2 (Almgren, 1979). If Au = 0 in By, then the frequency of

, given b
e r[5 |Vu|?dz
r— N(u,r)= —fr iy
OBy

is non-decreasing in (0,1). Furthermore, N(r) = k if and only if u is

homogeneous of degree Kk, i.e., u(rz) = r®u(x).

This theorem can be proved in multiple plays, one of which relies solely
on the PDE, integration by parts, and the Cauchy-Schwarz inequality.

Going back to the regularity of local minimizers of the Dirichlet en-
ergy, assume for simplicity that 0 € Q and Q = By. Since 0 < N(r,u)
and N(r,u) is monotonic non-decreasing in (0, 1), one concludes that the

following limit exists:
N(0+) := r1_1>%1+ N(r,u).

To use Almgren’s monotonicity, we define the following rescalings of u:

ur(z) = T%Z"f +)) . The idea behind these rescalings is to “zoom in” close to 0,

and analyze what one obtains in the limit as » — 0. One first proves that
ur — ug, where ug # 0 is a global minimizer. Then, using the definition

of the frequency function, one shows that for fixed s, as r — 0+,
N(s,ug) < N(s,u,) = N(sr,u) = N(0+).

Almgren’s monotonicity formula implies ug is N(0+) homogeneous. The
classification of N(0+)-homogenous global minimizers shows they are har-

monic polynomials of degree N(0+) € N.
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Heuristically, N(0+) is the order of the first non-zero term in the an-
alytic expansion of v at 0. The blow-up limit ug is the first non-zero term
in that expansion. One then repeats the process with u — ug, and so on,

to obtain the analytic expansion of u.

3 Obstacle problems

3.1 The classical obstacle problem

Going back to the ideas from Section 2, notice that finding a solution
in WJ)’Q(Q) to

u=1
Au = f inQ, ™
U =1 on 0f)

is equivalent to minimizing the energy func-
tional J(v) = [, (Vo[> +2fv) among all v €
WiZ(Q) See Figure 3.1.

For example, in R, minimizing J(v) = fol (v')?
among all v with v(0) = —1, v(4) = 3 leads to
u(x) =z — 1, see Figure 3.2. Notice that Au =0
in (0,4). Modifying this problem by adding the condition that one must

Figure 3.1

stay above an obstacle, in this case, say the function ¢(z) = 2 — (z — 2)?,

one minimizes
1
= [ Wy
0

among all v with v(0) = —1, v(4) = 3 and v > 2 — (z — 2)%. We get, for

certain a, b, that

r—1,f0<zr<a
wx)=qx—1,ifb<z<4

2—(z—2)?% ifa<z<b
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Figure 3.2: u(z) =z —1 Figure 3.3: The obstacle problem

Notice that Au = 0 in (0,a) and in (b,4), which is the region where
u > 2 — (z —2)%. See Figure 3.3.

This leads us to the classical
obstacle problem, an example of a
free boundary problem.

One version of the classical ob-

stacle problem consists of minimiz-

ing

Figure 3.4 J(v) :/ (|Vv|2—|—2fv)
U

among all v with v = v in OU, and
v > 0 on the bounded domain U, see Figure 3.4. In this example, the
obstacle is the function constant equal to O.

This is a free boundary problem. Solving it means not only finding
the function u, but also the free boundary I' = 9{u > 0} N U. The first
fundamental question in the study of the classical obstacle problem is the
regularity of u, which is C’llo’i(U).

The second fundamental question is how smooth the free boundary
is. In 1977, Kinderlherer and Nirenberg proved in [35] that, if the free

boundary is a C! hypersurface close to a free boundary point, then it is
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C®° in a neighborhood of that point. The groundbreaking work of Caffarelli
[10] proved that the free boundary is C' near flat points. This completely
settled the regularity of the so-called regular points of the free boundary.
More generally, when the obstacle is ¢ and u > ¢ on U, one can show that
at every free boundary point g € I' = 9{u > ¢} N U, for r small,
0<cr?< sup (u—y) < Cr?.
By (wo0)

The free boundary points can be divided into two groups: the set of regular
points, and the set of singular points. The so-called regular set is an open
subset of the free boundary, and it is C'°°. The singular points are those at
which the contact set {u = ¢} has density zero, and those points (assuming
they exist), are locally contained in a (n—1)-dimensional C* manifold. The
interested reader is pointed to [8,11,24,25,41,53], among others, and also

to the beautiful survey [46] on obstacle problems.

3.2 The thin obstacle problem

Let us now consider a situation in which the obstacle is defined only
on a portion of the boundary of the domain. For simplicity of notation,
assume the initial domain is the upper unit half ball U = Bf“ ={zeR":
|z| < 1}.

Let M = B} = By N {xz, = 0} C 0U, which
represents a co-dimension one manifold, part of uw=v
the boundary of our domain. Let ¢ : M — R be >
the obstacle, and 1 : OU — R be our boundary

data. We want to minimize
/ \Vul|?dz, (3.1)
U

over the convex set

M = B] uZTw

Figure 3.5

K={ueW"U) | u=1 ondU\ M,u> ¢ on M}.

See Figure 3.5. If one starts with a co-dimension one manifold which

is not flat, but smooth, one can locally flatten it. This process changes
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the operator: instead of working with the Laplacian, one needs to consider
variable coefficient, divergent form operators. To account for this, we
minimize
i A(x)Vv, Vo),

Igél]ICl/Bl< (x)Vov, Vv)
over K = {v € W'3(By) | v = ¢ on Sy = dBy,v > ¢ on Bj}, where
A(z) = [a;j(x)] is a matrix such that A(0) = I, A(x) is symmetric, it is uni-
formly elliptic (that is, there exist A\, A > 0 such that A|£|? < (A(z)¢, &) <
A|€]? for all z,&), and it has Lipschitz coefficients.

Definition 3.1. We call
Ap(u) ={z € By | u(z) = ¢(z)}
the coincidence set, and
I'y(u) = Ogn-1Ay(u)
the free boundary.

We will assume that the obstacle ¢ € C11(B). Similarly to what was
done in the case of the Dirichlet energy, one analyzes which equations a

minimizer solves. It can be shown that
Lu = div(AVu) = 0 in B U B;.

Moreover, u > ¢ in Bf. Finally, letting v+ denote the outer unit normals
to Bf" and By,

(AVu,vy) + (AVu,v_) >0 in B,
(u—)((AVu,vy) + (AVu,v_)) =0  in Bj.

The thin obstacle problem, also known as the Signorini problem, was first
formulated in 1959 by Signorini in [47], where he studied the equilibrium of
an elastic body resting on a rigid surface M. Afterward, Fichera proved in

[23] the existence of a unique variational solution to the problem. See also
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[35]. The Signorini problem has numerous applications: it models the flow
of a saline concentration through a semipermeable membrane, when the
flows occurs in a preferred direction, [19]. In mathematical finance, it arises
when the random variation of an underlying asset changes discontinuously,
[15,48]. For a beautiful introduction to obstacle-type problems, we refer
the reader to [43].

In terms of regularity, Caffarelli proved in 1979 (see [9]) that when M
is a hyperplane (say {z, = 0}, as before), ¢ is C** for some 0 < o < 3,
and a;; € Cl the solution is C’1 *(BE UM). Arkhipova and Uraltseva

[4,5] obtained the same conclusion assuming a;; € I/Vlicp and ¢ € VVif , for

oc’

some p > n. This includes, in particular, the case described in this survey,
where a;; € VVI}DC C’l(lcl

Notice that even when A(z) = I, M is ﬂat and ¢ = 0 the best one can
hope for in terms of optimal regularity is Cl '3 (BjE UM). One has in fact
the following global solution to the Signorini problem with M = {z,, = 0},
and p = 0:

(@) = Rz + iln|)?/2 € G, : (Bf UM).

The interested reader is directed to [43], which discusses the global solution
to the Signorini problem, and much more. In 1978, Richardson, in his
Ph.D. dissertation [45|, proved optimal regularity when A(z) = I and n =
2. His proof used complex analysis methods and could not be generalized
to higher dimensions. In the ground-breaking paper [6], Athanasopoulos
and Caffarelli proved optimal regularity when A(x) = I, M is flat and

= 0 for n > 3. Subsequently, in [7], Athanasopoulos, Caffarelli and
Salsa introduced a powerful new approach to the optimal regularity. Still
under the assumption that ¢ = 0, they relied on an Almgren monotonicity
formula to obtain, among other results, a new proof of the results in [6].
This new approach was further considered in [12], where Caffarelli, Salsa
and Silvestre used an Almgren-type monotonicity formula to prove the
optimal regularity of the solution in the Signorini problem for fractional
powers of the Laplacian. In [32], Guillen extended the optimal C1/2

regularity to the case of variable coefficient operators, assuming A € C''Y
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for some v > 0. In 2014, the optimal regularity result was generalized
by Garofalo and Smit Vega Garcia, see [31]| to the case when A € C’loo’i,
for arbitrary n, assuming ¢ € C'! and the manifold M is flat. The
key ingredient in this proof was, once again, an appropriately modified
Almgren monotonicity formula. More precisely, when ¢ = 0, the theorem

from [31] states that if 0 € I'(u), there exists C' > 0 such that

N(r) = ecrrfBT<AVu,Vu)
. Js, wp

is monotone non-decreasing, where u(z) = (A(x)z,z)/|z|>. In particular,

lir(r)1+ N(r) = N(0+) exists. A generalization of this theorem was also
r—

proved in [31] for the case ¢ # 0.

To address the regularity of the free boundary, one lets zg € I'(u). The
first step is to shift this free boundary point to the origin, denoting the
corresponding frequency function by N,,. The number k(zg) = Ny, (0+)
is called the frequency at xg. Then, k(xg) is used to classify free boundary

points:
T(u) = U.Tk(u), where Ty(u) = {zg €T | r(20) = &}.

Since k(zg) gives information on the geometry of the free bound-
ary close to xg, the first (and difficult) question to consider is: what
are the possible homogeneities? When n = 2, one can prove that k =
%, 2, 3, %, 4,...,m, 2m— %, 2m, ..., see [43], for example. In [31], Garo-
falo and Smit Vega Garcia showed that when A € C’loo’i, then N(04) = 3
or N(0+) > 2. The fact that N,,(04+) > 3/2 is the crucial ingredient in
proving optimal (Cﬁj’cl/ 2) regularity of u. Focardi and Spadaro proved in
[26] that when n > 3, the possible homogeneities match the case n = 2,
up to a set of Hausdorff dimension (n — 3).

In 2008, Athanasopoulos, Caffarelli and Salsa and proved that when
A(z) = I, T5)5(u) (the so-called regular set) is locally a C'*-regular
(n — 2)-dimensional surface, assuming M is flat and ¢ € C*!. The key

ideas are to differentiate the equation in tangential directions, establish
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the nonnegativity of this directional derivative in a cone of directions, and
use a boundary Harnack principle to prove the regularity of the regular
set. These ideas, however, are not well-suited for variable coefficients. In
2016, Garofalo, Petrosyan and Smit Vega Garcia [30], considered the case
A(z) e ¢!

loc?

and proved that T'y5(u) is locally a Ch®regular (n — 2)-
dimensional surface, assuming M is flat and ¢ € C1'. The key ingredi-
ents of this proof were a Weiss monotonicity formula and an epiperimetric
inequality, which are profoundly connected to Almgren’s monotonicity for-
mula.

Unrelated to Almgren monotonicity formula, in the constant-coefficient
case, Koch, Petrosyan and Shi considered in [36] the higher regularity of the
regular set for the thin obstacle problem for the Laplacian (when A = I),
establishing its real analyticity by using a hodograph-type transformation
and subelliptic estimates. In [18], De Silva and Savin proved the real ana-
lyticity of the regular set using a higher-order boundary Harnack principle
in slit domains. Concerning the variable-coefficient case, in [37], Koch,
Riiland and Shi used Carleman estimates to prove optimal regularity, and
also the regularity of the regular set, assuming A(z) € WP p > 2n, M
to be flat and p € WP, for some p > 2n.

Besides the set I' /5, the regular set, one is also interested in under-
standing the remaining points of the free boundary. A subset of those is

made of the so-called singular points:
Definition 3.2. ¥(u) = UY_ 'y (u) is called the singular set.

The singular set is, actually, the collection of all points xzy € T'(u)
for which the coincidence set has vanishing (n — 1)-dimensional Hausdorff

density at xg, that is,

 H"Y(A(u) N Bl(x
z0 € X(u) < lim %i_g(;?(%)() 0))

where A(u) = {u(2’,0) = ¢(2/,0)}. In 2009, Garofalo and Petrosyan [28|

proved a stratification of the singular set when A(x) = I. More precisely,

:()7

they proved that Y(u) is contained in a countable union of C' manifolds
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of dimensions d = 0,...,n — 2. This result was generalized in 2018 by
Garofalo, Petrosyan and Smit Vega Garcia [29]. Assuming A(z) € C%!
and ¢ = 0, X(u) is contained in a countable union of C' manifolds of
dimensions d = 0,...,n — 2. The key ingredients in this proof were Weiss
and Monneau monotonicity formulas. The interested reader is also pointed
to [21], [22], [20], and references therein.

4 Almost minimizers

In this section, we discuss another application
of Almgren-type monotonicity formulas, this time for
almost-minimizers. In [3], Anzellotti introduced the no-

tion of almost minimizers for energy functionals.

Definition 4.1. We say that u is an almost w-minimizer
of [, |Vul?* if u € W,o2(U) and for all B,(zp) € U and
for all v € Wy (B,(x0))

/’ rvm2§<1+awm>/’ Vo2
BT(IO) BT(Io)

where w, the so-called gauge function, satisfies w(r)  and w(0+) = 0.

Figure 4.1

See Figure 4.1.

To discuss almost minimizers for the thin obstacle

problem, we assume U = By, ¢ = 0, M = {z, = 0},

and w(r) < Mr®, for some 0 < a < 1. See Figure 4.2 i
Definition 4.2. U is an almost minimizer for the Sig- /
norini problem if U € VVS)’CQ(Bl), U >0on MnN By, and v=yu

for all B, (xo) € By
Figure 4.2

/' |VU2§u+wv»/“ vV,
Br ($O)

Br (l'O)

for all V € Wllj’2(BT(xo)) such that V"> 0 on M N B,(xg).
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To generalize this definition for the variable coefficient case, let us
assume A(z) = (az(x)) € M™™ is symmetric, it is uniformly elliptic,
that is, there exist A\, A > 0 such that A|¢|? < (A(z)&,€) < Al¢]? for all

z,&, and the coefficients a;; are a-Holder continuous.

Definition 4.3. U is an almost minimizer for the A-Signorini problem
it U € WI})’CQ(Bl), U > 0 on MnN By, and for every ellipsoid E,(z¢) =
Al/Q(J?())(BT) + xg9 € By,

/ (AVU,VU) < (1 + w(r)) / (AVV,VV)
Er(z0)

Er(z0)

for all V. € WYH2(E,(z0)) such that V' > 0on M N E,.(x) and V =
U on OF,(xg).

As in the minimizing case, one is interested in the regularity of al-
most minimizers, and also the regularity of the free boundary: T'(u) =
Opn-1{u(-,0) > 0}.

The A-Signorini almost-minimization problem presents

several challenges. In particular, defining the natural Br
transformation Ty, (z) = A~Y%(xz)(z — z0) (so that h
E,(x0) = T,,'(Br)), and calling IT = R"~! x {0}, one ob- ﬁ
tains that II;, = T, (II). In general, II,, is tilted, which W
introduces technical difficulties in the proof of the regu-

larity of the free boundary. To overcome these obstacles,
Figure 4.3

one works with a new orthonormal basis {e]°,...,er°

of R™ for which, if Oy, (e;) = €;°, then O, ' (Il;,) = II.
Define Ty, = O} 0 Ty, and g, = U o T;OI.

Definition 4.4. If U is an almost minimizer of the A-Signorini problem
in By, xp € B}, and Eg(z¢) C By, then u,, = UOT;O1 satisfies the almost
Signorini property at 0 in Bg, that is, u,, > 0 in II N B and for all
0O<r<Randallve Wﬁzi (By) with v > 0 on IIN B, one has (see Figure
4.3)

/BT IVl < (1 +w(r))/BT Vol2.
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Besides the particular challenges of the Signorini problem, whenever
one works with almost minimizers, one is faced with the challenge that
they do not satisfy a PDE. Furthermore, one does not have an explicit free
boundary condition. In general, one can only rely on comparisons with
competitors. In the case of almost minimizers of the A-Signorini problem,
one employs Signorini replacements. That is, for zy € Bj, replace ug, in
B, (xg) with h, where

Ah =0 in BF(z)

h >0 on B.(zo)

(Vh,vy) + (Vh,v_) >0, h({(Vh,vy) + (Vh,v_)) =0 on B (zo)
h = ug, on 0B, (xp).

The use of Signorini replacements allows one to address the regularity of
almost minimizers. In [33], Jeon and Petrosyan considered the case where
A = I and U is symmetric. Under these conditions, the authors proved
that U € C'llo’f(Bli U Bj), for 8 = S(a,n) € (0,1). As in the original
Signorini problem from Section 3.2, an Almgren monotonicity formula is
crucial to prove this result. Subsequently, this result was generalized in
[34] by Jeon, Petrosyan and Smit Vega Garcia, when the authors proved
that U € C’llo’f(Bli U BY), for B = B(a,n) € (0,1) assuming A € C%°,
without any symmetry assumption on U.

Similarly to the Signorini minimization problem, one defines the free
boundary for almost minimizers as I'(u) = Ogn-1{u(-,0) > 0}. Once
again, the regular set can be defined in terms of an Almgren-type mono-
tonicity formula, which also holds in the setting of almost minimizers:
[3/9(u) = {zo € T'(u) | K(wo) = 3/2}. In [33], Jeon and Petrosyan
proved that I's j5(u) is locally an (n — 2)-dimensional C'7-graph, for some
v =(a,n) > 0, assuming A = I and that U is symmetric. This result was
generalized in [34]. There, the authors assumed A € C%* and that U is
quasisymmetric, which is the appropriate symmetry notion when dealing

with variable coefficients. Under these conditions, it was proved in [34]
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that T'3/5(u) is locally an (n — 2)-dimensional C'7-graph, for some v > 0.

The notion of singular free boundary points can also be considered
for almost minimizers, defining the singular set as X(u) = US°_;Top (u).
Notice that, once again, this definition relies on an Almgren frequency
functional. In [33], Jeon-Petrosyan assumed A = I and U is symmetric,
and proved that ¥(u) is contained in a countable union of C' manifolds
of dimensions d = 0,...,n — 2. This stratification result was generalized
in [34] for the variable coefficient setting, assuming A € C%% and U is

quasisymmetric.

5 Parabolic Almgren

As seen in the previous sections, Almgren-type monotonicity formulas
play a key role in the study of harmonic functions, of the regularity of
solutions and the free boundary for the classical and thin obstacle prob-
lems, and also for almost minimizers. The same happens for a multitude
of other free boundary problems.

Usually, proving such formulas for parabolic problems is much harder
than for elliptic ones. In this section we describe how to prove parabolic
Almgren monotonicity formulas as high-dimensional limits of families of
elliptic Almgren-type monotonicity formulas, as done in [16] and [17]. This
exemplifies how the technique of [17] can be used to prove other variable-
coefficient parabolic results from a family of results in the elliptic setting.

We first describe the work of Davey [16] in Section 5.1, where the author
proved an Almgren monotonicity formula for solutions of Au + dyu = 0
by analyzing the behavior of solutions to non-homogeneous equations of
the form Av = h on the elliptic side. In Section 5.2, we describe the
work of [17], where the authors proved Almgren monotonicity formulas
for solutions to div(AVu) 4+ dyu = 0 on the parabolic side by studying
solutions to non-homogeneous equations of the form div(kVv) = k¢ on
the elliptic side. Here, A has a certain structure, v and s are defined in

terms of u and A, and ¢ depends on u and A. One can also rewrite the
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elliptic equation as x~'div(kVv) = ¢, which means the associated operator
is a special type of Witten Laplacian, or weighted Laplacian (see 2.4 in
[32], and also [32], [27], [14], [39], [13], [41], [38], and [40]). That means
the techniques presented from [17] allow one to obtain results for variable-
coefficient parabolic operators from those for the Witten Laplacian.

The ideas of [17], described in Section 5.2, generalize the work [16]
(see Section 5.1), where the author developed the framework to prove
constant-coefficient parabolic theorems from appropriate elliptic counter-
parts. These ideas go back to Perelman [42], who considered parabolic
theory as a high-dimensional limit of elliptic theory. This scheme was also
discussed in the blog of Tao [52], and in course notes of Sverak [51].

The main idea is to use classical probabilistic formulas which go back

to Wiener [54]. For each n € N, we construct a mapping of the form

Fyn:R”" 5 RYx Ry

5.1
y e (z,t) o)

that takes elements  in (high-dimensional) space R?*" to elements (z,t)
in space-time R x R;. Given a function v = u(z,t) defined on a space-
time domain (a subset of R? x Ry), we use Fy,, to define a function
vy, = vn(y) on the space R¥*™ by setting vy, (y) = u(Fy,(y)). If u is a solu-
tion to a backward parabolic equation, then each v, is a solution to some
non-homogeneous elliptic equation. As n becomes large, the function v,
behaves more and more like a solution to a homogeneous elliptic equation.
As such, the transformation Fy,, becomes more useful to our purposes as
n — 00, thereby illuminating why the notion of a high-dimensional limit
is pertinent here. From another perspective, when we use Fy,, to push-
forward measures on spheres and balls in R*™, we produce measures in

space-time that are weighted by approximations to generalized Gaussians.

5.1 Constant-coefficient setting

The inherent motivation for the definition of the functions Fy , : R&x"

R? x Ry from (5.1) is a random walk. Consider d particles moving ran-
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domly in one space dimension, and assume they all start at the origin.

Denote with 1, ..., x4 their coordinates. We assume that if each x; makes
n random steps ;. 1,¥:2,- - -, Yin, then
d
ly|> = Z[yzl +...+ yin] = 2dt.
i=1

The new position of each particle after n steps is ; = yi1 + ... + Yin-
The functions Fy, : R&*™ — RY x Rxq given by Fy,(y) = (z,t) serve as
bridges between high-dimensional elliptic settings and the parabolic realm.
Given u : R? x (0,7) — R, we define v(y) = u(Fy,(y)), so

2
A'U = n(Au + ut) + g(x7 t) ’ v(xzt)ut'

Intuitively, this means that Fy, transforms the Laplacian in R4 to a
perturbation of the heat operator in R? x R>p. One of the main results of

[16] is the following parabolic version of Almgren’s monotonicity formula:

Theorem 5.1 (Theorem 4 from [16], originally proved with different tech-
niques in [44]). Let u : R® x (0,7) — R be such that Au+ u; = 0 in
R? x (0,T). Define

b fpa [ Vu(z, 1) PGz, t)dx
Nt u) = f]i;d (2, )2G (x, D)z

Then N (t,u) is monotonically non-decreasing in t.

In [16], the author proved Theorem 5.1 through the use of the following

family of Almgren-type formulas for non-homogeneous elliptic equations:

Lemma 5.2 (See Corolary 1 from [16]). Let v: RY — R with Av = h in

RYN, where h is bounded and measurable. Define

Then
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To prove Theorem 5.1 in [16], Davey considered u a solution of Au +
ur =0 in RY x (0,T) and defined v,,(y) = u(F, 4(y)). Then
2 2
Avy, = n(Au+ uy) + a(x,t) Vigput = g(x,t) Vyue = J(z,t).
Defining h,, such that h,(y) = J(Fg.(y)), one concludes that Av,, =

hy. One can show that

lim L(V2dt,v,) = 2N(t,u).

n—o0

Applying Lemma 5.2 to the functions v, with radius v/2dt, one obtains a
family of inequalities. Using several equalities which relate the elliptic and
parabolic universes, one passes both sides of the family of inequalities to

the limit as n — 00, and concludes that

d
lim — L(v/2dt,vy) > 0.

n—oo dt

With a little bit more technical work, one concludes that N(¢,«) is mono-
tonic non-decreasing in ¢, as desired.
5.2 Variable-coefficient setting

In this section we describe how the authors of [17] were able to gener-

alize the results of [16] to the variable coefficient setting. We let

d
Y= (yl,hyl,?a” Yin, -5 Yd15Yd,25 - "7yd,n) eR n

denote the variables that play the role of the “random steps" in the random

walk. For some t > 0, assume that y satisfies
d n
2dt =3 > iy
i=1 j=1

The step size is not fixed; instead, we assume that y is uniformly dis-
tributed over the sphere of radius v2dt. Define

Zi:yi,1+yi,2+---+yi,n forizl,...,d (52)
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so that z = (z1,...,24) € R%. We define fan : R™*™ — R? so that

= fd,n(y)-

Now let g : R — R? be an invertible function with inverse h : R* — RY.
Let z = g(z) € R? so that

xi=gi(z) fori=1,...,d (5.3)
and then since z = h(x) we have
zi = hi(z) fori=1,...,d.

The Jacobian of g = (g1,...,94) is a d X d invertible matrix function
whose inverse matrix is the Jacobian of h = (hy,...,hq). Let G and H

denote the Jacobian matrices of g and h, respectively. That is,

991 9g1 g1 Ohy Oy Ohy
0g2 092 092 ohg  Onhg ong
aQ | 0= Ozg """ Ozq H | Oz Oxo """ Oxq 4
(z)=|"" , S H(z)= |7 , S (B9
994 994 994 Ohg  Ohg Ohg
0z1 Ozg """ 0zq Ox1 Oxrg """ Oxg

Let v(z) = detG(z) and n(z) = det H(x). Define , : R™" — R to

satisfy
1 1

1(2) = = :
n(@)  n(g(fan(y)))
Definition 5.3 (k-weighted Sobolev space). For Br C RY, we say that a

function v : Bg — R belongs to LP(Bg, k(y) dy), the space of k-weighted

p-integrable functions, if
| rwlrdy < .
Br

Moreover, if both v and Vv € L?(Bg, k(y) dy), then we say that v belongs
to the k-weighted Sobolev space and write v € W12(Bg, k(y) dy).

The following Lemma follows from simple computations:
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Lemma 5.4. [See Lemma 2.2 from [17]] Givenu : R4 x (0, T) — R, define
Un t B ggm C R¥&>"™ 5 R to satisfy

'Un(y) = U(Fd,n(y))

Define B = B(z) to be a d x d matriz function with entries

gk Oge
0z 0z

bkz,ﬁ— 29k ° Vzgﬁ Z

That is, B = GGT. We then set A(x) = B(h(z)) = B(z) so that A =
H-Y(HYHYT. Then

ovy, B 89 @yz,]
(‘)ym N <Vx 782’Z> + ot d
Y- Vyvn = (Vau,G(2)z) + 275(;—1: (A(2)Vou, H(z)Th(z)) + Qt%
2 T 20u Ou
’Vyvn‘ —TL}G( vl’u‘ +d8t <vxu)G( ) >+t8t
= n(A@) Vo, V) + 200 (Ao, H ) () + 150 |
= {A(@)Vou, Vau) + -5 x)Vyu, H(z)" h(z p
Moreover, with ky, as in (5.5),
iy (n (4)Vy00) _ u] 2, Bu g
e n | div(AV,u) + 50| + [<Avx S HTh)
Ou (-G, O
ot 2 o2l

where the expression on the right depends on x and t.

When u is a solution to a variable-coeflicient backwards heat equation,

we obtain the following consequence:

Corollary 5.5. [See Corollary 2.8 from [17]] If u : R x Ry — R is a
solution to divy(AVzu) + 0w = 0 and we define vy, : R¥™™ R to satisfy

un(y) = u(Fan(y)),
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then
divy (kn(y)Vyon) = kn(y)ln(y),
where
_ 2 ou T 10u . Ou
0, = 5 <Av$57[{ h) + iatr(H(VzG(h),h)) — tdivy (AVI(‘%)} )

The non-homogeneous version of Almgren’s monotonicity formula proved

in [17] is the following:

Proposition 5.6. For some R > 0, let B € RY. Assume that for
k: Br — Ry it holds that Vlogk -y € L™(Bg). Let v € WY2(Bg, kdy)
be a weak solution to div(kVv) = kl in Bpr, where { is integrable with
respect to both kv and kKVv -y on each B,, for r € (0,R). For every
r € (0, R), assuming that each v|gp, is non-trivial, define

H(r) = H(riv,5) = / k(y)]v(y) 2o ()

0B

D) = Dlrivw) = [ (w)|Voly) Py

rD(r;v, k)

L(r) = L(r;v,k) = Hiron)

Set L(r) = r2YL(r), where T > ||V logx - Yllpeo(Br)- Then for all v €
(0, R), it holds that

P(r) > 202 (fBr mﬁvdy)(faBr kvVou-ydo(y)) B (fBT kLN -y dy)
B (Jop, Klv|? do(y))? (Jop, Klv|? do(y))

Notice that if v is a solution to the homogeneous equation div(kVv) = 0

in Bg, i.e. £ =0, then E(T) is non-decreasing in r. Moreover, if kK = 1,
one recovers the non-homogenous elliptic result from [16, Corollary 1],
which is the non-homogeneous version of Poon’s result, [44]. In particular,
one recovers the expected monotonicity formula for solutions to elliptic
equations.

Now we describe how to use Proposition 5.6 to establish its parabolic
counterpart. Before stating the result, we discuss the kinds of solutions

that we work with.
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Definition 5.7 (Moderate h-growth at infinity). Let u: R% x (0,7) — R
be a continuous function with locally integrable weak first order deriva-
tives. With h: R? — R? as before and A = H~Y(H )T, define

H(t) = H(t;u,h) = /1Rd lu(z,t)|* exp <_\h(4xt)]2> dx

D(t) = D(t;u, h) :/

R4

)2
(A(z)Vu(z,t), Vu(zx,t)) exp <—’h()’> dx

4t
T(t) = T(t;u,h) = /R e ep ('hfj)?) .

We say that such a function u has moderate h-growth at infinity if H, D,
and 7 belong to L([0,T], t_gdt).

z,t)

Let v : R? x (0,7) — R have moderate h-growth at infinity. For
every t € (0,7, assume first that u is sufficiently regular to define the
functionals

I(t) = T(t;u, h) = /

2
fu(, £)||{AVu, HTh) + 2t dyu| exp <_lh<x>l> i
R4

4t

T 2
7= 3w = [ 17 0lute0lesp (LG d

2
K0 =Kt 0) = [ 1t 0lavu, 879 + 2e0ulexp (<200 ) as
Rd
(5.6)
where

_ . o 1 ou T ou 92u

J(x,t) = J(x,t;u,h) = 7 {2<AV8t,H h) + Etr(H(VZG(h),h» + 2,58752}
(5.7)

and all derivatives are interpreted in the weak sense. Then we say that

such a function u belongs to the function class 2A(R? x (0,T), h) if u has
moderate h-growth at infinity (so is consequently continuous), and for
every to € (0,T), there exists € € (0,¢) so that

Ie Loo[to — E,tQ]
and there exists p > 1 so that

T € LP([0,to],t"2dt), K € LP([0,to], ¢t~ 2 dt).
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Theorem 5.8. Assume that tr(H(V,G(h),h)) € L>®(RY), where h, H,
and G are described by (5.3), (5.2), and (5.4). Define A= H Y (H-HT :
R? — R4 and let u € A(R? x (0,T),h) be a non-trivial solution to
div(AVu) + Ou = 0 in RY x (0,T). For everyt € (0,T), define

|h(z)|2
4t

H(t) = H(t;u,h) = /]Rd lu(z, t)2e” dx

D(t) =D(t;u,h) = / (A(a:)Vu(a:,t),Vu(a:,t)>e_‘h<ft>‘2 dr
R4

L() = L(t:u, ) = m

Set L(t) = tTL(t), where T > ||tr(H(V.G(h), h)||oo(ray- Then L(t) is

monotonically non-decreasing in t.

Sketch of the proof: The main idea of the proof of Theorem 5.8 from
[17] is to use Proposition 5.6, the Almgren-type monotonicity formula for
solutions of elliptic equations of the form div(B,Vv,) = h,. More pre-

cisely, given n € N with n > 2, let v, : B}, — R satisfy

vn(y) = u(Fan(y))-

An application of Corollary 5.5 shows that

@) div(kn(y)Vu,) = J(z,t),

where J is defined in (5.7) and does not depend on n. For every n, define
ly : B} — R so that

ln(y) = J(Fan(y))
and then

div(k,Vu,) = Enly.

First, defining Ly (t) = 3L(V/2dt; vn, ky,), [17] shows that

lim L,(t) = L(t;u, h). (5.8)

n—oo
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Then, the authors in [17] apply Proposition 5.6 to each v,, on any ball of
radius v2dt for t < T, obtaining

) Yot gt g a2 Vs
iLn(t)z—m [/O (%) K(s)ds+ai‘;f£2)/o (%) j(s)ds]

=: F,(t)

where Z, J, and K are defined in (5.6) and

o)y
2dnt

Hn(t) = Hu(t;u, h) == /

R4

fua, (1 - X (b)) d.

To show that £ is monotone non-decreasing, it suffices to show that
given any tg € (0,71, there exists § € (0,%) so that F, converges uniformly
to 0 on [tp—0, to]. Indeed, since %zn(t) > ﬁn(t), then for any t € [to—9, to],
it holds that

Tnlto) — Ln(t) > /t " B (s)ds.

By definition and (5.8), Ly(t) = tYL,(t) converges pointwise to L(t) =
tYL(t;u, h), from which it follows that

~ to
L(tg) — L(t) = lim [Ly(to) — Ln(t)] > lim F,(s)ds.
Assuming the local uniform convergence of F}, to 0 on [tg — 6, to] D [t to),
we see that .
0

~ to ~
lim Fo(s)ds = / lim F,(s)ds =0
t

n—oo t n—oo

and we conclude that L(tg) — £(t) > 0, as desired. The local uniform

convergence is proven in [17], concluding the proof.
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