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Abstract: Demonstrations are an effective alternative to task specification for

learning agents in settings where designing a reward function is difficult. However,

demonstrating expert behavior in the action space of the agent becomes unwieldy

when robots have complex, unintuitive morphologies. We consider the practical

setting where an agent has a dataset of prior interactions with the environment and

is provided with observation-only expert demonstrations. Typical learning from

observations approaches have required either learning an inverse dynamics model

or a discriminator as intermediate steps of training. Errors in these intermediate

one-step models compound during downstream policy learning or deployment. We

overcome these limitations by directly learning a multi-step utility function that

quantifies how each action impacts the agent’s divergence from the expert’s vis-

itation distribution. Using the principle of duality, we derive DILO (Dual Imitation

Learning from Observations), an algorithm that can leverage arbitrary suboptimal

data to learn imitating policies without requiring expert actions. DILO reduces the

learning from observations problem to that of simply learning an actor and a critic,

bearing similar complexity to vanilla offline RL. This allows DILO to gracefully

scale to high dimensional observations, and demonstrate improved performance

across the board. Project page (code and videos): hari-sikchi.github.io/dilo/

Keywords: Learning from Observations, Imitation Learning

1 Introduction

Imitation Learning [1] promises to leverage a few expert demonstrations to train performant agents.

This setting is also motivated by literature in behavioral and cognitive sciences [2, 3] that studies how

humans learn by imitation, for example when mimicking other humans or watching tutorial videos.

While learning from a small number of examples is often the motivation, many imitation learning

methods [4, 5, 6, 7, 8] typically assume the impractical setting where the learning agent is allowed

to interact with the environment as often as needed. We posit that the main reason humans can

imitate efficiently is due to their knowledge priors from previous interactions with the environment;

humans are able to distill skills from prior interactions to solve a desired task. Examples of expert

behavior are commonly available through the ever-increasing curated, multi-robot or cross-embodied,

datasets and even through tutorial videos. However, leveraging these expert datasets efficiently

presents two challenges: (a) The expert data often comes in the form of observation trajectories

lacking action information (e.g. tutorial videos in the observation space of agent, cross-embodiment

demonstrations, etc.) (b) The learning agent should be able to leverage its collected dataset of

environment interactions to mimic expert behavior. This collected dataset may not contain expert

transitions and are referred to as suboptimal datasets or datasets of arbitrary quality. These challenges

serve as our key motivation to bring imitation learning closer to these practical settings. We consider
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Figure 1: DILO Method Overview: Classical offline LfO methods require learning a Discriminator/IDM prior
to the RL/BC step suffering from compounding errors during training/deployment respectively. DILO directly
learns multi-step utility V ˚ps, s1q of transitioning to next state in minimizing cumulative divergence with an
expert avoiding errors arising due to using learned intermediate models for subsequent optimization.

the setup of offline imitation learning from observations, where the agent has access to an offline

dataset of its own action-labeled transitions of arbitrary quality and is provided with potentially few

task-relevant expert demonstrations in the form of observation trajectories.

Learning from Observations (LfO) has been widely studied [9, 10, 11, 12] in the online setting,

where the agent is allowed to interact with the environment. A common denominator across LfO

methods is the use of learned one-step models to compensate for missing expert actions. However,

in the offline setting learning accurate one-step models with limited data is challenging and can

result in compounding errors during downstream policy learning. These models have either taken the

form of a discriminator to predict single-step expert rewards or Inverse Dynamics Models (IDM) to

predict expert actions. Methods that learn a discriminator to distinguish the states or state-next states

between expert and the suboptimal policy data seek to match visitation distributions of expert and

the agent [8, 11, 13, 4, 14]. The learned discriminator serves as a pseudo-reward for the next step

of policy optimization. In the offline setting, with limited data, the discriminator is susceptible to

overfitting and any errors will compound during RL when treating the discriminator as an expert

reward function [15]. A negative side-effect of using discriminator-based distribution matching in

LfO is also its reliance on minimizing a proxy upper bound rather than the true objective [11, 13].

The other popular family of algorithms for LfO involves learning an IDM [16, 17], where the agent

uses the offline data to predict actions from consecutive states and uses it to annotate the expert

trajectories with actions. The policy is then extracted via behavior cloning on inferred expert actions.

Aside from the well-known compounding error issue with behavior cloning (the errors in learned

IDM only serve to exacerbate the issue), this approach discards the wealth of recovery behaviors that

could be learned from offline datasets to better imitate the expert. Thus, the key question is: Can

we derive an efficient, lightweight yet principled off-policy algorithm for learning from observations

that (a) learns from offline datasets of arbitrary quality, (b) bypasses the learning of intermediate

one-step models, and (c) does not resort to minimizing loose upper bounds?

In this work, we frame Imitation Learning from Observations as a modified distribution matching

objective between joint state-next state visitations of the agent and expert that enables leveraging

off-policy interactions. The distribution matching objective can be written as a convex program

with linear constraints. Using the principle of duality, we propose Dual Imitation Learning from

Observations or DILO, which converts the distribution matching objective to its dual form, exploiting

the insight that the next state leaks information about missing actions. DILO no longer requires

knowing expert actions in the agent’s action space and instead requires sampling multiple consecutive

states in the environment. An overview of our method can be found in Figure 1. DILO presents three

key benefits over prior work: (1) DILO is completely off-policy and optimizes for exact distribution

matching objective without resorting to minimizing upper bounds (2) DILO learns a multi-step utility

function quantifying the effect of going to a particular next-state by minimizing long term divergence

with the expert’s visitation distribution, avoiding the compounding errors persistent in methods that

learn intermediate one-step models. (3) DILO solves a single-player objective, making the learning

stable and more performant. Our experimental evaluation on a suite of MuJoCo [18] environments
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with offline datasets from D4RL [19] and Robomimic [20] shows that DILO achieves improved

performance consistently over the evaluation suite. We demonstrate that DILO scales to image

observations seamlessly without extensive hyperparameter tuning. Finally, DILO shows improved

real robot performance compared to prior methods, which are observed to be more sensitive to the

quality of the suboptimal dataset.

2 Related Work

Learning from Observations: Imitation Learning from Observations (LfO) considers the setting

where the expert trajectories are available in the form of observations but missing action labels. This

setting is more practical as performant algorithms developed for LfO can unlock learning from a

plethora of video datasets and develop ways to transfer skills across embodiments. Unfortunately,

learning from observations alone has been shown to be provably more difficult compared to the

setting where expert actions are available [21]. As a result, current methods in LfO restrict themselves

to small observation spaces and involve complicated learning algorithms that first train a model

using offline interaction data to either predict expert actions [22, 11, 23] or learn a state-only reward

function [11, 13] in the form of a discriminator. This learned model is used for subsequent Behavior

Cloning, as in BCO [16], or for RL [13, 11]. As a result, prior methods suffer from compounding

errors either during training or deployment. The issue of compounding errors in the offline setting

with BC approaches or RL with a learned reward function has been investigated theoretically and

empirically in prior works [24, 25, 15]. These errors can be fixed with repeated online interaction but

can lead to substantially poor performance in the offline setting.

Duality in RL and IL: The duality perspective in reinforcement learning has been explored in

the early works of [26, 27] and has gained recent popularity in the form of Dual RL [28, 29]

and DICE [30, 31, 32, 33, 34, 35] methods. Dual approaches formulate RL as a convex program

under linear constraints and leverage the Lagrangian or the Fenchel Rockefeller duality to obtain an

unconstrained and principled objective for RL. The appeal of the dual perspective stems from the

ability of dual approaches to learn from arbitrary off-policy data without being sensitive to distribution

shift or losing sample efficiency as traditional off-policy methods [36, 37]. This behavior is attributed

to the fact that dual approaches compute the on-policy policy gradient using off-policy data in contrast

to traditional off-policy methods, which perform Bellman backups uniformly over state space. Duality

has been previously leveraged in imitation learning from observations [35, 13, 11] by first creating

an upper bound to the distribution matching objective of imitation learning such that it resembles a

(return maximization) RL objective and then solving it using dual RL algorithms.

3 Preliminaries

We consider a learning agent in a Markov Decision Process (MDP) [38, 39] which is defined as

a tuple: M “ pS,A, p, R, γ, d0q where S and A denote the state and action spaces respectively,

p denotes the transition function with pps1|s, aq indicating the probability of transitioning from s

to s1 taking action a; R denotes the reward function and γ P p0, 1q specifies the discount factor.

The reinforcement learning objective is to obtain a policy π : S Ñ ∆pAq that maximizes expected

return: Eπ

“ř8
t“0

γtrpst, atq
‰
, where we use Eπ to denote the expectation under the distribution

induced by at „ πp¨|stq, st`1 „ pp¨|st, atq and ∆pAq denotes a probability simplex supported

over A. f -divergences define a measure of distance between two probability distributions given by

Df pP }Qq “ Ex„Q

”
fpP pxq

Qpxq q
ı

where f is a convex function.

Visitation distributions and Dual RL: The visitation distribution in RL is defined as the

discounted probability of visiting a particular state-action under policy π, i.e dπps, aq “
p1 ´ γqπpa|sq

ř8
t“0

γtP pst “ s|πq and uniquely characterizes the policy π that achieves the visita-

tion distribution as follows: πpa|sq “ dπps,aqř
a d

πps,aq . Our proposed objective is motivated by the recently

proposed Dual-V class of Dual RL [28] methods that formulates regularized RL (with conservatism
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parameter α, and offline visitation distribution dO) as a convex program with state-only constraints:

max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř
aPA dps, aq “ p1 ´ γqd0psq ` γ

ř
ps1,a1qPSˆA

dps1, a1qpps|s1, a1q, @s P S.
(1)

The above objective is constrained and difficult to optimize, but the Lagrangian dual of the above

objective presents an unconstrained optimization that results in a performant Dual-RL algorithm.

min
V

p1 ´ γqEs„d0rV psqs ` αEps,aq„dO

«
f˚
p

˜«
rps, aq ` γ

ÿ

s1

pps1|s, aqV ps1q ´ V psq

ff
{α

¸ff
,

(2)

where f˚
p pyq “ maxxPRxx ¨ yy ´ fpxq s.t x ě 0. Our proposed method builds upon and extend this

formulation to an action-free LfO setting.

Imitation Learning from Observations: We consider the LfO setting where the expert provides state-

only trajectories: DE “ trs00, s
0
1, ...s

0

hs, ...rsn0 , s
n
1 , ...s

n
hsu. Our work focuses on the offline setting

where in addition to the expert observation-trajectories, we have access to an offline interaction data

that consists of potentially suboptimal reward-free ts, a, s1u transitions coming from the learning

agent’s prior interaction with the environments. We denote the offline dataset by dO consisting

of {state, action, next-state} tuples and ρps, a, s1q as the corresponding visitation distribution of

the offline dataset. Distribution matching techniques aim to match the state visitation distribution

of the agent to that of expert. Although we use s as a placeholder for states, the method directly

extends to fully-observable MDP’s where we perform visitation distribution matching in the common

observation space of expert and agent.

4 Dual Imitation Learning from Observations

Classical offline LfO approaches that rely on learning a discriminator and using it as a psuedoreward

for downstream RL are susceptible to discriminator errors compounding over timesteps during value

bootstrapping in RL [40, 21, 41, 15]. The discriminator is likely to overfit with limited data especially

when expert observations are limited or high dimensional. Methods that learn IDM and use behavior

cloning (BC) only perform policy learning on expert states and suffer compounding errors during

deployment as a result of ignoring the recovery behaviors that can be extracted from offline, even

suboptimal datasets [24, 25]. The key idea of the work is to propose an objective that directly learns a

utility function quantifying how state transitions impact the agent’s long-term divergence from the ex-

pert’s visitation distribution. We derive our method below by first framing LfO as a specific visitation

distribution matching problem and then leveraging duality to propose an action-free objective.

4.1 LfO as ts, s1u Joint Visitation Distribution Matching

To derive our method, we first note a key observation, also leveraged by some prior works [10], that

the next-state encodes the information about missing expert actions as the next-state is a stochastic

function of the current state and action. We instantiate this insight in the form of a distribution

matching objective. We define ts, s1u joint visitation distributions denoted by d̃πps, s1, a1q “ p1 ´
γqπpa1|s1q

ř
s0„d0,at„πpstq γ

tppst`1 “ s1, st “ s|πq. Intuitively, it extends the definition of state-

action visitation distribution by denoting the discounted probability of reaching the {state, next-state}
pair under policy π and subsequently taking an action a1. Under this instantiation, the LfO problem

reduces to finding a solution of:

min
π

Df pd̃πps, s1, a1q}d̃Eps, s1, a1qq, (3)

as at convergence, d̃πps, s1, a1q “ d̃Eps, s1, a1q holds, which implies d̃πps, s1q “ d̃Eps, s1q and also

d̃πpsq “ d̃Epsq by marginalizing distributions. Unfortunately, the above objective (a) requires

computing an on-policy visitation distribution of current policy (d̃π) (b) provides no mechanism

to incorporate offline interaction data (dO), and (c) requires knowing expert actions in the action

space of the agent (a1).
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4.2 DILO: Leveraging Action-free Offline Interactions for Imitating Expert Observations

We now show how framing imitation (Eq. 3) as a constrained optimization objective w.r.t visitation

distributions allows us to derive an action-free objective. First, in order to leverage offline interaction

data ρ, we consider a surrogate convex mixture distribution matching objective with linear constraints:

max
d̃ě0

´Df pMixβpd̃, ρq}Mixβpd̃E , ρqq

s.t
ř
a2 d̃ps1, s2, a2q “ p1 ´ γqd̃0ps1, s2q ` γ

ř
s,a1PSˆA

d̃ps, s1, a1qpps2|s1, a1q, @s1, s2 P S ˆ S.
(4)

The constraints above represent the Bellman flow conditions any valid joint visitation distribution

needs to satisfy. The mixture distribution matching objective preserves the fixed point of optimization

d̃πps, s1, a1q “ d̃Eps, s1, a1q irrespective of mixing parameter β, thus serving as a principled objective

for LfO. Mixture distribution matching has been shown to be a theoretically and practically effective

way [28, 42] of leveraging off-policy data. Prior works [28, 42] dealing with state-action visitation

in the context of imitation learning consider an overconstrained objective resulting in a complex

min-max optimization. Our work departs by choosing constraints that are necessary and sufficient

while giving us a dual objective that is action-free as well as a simpler single-player optimization.

The constrained objective is convex with linear constraints. An application of Lagrangian duality to

the primal objective results in the following unconstrained dual objective we refer to as DILO:

DILO: min
V

βp1 ´ γqEd̃0

“
V ps, s1q

‰
` Es,s1„Mixβpd̃E ,ρq

“
f˚
p pγEs2„pp¨|s1,a1q

“
V ps1, s2q

‰
´ V ps, s1qq

‰

´ p1 ´ βqEs,s1„ρ

“
γEs2„pp¨|s1,a1q

“
V ps1, s2q

‰
´ V ps, s1q

‰
,

(5)

where V is the Lagrange dual variable defined as V : S ˆ S Ñ R and f˚
p is a variant of conjugate

f˚ defined as f˚
p pxq “ maxp0, f 1´1

pxqqpxq ´ fpmaxp0, f 1´1
pxqqq. We derive DILO objective as

Theorem 6.1 in Appendix 6.1 where we also see that strong duality holds and the dual objective

can recover the same optimal policy with the added benefit of being action-free. Moreover, we

show that the solution to the dual objective in Equation 5, V ˚ps, s1q represents the discounted

utility of transitioning to a state s from s1 under the optimal imitating policy that minimizes the

f -divergence with the expert visitation [43] (Appendix 6.1.2). Intuitively, this holds as the primal

objective in Eq 4 can be rewritten as the reward maximization problem E
Mixβpd̃,ρqrrps, s1, a1qs with

rps, s1, a1q “ ´
Mixβpd̃,ρq

Mixβpd̃E ,ρq
fp

Mixβpd̃,ρq

Mixβpd̃E ,ρq
q. This reward function can be thought of as penalizing the

policy every time it takes an action leading to a different next state-action than the expert’s implied

policy in agent’s action space.

An empirical estimator for the DILO objective in Eq. 5 only requires sampling s, s1, s2 under a

mixture offline dataset and expert dataset and no longer requires knowing any of the actions that

induced those transitions. This establishes DILO as a principled action-free alternative to optimizing

the occupancy matching objective for offline settings.

4.3 Policy Extraction and Practical Algorithm

To instantiate our algorithm, we use the Pearson Chi-square divergence
`
fpxq “ px´ 1q2

˘
which

has been found to lead to stable DICE and Dual-RL algorithms in the past [7]. With the Pearson chi-

square divergence, f˚
p takes the form f˚

p pxq “ x ˚
`
max

`
x
2

` 1
˘
, 0

˘
´

``
max

`
x
2

` 1
˘
, 0

˘
´ 1

˘2
.

We outline the intuition of the resulting objective after substituting Pearson chi-square divergence in

Appendix 6.1.4.

At convergence, the DILO objective does not directly give us the optimal policy π˚ but rather provides

us with a utility function V ˚ps, s1q that quantifies the utility of transitioning to state s1 from s in

visitation distribution matching. To recover the policy, we use value-weighted regression on the

offline interaction dataset, which has been shown [44, 45, 46] to provably maximize the V function

(thus taking action to minimize divergence with expert’s visitation) while subject to distribution

constraint of offline dataset:

Lpψq “ ´Es,a,s1„ρ

”
eτV

˚ps,s1q log πψpa|sq
ı
. (6)
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Choice of d̃0ps, s1q: Any distribution over state and next-state is implicitly dependent on

the policy that induces the next-state. The initial distribution in Eq. 5 forms the dis-

tribution over states from which the learned policy will acquire effective imitation be-

havior to mimic the expert. In our work, we set d̃0ps, s1q to be the uniform distri-

bution over replay buffer ts, s1u pairs, ensuring that the learned policy is robust enough

to imitate from any starting transition observed from all the transitions available to us.

Algorithm 1: DILO

1: Init Vϕ, πψ
2: Params: temperature τ , mixture ratio β
3: Let D “ pρ “ tps, a, s1qu be an offline

dataset and D
E “ ts, s1u be expert

demonstrations dataset.
4: for t “ 1..T iterations do
5: Train Vϕ via Orthogonal gradient

update on Eq. 5
6: Update πψ by minimizing Eq. 6
7: end for

Practical optimization difficulty of dual objectives:

Prior works in reinforcement learning that have lever-

aged a dual objective based on Bellman-flow constraints

suffer from learning instabilities under gradient descent.

Intuitively, in our case, learning instability arises as the

gradients from V ps, s1q and V ps1, s2q can conflict if the

network learns similar feature representations for nearby

states due to feature co-adaptation [47]. Prior works [28]

have resorted to using semi-gradient approaches but do

not converge provably to the optimal solution [29]. To

sidestep this issue, we leverage the orthogonal gradient

update proposed by ODICE [29] for the offline RL setting that fixes the conflicting gradient by

combining the projection of the gradient of V ps1, s2q on V ps, s1q and the orthogonal component in

a principled manner. We refer to the ODICE work for detailed exposition. Our complete practical

algorithm can be found in Algorithm 1.

5 Experiments

In our experiments, first, we aim to understand where the prior LfO methods based on IDM or a

discriminator fail and how the performance of DILO compares to baselines under a diverse set of

datasets. Our experiments with proprioceptive observations consider an extensive set of 24 datasets.

The environments span locomotion and manipulation tasks, containing complex tasks such as 24-DoF

dextrous manipulation. Second, we examine if the simplicity of DILO objective indeed enables it to

scale directly to mimic expert image observation trajectories. Finally, we test our method on a set of

real-robot manipulation tasks where we consider learning from a few expert observations generated

by human teleoperation as well as cross-embodied demos demonstrated by humans as videos.

5.1 Offline Imitation from Observation Benchmarking

We use offline imitation benchmark task from [28, 13] where the datasets are sourced from D4RL [19,

18]. For locomotion tasks, the benchmark uses an offline interaction dataset consisting of 1-million

transitions from random or medium datasets mixed with 200 expert trajectories (or 30 expert trajectory

in the few-expert setting). For manipulation environments, the suboptimal datasets comprise of 30

expert trajectories mixed with human or cloned datasets from D4RL. The expert demonstrates 1

observation trajectory for all tasks. DILO uses a single set of hyperparameters across all environments.

Hyperparameters and additional experimental details can be found in Appendix 6.2.1.

Baselines: We compare DILO against offline imitation from observations (LfO) methods such

as ORIL [48], SMODICE [13] as well as offline imitation from action-labelled demonstration

(LfD) methods like BC [49], IQ-Learn [50] and ReCOIL [28]. We choose these imitation learning

methods as they represent the frontier of the LfO and LfD setting, outperforming methods like

ValueDICE [42] and DemoDICE [34] as shown in prior works. Intuitively, the imitation from

action-labeled demonstrations represents the upper bound of performance as they have additional

information on expert actions even though sometimes we observe LfO algorithms to surpass them in

performance. ORIL and SMODICE first learn a discriminator and, subsequently run downstream RL

treating the discriminator as the expert pseudo-reward.

Table 1 shows the cumulative return of different algorithms under the ground truth expert reward

function that is unavailable to the learning agent during training. DILO demonstrates improved

performance across a wide range of datasets. Particularly in the setting of few-expert observations

or high dimensional observations like dextrous manipulation, the performance of methods relying
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through the wide variety of possible paddle ˆ puck positions and velocities. While baselines can

struggle with compounding errors in one or both of these settings DILO’s ability to side-step learning

one-step models allow it to scale gracefully to these complexities.

Tasks and Datasets: We consider three tasks and 9 datasets for real-world experiments. Our tasks are:

Safe Object Manipulation Puck-Striking

Few Trajectories Fixed Start Few Uniform 20 expert 10 expert

BCO 3/10 7/10 6/10 7/11 4/11
SMODICE 2/10 1/10 0/10 5/11 4/11
DILO 8/10 9/10 5/10 8/11 5/11

Safe Object Manipulation (Cross-Embodiment) Dynamic Puck Hitting

Few Trajectories Fixed Start Few Uniform 400 expert 400 expert
(touch) (hitting)

BCO 6/10 6/10 8/10 2/10 0/10
SMODICE 1/10 1/10 1/10 6/10 4/10
DILO 8/10 9/10 8/10 10/10 9/10

Figure 3: Real Robot Experiments: Table shows the
(x/y) success rates as x successes in y trials for differ-
ent methods on real-robot setup of air-hockey. For the
dynamic puck-hitting task, we evaluate the number of
touches made in addition to hitting behavior, which
returns the puck in the opposite direction.

BCO SMODICE DILO

Figure 4: Example of learned hitting behavior
across algorithms: Puck’s (red) gradient shows move-
ment across time for Dynamics Puck Hitting.

1) Safe Objective Manipulation: Navigate object safely to the goal without hitting obstacles. 2) Puck

Striking: Hit a stationary puck 3) Dynamic Puck Hitting: A challenging task of hitting a dynamically

moving puck. For the safe manipulation task, we investigate three datasets a) Few-Trajectories:

15 expert trajectory observations are given with uniform initial state b) Fixed-start-trajectories: 15

expert observation trajectories are provided to the agent with fixed start state. c) Few Uniform: 300

transitions are provided to the agent uniformly in state space. For Puck Striking tasks, we consider

two observation datasets, one with 20 experts and the other with 10 experts. For Dynamic Puck hitting,

we consider a dataset of 400 expert trajectories. The suboptimal datasets for all tasks contain the same

amount of transitions as the expert dataset containing a mix of successes and failures. The datasets

for all tasks are obtained by a teleoperation setup by humans, except for the cross-embodiment tasks

where the humans demonstrate using their hands, and the state is detected using an overhead camera.

Analysis: Fig. 3 compares the success rate of Learning from Observation algorithms in settings with

varying dynamics. Safe Object Manipulation presents a task with easy inverse dynamics modeling

since the arm restricts its motion to move through the workspace. Consequently, BCO performs well

when provided with good coverage of expert observations (few-uniform), but is still outperformed

by DILO as a result of ignoring offline datasets to learn recovery behaviors. SMODICE shows poor

performance consistently in tasks with small datasets—i.e. poor coverage. Puck striking presents

both easy inverse dynamics and good state coverage, which may explain the comparable performance

from BCO and SMODICE against DILO. On the other hand, Dynamic Puck Hitting is challenging

both for inverse dynamics, because of the wide range of actions necessary to hit a moving puck,

and for state coverage, where the range of possible paddle and puck positions is substantial. Fig. 4

demonstrates an example of learned puck hiting behavior. DILO handles both complexities gracefully,

resulting in an impressive success rate over both baselines.

6 Conclusion

Offline Imitation from Observations provides a solution for fast adaptation of the agent to a variety

of expert behaviors agnostic of the agent’s action space. In this work, we propose a principled,

computationally efficient, and empirically performant solution to this problem. Our work frames the

problem as a particular distribution-matching objective capable of leveraging offline data. Using the

principle of duality under a well-chosen but sufficient set of constraints, we derive an action-free

objective whose training computational complexity is similar to an efficient offline RL algorithm.

We show that the proposed method shows improved performance across a wide range of simulated

and real datasets, learning from proprioceptive or image observations and cross-embodied expert

demonstrations.
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Limitations: Our proposed method is limited by the assumption of matching visitation distributions

in the observation space of the agent and expert rather than a meaningful semantic space, but we hope

that with improvement in universal representations, this limitation is lifted by distribution matching

in compact representation space. Our work assumes that expert’s optimality, but in reality, experts

demonstrate a wide range of biases. We leave this extension to future work. Finally, we demonstrate

the failure modes of our method and further limitations in Appendix 6.4.
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Appendix

6.1 Theory

6.1.1 Derivation for Action-free distribution matching

Theorem 6.1. The dual problem to the primal occupancy matching objective (Equation 4) is given

by the DILO objective in Equation 5. Moreover, as strong duality holds from Slater’s conditions the

primal and dual share the same optimal solution d˚ for any offline transition distribution ρ and any

choice of mixture distribution ratio β.

We start with the primal objective that matches distributions between the agent’s visitation dps, s1, a1q
and expert’s visitation dEps, s1, a1q. As before ρ denotes the visitation distribution of offline data.

min
π

Df pMixβpdπps, s1, a1q, ρq}MixβpdEps, s1, a1q, ρqq, (7)

where for any two distributions µ1 and µ2, Mixβpµ1, µ2q denotes the mixture distribution with

coefficient β P p0, 1s defined as Mixβpµ1, µ2q “ βµ1 ` p1 ´ βqµ2.

Formulating the objective as a constrained objective in agent’s visitation distribution d allows us to

create a primal objective that is a convex program. This is crucial in subsequently creating a dual

objective that is unconstrained and easy to optimize.

max
dě0

´Df pMixβpd, ρq}MixβpdE , ρqq

s.t
ř
a2 dps1, s2, a2q “ p1 ´ γqd0ps1, s2q ` γ

ř
s,a1PSˆA

dps, s1, a1qpps2|s1, a1q, @s1, s2 P S ˆ S.

(8)

where the constraints above dictate the conditions that any valid visitation distribution dps1, s2q needs

to satisfy and are our proposed modifications to the commonly known bellman flow constraints.

Below we outline the derivation of how these specific constraints with the mixture distribution

matching objective allows us to create a dual objective that is independent of expert’s actions.

Applying Lagrangian duality to the above constrained distribution matching objective, we can convert

it to an unconstrained problem with dual variables V ps, s1q defined for all s, s1 P S ˆ S:

max
dě0

min
V ps1,s2q

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq

`
ÿ

s1,s2

V ps1, s2q

˜
p1 ´ γqd0ps1, s2q ` γ

ÿ

s,a1

dps, s1, a1qpps2|s1, a1q ´
ÿ

a

dps1, s2, a2q

¸
(9)

“ max
dě0

min
V ps,s1q

p1 ´ γqEd0ps,s1q

“
V ps, s1q

‰
` Es,s1,a1„d

«
γ

ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (10)

where the last equation uses a change of variable from s1, s2 to s, s1 without loss of generality. Using

a simple algebraic manipulation below, we can get rid of the inner maximization. We add and subtract

the terms shown below:

“ max
dě0

min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“
V ps, s1q

‰

`βEs,s1,a1„d

«
γ

ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

`p1 ´ βqEs,s1,a1„ρ

«
γ

ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´p1 ´ βqEs,a,g„ρ

«
γ

ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (11)
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As strong duality holds using Slater’s conditions [52] (see [43] for a detailed account of strong duality

in RL under visitation distributions). Using the fact that strong duality holds in this problem we can

swap the inner max and min and rewrite an equivalent maximization under the mixture distribution:

“ min
V ps,s1q

max
Mixβpd,ρqps,s1,a1qě0

βp1 ´ γqEd0ps,s1q

“
V ps, s1q

‰

` βEs,s1,a1„d

«
γ

ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

` p1 ´ βqEs,s1,a1„ρ

«
γ

ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´ p1 ´ βqEs,s1,a1„ρ

«
γ

ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (12)

In the following derivation, we will show that the inner maximization in Eq 12 has a closed form solu-

tion even when adhering to the non-negativity constraints. Let yps, s1, a1q “ Es2„pps1,a1qrV ps1, s2qs´
V ps, s1q.

max
Mixβpd,ρqps,s1,a1qě0

Es,s1,a1„Mixβpd,ρqps,s1,a1q

«
γ

ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq

Now to solve this constrained optimization problem we create the Lagrangian dual and study the

KKT (Karush–Kuhn–Tucker) conditions. Let wps, s1, a1q
∆
“

Mixβpd,ρqps,s1,a1q
MixβpdE ,ρqps,s1,a1q , then the constraint

Mixβpd, ρqps, s1, a1q ě 0 holds if and only if wps, s1, a1q ě 0 @s, s1, a1.

max
wps,s1,a1q

max
λě0

Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“
wps, s1, a1qyps, s1, a1q

‰
´ EMixβpdE ,ρqps,s1,a1q

“
fpwps, s1, a1qq

‰

`
ÿ

s,s1,a1

λpwps, s1, a1q ´ 0q (13)

Since strong duality holds, we can use the KKT constraints to find the solutions w˚ps, s1, a1q and

λ˚ps, s1, a1q.

• Primal feasibility: w˚ps, s1, a1q ě 0 @ s, a1, a1

• Dual feasibility: λ˚ ě 0 @ s, s1, a1

• Stationarity: MixβpdE , ρqps, s1, a1qp´f 1pw˚ps, s1, a1qq ` yps, s1, a1q ` λ˚ps, s1, a1qq “
0 @ s, s1, a1

• Complementary Slackness: pw˚ps, s1, a1q ´ 0qλ˚ps, s1, a1q “ 0 @ s, s1, a1

Using stationarity we have the following:

f 1pw˚ps, s1, a1qq “ yps, s1, a1q ` λ˚ps, s1, a1q @ s, s1, a1 (14)

Now using complementary slackness, only two cases are possible w˚ps, s1, a1q ě 0 or λ˚ps, s1, a1q ě
0.

Combining both cases we arrive at the following solution for this constrained optimization:

w˚ps, s1, a1q “ max
´
0, f 1´1

pyps, s1, a1qq
¯

(15)

Using the optimal closed-form solution (w˚) for the inner optimization in Eq. (12) we obtain
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min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“
V ps, s1q

‰

` Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“
max

`
0, pf 1q´1

`
yps, s1, a1q

˘˘
yps, s1, a1q ´ αf

`
max

`
0, pf 1q´1

`
yps, s1, a1q

˘˘˘‰

´ p1 ´ βqEs,a„ρ

«
γ

ÿ

s1

pps1|s, aqV ps1, s2q ´ V ps, s1q

ff
(16)

For deterministic dynamics, this reduces to the following simplified objective:

min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“
V ps, s1q

‰

` Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“
max

`
0, pf 1q´1

`
yps, s1, a1q

˘˘
yps, s1, a1q ´ f

`
max

`
0, pf 1q´1

`
yps, s1, a1q

˘˘˘‰

´ p1 ´ βqEs,a„ρ

“
γV ps1, s2q ´ V ps, s1q

‰
(17)

where yps, a, gq “ γV ps1, s2q ´ V ps, s1q.

6.1.2 What does the utility function V ˚ps, s1q represent?

Prior work [43] shows that for the regularized RL problem

max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř
aPA dps, aq “ p1 ´ γqd0psq ` γ

ř
ps1,a1qPSˆA

dps1, a1qpps|s1, a1q, @s P S.
(18)

the dual optimizes for a Langrangian variable V that represents a regularized optimal value function.

This insight directly extends to our work with reward function set to zero, our Lagrangian variable

learns only the regularized visitation probabilities under optimal policy.

It is easy to see why this is the case using the previous derivation. Following the derivation from the

previous section, note that we had rewritten the inner maximization w.r.t the visitation distribution

d, thus effectively getting rid of manipulating visitation distributions in the final objective. Our

derivation above uses the following substitution shown in Eq 15 that holds as part of the closed form

solution w.r.t inner maximization:

Mixβpd, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q
“ max

´
0, f 1´1

pyps, s1, a1qq
¯

(19)

where y “ γV ps1, s2q ´ V ps, s1q. For deterministic dynamics, at convergence, the following holds

for all s, s1, a1 where d˚ps, s1, a1q ą 0:

f 1´1
pγV ˚ps1, s2q ´ V ˚ps, s1qq “

Mixβpd˚, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q
(20)

implying:

pγV ˚ps1, s2q ´ V ˚ps, s1qq “ f 1

ˆ
Mixβpd˚, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q

˙
“ ´rips, s

1, a1q (21)

The above relation makes the the interpretation of V ˚ps, s1q clear. pV ˚ps, s1q ´ γV ˚ps1, s2qq de-

notes the implied reward function rips, s
1, a1q under which V ˚ computes the maximum cumulative

expected return, where a1 is the action that leads to s2. As shown above the the implied reward

function rips, s
1, a1q “ ´f 1

´
Mixβpd˚,ρqps,s1,a1q
MixβpdE ,ρqps,s1,a1q

¯
is the divergence between expert stationary visita-

tion distribution and agent’s stationary visitation that is obtained after taking the action a1 from s1

and then acting optimally to match the expert visitation distribution. Note that the function f 1 is

non-decreasing as the function f is convex from definition of f -divergences.
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6.1.3 Analytical form of f˚
p for χ2 divergence

For χ2 divergence, the generator function fpxq “ px´ 1q2. f 1pxq “ 2px´ 1q and correspondingly

f 1´1pxq “ x
2

` 1. Substituting f 1´1pxq in definition of f˚
p :

f˚
p pxq “ maxp0, f 1´1

pxqqpxq ´ fpmaxp0, f 1´1
pxqqq (22)

Since x we substitute takes the form of residual residual “ γEs2„pp¨|s1,a1qrV ps1, s2qs ´ V ps, s1qq,

the below pseudocode shows the implementation of f˚
p for DILO.

1 def f_star_p(self , residual , type=’chi_square ’):
2 if type==’chi_square ’:
3 omega_star = torch.max(residual / 2 + 1, torch.zeros_like(

residual))
4 return residual * omega_star - (omega_star - 1)**2

6.1.4 Intuitive understanding of DILO

To better understand this objective’s behavior we consider the last two terms from Eq 5 in its expanded

form below. We ignore the first term as it is simply pushing down Q-values at initial distribution of

states, to prevent overestimation when learning from offline datasets.

βEs,s1,s2„d̃Eq

“
f˚
p pγV ps1, s2q ´ V ps, s1qq

‰
` p1 ´ βq ˚ Es,s1,s2„ρ

“
f˚
p pγV ps1, s2q ´ V ps, s1qq

‰

(23)

´p1 ´ βqEs,s1,a1„ρ

“
γEs2„pp¨|s1,a1q

“
V ps1, s2q

‰
´ V ps, s1q

‰
,

Denote rps, s1, aEq “ V ps, s1q ´ γV ps1, s2q as the implicit expert reward of under a learned Q-

function. The objective presents a clear intuition when we study the objective’s behavior in different

situations individually: (a) For samples from ρ, the objective pushes down the implicit reward to 0 as

shown below:

min
r

Lprq “

#
p1 ´ βq r

2

4
, if r ă 2,

p1 ´ βqr otherwise.
(24)

(b) For samples from the expert distribution d̃E , the objective ensures that reward is greater than

equal to 2

min
r

Lprq “

#
βp r

2

4
´ rq, if r ă 2,

0 otherwise.
(25)

It becomes clear now that DILO is implicitly learning a valid reward function that ensures higher

discounted return for the expert compared to the suboptimal dataset by shaping Q-values directly.

6.2 Implementation

The algorithm for DILO can be found in Algorithm 1. We base the DILO implementation on the official

implementation of pytorch-IQL that is based on IQL [44]. We keep the same network architecture as

the original code and do not vary it across environments.

6.2.1 Imitation Learning with Proprioceptive Observations

Our experiment design is based on the benchmark from [13, 28] but we explain the setup here for

completeness.

Environments: For the offline imitation learning experiments we focus on 9 locomotion and

manipulation environments from the MuJoCo physics engine [18] comprising of Hopper, Walker2d,

HalfCheetah, Ant, Kitchen, Pen, Door and Hammer to make a total of 24 datasets. The MuJoCo

environments used in this work are licensed under CC BY 4.0 and the datasets used from D4RL are

also licensed under Apache 2.0.
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Suboptimal Datasets: We use the offline imitation learning benchmark from [28] that utilizes

offline datasets consisting of environment interactions from the D4RL framework [19]. Specif-

ically, suboptimal datasets are constructed following the composition protocol introduced in

SMODICE [13]. The suboptimal datasets, denoted as ’random+expert’, ’random+few-expert’,

’medium+expert’, and ’medium+few-expert’ combine expert trajectories with low-quality trajectories

obtained from the ”random-v2” and ”medium-v2” datasets, respectively. For locomotion tasks, the

’random/medium+expert’ dataset contains a mixture of some number of expert trajectories (ď 200)

and «1 million transitions from the ”x” dataset. The ’x+few-expert’ dataset is similar to ‘x+expert,’

but with only 30 expert trajectories included. For manipulation environments we consider only

30 expert trajectories mixed with the complete ’x’ dataset of transitions obtained from D4RL. For

the expert observation dataset we just 1 expert observation trajectory with length as the horizon of

environment for our experiments. The detailed suboptimal dataset composition for different datasets

can be found in table 2 below:

Dataset Data Points

All random+expert 1m random transitions + 200 expert trajectories (horizon=1000)

All medium+expert 1m medium transitions + 200 expert trajectories (horizon=1000)

All random+few-expert 1m random transitions + 30 expert trajectories (horizon=1000)

All medium+few-expert 1m medium transitions + 30 expert trajectories (horizon=1000)

Pen cloned+expert 5e6 cloned transitions + 30 expert trajectories (horizon=100)

Pen human+expert 5000 human transitions + 30 expert trajectories (horizon=100)

Door cloned + expert 1m cloned transitions + 30 expert trajectories (horizon=100)

Door human + expert 6729 human transitions + 30 expert trajectories (horizon=100)

Hammer cloned + expert 1m cloned transitions + 30 expert trajectories (horizon=100)

Hammer human + expert 11310 human transitions + 30 expert trajectories (horizon=100)

partial+expert 136950 partial transitions + 30 expert trajectories (horizon=280)

mixed + expert 136950 partial transitions + 30 expert trajectories (horizon=280)

Table 2: Suboptimal dataset composition

Expert Observation Dataset: To enable imitation learning from observation, we use 1 expert

observation trajectory obtained from the ”expert-v2” dataset for each respective environment.

Baselines: To benchmark and analyze the performance of our proposed methods for offline imitation

learning with suboptimal data, we consider different representative baselines in this work: BC [49],

SMODICE [13], RCE [53], ORIL [48], IQLearn [50], ReCOIL [28]. SMODICE has been shown

to be competitive [13] to DEMODICE [34] and hence we exclude it from comparison. SMODICE

is an imitation learning method based on the dual framework, that optimizes an upper bound to

the true imitation objective. ORIL adapts generative adversarial imitation learning (GAIL) [9]

algorithm to the offline setting, employing an offline RL algorithm for policy optimization. The RCE

baseline combines RCE, an online example-based RL method proposed by Eysenbach et al. [53].

RCE also uses a recursive discriminator to test the proximity of the policy visitations to successful

examples. [53], with TD3-BC [54]. Both ORIL and RCE utilize a state-based discriminator similar

to SMODICE, and TD3-BC serves as the offline RL algorithm. All the compared approaches only

have access to the expert state-action trajectory.

The open-source implementations of the baselines SMODICE, RCE, and ORIL provided by the

authors [13] are employed in our experiments. We use the hyperparameters provided by the authors,

which are consistent with those used in the original SMODICE paper [13], for all the MuJoCo

locomotion and manipulation environments.

In our set of environments, we keep the same hyper-parameters across tasks - locomotion, adroit

manipulation, and kitchen manipulation. We train until convergence for all algorithms including

baselines and we found the following timesteps to be sufficient for different set of environments:

Kitchen: 1e6, Few-expert-locomotion: 500k, Locomotion: 300k, Manipulation: 500k

We keep a constant batch size of 1024 across all environments. For all tasks, we average mean returns

over 10 evaluation trajectories and 7 random seeds. Full hyper-parameters we used for experiments
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are given in Table 3. For policy update, using Value Weighted Regression, we use the temperature τ

to be 3 for all environments.

Hyperparameters for our proposed off-policy imitation learning method DILO are shown in Table 3.

Hyperparameter Value

Policy learning rate 3e-4
Value learning rate 3e-4

f -divergence χ2

max-clip (Value clipping for policy learning) 100
MLP layers (256,256)
β (mixture ratio) 0.5
η (orthogonal gradient descent) 0.5
τ (policy temperature) 3

Table 3: Hyperparameters for DILO in imitation from proprioceptive observations.

6.2.2 LfO with Image Observations

We use robomimic [20] for our imitation with image observations experiments. The following two

environments are used here (the description is taken from their paper and written here for conciseness):

Lift: Object observations (10-dim) consist of the absolute cube position and cube quaternion (7-dim),

and the cube position relative to the robot end effector (3-dim). The cube pose is randomized at the

start of each episode with a random z-rotation in a small square region at the center of the table.

Can Object observations (14-dim) consist of the absolute can position and quaternion (7-dim), and

the can position and quaternion relative to the robot end effector (7-dim). The can pose is randomized

at the start of each episode with a random z-rotation anywhere inside the left bin.

Robomimic provides three datasets and two modalities of observation (Proprioceptive, Images)

for both environments above. The datasets are denoted by - MH (Multi-human), MG (Machine

Generated), PH(Proficient-human). We use the MG and MH datasets as the suboptimal datasets in our

task and PH as the source of expert observations. MH and MG datasets consists of 200 trajectories of

usually suboptimal nature and we use 50 observation-only trajectory from PH datasets. This tasks

is complex by the fact that expert-level actions are mostly unseen in the suboptimal dataset and the

agent needs to learn the best actions that matches expert visitation from the suboptimal dataset. We

implement all algorithms in the Robomimic codebase without any change in network architecture,

data-preprocessing or learning hyperparameters. We tune algorithm specific hyperparameters in a

course grid for BCO, SMODICE, and DILO to compare the best performance of methods independent

of hyperparameters. For BCO, we tune the inverse dynamics model learning epochs between [1,5,10].

For SMODICE, we tuned discriminator learning epochs between [1,5], and gradient penalty between

[1,5,10,20]. To control overestimation due to learning with offline datasets in DILO we consider a

linear weighting λ between the optimism and pessimism terms in Eq 5 inspired by prior work [28] as

follows:

min
Q

p1 ´ λqβp1 ´ γqEd̃0

“
V ps, s1q

‰
` λEs,s1,a1„Mixβpd̃E ,ρq

“
f˚
p pγEs2„pp¨|s1,a1q

“
V ps1, s2q

‰
´ V ps, s1qq

‰

´ λp1 ´ βqEs,s1,a1„ρ

“
γEs2„pp¨|s1,a1q

“
V ps1, s2q

‰
´ V ps, s1q

‰
,

The hyperparameters used for DILO can be found in Table 4. For the architecture specific hyperpa-

rameters we refer the readers to [20].

6.3 Robot Manipulation Experiments

Our setup for manipulation experiments is inspired by the robot air hockey environment [55] for

applying DILO to physical robotics settings. Our setup utilizes a Universal Robotics 5 kilogram

e-series (UR5e) 6-degree of freedom robotic arm on a fixed mount, a Robotiq parallel jaw gripper, a

1.93m ˆ 0.76m Wind Chill air hockey table which is tilted at a 5.5 degree angle, and an overhead
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consists of 50 trajectories of 100 time steps on average where the robot is initialized in a random

location, and the human moves the arm to a random different location, ignoring the positions of the

cups or the bowl. In this setting, we investigated the following expert data, visualized in Figure 5:

• Few Trajectories: The expert data is drawn from a set where the expert is initialized in a

random location, sometimes touching an obstacle, and must use the teleoperation system to

avoid the obstacle and reach the goal. In this setting we used 15 expert trajectories.

• Fixed start: The expert is initialized at the opposite corner of the workspace, and navigates

to the goal location following different paths using teleoperation. In this setting we used 15

trajectories.

• Few Uniform: Uses the same expert data as the Few Trajectories setting, but the dataset

consists of randomly samples 300 transitions, where one trajectory is approximately 60

transitions of data.

• Cross Embodiment Few/Fixed/Uniform: The expert is a person holding the strawberry in

his/her hand, visualized in Figure 6. They then move the strawberry tracked by the camera

to the goal location while avoiding the obstacles, starting from random/fixed locations with

15 expert trajectories respectively or uniform with 300 transitions.

Stationary Striking: This task involves moving the end effector to strike a stationary puck. The

success metric is the robot touching the puck. The test set involves 10 initializations of the puck posi-

tion across the length of the table. The ensure uniformity across evaluations, the set of initialization

locations of the puck are fixed across methods. The end effector is initialized at 0.38m from the base

in the center of the table, so a success strike does not require backward motion. The observation space

is the 2D end effector position and the tracked position of the puck. Our suboptimal dataset consists

of 50 trajectories of 75 time steps on average where the robot is initialized at the start position, and

the human moves the arm in a random, vaguely striking pattern.

In this setting we used an expert dataset of 400 trajectories where the expert uses mouse teleoperation

to strike the puck. The expert efficiently strikes the puck in a single motion. We visualize the expert

striking and the puck position in Figure 5. We show the learned action vectors for all algorithms and

tasks fixed start (Figure 9), Few Uniform (Figure 8) and Few trajectories (Figure 10).

Dynamic Hitting: This task involves hitting a puck dropped from the top of the table. Because

the table is set at an angle, this will cause the puck to fall with increasing acceleration towards the

opposite side. The setup is visualized in Figure 5. The test set involves 10 initializations of the puck

position dropped from positions across the length of the top of the table. The locations of the 10 puck

drops are fixed using indicators across methods to give fair evaluation, and the arm is initialized in

the center of the table, 0.68m from the base. The observation space is the 2D end effector position

and 2D end effector velocity and the history of the last 5 tracked positions of the puck relative to the

position of the end effector. Our suboptimal dataset consists of 50 trajectories of 200 time steps on

average where the robot is initialized at the start position, and the human moves the arm around the

puck without striking it.

We utilize two success metrics for this task: 1) touching: a trajectory is considered successful if the

agent touches the puck. 2) hitting: the puck must have velocity in the opposite direction that it was

dropped. This task is especially challenging for existing methods because of the long sequence of

actions necessary to position the paddle properly, and the high level of both precision and timing:

even a few millimeters of error or a movement at the wrong time will result in a failure, especially for

hitting. Previous work has observed that this task is challenging even for humans, who often require

several tries of practice, and many dataset trajectories consist of many inaccurate hits. In this domain,

Behavior cloning only achieves 30% success at touching the puck, and Implicit Q-learning, a popular

offline RL method, can only achieve 60% success, even though it employs a hand-designed reward

function.

We used the implementation details from the proprioception task with the difference that in all the

real-robot tasks we tune the following parameters across different methods: For BCO, we tune the
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BCO SMODICE DILO

Figure 9: Action Vectors qualitatively showing the next x-y action for the safe manipulation with fixed start
state. BCO generalizes incorrectly at a number of locations producing policies that hit obstacles. DILO learns to
mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the arrows around

BCO SMODICE DILO

Figure 10: Action Vectors qualitatively showing the next x-y action for the safe manipulation with few trajectories.
BCO generalizes incorrectly at a number of locations producing policies that hit obstacles. DILO learns to
mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the arrows around

in the Expert Image observations, it still shows limited performance. Second, while learning from

observations opens the door for good performance without expert actions, the expert observation

space must match that of the agent. In some video settings, this is not the case, ex. the agent might use

a fixed camera when the human is egocentric, or vice versa. Finally, DILO utilizes the conservatism

parameter τ to regulate the degree of extrapolation from the algorithm. In some settings, the values

can diverge, resulting in V ˚ taking on values that might be too large to be used for learning the

downstream policy. Adaptively selecting τ to maximize extrapolation while avoiding divergence is

an area of active investigation.

6.4.1 Failure Cases

While DILO outperforms other methods in overall success rate, the failure modes can differ. In

general, DILO tends to be conservative in what actions it takes, learning motions that might be slower

than BCO or may get stuck before arriving at the goal. In low-dim observation settings, DILO can

also exhibit “dead zone” behavior, where the model becomes mostly unresponsive. Below we detail

some of the exact error modes in particular tasks:

Safe Manipulation: While DILO and BCO have comparable success rates, the two algorithms fail

in different ways. BCO tends to take large actions while ignoring obstacles to reach the goal, while

DILO takes more conservative actions. Thus, while BCO might fail by knocking over a cup, DILO

will tend to fail to reach the goal. Because this is a low data setting, both algorithms BCO and DILO
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can end up coming close to the cups or brushing them gently. As a side note, SMODICE fails at even

reaching the goal in most cases in this task, possibly because of this low data setting.

Striking: This domain is challenging because of the narrow data regime, and all methods tend to

struggle in similar ways. The most common consequence of low data arises through sensitivity to

the x location of the puck (along the table). While intuitively, striking behavior should be relatively

invariant for a fixed y (horizontal position on the table), slight variation in x from the dataset can

result in a policy that moves the arm in the opposite direction of the puck, probably due to errors

in extrapolation. In addition, striking is a dynamic behavior that requires a precise combination of

forward and horizontal actions. Even a slight error in the ratio can result in a near miss. Finally,

DILO tends to learn more conservative policies and, in some locations, may not not strike the puck

with much force. However, because of the low data coverage, this issue is endemic to all the learned

policies.

Hitting: The primary challenge of achieving a hit in this task is the precise alignment of the paddle

to the puck. While DILO performs well, it is not perfectly accurate, resulting in touches that bounce

off the side of the paddle. This challenge is endemic to all policies. Additionally, the conservatism

of DILO actions appear when it moves under the puck, where it tends to move slowly, and dropping

the puck too quickly can result in DILO failing to reach the puck. As a result, while DILO is likely

to succeed at the first hit, it can struggle to generate multiple hits because this can require rapid

side-to-side movement. These issues are largely endemic to all the learned policies, where SMODICE

tends to be even less precise, and BCO struggles to learn to strike, though it can occasionally position

under the puck.

Visualizations of the failure modes can be seen in the accompanying video attachment.
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