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Abstract

Reinforcement Learning from Human Feedback (RLHF) has been crucial to the
recent success of Large Language Models (LLMs), however, it is often a complex
and brittle process. In the classical RLHF framework, a reward model is first trained
to represent human preferences, which is in turn used by an online reinforcement
learning (RL) algorithm to optimize the LLM. A prominent issue with such meth-
ods is reward over-optimization or reward hacking, where performance as measured
by the learned proxy reward model increases, but true quality plateaus or even dete-
riorates. Direct Alignment Algorithms (DAAs) like Direct Preference Optimization
have emerged as alternatives to the classical RLHF pipeline by circumventing the
reward modeling phase. However, although DAAs do not use a separate proxy
reward model, they still commonly deteriorate from over-optimization. While
the so-called reward hacking phenomenon is not well-defined for DAAs, we still
uncover similar trends: at higher KL budgets, DAA algorithms exhibit similar
degradation patterns to their classic RLHF counterparts. In particular, we find that
DAA methods deteriorate not only across a wide range of KL budgets but also often
before even a single epoch of the dataset is completed. Through extensive empirical
experimentation, this work formulates and formalizes the reward over-optimization
or hacking problem for DAAs and explores its consequences across objectives,
training regimes, and model scales.

1 Introduction

Recent advancements in Large Language Models (LLMs) have broadened their capabilities signifi-
cantly, enabling applications in code generation, mathematical reasoning, tool use, and interactive
communication. These improvements have popularized LLMs across various domains. Reinforce-
ment Learning from Human Feedback (RLHF) has been instrumental in these advances and is now
integral to sophisticated LLM training regimes [10, 55]. Before alignment, LLMs, trained on vast text
corpses to predict subsequent tokens [45, 8] are often unwieldy and hard to use. Today, leading LLMs
incorporate variants of the RLHF framework [14, 69, 36] to align them with human intent, which
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generally involves a multi-stage process. Specifically, users evaluate model responses to assorted
prompts in order to train a reward model that encapsulates human preferences [10, 55, 72, 5, 62].
Then, the refined LLM maximizes the expected learned reward function using a reinforcement learn-
ing (RL) algorithm [50, 1, 65]. Despite its efficacy, this procedure is complex and computationally
intensive, particularly in its latter stages.

Goodhart’s Law [25, 11], that “when a measure becomes a target, it ceases to be a good measure”,
has often been cited as a core shortcoming of RLHF. Standard RLHF methods optimize a learned, but
imperfect reward function which ends up amplifying the reward model’s shortcomings. Empirically,
this phenomenon was first extensively characterized by Gao et al. [21], who coined the term “reward
over-optimization”, and has been seen consistently in recent findings [62, 16, 14]. While reward
over-optimization has been studied in the context of the aforementioned RLHF procedure, recent
contemporary methods for aligning LLMs circumvent the reward learning procedure, necessitating a
new characterization of the over-optimization phenomena.

This new broad class of algorithms, which we refer to as Direct Alignment Algorithms (DAAs),
bypass the traditional RLHF pipeline by re-parameterizing the reward model directly through the
optimal policy derived during the reinforcement learning phase. DAA methods, like Direct Preference
Optimization [46], have gained popularity [14, 28] as they often reduce computational demands. Yet,
despite not fitting a reward function, DAAs still exhibit over-optimization trends similar to those of
traditional RLHF methods using a learned reward function. In some sense, this is puzzling: DAAs
can be viewed as simply learning a reward function with supervised learning from which the optimal
policy is deterministically mapped, however more seems to be at play than simple supervised learning.

In this work, we investigate the over-fitting phenomena present in DAA algorithms through extensive
experimentation. First, we unify a number of different recent methods [46, 68, 4] under the DAA
framework. Then, across different model scales and hyper-parameters, we show that DAAs exhibit a
type of reward over-optimization consistent with that previously observed in RLHF [21]. Specifically,
we find that at different KL-divergence budgets DAAs exhibit degradation patterns similar to those
found in RLHF. Interestingly, we also find that performance within a single epoch is not always
as consistent as expected for DAAs. Finally, we explain why this happens by appealing to the
under-constrained nature of the optimization problem used in DAAs.

2 Preliminaries

In this section, we first outline the core components of the standard RLHF pipeline [72, 55, 5, 41]).
Then, we examine prior literature to characterize the reward over-optimization exhibited by standard
RLHF methods. Finally, we provide a unifying view of direct alignment algorithms (DAAs) which
will guide our analysis of their training dynamics in the next section.

2.1 Reinforcement Learning From Human Feedback

The standard RLHF pipeline consists of three distinct stages with the goal of aligning the LLM with
human preferences.

Supervised Fine Tuning (SFT): First, a dataset of prompts x and high-quality answers y are used to
train an LLM for instruction following via maximum likelihood estimation over next-tokens. We
refer to the resultant model as πSFT(y|x) and consider the entire prompt and answer strings to be
single variables.

Reward Modeling: Second, the SFT model πSFT(y|x) is used to learn a reward function over human
preferences. Specifically, the SFT model is queried to produce pairs of answers (y1, y2) ∼ πSFT(y|x),
for every prompt x in a dataset. Then, users select their preferred answers, resulting in ranking
yw ≻ yl | x where yw and yl are the preferred and dispreferred answers respectively. Typically, user
rankings are assumed to be distributed according to the Bradley-Terry (BT) model [7]

p(y1 ≻ y2 | x) =
exp (r(x, y1))

exp (r(x, y1)) + exp (r(x, y2))
= σ(r(x, y1)− r(x, y2)) (1)

where the preference distribution p results from an unobserved latent reward r(x, y), and σ is the

logistic function. Given this model and a dataset of rankings, denoted D =
{
x(i), y

(i)
w , y

(i)
l

}N

i=1
, we
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can train a parameterized model rϕ(x, y) to predict the unobserved reward using maximum likelihood
estimation. This yields the following loss function,

Lrew(rϕ) = −E(x,yw,yl)∼D

[
log σ(rϕ(x, yw)− rϕ(x, yl))

]
. (2)

Reinforcement Learning (RL): The final stage of the standard RLHF pipeline uses the learned reward
model rϕ(x, y) to update the LLM πθ with an on-policy RL algorithm like PPO [50], optimizing the
model to provide responses more preferred by human raters. The most common objective is

max
πθ

Ex∼D,y∼πθ(.|x)

[
rϕ(x, y)

]
− βDKL

[
πθ(y | x) || πref(y|x)

]
(3)

which enforces a Kullback-Leibler (KL) divergence penalty with a reference distribution πref(y|x)
(usually taken to be πSFT(y|x)) to prevent the LLM πθ from straying too far from its initialization.
Thus, the hyper-parameter β directly trades off exploiting the reward function and deviating from
πref(y|x).

2.2 Reward Exploitation in RLHF

Unfortunately, repeating the above procedure without careful tuning of the RL phase can lead to
disastrous performance. This is because in the context of RLHF the LLM policy is optimizing the
surrogate reward estimate rϕ(x, y) and not the true reward function as is often the case in other
domains. Thus, prior works have observed that while the LLM’s expected reward according to
eq. (3) increases the actual quality of the model’s outputs can decrease [54, 43, 9, 34]. This particular
instantiation of the reward exploitation or hacking problem [3] is often referred to as reward “over-
optimization” in RLHF literature and has been studied empirically in both controlled experiments
[21] and user studies [14]. There are two prevailing explanations for why this phenomenon occurs.

1. OOD Robustness: In the classical RLHF pipeline, the RL objective (eq. (3)) is optimized using
on-policy samples from πθ. This means that the reward function is continuously queried using unseen
model samples which are potentially out-of-distribution. Beyond the support of the reward modeling
distribution, rϕ may assign high rewards to sub-par responses, leading the policy to believe it is doing
well when it may not be. While the KL-regularization term is designed to prevent the model from drift-
ing too far out of distribution, this term alone has proven inadequate to prevent reward hacking [21].

2. Reward Mis-specification. Learned reward functions may exhibit spurious correlations that cause
them to prefer unintended behaviors. While this issue is not at the forefront of LLM research, it is
known to be pervasive in RL [43, 34]. Most efforts to address these problems exist at the intersection
of robustness and offline RL literature [13, 67, 16] and use measures of epistemic uncertainty to
penalize the predicted reward.

2.3 Direct Alignment Algorithms

Due to its complex multi-step nature, recent works have sought alternatives to the classic RLHF
pipeline. A new class of algorithms, which we broadly classify as Direct Alignment Algorithms
(DAAs), directly update the LLM’s policy πθ using user feedback instead of fitting a reward function
to it and then employing an RL algorithm. Perhaps the most known example is Direct Preference Opti-
mization (DPO). DPO, as well as other DAAs, are derived using the closed form solution to the RLHF
objective in eq. (3) [71], π∗(y|x) ∝ πref(y|x)e

r(x,y)/β , where r(x, y) is the ground-truth reward.
By isolating r(x, y) in this relationship and substituting it into the reward optimization objective in
eq. (2), we arrive at a general objective that allows us to train the LLM directly using feedback data:

LDAA (πθ;πref) = E(x,yw,yl)∼D

[

g
(

β log
πθ (yw | x)

πref (yw | x)
− β log

πθ (yl | x)

πref (yl | x)

)]

(4)

where g is a convex loss function. Using g(x) = − log σ(x) coincides with the standard
Bradley-Terry model and the original DPO objective. Other methods choose different loss functions:
IPO [4] uses the quadratic objective g(x) = (x − 1)2 and SLiC-HF [68, 38] uses the hinge loss
g(x) = max(0, 1 − x). Additional objectives were also considered in [59], but due to limited
computational resources, we focus on the three objectives outlined above.

Crucially, the DAA approach allows us to recover the optimal policy using a straightforward classifi-
cation loss without the need for learning a reward function, on-policy sampling, or RL, which can be
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A Limitations and Societal Impacts

Our discussion highlights a number of issues with direct alignment algorithms used widely as means
to align to human values. This work has mostly focused on pointing out those issues along with a
theoretical underpinning of the issue but does not provide a way to resolve these issues. We still
assume an underlying model of human preferences, which is an ongoing research area as no model is
perfect in explaining the ways humans give preferences. Our work aims to drive the push towards
better alignment algorithms that do not overoptimize and generate models that are safe to be deployed
in our society. We believe only through understanding and demonstrating the shortcomings of current
methods we can develop better alignment methods.

B Experiment Details

We largely follow the DPO setup unless otherwise mentioned and build on their code
(https://github.com/eric-mitchell/direct-preference-optimization) without changing any hyperparame-
ters unless otherwise mentioned.

For all DAA experiments, we used the curated OpenAI TL;DR dataset with 92K preferred-dispreferred
summary completions [55]. Each prompt is a Reddit post belonging to one of several topic forums,
with title/post metadata included. 256 prompts sampled from the held-out set are used for all
evaluations (e.g. loss, accuracy, KL, winrates, length), with temperature 1.0 and max length 512.

Model sizes include 1B, 2.8B, and 6.9B and were initialized from the base Pythia pre-trained weights.
All models underwent supervised fine-tuning on TL;DR prior to direct alignment. Across all SFT
and DAA runs, we used a batch size of 128 (8 gradient accumulation steps), and RMSProp with a
learning rate of 0.5× 10−6 (linear warmup for 150 steps) for 1 epoch. 1B models were trained on 2
NVIDIA A40 GPUs, 2.8B models were trained on 4 NVIDIA A40 GPUs, and 6.9B models were
trained on 4 NVIDIA A100 GPUs. All evaluations were computed with "gpt-4-turbo-2024-04-09" as
judge, with random positional flips to avoid known bias.

C Appendix A: Complete Intra-Epoch Training Dynamics

This appendix contains similar intra-epoch KL divergence and winrate evolution results as in Fig. 2,
across all model sizes.
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D Overoptimization from the lens of Implicit Bootstrapping

Reward over-optimization is well understood in the classical RLHF setting, with a consensus that
is driven by two main components - using a proxy reward function that is trained on limited data
and continuous querying with new, potentially OOD samples during PPO training. At first glance,
none of these conditions hold in DAAs as we do not train a separate proxy reward model or generate
new data during training. Therefore, understanding reward over-optimization in DAAs requires a
new theory. We will base our analysis on [47] using the token-level MDP and corresponding (soft)
Q-learning formulation. Consider the class of dense per-token reward functions rθ(x, y≤i), where

y≤i denotes the first i tokens of y, with sequence level-reward rθ(x, y) =
∑|y|

i=1 rθ(x, y≤i). This is a
strictly more general class than the sparse reward function which returns a single score at the end of
the sequence since we can set all intermediate rewards as 0. Within the framework of [47] given a
DAA-trained policy πθ, there exists a dense per-token reward rθ, that minimizes the reward modeling
objective in Eq. 2 and satisfy the below.

The (soft) Bellman Equation holds:

Q∗(yi, (x, y<i)) =

{
r(x, y≤i) + β log πref(yi|(x, y<i)) + V ∗((x, y≤i)), if yi is not EOS

r(x, y≤i) + β log πref(yi|(x, y<i)), if yi is EOS
(8)

where V ∗ is the corresponding soft-value function:

V ∗((x, y<i)) = β log
∑

y∈|V |

eQ
∗(y,(x,y<i))/β (9)

then the DAA policy πθ satisfies:

πθ(yi|(x, y<i)) = exp(
1

β
Q∗(yi, (x, y<i))− V ∗((x, y<i))) (10)

in this interpretation, the LLM logits lθ[i] = Q∗(yi, (x, y<i))/β represent Q-values. With a direct
substitution, we then have

Q∗(yi, (x, y<i)) = r(x, y≤i) + β log πref(yi|(x, y<i)) + β log
∑

yi∈|V |

eQ
∗(y,(x,y<i))/β

︸ ︷︷ ︸

OOD bootstrapping

(11)

That is in this framework DAAs may suffer from the classical OOD bootstrapping issue in offline
RL [20, 35, 33, 52]. In this case, even though the objective is trained fully offline we still effectively
query the model on the values of unseen tokens. This interpretation also provides further insight into
the effect of the β coefficient and the training dynamics. For small values of beta the estimate

β log
∑

yi∈|V |

eQ
∗(y,(x,y<i))/β ≈ max

y∈|V |
Q∗(y, (x, y<i)) (12)

that is smaller parameter values yield a more optimistic estimate, which results in a higher level of
OOD bootstrapping. This interpretation would also explain the somewhat counter-intuitive results of
section 3.4. While the implicit reward function can adequately fit and model the data, the resulting
LLM might behave sub-optimally, due to OOD bootstrapping in the corresponding Q-value estimate.
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E Understanding Behavior of DAAs on OOD sequences

We have established that common DAA objectives allow for placing a high likelihood on OOD
data. In practice, while one might expect the likelihood of preferred responses to increase during
training, it has been observed that algorithms like DPO decrease the likelihood of both the preferred
and dis-preferred responses [42]. In fact, this is expected from a max-entropy RL perspective [47].
Since the total probability mass must sum to one, the probability of OOD responses must increase
during the course of training. A small amount of extrapolation may be necessary to reach the optimal
policy, however, too much is potentially detrimental to performance. Because they are not adequately
constrained to the reference distribution, current DAA objectives allow this to happen.

To understand how DAAs allocate probability mass out of distribution, we use a toy Markov Decision
Process (MDP), that mimics the LLM setting. The MDP is modeled as a tree, originating from a
single start state, featuring deterministic transitions. The Toy MDP is illustrated in fig. 6.

E.1 Designing a toy LLM MDP

The MDP is modeled as a tree, originating from a single start state. This configuration mirrors the
token-level MDP in Direct Preference Optimization (DPO) [47], or the scenario where both preferred
and dispreferred responses are conditioned on the same prompt in the broader Large Language Model
alignment context. Each leaf node in the MDP transitions deterministically to a terminal absorbing
state, regardless of the action taken. The deterministic transitions resemble the LLM setting, where
the current state is represented by the sequence of encountered tokens (s1, s2, ..., si), and the action
corresponds to predicting the next word si+1 from the vocabulary, given the context. In this simplified
MDP, the deterministic transition is akin to a concatenation function, advancing the state to the next
step (s1, s2, ..., si, si+1). Employing a toy MDP enables us to systematically evaluate the trajectory
probabilities for all feasible paths within the MDP, shedding light on the allocation of probability
mass by Direct Alignment Algorithms (DAAs) towards out-of-distribution (OOD) trajectories.

The Experimental Setup. We adhere to the standard direct alignment protocol [46][41], encompass-
ing two key stages:

1. Supervised Fine-tuning (SFT) / Behavioral Cloning (BC): This phase involves fine-
tuning the policy based on a limited number of trajectories. Specifically, we utilize
three demonstrations for SFT: (s1, a0, s2, a0, s5, a0, s∞), (s1, a1, s3, a1, s9, a0, s∞), and
(s1, a2, s4, a2, s13, a2, s∞).

2. Alignment with Preferences: In this stage, preferences extracted from trajectories
are employed to align the policy. Notably, we have only one preference available:
(s1, a1, s3, a1, s9, a0, s∞) ≻ (s1, a0, s2, a0, s5, a0, s∞). This deliberate constraint exag-
gerates a scenario with limited data, enabling us to gauge the probability mass allocated to
out-of-distribution (OOD) trajectories under such conditions. Insights garnered from this
exaggerated low-data scenario hold relevance for Large Language Model (LLM) settings
where preference datasets used for alignment are notably smaller compared to the scale of
LLM models deployed.

We utilize a Recurrent Neural Network (RNN) policy to navigate through the MDP, facilitating a
closer resemblance to real-world language modeling scenarios.

Subsequently, we explore three distinct direct alignment loss functions: Direct Preference Optimiza-
tion (DPO) [46], Identity Preference Optimization (IPO) [4], and Sequence Likelihood Calibration
(SLiC) [68]. Additionally, we investigate how the selection of the KL penalty coefficient β influences
the distribution of probability mass on OOD trajectories. This exploration encompasses three values
of β: (0.01, 0.1, 0.5).

In general, the plots illustrate that Direct Alignment Algorithms (DAAs) tend to allocate a significant
proportion of the probability mass to out-of-distribution (OOD) trajectories during the alignment
process. While Figure 9 may suggest that Direct Preference Optimization (DPO) can retain a
substantial amount of probability mass on the selected trajectory in the preference dataset, it’s
noteworthy that the plots for DPO exhibit considerable noise. To provide further insight, Figure 18
displays the plots resulting from three additional repetitions of the DPO experiment. Similar noisy
trends were also observed in the experiments for IPO and SLiC. This elucidates the unconstrained

19



nature of the DPO problem: multiple solutions exist for the DPO loss, each distributing varying
amounts of probability mass to OOD trajectories. In the experiments with IPO and SLiC, it’s
also observed that similar to DPO, the probability mass allocated to in-distribution trajectories can
diminish substantially over the course of training. Notably, the probability mass, in our experiments,
becomes concentrated on a select few out-of-distribution trajectories. Moreover, consistent trends
are discernible across various values of β. The results of our experiments with the Toy-MDP can be
found in the following figures 12, 9, 15, 13, 10, 16, 14, 11, 17.
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the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We use open-source pretrained models and provide details to reproduce our
fine-tuning experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use crowdsourcing or research with human subjects in this work

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use crowdsourcing or research with human subjects in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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