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Vision Graph Neural Networks



Dynamic Axial Graph Construction (DAGC) and GreedyViG Architecture

a) SVGA b) DAGC
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DAGC dynamically constructs a graph along the axes,

through applying a mask (the blue patches) to only
connect similar patches in terms of Euclidean distance.
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Proposed architecture of GreedyViG using
Dynamic Axial Graph Construction.



Experimental Results on Classification and Segmentation

ImageNet-1k Top-1 Accuracy (%)

84

[or]
w

00
N

o]
=

=]
o
1

~
w
1

~
o
1

77 A

,1. ______________ S "
,// PO Ltk e ’,”
r’ ffffff 61 ,’I’
II’ I’.I. """""" - ,r”, -9
/B -=1 - -
2 =" - -
,’ I’ "’__o’— ?44_ - =3 -
/I, I, fr_ Et .’ = il
I’ /’ _‘DE 4" 4”” ®
oo/ E - ™ ger il
/ ’ — » - &
Y4 yi g 25 s ’_,’ e p—
‘ o o
/ 2 F S
4 -8~ GreedyViG (Ours) e 40 4 ’,,:7 ,’ .
/| -®= MobileViG se a ,’// --- Greed’y\hG (Ours)
‘ PVIG o gyt e, =aAY
-®- PVIHGNN 38 ¢« 7 T - :Informer
PVT S - EfficientFormer
=®= Poolformer = -&- ResNet
20 40 60 80 a 6 8 10
Parameters (M) GMACs
Backbone Parameters (M) | AP | APE™ | APke® | Apmesk | Apmesk | Apmaesk | ol
ResNet18 [9] 11.7 34.0 54.0 36.7 31.2 51.0 32.7 32.9
EfficientFormer-L1 [23] 12.3 37.9 60.3 41.0 354 57.3 37.3 38.9
EfficientFormerV2-S2 [22] 12.6 43.4 65.4 47.5 39.5 62.4 42.2 42.4
PoolFormer-S12 [50] 12.0 37.3 59.0 40.1 34.6 55.8 36.9 37.2
FastVIT-SA12 [41] 10.9 38.9 60.5 42.2 35.9 57.6 38.1 38.0
MobileViG-M [30] 14.0 413 | 628 | 451 38.1 60. 1 40.8 -
GreedyViG-S (Ours) 12.0 43.2 65.2 47.3 39.8 62.2 43.2 43.2

Method is efficient and beats SOTA across multiple CV tasks.




Efficient On-Device Training



Semi-Supervised Hierarchical
Federated Learning



Semi-Supervised Hierarchical Federated Learning Overview
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The goal is to minimize the global loss function with limited labeled data available
at the edge servers and Jots of unlabeled data available at the clients.



CHESSFL: Clustering Hierarchical Embeddings for Semi-Supervised Federated Learning
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CHESSFL converges up to 5.11x faster and achieves higher accuracy than state-of-the-art
SSFL solutions on multiple datasets, with negligible communication overhead and

enhanced robustness to non-IID data.




Machine Learning with
Batteryless Sensors



Energy Harvesting Based Sensors Produce Sparse, Asynchronous Data

O Sparse, Asynchronous Data Packets

/-"
I S1 | H ’ e —

Energy Spending Polic

O Q O A

JoUuLIOJSue.d],

Positional . 3)

Kinetic Energy Harvesting E/mw P: &> . |=-
Based Sensors w® ——_ : - &’ > °
P e e B FON B
/ | | L /

The goal is to optimize an energy spending policy to provide the most informative data, while
simultaneously training a deep learning model to process the unstructured stream of packets.
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We Syn

Macro-F1 Score

ergize Energy Spending Policies with Deep Learning Models

w
(=]
L L

right_arm [m/s?
=N
o o

(=]

[1 ABiaug

H
o

w
o
L

left_leg [m/s?]
N
o

Py
o

o

H Attend & Discrim. (Upper Bound) B Conservative Policy (Ours)

Opportunistic Policy (Ours) Interarrival-Based Approach

= 21 29
T 151 : E
0@ . = . : . ! !
25 30 35 . 40 45 50 55

100 Time [s]
80 [d [J [d
60 Our transformer model significantly outperforms
40 the interarrival time-based approach and
20 I improves when learning from a conservative
0 . .

Oportunity CShns energy spending policy.

12



Unlearning for Image-to-Image
Generative Models



Risks of Generative Models and Potential Solutions

Preserved Contents
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Potential risks of image Machine unlearning is a promising and efficient technique

generative models to resolve these issues yet relatively unexplored.
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Our Proposed Solution for Efficient Unlearning on Generative Models

Target model
(Learnable)

Encoder Ey

Ly = ||Eq (xr) = Ea, (),

LR — ||E0(x1') _ Eeo(xr)”z

> Encoder Eg,
u Original model loss: argmin LF + C(LR
Retain set (Fixed) 6

* Our method is appliable to various models, including GAN, diffusion model, and MAE

* Our method reduce #tunable parameters by about half and speedup by up 4x
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