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Abstract

In repeated interaction problems with adaptive agents, our objective often requires anticipating and
optimizing over the space of possible agent responses. We show that many problems of this form
can be cast as instances of online (nonlinear) control which satisfy local controllability, with con-
vex losses over a bounded state space which encodes agent behavior, and we introduce a unified
algorithmic framework for tractable regret minimization in such cases. When the instance dynam-
ics are known but otherwise arbitrary, we obtain oracle-efficient O(\/T) regret by reduction to
online convex optimization, which can be made computationally efficient if dynamics are locally
action-linear. In the presence of adversarial disturbances to the state, we give tight bounds in
terms of either the cumulative or per-round disturbance magnitude (for strongly or weakly locally
controllable dynamics, respectively). Additionally, we give sublinear regret results for the cases
of unknown locally action-linear dynamics as well as for the bandit feedback setting. Finally, we
demonstrate applications of our framework to well-studied problems including performative pre-
diction, recommendations for adaptive agents, adaptive pricing of real-valued goods, and repeated
gameplay against no-regret learners, directly yielding extensions beyond prior results in each case.
Keywords: Online convex optimization, online control, Stackelberg games, local controllability

1. Introduction

Machine learning problems involving strategic or adaptive agents are commonly framed as Stack-
elberg games, wherein the leader aims to commit to an optimal strategy in anticipation of the fol-
lower’s best response. This approach has been effectively applied to challenges ranging from perfor-
mative feature manipulation (Hardt et al., 2015; Dong et al., 2018; Perdomo et al., 2020; Jagadeesan
et al., 2022b) and optimal pricing (Roth et al., 2015; Daskalakis and Syrgkanis, 2015; Nedelec et al.,
2020) to resource allocation in security games (Blum et al., 2014; Balcan et al., 2015; Alcantara-
Jiménez and Clempner, 2020) and learning in tabular games (Letchford et al., 2009; Peng et al.,
2019; Lauffer et al., 2022; Collina et al., 2023), often with a regret minimization objective. Addi-
tionally, several of these settings have been independently extended to account for agents that may
update their strategies gradually over time rather than optimally responding in each round (Zrnic
et al., 2021a; Brown et al., 2022; Braverman et al., 2017; Deng et al., 2019; Brown et al., 2023).
Despite their conceptual similarities, these problems have largely been approached as distinct areas
of study, each with their own growing body of techniques. Our aim in this work is to offer a unifying
perspective and algorithmic approach for problems of this form, through the lens of online control.
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For the broad family of online “Stackelberg-style” optimization problems, the language of con-
trol is quite natural to adopt: we are navigating a dynamical system where states corresponding to
agent strategies evolve as a function of our own actions, and where objectives which consider best-
response stability can be expressed in terms of the stationary behavior of this system. Our results
consider a general class of online control instances for representing such problems, which we intro-
duce in Section 2, and in Section 3 we give a sequence of no-regret algorithms for these instances
satisfying a range of robustness properties. In Section 4, we show that several online optimization
problems involving adaptive agents, including variants of online performative prediction (as in Ku-
mar et al. (2022)), online recommendations (as in Agarwal and Brown (2023)), adaptive pricing (as
in Roth et al. (2015)), and learning in time-varying games (as in Anagnostides et al. (2023)) can be
embedded in our framework and solved by our algorithms.

While there has been a great deal of recent progress in online linear control, yielding algorithms
which can optimize over stabilizing linear policies even with general convex costs, adversarial dis-
turbances, and unknown dynamics (Agarwal et al., 2019a; Simchowitz et al., 2020; Cassel et al.,
2022; Minasyan et al., 2022), the required assumptions and regret benchmarks for these algorithms
do not always type-check with the settings we are interested in. For the examples we consider,
we will often wish to allow for nonlinear dynamics (e.g. encoding an agent’s utility function) and
explicitly bounded spaces (e.g. via projection into the simplex), and we will seek to compete with
regret benchmarks which correspond to stable responses by the agent. Unfortunately, as we show
in Proposition 4, the latter goal is incompatible with linear policies even under linear dynamics and
in the absence of any disturbances: the performance of every linear policy can be Q(7') worse than
the best policy in the class of affine “state-targeting” policies.

In contrast, the orthogonal set of assumptions we identify enables tractable regret minimization
even for nonlinear control problems and comports with the requirements of Stackelberg optimiza-
tion across a wide range of settings, including the ability to compete with state-targeting policies.
For convex and compact state and action spaces X and ), our first key assumption is that the dy-
namics D(z,y) : X x Y — Y satisfy a notion of local controllability. While local controllability is
well-studied for continuous-time and asymptotic control (Aoki, 1974; Kuhn and Wohltmann, 1989;
Barbero-Linan and Jakubczyk, 2013; Boscain et al., 2021), we are unaware of any prior applications
to finite-time online optimization, and we adapt existing definitions to be appropriate for this set-
ting. We say that D(z,y) is strongly locally controllable if every state in a fixed-radius ball around
y is reachable in a single round by an appropriate choice of z, and that D(x,y) is weakly locally
controllable if the reachable radius around y is allowed to vanish near the boundary of ). We also
assume that our loss f; in each round is determined (or well-approximated by) an adversarially-
chosen convex function depending only on the state ;.

When these conditions hold, we show in Theorem 5 that this is sufficient to obtain O(v/T) re-
gret with respect to the loss of the best fixed state, provided that dynamics are known and we have
offline access to an oracle for non-convex optimization; the oracle call can be removed if dynamics
are locally action-linear, i.e. given by (or locally well-approximated by) a function linear in x at
each fixed y. If adversarial disturbances to the dynamics are present, our approach can be extended
for both weakly (Theorem 8) and strongly (Theorem 9) locally controllable dynamics with addi-
tional regret scaling linearly in total disturbance magnitude, provided that each round’s disturbance
cannot be too large in the case of weak local controllability; we give lower bounds showing that
each dependence on disturbance magnitude is tight. The aforementioned results all extend to the
case where the dynamics (absent disturbances) are given by a known but time-dependent function
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Dy(z,y). If dynamics are unknown but time-invariant, and locally action-linear with appropriate
regularity parameters, we obtain sublinear regret provided that a “near-stabilizing” action is known
at t = 1. We additionally extend our approach to the bandit feedback setting, where we obtain
O(T3/ 4) regret. In Section 4 we show that each of the following, with appropriate assumptions, can
be cast as a locally controllable instance with state-only convex surrogate losses:

* Performative prediction: Minimize prediction loss E. ., fi(z¢, z) for a classifier x;, where
the distribution p; in each round is updated according to the prior classifier and distribution.

* Adaptive recommendations: Maximize the reward f;(i;) when showing menus K; C [n] of
size k < n to an agent, whose choice iy ~ p(K¢, v¢) in each round depends on preferences
which are influenced by choices in prior rounds (encoded in the “memory vector” vy).

 Adaptive pricing: Maximize profit (p;, ;) - ¢;(z¢) for selling bundles of goods x; to an
agent at prices p; and with costs c¢;, where the agent’s purchased bundle x; is a function of
their utility function, consumption rate, and existing reserves.

* Repeated gameplay: Maximize the reward x: Ay obtained from playing a sequence of
time-varying games (A, B;) against a no-regret learning agent.

In each case, application of our algorithms from Section 3 yields results which extend beyond the
applicability regimes of prior work, such as by enabling relaxation of previous assumptions or a
novel extension to adversarial or dynamic problem variants.

1.1. Related Work

Online control. Much of the recent progress in online control (Agarwal et al., 2019a,b; Cassel
etal., 2022; Minasyan et al., 2022) considers linear systems with general convex losses, benchmark-
ing against a class of (“strongly stable”) fast-mixing linear policies introduced for linear-quadratic
control (Cohen et al., 2018) by leveraging the framework of “OCO with memory” (Anava et al.,
2014). Results have also been shown for nonlinear policy classes via neural networks (Chen et al.,
2022), and for nonlinear dynamics with oracles in episodic settings (Kakade et al., 2020), via ap-
proximation with random Fourier features (Lale et al., 2021; Luo et al., 2022), via adaptive regret for
time-varying linear systems (Gradu et al., 2022; Minasyan et al., 2022), and via dynamic regret over
actions in terms of disturbance “attenuation” (Muthirayan and Khargonekar, 2022). For a further
overview of online control and its historical context, see Hazan and Singh (2022). In contrast to the
bulk of prior work in which states and actions are bounded implicitly via policy stability notions,
we consider state and action spaces which are bounded explicitly, as enabled by nonlinearity in dy-
namics (e.g. via projection, or range decay of dynamics near the boundary). These works also view
disturbances as intrinsic to the system, and account for their influence directly in regret benchmarks
(the “optimal policy” will face the same sequence of disturbances in hindsight, regardless of state).
Within the context of Stackelberg optimization where a fixed protocol largely determines an agent’s
strategy updates, we view the role of disturbances as more akin to adversarial corruptions as con-
sidered in reinforcement learning (Lykouris et al., 2021; Zhang et al., 2021); while we incur linear
dependence, our regret benchmarks are agnostic to alternate counterfactual disturbance sequences.
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Strategizing against learners. Initially formulated within the context of repeated auctions (Braver-
man et al., 2017), a recent line of work has considered the problem of optimizing long-run rewards
in a repeated game against a no-regret learner across a range of tabular and Bayesian settings (Deng
et al., 2019; Mansour et al., 2022; Brown et al., 2023; Zhang et al., 2023). While bounds on attain-
able reward have been known in terms of the Price of Anarchy (Blum et al., 2008; Hartline et al.,
2015b), this sequence of results has highlighted important connections with Stackelberg equilibria:
the Stackelberg value of the game is attainable on average against any no-regret learner, and it is the
maximum attainable value against many common no-regret algorithms (such as no-swap learners,
as shown by Deng et al. (2019)). This theme has emerged in other simultaneous learning settings as
well; notably, Zrnic et al. (2021b) show that long-run outcomes in strategic classification are shaped
by relative learning rates between parties, which can designate either as the Stackelberg leader.

Nested convex optimization. The technique of identifying convex structure nested inside a more
general problem has been applied broadly across a range of online optimization settings (Neu and
Olkhovskaya, 2021; Shen et al., 2023; Flokas et al., 2019). For repeated interaction problems in-
volving an agent with unknown utility, such as optimal pricing, Roth et al. (2015) identify utility
conditions under which the non-convex objective over prices becomes convex in the space of agent
actions, and where explorability properties resembling local controllability hold, which enables
convex optimization by locally learning agent preferences; this “revealed preferences” approach
has also been applied to strategic classification (Dong et al., 2018). In recent work concerning rec-
ommendations for agents with history-dependent preferences (Agarwal and Brown, 2022, 2023),
properties related to local controllability are leveraged to enable tractable optimization as well. We
consider each of these settings as applications in Section 4.

2. Model and Preliminaries

Let X and )Y be convex and compact subsets of Euclidean space, respectively denoting the action
and state spaces, where we assume dim(X’) > dim()). Further, we assume that )/ contains a ball
of radius r around the origin 0, and is contained in a ball of radius R around the origin.

An instance of our control problem consists of choosing a sequence of actions {z; € X'} over
T rounds, which will yield a sequence of states {y: € )}, and we will incur losses determined by
adversarially chosen functions {f;}. Let the initial state be yo = 0. In the basic version of our
problem, upon choosing each x; for rounds ¢ € [T'], we observe the state update to

Yt = D(IEt, yt71)7

where D : X x ) — ) is an arbitrary continuous function which we refer to as the dynamics of our
problem. We sometimes allow disturbances to the dynamics, where y; = D(x¢, yi—1) + wesq for
{w;} chosen adversarially. In some cases we allow time-varying dynamics D : X x Y x[T]| — Y,
where the dynamics in each round are denoted by Dy (¢, yr—1).

Here and in Section 3, we assume that our loss in round is given by f;(y;), where each f; is
a L-Lipschitz convex function revealed after playing x;; we relax these assumptions for some of
our applications in Section 4, e.g. to allow dependence on x; as well. We generally measure will
performance with respect to the best fixed state, and the regret for an algorithm A yielding {y;} is

T T
Regp(A) = Z felye) = minz fe(y).
t=1 Ve
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In Proposition 4, we relate this benchmark to the class of “state-targeting” policies, which can
sometimes be expressed by affine functions, and we compare their performance to linear policies.
Throughout, we use ||-|| to donate the Euclidean norm, and we let B.(y) = {7 : |ly — 9|l < €}
denote the norm ball of radius € around y. We let I1y,(-) denote Euclidean projection into the set );
u,, denotes the uniform distribution over n items, and A(n) denotes the probability simplex.

2.1. Locally Controllable Dynamics

A number of properties under the name “local controllability” have been considered for various
continuous-time and asymptotic control settings (Aoki, 1974; Kuhn and Wohltmann, 1989; Barbero-
Lifidn and Jakubczyk, 2013; Boscain et al., 2021), generally relating to the notion that all states in a
neighborhood around a given state are reachable. We give two formulations of local controllability
for our setting, which we take as properties of the dynamics D holding over all inputs.

Definition 1 (Weak Local Controllability) For p € (0, 1], an instance (X,Y, D) satisfies (weak)
p-local controllability if for any y € Y and y* € B,.x(y)(y), there is some x such that D(z,y) = y~,
where 7t(y) = mingepq(y) || — || is the distance from y to the boundary of Y.

Definition 2 (Strong Local Controllability) For p > 0, an instance (X,), D) satisfies strong p-
local controllability if for any y € Y and y* € B,(y) N Y, there is some x such that D(x,y) = y*.

We often refer to weak local controllability simply as local controllability. This property ensures
that there is always some action x; which results in the next state y; staying fixed at y;_1, as well as
some action which moves the state to any point in a surrounding ball; in the weak case, the size of
the reachable ball is allowed to decay as y; approaches the boundary of ). The parameter p controls
the speed at which we can navigate the state space: when p = 1 in the weak case (or p > R in the
strong case), we can always immediately reach some point on the boundary of ), yet for p close to
zero we may only be able to move in a small neighborhood. Our results use local controllability to
minimize regret over )/ by reduction to online convex optimization. As we prove in Appendix A,
up to a quantifier alternation which vanishes as p approaches 0, a property of this form is essentially
necessary: competing with the best state y is impossible if we cannot remain in its neighborhood.

Proposition 3 Suppose there is some y € Y and values o, f > 0 such that for all § € B, (y) and
x € X, D(x,9) ¢ Bg(9). Then, there are losses such that Regr(A) = Q(T') for any algorithm A.

2.2. States vs. Policies

While regret benchmarks in online control are typically expressed in terms of a reference class of
policies, we note that there is a class of “state-targeting” policies which track the reward of fixed
states (asymptotically, and up to the influence of disturbances), and which can be implemented if
D is known; we maintain the formulation in terms of fixed states for clarity with respect to our
motivations for Stackelberg optimization. Existing no-regret algorithms for online control typically
compete with linear policies, and choose actions each round by implementing policies which are
linear in multiple past states (as in e.g. Agarwal et al. (2019a)). Here, we show that all such poli-
cies can be arbitrarily suboptimal when compared to state-targeting policies, even for dynamics
which are linear up to projection and with fixed convex losses over states, as they may yield actions
and states which remain fixed at O in every round even if the optimal state is always immediately
accessible under the dynamics. We prove Proposition 4 in Appendix A.
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Proposition 4 For an instance (X,Y, D), let the class of state-targeting policies for Y CYbe
given by P5, = {Py : § € Y} where Py(y) = ArGMINg, v 15 et | D(z,y) — §||>. Define the
regret of a policy class P as

T T
Reg,(P) = = min (Z Je(ye) ) - g%l)f}l (Z ft(y)> ,
P =1

where y, is updated by playing P at each round. For any p-locally controllable instance, there is a
set Y C Y for which RegT(P ) = O(\/Tp~1). Further, for any class Px where each K € Py is
a matrix yielding actions vy = —Ky;_1, there is an instance where Reg(Px) > Q(T') for p = 1.

If dynamics are linear up to projection with D(z,yi—1) = Iy(By + Ax) for full-rank A, and
dim(X) = dim(Y), note that P;(y) = A~'(§ — By) implements any P; for sufficiently large X'

3. No-Regret Algorithms for Locally Controllable Dynamics

Here we give a sequence of no-regret algorithms satisfying a range of robustness properties. Our
primary algorithm NESTEDOCO, presented in Section 3.1, operates over known time-varying dy-
namics without disturbances and requires an offline non-convex optimization oracle, and we identify
conditions in Section 3.2 which remove the oracle requirement. In Section 3.3 we give two algo-
rithms, NESTEDOCO-BD and NESTEDOCO-UD, which allow adversarial disturbances to weakly
and strongly locally controllable dynamics, respectively. In Section 3.4 we extend NESTEDOCO to
accommodate unknown dynamics under appropriate regularity conditions (provided an initial “ap-
proximately stabilizing” action is known at ¢ = 1), and in Section 3.5 we give an algorithm which
obtains O(T%/*) regret under bandit feedback.

3.1. Nonlinear Control via Online Convex Optimization

When dynamics satisfy local controllability and y;— is not too close to bd()), all points y; in a
ball around y;_; are feasible with an appropriate x;; this enables execution of an online convex
optimization (OCQO) algorithm over ) by playing the action x; which yields a state update to the
target y; chosen at each iteration, computed via offline non-convex optimization. Here we assume
that D is known and can be queried for any inputs, and that disturbances to the state are not present.
We allow the dynamics to change over time, potentially as a function of previous actions x, and
losses fs for s < t, provided that D; can be determined in each round. We use Follow the Regular-
ized Leader (FTRL) as our OCO subroutine (Shalev-Shwartz and Singer, 2006; Abernethy et al.,
2008), yet we note that it may be substituted for any OCO algorithm whose per-round step size is
guaranteed to be sufficiently small (such as OGD with a constant learning rate); statements of the
FTRL algorithm and its key properties are provided in Appendix B. We instantiate FTRL over a
contracted space y C Y, calibrated to ensure that the minimum loss over )) is close to that for )/,
yet where each step of FTRL lies within the feasible region ensured by (weak) local controllability.

Theorem 5 For a p-locally controllable instance (X,), D) without disturbances and with D
known at each t, the regret of NESTEDOCO for convex L-Lipschitz losses f; : Y — R is at most

Reg,(NESTEDOCO) < 2L+/(1 4+ R(rp)~1)TG~~1

with respect to any state y* € Y, with I’ queries made to a non-convex optimization oracle.

The proof for Theorem 5 is given in Appendix C.
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Algorithm 1 Nested Online Convex Optimization (NESTEDOCO).
Let v : Y — R be y-strongly convex with argmin,t)(y) = 0 and max, ,/ [¢(y) — ¥ (y)| < G
Letn = (G~)Y2((1 + %)TL2)_1/2

Letjiz{y:ﬁyey}forézn%

Initialize FTRL to run for T rounds over ) with regularizer 1) and parameter 7
fort =1toT do
Let y* be the point chosen by FTRL
Use Oracle(y,_1,y*) to compute z; = argmin,, | Dy(z, y—1) — y*||
Play action x;
Observe y; and loss fi(y:), update FTRL
end for

3.2. Efficient Updates for Action-Linear Dynamics

While NESTEDOCO requires no assumptions on the dynamics beyond local controllability, there
are large classes of dynamics for which the oracle call can be removed. We say that dynamics are
action-linear if y, = D(x,y) is linear in x, for y, € int()’) (and arbitrary for y, € bd(})).

Proposition 6 For a p-locally controllable and action-linear instance (X,Y, D), the per-round
optimization problem for Oracle(y;—1,y*) in NESTEDOCO is convex.

Proof Fory =1y, 1 € Yy C int()), we have D(z,y) = A, - « + b, for some matrix A, and vector
by, and so we can solve x; = argmin, ¢y |4y - ¢ + by — y* |2 efficiently. [ |

The class of action-linear dynamics is quite general, owing to the flexibility permitted by nonlinear
parameterizations of (A, b,) in terms of y; in Appendix D, we show that local controllability holds
for multiple explicit families of instances when appropriate eigenvalue conditions are satisfied. We
can further relax this condition to accommodate dynamics where action-linearity holds only locally
in the neighborhood of stabilizing actions (i.e. actions z* where D(z*,y) = y).

Definition 7 (Locally Action-Linear Dynamics) An instance (D, X, )) is locally action-linear if,
forany y € int(Y), x* such that D(z*,y) = y, and x such that D(z,y) € int(Y), the dynamics
are given by D(x,y) = Ayx + by + qy(x), where A, is a matrix and by is a vector, both with
norms bounded by some absolute constant, where and q, : X — RAMO) g any function where
llgy(2)]| < C||Ay(x — 2*) Mt for some constants C, ¢ > 0.

By this condition, for any z in a sufficiently small neighborhood around x*, the deviation of
dynamics (and thus the resulting y;41) from action-linearity vanishes. Note that our algorithm
always chooses a target y; will always be near y;_1; as such, these deviations from non-action-
linearity can be modeled as disturbances with magnitude strictly less than our per-round step size
llyt+1 — ye|| (along with universal constant factors). The existence of an efficient implementation
follows as a straightforward corollary of Theorem 8 in Section 3.3, which extends NESTEDOCO to
accommodate bounded adversarial disturbances, as we can then select actions by disregarding the
influence of ¢, and only considering the local approximation D(z,y) = A,z + by, at each state y
(assuming that each decomposition between ¢, and the action-linear component is known).
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3.3. Adversarial Disturbances

Our algorithm NESTEDOCO can be extended to accommodate adversarial disturbances, where the
state is updated as y; = D(z¢,yi—1) + wy, with {w,} chosen adversarially. In the weak local
controllability case, we show a sharp threshold effect in terms of whether or not ||w,|| is allowed to
exceed the undisturbed distance from the boundary by a factor of ﬁpp: if disturbances are bounded
below this threshold, regret minimization remains feasible with a tight © (E') dependence on the total
disturbance magnitude, yet if disturbances may exceed this, no sublinear regret rate is attainable
even for a constant total disturbance magnitude. When p is small, an adversary can push us to the
boundary faster than we can “undo” past disturbances, causing our feasible range to decay.

Theorem 8 (Bounded Disturbances for Weak Local Controllability) For any p € (0,1], sup-
pose that a sequence of adversarial disturbances wy for a p-locally controllable instance (X,), D)
satisfies S"1_, |we|| < E and ||wy| < 5L - m (D(@e, ye-1)), for some o € R. If a > 0, there is
an algorithm NESTEDOCO-BD with regret for convex Lipschitz losses f; bounded by

Reg, (NESTEDOCO-BD) < O (W+ E) ,

and there is an instance where any algorithm A obtains Reg(A) = Q(E). If a < 0, there is an
instance such that any algorithm A obtains Regy(A) > Q (T') even when E = O(1).

The maximum disturbance bound can be removed when dynamics are strongly locally controllable,
as the ensured feasible range of the dynamics does not vanish at the boundary of the state space. For
such instances, we can minimize regret (with tight O(E - p~!) dependence) even if disturbances are
only implicitly bounded by the state space diameter (which is at least p, without loss of generality).

Theorem 9 (Unbounded Disturbances for Strong Local Controllability) For any p > 0 and
strongly p-locally controllable instance (X, Y, D) with disturbances w; satisfying ZtT:1 |lw]| < E,
there is an algorithm NESTEDOCO-UD with regret for convex Lipschitz losses f; bounded by

Reg(NESTEDOCO-UD) < O (\/T+ E. p_l) :

and there is an instance where any algorithm A obtains Reg,(A) > Q (E . pfl).

In each case, our lower bounds in terms of £ hold for the same constants obtained by our algorithms,
and our algorithms obtain the stated regret guarantees even when E' is not known in advance. We
present the algorithms and analysis for each theorem in Appendix E; both operate by tracking de-
viations from an idealized trajectory without disturbances, and calibrating parameters to preserve
sufficient reachability margin for applying corrections towards this trajectory in each round. The
lower bounds both proceed by considering an instance with a fixed target state y* and losses which
track the distance from y*, along with an adversary whose goal is to maximize this distance by
selecting disturbances which push the current state away from y*.

3.4. Unknown Dynamics

Up until this point, we have assumed that the dynamics D can be queried arbitrarily in each round.
While this has required minimal assumptions on D beyond local controllability, accommodation of
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unknown dynamics is often desired in online control (Cassel et al., 2022; Minasyan et al., 2022) and
for several of our applications (Roth et al., 2015; Agarwal and Brown, 2023). Here we give con-
ditions under which regret minimization can be implemented without advance knowledge of D by
an algorithm PROBINGOCO, which maintains continuously-updating local linear approximations
of D near y; across rounds. Crucially, we assume that D is time-invariant and locally action-linear
with sufficiently small Lipschitz parameters, and that for the initial state yy some near-stabilizing
action 1 is known, i.e. || D(21,0) — yo|| < €, for some € = o(\/T).

Theorem 10 For any p-locally controllable and time-invariant instance (D, X, ) which satisfies
local action-linearity and appropriate Lipschitz conditions, there is an algorithm PROBINGOCO
with Reg(PROBINGOCO) < O(\/T) for convex Lipschitz losses f; and unknown dynamics D,
provided that at t = 1 we are given some x1 such that | D(z1,v0) — vyo|| = o(~/T).

We state PROBINGOCO and prove Theorem 10 in Appendix F, along with additional details
on the regularity and near-stability assumptions. The crux of our analysis, beyond that from our
previous results, hinges on being able to maintain and update local linear approximations of D
throughout our optimization which are sufficiently accurate to allow us to discard the effects of
both learned representation errors and action non-linearity from g, (x) as bounded disturbances. We
implement each update from our nested regret minimization algorithm as a series of O(dim(X))
steps involving small near-orthogonal perturbations to our targets y;, which we then use to update
our local estimate for D.

3.5. Bandit Feedback

We can extend our approach from NESTEDOCO to accommodate bandit feedback for convex losses
by replacing FTRL with the FKM algorithm (Flaxman et al., 2004) and appropriately recalibrat-
ing parameters. FKM obtains O(T/4) regret, which is the best currently-known bound for bandit
convex optimization without additional assumptions (e.g. strong convexity), and we obtain an anal-
ogous bound here for nested optimization. We note that this extension to bandit feedback can again
be applied for any algorithm with a small per-round step-size bound, though this property does not
hold for algorithms which sample from larger sets to reduce variance of gradient estimators (e.g.
those from Abernethy et al. (2008); Hazan and Levy (2014)).

Theorem 11 For any p-locally controllable instance (D, X)), there is an oracle-efficient algo-
rithm NESTEDBCO with expected regret bounded by

Reg,(NESTEDBCO) = O (nRLT3/4(rp)_1>

for L-Lipschitz convex losses f; under bandit feedback.

We present the NESTEDBCO algorithm and prove Theorem 11 in Appendix G.

4. Applications for Online Stackelberg Optimization

We give several applications of our framework to online Stackelberg problems involving strategic or
adaptive agents, each cast as an instance of online control with nonlinear dynamics where local con-
trollability holds, and where our objectives are well-approximated by convex surrogate losses only
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over the state. Each application extends prior work by either allowing for more relaxed assump-
tions, unifying distinct problem instances, or giving a novel formulation to account for dynamic and
adversarial behavior; analysis and comparison to related work is contained in Appendices H-K.

4.1. Online Performative Prediction

Performative Prediction was introduced by Perdomo et al. (2020) to capture settings in which the
data distribution may shift as a function of the classifier itself. We consider the online formula-
tion of Performative Prediction introduced in Kumar et al. (2022) as an instance of online convex
optimization with unbounded memory, which we extend to accommodate a stateful variant of the
problem (as in Brown et al. (2022)) in which the update to the distribution is a function of both the
classifier and the current distribution itself. Let X C R™ denote our space of classifiers, and let pg
be the initial distribution over R™. When a classifier x; is deployed, the distribution is updated to

pt=(1—0)pr—1+0D(x¢,yt—1)

where D(xy,y) = A(xg, y4—1) + &, for a random variable £ € R™ with mean p and covariance X,
and with y; = A(xy, y:—1), where A satisfies p-local controllability for some p > 0 and appropriate
smoothness notions. We also assume there is some linear s : X — ) such that A(z,y) = s(x) if
y = s(x). We then receive loss f; (¢, pt) = E.p,[fi (21, 2)], where each f; is convex and Lipschitz.

This generalizes the model of Kumar et al. (2022), in which A(z,y) = A € R™™" is taken
to be a fixed matrix; there, p-local controllability is satisfied for some p > 0 provided that A is
nonsingular. Their aim is to compete with the best fixed classifier by running regret minimization
over X. Here we run NESTEDOCO over ), taken over the range of s, which allows us to compete
against the best fixed classifier as well by the properties of s; while the classifiers z; we play will
generally not result in stabilizing points of A, their excess loss compared to each s~*(y;) is bounded.

Theorem 12 (Regret Minimization for Performative Prediction) For any 0 > 0, the dynamics
for Online Performative Prediction are p-locally controllable, and NESTEDOCO obtains regret
O(\/T(p=! + 0=1)) with respect to the best fixed classifier.

4.2. Adaptive Recommendations

Online interactions with economic agents of various types are ubiquitous, and the resulting control
problems tend to be manifestly nonlinear; here we treat two diverse examples from this space.
The Adaptive Recommendations problem, as introduced by Agarwal and Brown (2022), is about
providing menu recommendations repeatedly to an agent, whose choice distribution is a function of
their past selections, while the controller’s reward in each round depends on adversarial losses over
the choice. In each round ¢ € [T'], we show the agent a (possibly randomized) menu K containing
k (out of n) items, and the agent’s instantaneous choice distribution conditioned on seeing K is
S4 (Ut—l) -
pelis Ky, v 1) = {ZjEKt s L E Ky
0 i¢ K

where each s; : A(n) — [\, 1] is the agent’s preference scoring function for item i, for some A > 0,
taking as input the agent’s memory vector v € A(n). The memory vector updates each round as

v = (1= 0)ve—1 + Oy,

10



ONLINE STACKELBERG OPTIMIZATION VIA NONLINEAR CONTROL

where 6; € [0,1] for > 0 is a possibly time-dependent update speed, and we receive loss f(p;),
where each f; is convex and L-Lipschitz. Note that the set of feasible choice distributions when
considering all menu distributions x; € A((Z)) depends on the memory vector v;. The regret
benchmark considered by Agarwal and Brown (2022) is the intersection of all such sets, denoted
the “everywhere instantaneously-realizable distribution” set EIRD = Nyeca IRD(v), where IRD(v)
is the “instantaneously realizable distribution” set for v, given as the convex hull of the choice
distributions p(K}) resulting from each menu K; € [(Z)] when v is the memory vector. It is shown
that the set is non-empty when ) is not too small, and algorithms which minimize regret with respect
to any distribution in EIRD are given in Agarwal and Brown (2022) and Agarwal and Brown (2023)
under varying assumptions regarding the scoring functions and update speed.

While the prior work considers a bandit version of the problem with unknown dynamics, here we
consider a full-feedback deterministic variant of the problem for simplicity, which further allows us
to circumvent barriers posed by uncertainty Agarwal and Brown (2022, 2023) and relax structural
assumptions (e.g. on ; or s;). We can cast this as an instance of our framework by taking X =
A((Z)) and )Y = EIRD, where D expresses updates to the memory vector. We assume vy = Uy,
and we reparameterize to run our algorithm over A(n). We optimize surrogate losses f; (v;), and
bound excess regret from f;(p;).

Theorem 13 (Regret Minimization over EIRD) For A > =L the dynamics for Adaptive Rec-

n—1°

ommendations over EIRD are 0-locally controllable, and NESTEDOCO obtains regret O(v/T0~1).

In Agarwal and Brown (2023), a property for scoring functions is considered which enables regret
minimization over a potentially much larger set of distributions than EIRD. A scoring function
si: A(n) — [%, 1] is said to be (o, \)-scale-bounded for o > 1 if, for all v € A(n), we have that

o (1= Nvi +A) < si(0) < o((1— Nv; + N).

The set considered is the ¢-smoothed simplex A®(n) = {(1 — ¢)v + ¢u, : v € A(n)}, for
¢ = O(kA\o?), where it is shown that IRD(v) contains a ball around v for v € A®(n). We take
Y = A?(n), which satisfies local controllability, and optimize over f;(v;) with NESTEDOCO.

Theorem 14 (Regret Minimization over A?(n)) For (o, \)-scale-bounded scoring functions s;,
for any X > 0 and o > 1, the dynamics for Adaptive Recommendations over A®(n) are Q(O\¢)-
locally controllable, and NESTEDOCO obtains regret O(/T (0 ¢)~1).

4.3. Adaptive Pricing

Here we consider an Adaptive Pricing problem for real-valued goods, formulated as a dynamic
extension of the setting of Roth et al. (2015) where purchase history and consumption affect demand.
In each round we set per-unit price vectors p; € R/, and an agent buys some bundle of goods
x¢ € R, which results in us obtaining a reward (pt, x¢) — ci(xy), where our production cost
function ¢; at each round is convex and L.-Lipschitz, and may be chosen adversarially.
Departing from Roth et al. (2015), we consider an agent who maintains goods reserves y;—1 €
2, and consumes an adversarially chosen fraction 6; € [0, 1] of every good’s reserve at each round
(for some 6 > 0). The agent then chooses a bundle x; to maximize their utility g(p¢, z¢,y:) =
v(y) — (pe, x¢), where y = (1 — 0;)ys—1 + x4 is their updated reserve bundle. We make several

11
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regularity assumptions on the agent’s valuation function v : Ry — R, all of which are satisfied by
several classically studied utility families (which we discuss in Appendix 4.3). Notably, we assume
that v is strictly concave and increasing, and homogeneous; the range is bounded under rationality.

Our aim will be to set prices which allow us to compete with the best stable reserve policy, e.g.
against any pricing policy where the agent maintains the same reserve bundle y; = y* at each round
for some y* regardless of #;. We take an appropriate convex set of such bundles as our state space,
for which we show that local controllability holds. Observe that to induce a purchase of x; = 0y;—1,
it suffices to set prices p; = Vu(y¢—1), as we then have that V, (v((1—60;)yi—1+x¢)— (p, 24)) = 0.
By homogeneity of v, we also have that (Vv(y:), 0iy:) = 0.k - v(y;) for some k, and we show that
optimization via the concave surrogate rewards

It (ye) = 0ik - v(ye) — ce(Orye)

will closely track our true rewards f;(ps,x¢) = (pt, x1) — ¢i(x). While neither our true nor sur-
rogate rewards will be Lipschitz, we extend NESTEDOCO to obtain sublinear regret over Holder
continuous losses by appropriately calibrating our step size (which may be of independent interest).

Theorem 15 (Regret Minimization over Stable Reserve Policies) For any 6 > 0, the dynamics
for Adaptive Pricing can are 0-locally controllable, and NESTEDOCO obtains regret o(T0~1) with
respect to the best stable reserve policy.

4.4. Steering Learners in Online Games

A recent line of work (Deng et al., 2019; Mansour et al., 2022; Brown et al., 2023) explores maxi-
mizing rewards in a repeated game against a no-regret learner, and Anagnostides et al. (2023) study
of no-regret dynamics in time-varying games. We consider these questions in unison, and aim to
optimize reward against a no-regret learner for game matrices chosen adversarially and online.

Consider adversarial sequences of two-player m x n bimatrix games (A, B;), where m > n;
we assume that the convex hull of the rows of each B; contains the unit ball. As Player A, we
choose strategies x; € A(m) each round to maximize our reward against Player B, who chooses
their strategies y; € A(n) according to a no-regret algorithm (in particular, online projected gradient
descent). The game (A, By) is only revealed after both players have chosen strategies for round ¢.
Our aim here is to illustrate the feasibility of steering the opponent’s trajectory, and so we consider
games where Player A’s reward is predominantly a function only of Player B’s actions. We assume
that |z A; — zA}|| < 0, for any = € A(m), where each A} is a matrix with identical rows, and that
per-round changes to B; are bounded, with ||xB; — B;_1|| < ¢ for any x € A(m). We measure
the regret of an algorithm A with respect to any profile (z,y) € A(m) x A(n), where

T
Regr(A) = max TAy — T Ay
grl4) (x,y)emm)m(n); W

When Player B plays OGD with step size § = O(T -1/ 2), their strategy updates each round as
Y1 = Hag) (vt + 0(2By))

with y; = u,, and yields regret O(v/T) for Player B with respect to any y € A(n) for the loss
sequence {z¢B; : t € [T]}. To cast this in our framework, we consider A(n) = ) as our state

12
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space, where we select actions x;_1 to induce desired updates to y; and optimize over the surrogate
losses {u, Ay, : t € [T]}. While we do not see B; prior to choosing each z;, we view our update
errors from instead selecting an action in terms of the dynamics resulting from B,;_; as adversarial
disturbances and run NESTEDOCO-UD, as the dynamics are strongly locally controllable.

Theorem 16 (Regret Minimization in Online Games) Forf = @(T‘l/ 2), repeated play against
OGD in online m x n games can be cast as a 0-strongly locally controllable instance of online
control with nonlinear dynamics, for which NESTEDOCO-UD obtains regret O(VT+Y ", (5 +€t)).
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Appendix A. Omitted Proofs for Section 2

Proof of Proposition 3. Without loss of generality, assume «« < (/2 and that T is even. Let
ft = |ly+ — y|| for each ¢t. Consider any round ¢ where y;_1 € B,(y); then, for all actions x;, we
have that y; ¢ B, (y), as Ba(y) C Bg(y¢—1); as such, we incur loss f;(y;) > o in round t. Now
suppose y;—1 ¢ Ba(y); then, we must have incurred loss at least f;—1(y;—1) > « in round t — 1.
As losses are non-negative, our total loss is at least «7'/2, as loss « is incurred at least every other
round; given that the best fixed state y* = y incurs total loss 0, we have that Reg 4(T") = Q(T") for
any algorithm A. [ |

Proof of Proposition 4. We begin by observing that for instances (X', ), D), the class of state-
targeting policies contains a policy which obtains the reward of the best fixed state up to O (/T p~1),
for sufficiently large 7. Consider the set ) = {y* € Y : w(y*) > (T'p)~*/2}. Note that the reward
of any y € ) is matched by some y* € y up to O(y/Tp~1) for any fixed inner radius r, outer
radius R, and Lipschitz constant L. For any such y*, note that under the policy P« when starting
at yo = 0, the distance between y; and y* in each round ¢ is updated to at most:

lye — || < max (0, p - 7 (ye-1)) -

It is straightforward to see that j/ is convex, and so our state y; will never leave j) on its path to y*;
as such, we reach y* within O (/7T p~1) rounds, after which point our reward exactly tracks that of
y*. For some y* € Y, this yields a regret for Py of at most O(1/T'p~!) to the best fixed state in ).

Next, consider an instance where X' and ) are both the unit ball in R". With yo = 0, let the
dynamics be given by

yr =y (yr—1 + x¢) -

Observe that this satisfies p-local controllability for any p < 1, as a ball of radius m(y;_1) is always
feasible around ;. Let each loss f; = ||y — pHZ, for some p # 0. Immediately we can see that
any matrix policy K € Py has regret Q(T), as the action x; = 0 will be played in each round. W

Appendix B. Follow the Regularized Leader

Here we state the FTRL algorithm and several of its key properties; see e.g. Hazan (2021) for proofs
of Propositions 17 and 18.

Algorithm 2 Follow the Regularized Leader (FTRL)
Choose a time horizon 7', step size 7, and ~-strongly convex regularizer ¢ : J — R
Let y; = argmin, ¢y, ¥(y)
fort =1toT do
Play y; and observe loss f;(y)
Set Vi = V fi(yr)
Set yy41 = argmin,cy, (- >0y VIy +¢(y))
end for
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Proposition 17 For a y-strongly convex regularizer 1) : Y — R where [ (y) — ¢ (y')| < G for all
y,y' € Y, and for convex L-Lipschitz losses f1,..., fr, the regret of FTRL is bounded by
TL? @G
Reg,(FTRL) < n—mm + —.
Y n

Proposition 18 Any pair of points y; and y,+1 chosen by FTRL satisfies ||yi+1 — ye]| < 77%.

Appendix C. Analysis for NESTEDOCO

Proof of Theorem 5. First we show that any point chosen by FTRL will be feasible under local
controllability, by induction. It is straightforward to see that Y is convex and ) C ; further, any
y € ) is bounded away from bd (). By the definition of ), we have that y = (1 — )y’ for some
y' € Y. Recall that B,.(0) C ), and note that Bs,(y) = {y + 03 : § € B-(0)}. Let ¥ be any point
in B,.(0). By convexity of )V, we then have that any point (1 — 0)y’ + dy” lies in ), and so for any
y € ) we have that B,s(y) € Y. Each y;_1 lies in ), and so we have that m(yi—1) > rd; as such,
any point y; in Brsp(yi—1) € Bp.r(y,_,)(yi—1) is feasible. Given that n% < rdp, by Proposition 18
we have that y; € B,.5,(y¢—1) in each round for the chosen point. Each action will be selected by
solving for
argmin || D(z, yi—1) — Z/*H2
TEX

via a call to Oracle(y;—1,y"). Each call is guaranteed to have a solution which achieves an
objective of 0 where D(x4,y:—1) = y* for some y* € B,,.r(,,_,)(y:—1) by local controllability,
yielding an exact state update to y; = y* as we assume Oracle can solve arbitrary non-convex
minimization problems. To bound the regret, first note that for any y* € )/, we have

T > o I
SRl <0+ S e ST -
t=1 v n t=1

by Proposition 17, as (1 — §)y* € Y for any y* € V. Then, observe that for any y* € ), we have
that

(fe(y™) + Loy )

Mq

T
PRACEN)
t=1

t=1

(fi(y*) + OLR).

Mq

t=1

Combining the previous claims, we have that
TL* G
thyt y*) <OTLR + 1 T+E

R\ TL? G
ro) n

1+ 5rGr?
Y
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upon setting § = n% and n = /(Hgﬁ, which yields the theorem. |
Tp

Appendix D. Examples and Analysis for Action-Linear Dynamics

As a simple yet general example of dynamics which are both action-linear and locally controllable,
consider update rules in which a step is taken by applying a nonsingular matrix transformation to the
action, where the matrix can be parameterized by the state, with projection back into ) if necessary.

Example 1 Let both X and Y be given by the unit ball 31(0) in R"™. For any fixed y, let the updates
from D(x,y) be given by

D(z,y) =1y (y+Ay'$)a

where each A, is a square matrix with minimum absolute eigenvalue |\, (Ay)| > 7 (y) - p for some
p > 0. Then, the instance (X,Y, D) is action-linear and satisfies p-local controllability.

Proof for Example 1. It is straightforward to see that D(z,y) is action-linear. To show p-local
controllability, let y* be any point in Bz, (y). It suffices to show that there is some z* € X
such that A, - 2* = y* — y. As A, is non-singular, we can solve for 2* = Ay_l(y* — y), where
ly* —yll < p-7(y)and A1 (A1) < p_%(y), and so we have that z* € B1(0) = X. [ |
We can also extend this to include state-parameterized generalizations of any linear system governed
by nonsingular matrices over a bounded-radius state space (for a sufficiently large action space).

Example 2 Ler ) be given by the radius-R ball Br(0) in R", and let X = B.r(0). For any fixed
y, let the updates from D(x,y) be given by

D($ay):H)’(Kyy+Ayw)a

where both K, and A, are square matrices. For any y, let M, = K, — I, and suppose we take
c large enough such that c - |\p(Ay)| > M (My)| + 7 (y) - p for some p > 0. Then, the instance
(X,Y, D) is action-linear and satisfies p-local controllability.

Proof for Example 2. Here, again it is evident that D(x,y) is action-linear, and so it suffices to
show that there is some z* € & such that

Ky -y+Ay-2"=y+M,-y+ A, z*
= y*
for any ™ in B,,.x(,) (). As in the proof for Example 1, we have that || M,, - y|| < R-|\1(My)], and
for large enough c there is some z* such that A, - z* = g for any g where ||7|| < R - |\ (My)| +

7(y) - p. Thus, any point y* € Bz, (1, )|+ (y)-p (¥ + My -y) is feasible by some x*, which contains
the ball By (,.,(y)- [ |
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Appendix E. Algorithms for Adversarial Disturbances
E.1. NESTEDOCO-BD and Proofs for Theorem 8

We show that it is possible simulate NESTEDOCO over the undisturbed states ; under the assump-
tion that the dynamics are in ap-locally controllable for some @ € (0, 1) while retaining sufficient
range in the feasible region around y; to correct for the disturbance w;_; from the previous round.
Here, the oracle call for computing x; in each round is updated to consider the true state y;_1.

Algorithm 3 NESTEDOCO with Adversarial Disturbances (NESTEDOCO-BD).
Initialize NESTEDOCO for T rounds over (X, ), D) for ap-locally controllable dynamics
fort =1to T do
Let ¢, be the target state chosen by NESTEDOCO
Use Oracle(y;_1, ) to compute z; = argmin, ey | D(z, yi—1) — J¢||”
Play action x;.
Observe disturbed state y; = §; + w; and loss f;(y¢).
Update NESTEDOCO with state ¢, and loss f;(7:).
end for

Theorem 8 follows directly from Theorems 19, 20, and 21. Intuitively, when the per-round
disturbance magnitude is at most %O‘pp -7 (D(x¢,94—1)), one can calibrate NESTEDOCO for the
case of ap-locally controllable dynamics and maintain sufficient “slack” to correct for the previous
round’s disturbance in every round. When disturbances exceed ﬁ - (D(zt,yi—1)), an adversary
can continually push the state towards the boundary of )/, which may require vanishing disturbance
magnitude as rounds progress due to the limited range promised by local controllability near the

boundary.

Theorem 19 For a p-locally controllable instance (X,)), D) with convex losses f; : Y — R and

adversarial disturbances wy where ||w|| < 2758 - m (D (¢, yi—1)) and SL |Jwe|| < E, the regret

of NESTEDOCO-BD with respect to the reward of any state is bounded by

mgﬂNmﬂmOCOBD)§O< T-mm—L+E)
with T queries made to an oracle for non-convex optimization.

Proof We show by induction that each call to Oracle(y;—1, 9;) yields a feasible action z; satisfy-
ing 9y = D(x¢,y¢—1). This is immediate for ¢ = 1, and suppose this holds up to some round ¢ — 1,
where we have that ;1 = ;—1 + w—1. Given that NESTEDOCO selects actions under ap-local
controllability, we can bound

|0 — g1l < ap - 7(Gp—1)-

Further, the magnitude of the disturbance w;_; is bounded by

p—ap .
|lwe—1] < 15, (Y1),
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yielding that
N0: — ye—1ll < |9¢ — Ge—1 — we—1]|

p—ap . R
< [ ap+ T Ye—1). 1 = W1 + Yp—
_<,0 1+p> (9t—1) (Ye—1 i1+ Ji—1)

As such, we have that

and so by p-local controllability some feasible action z; exists, as g lies in B.r(,,_,). The re-
gret bound for NESTEDOCO holds over the states #;, and so we can bound the total regret of
NESTEDOCO-BD with respect to any y* € Y as:

T T
D Fely) = fily*) < Y Fi@0) — Fe (") + Lllye — e
=1 t=1

IN

T
Regy(OEN-FTRL) + L ||w| (Thm. 5)
t=1

<2

1+ -BYTGL2
\/( mﬂ) + LE.

~
|

We show that the dependence on F is tight up to the constant. Note that we we can obtain regret
O(\/T - (ap)~1) + LE in the following instance via NESTEDOCO-BD.

Theorem 20 (Regret Lower Bound for Bounded Disturbances) Suppose for any o > 0 and p €

(0, 1] an adversary can choose wy with ||wy|| < 558 - m (D(xt, ye—1)), where ST we|| = E for
any E. There is a p-locally controllable instance (X,)), D) with L-Lipschitz convex losses f; such

that any algorithm A obtains regret Reg(A) > max(LE, pljro;)p TL).

Proof Consider any norm ||| over R". Let ) be the unit ball B;(0), and let each fi(y:) = L ||y¢]|.
Consider any action space X and dynamics D where p-local controllability exactly characterizes
the range of D, i.e. for any y and %/, there is some z such that D(x,y) = ¢’ if and only if ¢/ €
Bp~7r(y) (.f, y)

First, note that 7(y) = 1 — ||y|| for any y € V. In each round ¢ , suppose an algorithm plays an
action x; at state y,—; which yields an target undisturbed update § = D(x¢,y;—1). The adversary

can then choose any wy satisfying ||w;|| < pljrapp (1 —||9¢||); suppose each wy is given by

= L )
15
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if ¢ is non-zero, and an arbitrary vector w; with ||w| = pff‘pp if j; = 0. This satisfies the

disturbance norm bound, and further yields y; = ¢; + w;, where for non-zero {j we have

Ty (L 119l
A 1
Ye =Yt - <1 + =

[

and thus for any g,

N pP—ap N
> + (1 —
el = 1gell + =~ s (1= 1lll)
S P=ap
=1+,
yielding a loss fi(y;) > L - pl_f;p at a disturbance cost of |Jw;|| = pl_f;” (1 — ||9¢]]). Assuming the

adversary continues this strategy in each round until any disturbance budget £ = ZZ;I |lwy| is
exhausted, this yields a regret for any algorithm of at least

: p—ap
Reg(A) > LE, TL),
egr(A) > mln( T+ )

as y* = 0 obtains total loss 0. |

The disturbance upper bound is indeed necessary for p-locally controllable dynamics. We show a
sharp threshold effect at ﬁpp - m(D(x¢,y1—1)), wherein an adversary who is allowed to exceed this
limit by any amount can force an algorithm to incur linear regret even with only a constant budget.

Note that for any p € (0,1] and o < 0, there is some 3 € [0, 1) such that 5778 > -5

Theorem 21 Suppose an adversary can choose any state disturbances w; with ||w| < Tpﬁp :
7w (D(x¢,y1—1)), for any p € (0,1] and any B € [0,1). Then, there is a p-locally controllable
instance (X,Y, D) with convex losses f; such that any algorithm A obtains regret Regp(A) =
O(T) even if Yy [lwrll = O(1)

Proof Consider any instance (X, ), D) where p-local controllability exactly characterizes the range
of D, i.e. for any y and ¢/, there is some x such that D(x,y) = 3 if and only if y/' € B, (y)(x, ).

Let d; = 7(y;) for each round. Beginning at any round ¢, suppose the adversary observes an
action z; which yields an update g = D(xt, yt—1). Let 2 = argmingcpq(y) [|y — 3¢/, and suppose
the adversary chooses the disturbance:

wy = argmin |9t + we — 2| -
wi||wl|< 75, -7 ()

This forces y; closer to the boundary at each round, regardless of the choice of x;:

dy = (1— H’)ﬁp) -7 (G)
2

< (1 +p— 1 fﬁp 1 Jﬁﬂp) di—1 (m(gt) < (1 + p)di—1)

- 1+ﬁp+ﬂp2—p2dt )
B 1+ Bp -

(1-p)p°
< (1 - 1+5P> dt—17
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where 7(9:) < (1+ p)d;—1 holds by our assumption on D(z, y). Assuming the adversary applies a
disturbance w; selected as above in each round ¢ < T", we have that

e (1-055) o

where the magnitude of each disturbance is bounded by

p+p?
< d
HWH—1+ﬁpt1
_ 2\ t—1
§p+p O_ﬁl @p> - do,
1+ Bp 1+ 08p

where we take the initial state distance to the boundary dy = (1) to be a constant bounded away
from zero. This yields that the sum of disturbance magnitudes £ = Zthl |lwe|| is at most:

d p+ P B\
<d —
>l < dof Z( £57)

AT
=0 0By
=0(1).

Now suppose that the loss at each round is given by f;(y:) = |ly+ — yo||- Then, our regret with
respect to g is at least:

T
Z — filyo) < > do—ds

t=1
1— (11*5[3)1’2
_ +Bp
Sdo | T (1-p)p?
14+B8p
1+6p)
<dg T —
0( (1—8)p?

Together, the previous three theorems yield Theorem 8.

E.2. NESTEDOCO-UD and Proofs for Theorem 9

We can remove the bound on the maximum disturbance for strongly locally controllable instances,
as the feasible update sets do not vanish at the boundary of ). Recall that an instance (X', ), D)
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satisfies strong p-local controllability for p > 0if, for any y € Y and y* € B,(y) N Y, there is some
x such that D(z,y) = y*. We assume without loss of generality that p < 2R, where R is the radius
of V.

Intuitively, our algorithm tracks the target state which would be chosen by FTRL in the absence
of all disturbances (by recording the loss counterfactual loss rather than the one truly experienced),
and always seeks to minimize distance to that state.

Algorithm 4 NESTEDOCO with Unbounded Disturbances (NESTEDOCO-UD).

Initialize FTRL for 7' rounds over ) with step size n = 4/ %
fort =1to T do
Let ¢, be the target state chosen by FTRL.
Use Oracle(y;_1, ) to compute z; = argmin,cy | D(z, yi—1) — 9.
Play action x4.
Observe disturbed state y; = D(x¢, y¢—1) + wy and loss fi(y:).
Update FTRL with state 3; and loss f;(7).
end for

Theorem 22 For a strongly p-locally controllable instance (X ,Y, D) with convex losses fi 1 ) —
R and adversarial disturbances w; where Zthl |lwe|| < E, the regret of NESTEDOCO-UD is
bounded by

Reg;(NESTEDOCO-UD) < O (\/T+ E. p_1>

with respect to the reward of any state, with 'T' queries made to an oracle for non-convex optimiza-
tion.

Proof We begin by bounding the total state error S_¢_, ||y — || across rounds. First, note that
for any fixed p > 0, and any desired a € (0, 1), we have that 77% < pa for sufficiently large 7', as

n% = %; we assume this holds for any given choice of «, and so we have that ||J;41 — §¢]| <
pa by Proposition 18. For a total disturbance budget E, we separately consider disturbances w;
depending on whether or not the accumulated disturbance error up to wy is driven to O in the next

round. Define W and W_ as:

Wy = {w : D(w4p1,9t) # U1}

and

W_ ={we : D(@e41,9t) = Gey1}
with By = 3 cw, lwell and E_ = 37, oy [lwel|. First, observe that at each round ¢ corre-
sponding to w; € W_, given that ||J;+1 — y¢|| < p we have that ||we|| = ||y: — 9| < (1 + «)p, as

|9t+1 — Ut|| < ap. As such, we have that

Yo felw) = fo@) < D Lllye— il

tweW_ tiweeW_
(1+a)LE_.

IN
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Next, consider any wy € W,.. As our instance is strongly p-locally controllable, we must have that
l9t+1 — ye|]| > p, as otherwise there would some feasible action x;11 which would be selected that
would yield wy € W_. Since ||gr+1 — 9t]] < ap, it then must be the case that ||w;|| = |lyr — G| >
(1 — a)p, and so we can bound the number of disturbances in W as:

Ey
(1—a)p

Assuming a maximal distance ||y — y¢|| = 2R for each round ¢ corresponding to some w; € W,
this yields

(Wil <

Z felye) = fi(g) < Z Llye — 4l

tiw €Wy trwe €Wy

2LRE,
T (A-a)p

We can assume « is small enough to yield % > (14 a)- (1 - «), and so we have

L 9LRE
2 il = fuldn) < 750

The regret bound for FTRL holds over the states ¢;, and so we can bound the total regret of
NESTEDOCO-BD with respect to any y* € ) as:

th Yt) th gt) +th ye) — fe(dr)

T L2 G 2LRE

<n—+ -+ —- (Prop. 17)
v oon (I-a)
TGL? 2LRE
<2 + .
gl (1—a)p
|

Theorem 23 (Regret Lower Bound for Unbounded Disturbances) Suppose an adversary can
choose any state disturbances w; with Z?:l |we|| = E. Forany p € (0,1), there is a strongly
p-locally controllable instance (X,Y, D) with convex losses fi such that any algorithm A obtains
regret Regp(A) = min(zL,f'E ,2T'LR).

Proof Let) = [—R, R] for any R > 0 and let f;(y;) = —Ly; + LR for each y. Suppose strong
p-local controllability exactly characterizes the range of D, i.e. for any y,7’ € ) there is some x
such that D(z,y) = ¢’ if and only if |y — 3’| < p. Consider an adversary who chooses disturbances
wy in each round such that y; = — R until their disturbance budget F is exhausted. This requires a
disturbance of magnitude at most I? + p for wy, as we assume yp = 0, and at most p in subsequent
rounds, and thus the adversary can force any algorithm to remain at iy = —R for (E — R)p~*
rounds.
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As such, any algorithm must incur loss of at least 2LR(E — R)p~! across these rounds, and
further must incur average loss LR over the subsequent 2Rp~! rounds (if T is not yet reached), for
an additional loss of 2LR?p~!, as they can only decrease per-round loss by Lp given the restriction
on the range of D. As the optimal state y* = R obtains loss 0, the total regret is at least:

2LRE

gft(yt) — fi(y*) = min < ,2TLR> .

Together, the previous two theorems yield Theorem 9. Note that for both algorithms it remains com-
putationally efficient to optimize over action-linear dynamics, as the constraint that D(z,y:—1) € Y
can be encoded as a convex contraint over X'.

Appendix F. Unknown Dynamics: Analysis for PROBINGOCO

Algorithm 5 Probing Online Convex Optimization (PROBINGOCO).

Let n = dim(X), let yo = 0, and let 1 € X such that || D(x1, 1) — yo|| < € = o(V/T)
Initialize NESTEDOCO-BD to run over ) for T'/(2n + 1) rounds
Run ESTIMATE for 2n + 1 rounds:
Play x;
fori =1tondo

Play z1 + € - ¢;

Play x1 —€-¢;
end for
Solve for estimates (Ay, By) which are consistent with with the previous 2n 4 1 observed state
updates, up to error O(e)
fort =2n+1to7T do

Lett* =1

Using (A, b,), target y = y;-

Let y* be the next point chosen by NESTEDOCO-BD

for: =1tondo

Using (fly, 5y), target y = yu + %(y* —yp)te-e;
Using (A, by), target y = y; + g—é(y* —Yp) —€- €

end for

Update estimates (fly, l;y), solving for values which are consistent with the previous 2n + 1

observed state updates, up to error O(e)
end for

Proof of Theorem 10 Assume the following hold for D(z,y) at each y:
* D(z,y) = Ay, - x+ by +y+ qy(x), for a function ¢, : X — R";

» A, has a largest absolute eigenvalue bounded by an absolute constant, smallest absolute
eigenvalue bounded away from 0, and is L,-Lipschitz in the matrix {5 norm;
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* by has a norm bounded by an absolute constant, and is L g-Lipschitz;
* llgy(z)|| < € for any x such that |4, - = + b, — y|| = O(VT).

In the neighborhood of any y*, observe that playing x = A, L(y* — y — by) yields an update to
y* 4+ w,, where the error term w, has magnitude bounded linearly in terms of the neighborhood size
as well as polynomial in the relevant constants. We assume sufficiently small values of €, L, and
L s (whose relative bounds may trade off with each other, and in general will be inverse-polynomial
in problem parameters other than 7') to bound the error of this process in accordance with the
requirements of Theorem 8, as well as to ensure that estimation error for (fly, l;y) is uniformly
bounded for all ¢t < T'. Given € = 0(\/T ), this yields estimation error terms w; < C VT in each
round, for small enough C to obtain the obtain the desired regret bound. |

Appendix G. Bandit Feedback: Analysis for NESTEDBCO

We first state the FKM algorithm and its bounds for regret and per-round step size.

Algorithm 6 FKM (Flaxman et al., 2004)
Input: decision set X containing 0, set v; = 0, parameters 7, 5.
Let v; € int(K) such that VR (vy) = 0,
fort =1toT do ~
Draw u; € S uniformly, set y; = vy + Juy
Play y;, observe loss fi(y;), set gy = %ft(yt)ut
Update viy1 = i [vr — nge], where K5 = {(1 — S :ve K}
end for

Proposition 24 (Flaxman et al. (2004)) For L-Lipschitz convex losses and a domain K with di-
ameter 2R which contains a ball of radius r around the origin, FKM obtains expected regret

n?  4R*> 8SRLT
Regr(FKM) < UET + ) T

with each point y; contained in K. Further, each pair of consecutive points yi, yi+1 chosen by FKM
satisfies ||yi+1 — el < 20 + W%L-

The NESTEDBCO algorithm is essentially equivalent to NESTEDOCO, replacing FTRL with
FKM and recalibrating parameters.
Proof of Theorem 11. Following the proof of Theorem 5, to apply the bound of FKM to our setting
(along with excess regret at most § LR per round from contracting ) to 5)), the key step is to show
that each point selected by FKM is feasible under weakly locally controllable dynamics over D, ie.
lyee1r — yel| < 70p. Let § = ﬁ = rdp/4, and let n = W. Assume for simplicity that
r <1and T1/4 > % When instantiating FKM over )N/ with parameters 1 and 5, by Proposition 24
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Algorithm 7 Nested Bandit Convex Optimization (NESTEDBCO).
Let ) = ﬁ =rip/4,letn =
LetY ={y: ﬁyey}
Initialize FKM to run for T rounds over ) with parameters 7, 6
fort =1toT do

Let y* be the point chosen by FKM
Use Oracle(y;—1,y*) to compute x; = argmin,, || Dy(z, yi—1) — y*H2
Play action x

Observe y; and loss f;(y:), update SCRIBLE
end for

__ R
2nrLT3/4

we then have

~ nlL
lyes1 — el < 20 + 775

R nL
<rdp/2 — | —
<rdp/ +<2anT3/4) 5
<rép/2+6/2
< rdp,

and so each selected point is feasible. This allows us to bound our regret by

Reg(NESTEDBCO) = Reg,(FKM) + LRT
n?  AR? 8SLRT

=n—T+ — SLRT
= + 2 + +
16n° 4R? <
= 52p2T + o +20pLRT + 6LRT (6 =r16p/4)
4R? 12LRT3/*
< 16nn*T%% + T 6= <1
16nLRT%/* 12LRT3/* R
< + n=5—=m)
r rp 2nr LT

=0 <nRLT3/4(rp)71) .

Appendix H. Background and Proofs for Section 4.1: Performative Prediction
H.1. Background

Introduced by Perdomo et al. (2020), the Performative Prediction problem captures settings in which
the data distribution for which a classifier is deployed may shift as a function of the classifier itself,
notably including strategic classification Hardt et al. (2015) as well as problems related to rein-
forcement learning and causal inference. While a number of extensions of strategic classification to
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online settings have been considered Dong et al. (2018); Zrnic et al. (2021b); Ahmadi et al. (2023),
the bulk of the literature on performative prediction considers settings with a fixed loss function and
distribution “update map” Perdomo et al. (2020); Miller et al. (2021); Jagadeesan et al. (2022b);
Mendler-Diinner et al. (2020); Piliouras and Yu (2022); Brown et al. (2022), where the update map
may sometimes depend on the current distribution (as in the Stateful Performative Prediction set-
ting of Brown et al. (2022)). For the location-scale family of update maps introduced by Miller
et al. (2021) (and additionally explored by Jagadeesan et al. (2022b) from a regret minimization
perspective), which yields a convex “performative risk” objective function, a formulation of Online
Performative Prediction is given by Kumar et al. (2022) as an application of online convex opti-
mization with unbounded memory, in which the classification loss function may change over time
and the distribution updates may occur gradually.

Here, we generalize the problem formulation of Kumar et al. (2022) to also accommodate no-
tions of statefulness similar to that in Brown et al. (2022). In particular, the instances we con-
sider will resemble location-scale maps when restricting attention only the performatively stable
classifiers for each distribution, yet the update effect of a non-stable classifier may be distribution-
dependent and nonlinear, provided that the update map satisfies local controllability (viewing clas-
sifiers as actions and distributions as states) and mild regularity properties (e.g. invertibility and
Lipschitz conditions).

H.2. Model

In the setting of Online Performative Prediction we consider, as formulated by Kumar et al. (2022),
in each round ¢ € [T'] we deploy some classifier z;, and observe samples from some distribution p;,
which may change dynamically as a function of the history of interactions. Here, we take X C R™
as our space of classifiers, e.g. representing weight vectors for regression, which we assume is
bounded and convex. The initial data distribution is given by some distribution pg over R™. In each
round, upon deploying a classifier z¢, the distribution is updated according to

pr=(1—=0)pi—1 +0D(xt,y1—1),

for § € (0, 1], where D(x¢, y;—1) is the distribution update map taking as input our classifier x; and
some representation of the state y € ), where we assume ) C R" is convex, contains B,.(0), is
bounded with radius R, and that yo = 0. We make the following assumptions on D.

Assumption 1 We assume the distribution update map D(x,y) operates as follows:
* D(z,y) = A(z,y) + & withA: X x)Y = ),
* & is a random variable in R™ with mean . and covariance ¥,
o A(xz,y) satisfies p-local controllability and has an inverse action mapping X (y, y*) where
AX(y.y"),9) =y,
defined over feasible pairs, which is L-Lipschitz in y (when feasibility of y* holds), and
o There is a linear invertible function s : X — Y such that A(x,y) = s(x) if y = s(x), where

s~1:Y — X is S-Lipschitz.
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Further, A(x,y) is known and £ can be sampled freely.

The inverse action mapping assumption simply enforces that classifiers need not change drastically
to have the same update effect under small changes to the state. The final assumption imposes a lin-
ear structure over performatively stable classifiers (i.e. classifiers for which the resulting distribution
will remain fixed under D, as formulated by Perdomo et al. (2020)), but we note that the distribu-
tion may update in an arbitrarily nonlinear fashion (subject to the other conditions) when z; is not
a performatively stable classifier for the distribution induced by the previous state y;_1. The ability
to accommodate a state component is reminiscent of prior work involving notions of statefulness in
performative prediction such as Brown et al. (2022). Our setting generalizes that of Kumar et al.
(2022), in which the map A is taken to be a fixed matrix. For any nonsingular matrix A there is im-
mediately a linear map s(z) = A~ 'z, and local controllability can be defined in terms of the largest
and smallest absolute eigenvalues of A (as a special case of our Example 1 with a fixed matrix). We
view the nonsingularity assumption (and invertibility in the more general case) as fairly mild, as it
amounts to assuming that the distribution map can depend on all parameters of classifier without
any necessary (linear) dependency structure imposed, and that no two classifiers are equivalent only
to the population but not the optimizer (as otherwise one could simply reduce dimensionality of X).
However, even in the case where A is singular, we note that this issue is resolvable augmenting the
state representation y; to incorporate the choice of free classifier parameters which affect loss but
not distribution updates (e.g. by adding a vector w; to y; which is orthogonal to the range of A and
linear in ;). We assume invertibility here for simplicity, and we take ) to be simply be given by
the range of s over X'. At each round ¢, some scoring function f;(x, z) is chosen adversarially, and
our loss is then given by

fi(xe,p) = ZLEpt[ft(JCt,Z)]-

We assume each f; is convex and L,-Lipschitz in both x and z, and that pg = yo + £&. We measure
our regret with respect to the best performatively stable classifier, i.e. the loss of any classifier as if
were held constant indefinitely as the distribution updates. We define our regret as follows:

T
Reg,(A) = H;%XZ fil@e, pe) — fi(a*, D(a*, s(*)))
t=1

Here, the role of s(x*) captures the convergence of the distribution to a stable point, resulting from
taking the limit of the distribution update rule as ¢ grows large.

As in many of the applications we consider, here our loss is determined both by our action (the
classifier) and the state (in terms of the distribution). Our approach for casting Online Performative
Prediction as an instance of online nonlinear control in our framework will be to define appropriate
surrogate convex losses which depend only on the state, over which we run NESTEDOCO. Here,
these will correspond to losses only over the updated distribution component D(z¢, y;—1), which we
show closely track our true incurred loss.

H.3. Analysis

For each round ¢, define the surrogate loss f;*(y) as:

ffy)= E [fi(s w),2)].

zroye+€
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Lemma 25 Each f;(y) is convex and (1 + S)L-Lipschitz in y.

Proof Consider any individual sample v ~ £. We can then view g(y) = (s~!(y), y+v) as a vector-
valued function which is (1 + S*)-Lipschitz. The function f;(g(y)) is a L,-Lipschitz and convex
function of this linear function of y, and thus f;(s~*(y), y + v) is convex and (1 + S*)L,-Lipschitz
in y. The function f;(y) is an average of such functions, taken over the expectation of £, and thus
is convex and (1 + S*)L,-Lipschitz in y as well. |

Observe that f;(y) = fi(s ' (y),D(s ' (y),y). We will run NESTEDOCO for these losses over
the p-locally controllable instance (X', ), A), where we can track the current state y; = A(x¢, yi—1)
at each step as a function of our past actions given knowledge of A, and can compute gradients
of f{(y:) to arbitrary desired precision by sampling from &. This will yield the regret bound from
Theorem 5 with respect to the surrogate losses, and the key challenge will be to analyze our error
between the true and surrogate losses.

Lemma 26 For any round t we have that

. L, (1+S 1-6
larm) = i) < (= ofar + 205D (g, 120
Proof For any h < t, the loss of x; over the distribution y;_p, + & = D(x¢_p, yt—n—1) can be
expressed as
ft(l‘t,yt—h) = E [ft('rtaz)]a
2~E+yi—p

which is convex and L.-Lipschitz in both parameters when taking the expectation over £. For
round ¢ in isolation, using the inverse action mapping bound and the bound on ||y; — y;—1]| from
Proposition 18 we have that

ft(xtyyt) — fi(y) = ft($t73/t) - ft(sil(yt)ayt)
= ft(X(yt—lvyt)vyt) - ft(X(yta yt)7 yt)
< nLyL:
—_ ’y ]

and further for previous states that

ft(f'?t,yt—h) — fi(y) = (Ly + h)w

We can decompose the distribution p; into updates from past rounds as
t—1
pr=(1—=0)"po+ Y 0(1—0)" D n,yin1)
h=0
which then yields a loss discrepancy of at most
t—1
Fel@e,pe) — £ () < (1= 0)" fu(ze, po) + W (ZG(l — 0)"(Ly + h))
h=0

SW.(Ly+?+(1_Q)t)
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between the true and surrogate loss for round . |

We can now bound the cumulative regret of NESTEDOCO for the problem.

Theorem 27 For any 0 > 0, when Assumption 1 holds for the distribution update rule, Online
Performative Prediction can be cast as a p-locally controllable instance of online control with non-
linear dynamics, for which NESTEDOCO obtains regret

+ Ly + 4+ OTGL2(1 + 5)?
Y

Reg,(NESTEDOCO) < 2\/(

with respect to the best performatively stable classifier classifier.

Proof Combining the previous results with Theorem 5, we have that for any z* € X our regret is
at most

T
> fiwe o) = fi(D(a", s — fila*, D(a*, s(x +th xt,pt) — fi (Yt)
=1

T
0 RN\NTL,(1+S G
<+L _|__|_)(+)+
rp Y n
\/1+Ly+ L 20)TGLY(1 + 5)?

v

. Gy
upon settin = . [ |
p g1 \/(1+Ly+,ﬁ+2,ﬂ)mg(1+5)2

Theorem 12 follows directly from Theorem 27. For Online Performative Prediction, in the full
generality of the setting considered, the per-round optimization problem may not be convex, in
which case we make use of the non-convex optimization oracle access for NESTEDOCO. How-
ever, in each of the following applications we show that the action selection step can indeed be
implemented efficiently without imposing additional restrictions on the dynamics.

Appendix I. Background and Proofs for Section 4.2: Adaptive Recommendations
I.1. Background

Motivated by problems involving preference dynamics and feedback loops in recommendation sys-
tems (see e.g.Flaxman et al. (2016)), a number of recent works Hazla et al. (2019); Gaitonde et al.
(2021); Dean and Morgenstern (2022); Jagadeesan et al. (2022a); Agarwal and Brown (2022, 2023)
have explored models of repeated recommendation where given to an agent whose preferences or
opinions evolve over time. Several of these models Hazla et al. (2019); Dean and Morgenstern
(2022); Jagadeesan et al. (2022a) consider population-level effects for settings where a single rec-
ommendation is given each round and consumers (or producers) update their behavior according to
linear dynamics. Nonlinear preference dynamics with menus of recommendations for a single agent
are considered in Agarwal and Brown (2022, 2023), where the aims to minimize regret for adver-
sarial losses over the agent’s choices. The Adaptive Recommendations formulation of Agarwal and
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Brown (2022) somewhat resembles the “Dueling Bandits” setting of Yue et al. (2012), where k > 1
actions are chosen in each round, yet where preferences can now evolve dynamically as a function
of the history rather than remaining fixed. Whereas Agarwal and Brown (2022, 2023) study a bandit
formulation of the problem with unknown preference dynamics, here we consider a full-feedback
model with known dynamics, allowing for relaxed structural assumptions (on the agent’s “mem-
ory horizon” and “preference scoring functions”) at the cost of stronger informational assumptions,
while maintaining the overall dynamics of the problem.

1.2. Model

Here, we are tasked with repeatedly recommending menus of content to an agent. Out of a universe
of n elements (e.g. video channels, clothing items), we show a subset of size k (denoted K;) to
the agent in each round, for 7" total rounds. The agent chooses one item ¢ € K; from the menu,
according to a distribution in terms of their preferences, which are a function of their selection
history. Conditioned on being shown a menu K4, the agent’s choice distribution has positive mass
only on the k items ¢ € K;. The agent’s representation of their selection history is given by their
memory vector v; € A(n), and choices are determined by their preference scoring functions s; :
A(n) — [A, 1] for each 4, which map the agent’s memory vector to relative preference scores for
each item. The menu we show to the agent may be chosen from some distribution x; € A( (Z) ), and
for each K; € [(})] the agent’s menu-conditional distribution py(-; Ky, v,—1) € A(n) is proportional
to the scores s;(v;) for items in K, given as

. si(ve—1)
‘K )=
Pe(t; Ky, ve—1) S e, 550 )

foreachi € K, with p(j; K;,v,—1) = Ofor j ¢ K,. The joint item choice distribution, considering
both random selection of a menu K; according to z;, and the agent’s choice from Ky, is given by

pilsznvien) = > () - puls Ky vier)
KtE(Z)

which we may denote simply by the vector p, € A(n), or as a function p;(x;). In contrast to prior
work, here we consider a deterministic variant of the problem as an illustration of the flexibility
of our framework for online nonlinear control. In particular, we assume that the agent’s memory
vector vy updates according to its expectation over p; as

vy = (1 — 0p)ve—1 + iy,

where 6, € [0, 1] is the per-round update speed, and we assume that the agent’s scoring functions s;
are known. We receive convex and L-Lipschitz losses f;(p;) in each round in terms of the agent’s
choices, over which we aim to minimize regret with respect to some distribution set ) C A(n).

The prior work (Agarwal and Brown, 2022, 2023) has considered two particular subsets of
A(n) as regret benchmarks. We show that both can be cast as locally controllable instances of
online control, and further, we make use of local controllability to give a general characterization
of convex sets ) C A(n) over which sublinear regret is attainable. We recall some key definitions
and results from (Agarwal and Brown, 2022, 2023).
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Definition 28 (Instantaneously Realizable Distributions) The set of instantaneously realizable dis-
tributions at a memory vector v € A(n) is given by

IRD(v) = convhull {p(-;K, v): K € [(Z)} }

Each such set IRD(v;_1) corresponds to the feasible distributions p;, given the agent’s scoring
functions and memory v;_1. It is shown by Agarwal and Brown (2023) that each IRD sets can be
directly characterized in terms of the ratios between target frequencies and scores.

Proposition 29 (Menu Times for IRD Agarwal and Brown (2023)) Given a memory vector v €
A(n) and target distribution p € A(n), let the menu time yu; for item i be given by

k- p(i)

si(v
0’
21,00
where Y . | j1; = k. Then, p € IRD(v) if and only if p; < 1 for each i € [n)].

Hi =

We recall the prior benchmark sets considered, and the corresponding assumptions which yield
feasibility of regret minimization. We state informal analogues of the prior results as translated to
our setting, which we then show formally below.

Definition 30 (Everywhere Instantaneously Realizable Distributions) The set of everywhere in-
stantaneously realizable distributions is given by

EIRD = () IRD(v).
vEA(n)

Proposition 31 (Corollary of Agarwal and Brown (2022)) If A > % + ﬁ then EIRD is

non-empty, and there is a o(T') regret algorithm with respect to any distribution p € EIRD.

Distributions p; € EIRD are always feasible regardless of v;_; by an appropriate choice of x;, but
EIRD may be quite small in relation to A(n). Under stronger assumptions for each s;, a potentially
much larger set becomes feasible as a regret benchmark.

Definition 32 (¢-Smoothed Simplex) The ¢-smoothed simplex A?(n) for ¢ € [0,1] is given by
A?(n) = {(1 - )v + ¢u, : v € A(n)}
A

Definition 33 (Scale-Bounded Functions) A scoring function s; : A(n) — [2,1] is said to be
(0, A)-scale-bounded for o > 1 and \ > 0 if, for all v € A(n), we have that

o1 (1= Mo + ) < s:(v) < o((1— Nv; + A).
For such functions, each score s;(v) cannot be too far from item i’s weight in memory, and it is
shown that IRD(v) contains a ball around v for each v € A®(n), for an appropriate choice of ¢.

Proposition 34 (Corollary of Agarwal and Brown (2023)) Ifeach s; is (o, \)-scale-bounded, then
there is a o(T) regret algorithm with respect to any distribution p € A®(n), for ¢ = O(kXo?).

We extend these results to general convex benchmark sets ) C A(n), where we can characterize the
feasibility of regret minimization via local controllability using the menu times ;. When p-local
controllability holds over a set ), we can minimize regret via NESTEDOCO using surrogate losses
fi (vt), which closely track our true losses fi(p¢).
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L.3. Analysis

We make use of the menu time quantities u; for a memory vector v and target distribution p to
translate our notion of local controllability to the Adaptive Recommendations setting. Let ) be any
convex subset of A(n), let X = A((})), where the dynamics Dy (z, v;—1) are given by

Dy(z¢,vi-1) = (1 = 0p)vi_1 + Oipe(4).

Note that D (x,v;—1) is action-linear in x;, and thus we can solve for z; efficiently (in terms of
dim(&x') = O(nF)); further, there is a construction given in Agarwal and Brown (2023) for removing
exponential dependence on k& when computing menu distributions. We consider ) as an (n — 1)-
dimensional subset of R", where we define the the ball B,(v) of radius p around a point v € Y
as:

By(v) = {p e An) : |[p — vl < p}.

Theorem 35 An instance of Adaptive Recommendations (X ,), D) satisfies pf-local controllabil-
ity if, forany v € Y and p € B, (), we have that

(4)
(v)

S

(k= 1p(i) _ E":
i

p
si(v) j

foreveryi € [n].
This follows immediately from Proposition 31 and the definition of local controllability, which

can analogously extend to strong local controllability. We can use this formulation to unify the
feasibility analysis for each of the previously considered sets.

Lemma 36 For A\ > =1 4 ¢ and ¢ > 0, the EIRD set contains a ball of radius p=0(72)

n—1

around u,,, and any instance (X, EIRD, D) satisfies 0-local controllability.

Proof Forany v € A(n),i € [n],and p € B,(u,,) we have p(i) <  + # and s;(v) > E=L 4 ¢,
yielding that

(k= 1p(i) _ 1+
s;(v) Tkt

and over all items j # ¢ (with s;(v) < 1) we have

Z": p(j) L pv2

sj(v) — n 2

\%
—_
[

\
|

J#

Observe that the bounds for each term are equalized at "Tfl when p = € = 0, and so u,, € EIRD
whenever A > % We can specify €(p) in terms of p to maintain equality, and thus inclusion of
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p € EIRD. Taking €(p) in terms of p as

e(p) = Lotk = 1)

2(n—1)
2n P
on(k—1)v/2

gives us that

for p > 0, and so we maintain that p € EIRD. Inverting, we have

62(71\[—1)
_ 2n
ple) = nk—1)+e

as the radius of a ball around u,, contained in EIRD. To see that EIRD is #-locally controllable,
consider any v;—1 and v* in EIRD where v* € Br(,,_,) (ve—1), and let vy = (1 —0y)ve—1 + 60", By
playing an action distribution x; which induces p;(z;) = v*, the memory vector is then updated to
vy. This is feasible for any vy € Bg.r(y,_,)(v¢—1), as each corresponds to some v* € By, ,)(vi-1)-
|

We remark that for the EIRD set, if losses are given over p; rather than vy, one can define dynamics
which directly consider the state to simply be the induced distribution p; in each round, which
satisfies strong local controllability with any p; € EIRD feasible at each round; in general, we
consider dynamics to view the memory vector as the state, as the feasible updates p; are a function
of v. Such is the case for the ¢-smoothed simplex, for which we can state an analogous local
controllability result.

Lemma 37 Ifeach s; is (o, \)-scale-bounded, then any instance (X, A®(n), D) over the ¢-smoothed
simplex for ¢ = O(kAa?) satisfies Q(O\p)-local controllability.

Proof The following lemma from Agarwal and Brown (2023) shows that a ball of distributions
around any memory vector v € A?(n) is feasible under IRD(v).

Lemma 38 (IRD for Scale-Bounded Preferences Agarwal and Brown (2023)) Let each s; be (o, \)-
scale-bounded with 0 < \/4(n — 1) /k, and let v € A?(n) be a vector in the ¢-smoothed simplex,
for ¢ > ©kAa?. Then, p € IRD(v) for any vector p € Byg(v) N A?(n).

Let d = min(\g, m(v¢i_1)) < Agm(ve_y) for any v;_1 in A%(n). Any v* € Bg(vs_1) then is
contained in IRD(v¢_1), and so playing z; such that p;(z;) = v* yields an update to vy = (1 —
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01)vi—1 + Ov*, which is feasible for any v; € Bgg(vi—1), and so Q(0\¢)-local controllability holds.
|

For any such set )V which yields locally controllable dynamics for the instance (X, ), D), we can
minimize regret over ) via NESTEDOCO, where we optimize with respect to the surrogate losses
f#(ve). Note that for our regret benchmark of the best per-round instantaneously distribution in )/,
any fixed vector v* which is instantaneously targeted across all rounds yields an item distribution
p = v* in each round, and so f;(v*) = fi(p*). We assume that y is bounded inside ) (which
typically will hold for yo = u,,).

Theorem 39 For any p-locally controllable instance (X,Y, D) of Adaptive Recommendations
with update speed 6 > 0, running NESTEDOCO over the surrogate losses f;(v;) yields regret

2+ & 4 TGL?
g

Reg(NESTEDOCO) < 2\/(

with respect to the true losses fi(p;) over ).

Proof Beyond applying the regret bound for NESTEDOCO from Theorem 5, the key step here is to
bound surrogate loss errors as:

T T
D filpe) = fr(0%) <Y f(vr) +thvt fe(pe)
t=1 t=1
R TL2 G T (%3 (1 - Gt)vt_1>
<pll4+=)—+—+ v) —
< m> S -a (M0
R TL2 G T Ut_/Utfl
sn{l+— 7+*+th(vt)_ft Vg1 +
o) oy I 0
R\ TL> G 1\ —
<pl1+—=)—=—+Z+L(1+= — v
RGOS
R 1\TL*> G
<p2+=+7)—+~=
rp 0 n

2

upon setting n = , | ———1r3 s + TIE which yields the theorem. |

Theorems 13 and 14 follow from Theorem 39, as well as from Lemmas 36 and 37, respectively.

v
\/ 2+ jj) WTGIL?

Appendix J. Background and Proofs for Section 4.3: Adaptive Pricing
J.1. Background

While there is a large literature on designing online mechanisms for pricing discrete goods via auc-
tions (Mehta et al., 2007; Kanoria and Nazerzadeh, 2020; Golrezaei et al., 2020; Morgenstern and
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Roughgarden, 2016; Feng et al., 2019; Braverman et al., 2017), there is comparatively little work
related to online pricing problems for real-valued goods. Most work for such problems to date re-
quires strong assumptions on valuation functions, often either assuming linearity (Jia et al., 2014)
or additivity (Agrawal et al., 2023), or requiring approximability via discretization (Mussi et al.,
2022). Here, we introduce a novel formulation for an Adaptive Pricing problem which builds on the
myopic-demand fixed-cost setting of Roth et al. (2015), which we extend to accommodate adver-
sarial consumption rates for the agent (which affect demand, as a function of the agent’s reserves)
as well as adversarial production costs. As in Roth et al. (2015), our setting can accommodate
general convex (increasing) production cost functions and concave (increasing) valuations for the
agent, provided that valuations additionally are homogeneous; to our knowledge, this encompasses
a much wider class of valuations and costs than considered by any prior work on no-regret dynamic
pricing for real-valued goods.

J.2. Model

In each round ¢, an agent (the consumer) begins with goods reserves y,—1 € RZY, (with yo =
0), then consumes an adversarially chosen fraction 6; € [0, 1] of each good simultaneously (e.g.
corresponding to their rate of manufacturing downstream items, using the goods as components),
updating their reserves to (1 — 0;)y;—1. We (the producer) show the consumer some vector p; €
R of per-unit prices for each good, and the consumer purchases some bundle of goods ;. The
consumer’s valuation function for reserves of goods is given by v : R} — R, and their selection
of &y = x*(py, 0¢, y¢—1) is given by

" (pe, O, yr—1) = argmaxv(x + (1 — 0)yi—1) — (pr, x).
meRi

We later discuss behavior of * when the argmax is undefined; it will suffice for us to only consider
price vectors for which it is defined. This updates the consumer’s reserves to y; = ¢+ (1 —04)y—1.
Upon seeing the consumer’s purchased bundle z;, we receive their payment (p;, ;) minus our
production cost ¢;(x¢) : R} — R, where c; is adversarially chosen. Our utility is then given by

fi(pe, we) = (pr, ve) — ce(a).
We make the following assumptions on production costs ¢; and the consumer’s valuation v.
Assumption 2 (Production Costs) We assume that for each c;, the following hold over R’} :
* ¢ is non-negative, convex, and L.-Lipschitz,
e limoci(e- 1) < Cy for some Cy > 0, and
* c(x) > ¢ ||x|| + Co for some ¢ > 0.
Further, each c; is revealed prior to setting prices piy1.
Assumption 3 (Consumer Valuations) We assume that the following hold over some set Y C R} :
* v is non-negative, continuous, and differentiable,

* v is strictly concave and increasing,
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* vis (A, B)-Holder continuous for some A > 1 and 5 € (0, 1], i.e.

lo(y) —v()| < Ay —¥||°,
and
* v is homogeneous of degree k for some k € (0,1), i.e. v(by) = b*v(y) for any b > 0.

Further, v is known to the producer.

Given the concavity assumption, we note that it is without loss of generality to assume that
k € (0,1) for the homogeneity parameter. There are several well-studied valuation families which
satisfy these properties for an appropriate set )J; see Roth et al. (2015) for proofs of each example.

Example 3 (Constant Elasticity of Substitution (CES)) Valuations of the form

n B
v(y) = (Z ai?/f) )
i=1

with each o, k, 3 > 0 and k,Bk < 1, are Hélder continuous, differentiable, strictly concave,
non-decreasing, and homogeneous over a convex set in R} .

Example 4 (Cobb-Douglas) Valuations of the form

n
v(y) = [Tv
=1

with o; > 0 and Z?:l «a; < 1 are Holder continuous, differentiable, strictly concave, non-
decreasing, and homogeneous over a convex set in R} .

We initially assume that Assumption 3 holds over all of R"!, but will restrict our attention to the
set J C R} of bundles where v(y) > ¢ ||y|| for each y € Y, and we note that our results can be
extended to arbitrary downward-closed convex sets (where by € ) forany y € J and b € (0, 1)).
In Section J.3 we that show Assumptions 2 and 3 yield several important properties which enable
optimization via our framework. We show a unique mapping between price vectors and bundle
purchases (for any fixed reserves and consumption rate), that restricting attention to ) is justified
under rationality constraints, and that ) is convex.

Further, there is some price vector which yields a reserve update to any y; € ) in a neighbor-
hood around y;_1, yielding local controllability. Crucially, we show that there are concave surrogate
rewards f;*(y;) which will closely track our true rewards f;(p;, x;), leveraging the following prop-
erty of homogeneous functions.

Proposition 40 (Euler’s Theorem for Homogeneous Functions) A continuous and differentiable
Sfunction v : Y — Ry is homogeneous of degree k if and only if

(Vu(y),y) = k- v(y).
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We run NESTEDOCO directly over these concave surrogate rewards (by inverting the sign of
each), where each p; can be computed efficiently in terms of y;—; and 6;, and we show that the
surrogate reward distance from our true rewards is bounded. While our rewards will not be Lipschitz
over ) in general, we show that appropriately calibrating our step size yields sublinear regret with
dependence on the Holder continuity parameters. We measure our regret with respect to the set of
stable reserve policies, i.e. pricing policies where y; remains constant.

Definition 41 (Regret for Stable Reserve Policies) Let Py = {P, : y € Y} be the set of stable
reserve policies, where for any y;—1 and 0, satisfying (1 — 0;)y;—1 < y*, playing prices computed
by a policy p; = P (yi—1,0) yields

(1 —0)ys—1 + x*(pt, O, ye—1) = Yy~

It is straightforward to see that any P; € Py maintains the invariant that y; = y*, provided that
some such p; is always feasible.

J.3. Analysis

We show a series of results establishing the key conditions allowing us to formulate this problem as
a locally controllable instance of online nonlinear control. We first show that any positive bundle is
the unique optimal purchase for some positive price vector.

Lemma 42 For any reserves y;—1 € RY, consumption rate 0; € [0, 1], and vector y, € R’} where
Yyt > (1 — 04)yi—1 elementwise, the bundle x+ = y; — (1 — 04)ys—1 is the unique solution to

Tt = $*(pt70t7yt71)

for prices py = Vvu(yy).

Proof Recall that the consumer’s bundle choice is given by

l‘*(ph etayt—l) = argmaxv(a: + (1 - Ht)yt—l) - <Pta $>
T€RY

Note that v((1 — 0;)ys—1 + x) — (pt, x) is strictly concave in x for any = € R'}, as the gradients

V(1= 0p)yi+1 + x) = Vy,v(yr)

are preserved at each point y; = (1 —6;)y.+1+x, and subtracting the linear function (z, p;) does not
affect strict concavity. We also have that p; € R’} for prices p; = Vu(y;), as v is strictly concave
and non-decreasing. This yields that v((1 — 6;)ys—1 + x) — (pt, =) has a unique global maximum
atzy =y — (1 — O1)ye—1, as Vo (v((1 — Op)ye1 + ) — (pr, ) = 0. [

As such, the argmax for 2*(p, 0, y;—1) is unique whenever p; = Vu(y) for some y € R’}. We let
p*(x; yi—1,0¢) = Vo((1 — 0;)yi—1 + x;) denote this price vector which induces a purchase of ;.
For any other price vector p, the maximizing bundle x; either approaches a point on the boundary of
R, or grows unboundedly. We restrict our attention to bundles contained in R’} , and show that the
issue of unboundedness is resolved by rationality considerations for the producer. We characterize
the per-round rewards of stable reserve policies as concave functions of y € R}, and show that the
optimal such policy corresponds to some state y* € ), where ) is convex and bounded.
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Lemma 43 The round-t reward of a stable reserve policy P, corresponding to any y € R} is given
by a strictly concave function

ft(Py) = Htk' . ’U(y) — ct(th).

Proof We first note that we can maintain y; = y in every round by Lemma 42, as yg = 0 and
(1 —6;)y < y. As such, a bundle z; = 6,y is purchased in each round at prices Vv(y), and our
reward is given by
ft(Py) = fi(p*(0ry;y, 01), 6:y)
= (Vu(y), bry) — ct(Ory)
= 0ik - v(y) — ct(by),

where the final step follows from Proposition 40 for homogeneous functions. The function .k -v(y)
is strictly concave, which is preserved upon subtracting the convex function ¢;(6.y). |

Lemma 44 The set Y = {y € R"} :v(y) > ¢ ||y||} is convex.

Proof Consider any two points v,y € Y, and let ¥ = ay + (1 — a)y’ for any a € [0, 1]. Recall
that y* € R’} belongs to ) if and only if v(y*) > ¢ ||y*||. By concavity of v, we have that
v(y") = v(ay + (1 - a)y’)
> av(y) + (1 = a)v(y)
> ¢llayll + ¢ [|(1 —a)y/||
> ¢ llay + (1 - a)y/||
=o|lv"|

and so y” € ), yielding convexity of ). |

Lemma 45 For any z € R, where z ¢ Y, there is some y € Y such that f;(P,) > f;(P,) for any
0; and c;.

1/k
Proof Consider some z ¢ ) such that v(z) = ¢ ||z||, for ¢ < ¢, and let y = (%) z. By
homogeneity of v, we have that v(y) = %v(z) = ¢ ||z||, and soy € YV as ||z]| > ||y||. For any round
with costs ¢; and consumption rate 6; we then have that:

fe(Py) = [o(P) = bk (v(y) — v(2)) — ci(0ry) + c4(612)

= 6,k (15) - 1> V2| — ee(0ry) + ci(6i2) (homogeneity of v)

> 0k (i - 1> Uzl + 0o ||z — yl| (lower bound and convexity of ¢;)

1/k
;wm(j—QwWM+@G—(j> )mm

Z@Q_Z)Mw—mQ—j)ww\ k% < 1)

> 0. (@ > 1)
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Thus the optimal P, for any cost and consumption sequence corresponds to some y € ). We can
also bound the radius of ).

Lemma 46 Let V = maxycgn . |y|=1 v(y). Then, for every y € Y we have that

N
lyll < <¢)

Proof Lety* = argmax,,, 1 v(y), where we have v(y*) = V. Consider the vector by* for any
b > 0. By homogeneity of v, we have that

v(by*) = bro(y”)
= V.

1

For any b > ( %) "% we have that
v(by") = Pk 14
< b,

where ||by*|| > b and thus by* ¢ ). This holds for all vectors with norm b, as any such vector z
will have at most b*V by homogeneity, which yields the result. |

The previous result also implies that by € ) for any b < 1 and y € Y. We assume that V > ¢,
which is without loss of generality as we may otherwise take ¢ to be smaller artificially; we assume
¢ is small enough to ensure that ) contains a ball B;(y;) of radius 1 around some y; € ), and we

1
let R = ( %) """ We consider the dynamics to be given by

Di(pt,ye—1) = (1 — 0)ye—1 + =™ (e, O, ye—1)-

We let Z = '} denote our action space of price vectors; while dynamics here are not action-linear,
we can still compute our desired action p; = Vu(y;) efficiently, as we assume we have knowledge
of v. While the dynamics depend on 6;, our choice of action p; depends only on the target update
¢ to the consumer’s reserves, by Lemma 42. Further, upon observing x;, we can solve for 6, as

T
Yt—1

0 =1

for purposes of representing our surrogate losses, which are given by

It (ye) = 0tk - v(y) — ci(0ry).

We now show that the dynamics satisfy local controllability.

Lemma 47 (Local Controllability) The instance (Z,Y, D;) satisfies 0-local controllability for each
round t.
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Proof We show that #-local controllability holds over all of R’} , which implies #-local controllabil-
ity over ) as each distance 7(y;—1) while the feasible update region remains the same. By Lemma
42, any update where y; > (1 — 6;)y;—1 elementwise is feasible. Each 7(y;—1) over R’} is simply
the minimum element of y;, which we denote here by m. Each element of y;_; is decreased by
at least #m, and so any y; in the £, ball of radius 6m = 67 (y;—1), and thus the ¢ ball of radius
Om(yt—1), is feasible. [

We are now ready to analyse the regret of NESTEDOCO for the problem. The remaining key issues
to resolve will be the errors between our true and surrogate rewards f; and f;, as well as the lack
of Lipschitz continuity for our rewards. We will make use of more general formulations of the
guarantees of FTRL, (see e.g. Hazan (2021)).

Proposition 48 For a ~y-strongly convex regularizer 1) : Y — R where [ (y) — ¢ (y')| < G for all
y,y' € Y, and for convex losses f1,. .., fr, the regret of FTRL is bounded by

T

Reg;(FTRL) < Z(gt(yt) = 9t(Ye1)) + 16;,
=1

where gi(y) = (Vi fi(ye), y) and g¢(yi) — g¢(ye41) > % Y1 — el >

We show that this implies a regret bound for (), 5)-Holder continuous convex losses, recovering
the A-Lipschitz bounds when g = 1.

Theorem 49 For (A, 5)-Hélder continuous convex losses, FTRL with obtains regret bounded by

ANP/CB) o
Reg, (FTRL) < T'A (”) +=
Y n
) ) _ A\ 1/ (2=8)
and chooses points which satisfy ||yi+1 — yt|] < (%) in each round.

Proof For (), 3)-Holder continuous convex losses f;, we have that

9t(yt) — 9t(yev1) = (Ve fe(ye), Yt — y41)
= (Vefi(ye), Que — Yes1) — ye)
< fe2yr — yev1) — fr(ye)

by convexity of f;, where ||(2y: — ye+1) — yel| = ||y — y¢+1]|, and so

9t(e) — ge(wes1) < My — yesa||®

by Holder continuity. Combining with the lower bound on g;(y:) — g¢+(y¢+1) from Proposition 48
gives us that

v
" i1 — vell® < ge(we) — ge(werr) < My — yera ||

and thus

9t(yt) — gt(ye41) < A <
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yielding a regret bound of

WAC-B) o
77) N

Re FTRL) < T\ —
¢7(FTRL) (,Y -

1/(2- /3)
with per-round distance at most ||y;+1 — y¢|| < ( )

We note that the concave surrogate rewards f;"(y;) are a sum of a (k\, §)-Holder continuous func-
tion and a (L., 1)-Holder continuous (i.e. Lipschitz) function; we assume that each function is
(L, B)-Holder continuous with L = kX 4+ L., which is sufficient for for large enough 7" as we will
have ||y — yi—1]| < 1 and thus ||y; — y—1|| < |lye — vi—1]®. We use a similar analysis to bound
the error between true and surrogate rewards, yielding our regret bound for NESTEDOCO.

Theorem 50 The regret of NESTEDOCO with respect to the stable reserve policies Py is bounded

by
G B/2 R 8 (2-8)/2
Reg, (NESTEDOCO) < 2L <7> (T (3 + <9> )) .

Proof We reparameterize to treat the bundle y; where 51(y1) C ) as the origin, and assume the
choice of regularizer has y; as its minimum. By Theorem 5, for any step size and § > 0 such that
llyt — yi—1]| < 6, running NESTEDOCO for the §-locally controllable instance (Z, ), D) over the
surrogate rewards f;, with inradius 1 and radius R, obtains

T

T 8/(2—8)

L G
SR =Y S ) < TLOR)? +TL<”> +=
t=1 t=1 y n

<TL (1 + (§>ﬁ> <177L>6/(2_6) :Z/Q
o (9 (r (e (2))

2 Regy(f*)

(2-8)/2

1/(2-p)
for any y* € ), upon setting 6 = % (’7’\> , where

7

o )
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Note that the surrogate rewards exactly track the true rewards when a stable reserve policy Py
is played, and so our regret with respect to the best stable reserve policy P« is at most

T
Z ft(Py*) -
t=1

T

fe(ye) < Regp(f*) + Z fi () = felpe, @)
=1

E

t=1

T
< Regr(f*) + > (Vo). 0y — x1) — ci(Oye) + ci(w)
1

,ﬁ
Il

< Regp(f*) + ) (1 —0) (Vu(w), ye—1 — ye) + L llye — ye—1l)

(xr = (1 —0)ye—1)

M=

~
Il

1

[M]=

< Regy(f7) + ) ((Volye) yr — 2t — ye1)) + Lllyr — ye-1 )

-
Il

1

M=

< Regr(f*)+ ) v(ye) —v(2yt — ye—1) + L |yt — ye—1l|

~
Il

1
(concavity of v)

T
< Regr(f*) + ) 2L llye — yea | (Holder, [ly; =y < 1)
t=1
[\ B/28)
< Regy(f*)+2TL (77>
~

(& ()

upon updating K* to K as
B B/(2=5)
e ()0
0 gl

which yields the theorem. |

Theorem 15 follows directly from Theorem 50.

Appendix K. Background and Proofs for Section 4.4: Steering Learners

K.1. Background

While much of the literature related to no-regret learning in general-sum games considers either
rates of convergence to (coarse) correlated equilibria Blum et al. (2008); Anagnostides et al. (2022)
or welfare guarantees for such equilibria Roughgarden (2015); Hartline et al. (2015a), a recent line
of work Braverman et al. (2017); Deng et al. (2019); Mansour et al. (2022) has considered the
question of optimizing one’s reward when playing against a no-regret learner. A target benchmark
which has emerged for this problem is the value of the Stackelberg equilibrium of a game (the
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optimal mixed strategy to “‘commit to”, assuming an opponent best responds), which was shown
by attainable by Deng et al. (2019) against any no-regret algorithm and optimal in many cases (e.g.
for no-swap learners), both up to o(7T') terms, and further which may yield higher reward for the
optimizer than (coarse) correlated equilibria.

We show a class of instances for which the problem for optimizing reward against a learner
playing according to gradient descent can be formulated as a locally controllable instance of online
nonlinear control with adversarial perturbations and surrogate state-based losses. The simplest non-
trivial instances we consider are those where the optimizer’s reward is a function only of the learner’s
actions (i.e. all rows of their reward matrix are identical), and the optimization problem amounts to
steering the learner to a desired strategy via one’s choice of actions. Additionally, we allow the
game matrices to change over time, which has not been substantially considered in prior work to
our knowledge. We require that the learner’s matrices do not change too quickly (which we model as
adversarial disturbances to dynamics), and the optimizer’s matrices can change arbitrarily provided
that they remain close to some row-identical matrix (which we model as imprecision in our surrogate
loss function).

K.2. Model

Here we are tasked with playing a sequence of bimatrix games against a no-regret learning oppo-
nent, where the game matrices may change adversarially in each round. We assume the following
properties hold for the adversarial sequence of games.

Assumption 4 For a sequence {(Ay, By) : t € [T]} of m X n bimatrix games, with m > n:

» Each entry of A and By lies in [—ﬁ, ﬁ]

* the convex hull of the of the rows of each B; contains the unit ball in R",
o |[zAr — 2 Af|| < O for any © € A(m), where each row of A} is identical, and
* [[zBy — xBi—1]|| < & for any x € A(m).

Each game (A, By) is revealed after Players A and B commit to their respective strategies
¢ € A(m) and y; € A(n). Observe that due to the first property, for any z € B1(0), there is
some x € A(m) such that zB = z. By the second property, we have that A} = 2/ A} for any
x, 2’ € A(m).

We recall the Online Gradient Descent algorithm with convex losses ¢ from Zinkevich (2003).

Algorithm 8 Online Gradient Descent (OGD)
Input: Convex set ) C R", initial point ¢; € ), and step sizes 61, ..., 0.
fort =1toT do
Play y; and observe loss ¢;(y).
Set V; = Vft(yt)
Set yt+1 = My (yr — 0: V) = argmin,y, [y — 0: V1 — y|.
end for
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Proposition 51 (Zinkevich (2003)) For differentiable convex losses Uy : Y — R, with 011 < 6
foreacht < T, then for all y* € Y the regret of OGD is bounded by

T T
. 2R? 0
th(yt)_gt(y ) < TB+ §t||vt\|2,
t=1 L
where Rp is the radius of Y. If ||V¢|| < Gp and 6; = GQR\Z/?T forallt < T, we have that
B
T
th(yt) — 4(y*) < 2REGEVT.
t=1
We assume that Player B plays according to OPGD in our setup, with y; = u,, and 6§ = GR\B/T'
B

At each round ¢, we (Player A) choose some mixed strategy x; € A(n), and Player B plays some
mixed strategy y; € A(n). Utilities for each player are given by the game (A;, B;) as

u (ze, y) = T sy
uf (24, y1) = T Be.

Note that the loss gradient —Vu/ (x4, y;) each round for Player B (for negative utilities) is given by
Vt = — J,‘tB,
and so their mixed strategy is updated at each round according to

Ye = Ha(m) (Ye—1 + 0(z¢-1B-1)) -

Our utility is given by x: Aryr = w, Ajyr + ¢ (Ar — A7)y, as x does not affect rewards from
AF. We benchmark the regret of an algorithm A against the optimal profile (z,y) € A(m) x A(n):

T

R = Ay — 2 Avyy.
egT(A) (x’y)eﬂ%XA(n)gﬂﬁ tY — Tt ALYt

Note that the per-round average utility for the maximizing (z,y) is at least as high as that ob-
tained by the Stackelberg equilibrium of the average game (Zt %, ' %) as for this objective
one can choose both players’ strategies without restriction. We remark that finding the Stackelberg
equilibrium for any fixed game (Aj, B;) in our setting, where A; has identical rows, is straight-
forward: it suffices to optimize over [n], as any fixed action j € [n] is a best response to some
x € A(m) by our assumption on the rows of By, and as our rewards are only a function of Player
B’s strategy y. However, we are not aware of any prior work which enables competing with the

average-game Stackelberg value against a learning opponent when games arrive online.

K.3. Analysis

We first show that the problem can be formulated via known, strongly #-locally controllable dynam-
ics with adversarial disturbances. As B; changes slowly between rounds, we can run NESTEDOCO-UD
with disturbances representing the error resulting from assuming that B; does not change from B;_1.
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Lemma 52 Given the knowledge available prior to selecting x+, updates for y.1 can be expressed
via known action-linear dynamics (X,), D) which satisfy strong 0-local controllability, and with
adversarial disturbances wy satisfying Ethl ||we]] <6 Zthl €t

Proof First, note that we can compute Player B’s current strategy ¥, as it is a function only of
games and strategies up to round ¢ — 1, all of which are observable. Given the update rule for OGD,
we can formulate the dynamics Dy (x¢, y;) update as

Dy(we,y1) = Uam) (e + 0(xeBy))
= A (Yt + 0(x¢Bi—1) + 0(x(Bt — Bi-1)))
= MA@y (Yt + 0(z¢Bi—1)) + wy

where w; represents the error from assuming B; = B;_j. by standard properties of Euclidean
projection, and the change bound on By, we have that ||w;| < ||0(z(B; — Bi—1))|| < 0e; . Further,
the update is action-linear (up to projection, prior to wy).

To see that D, satisfies strong #-local controllability, we recall that the convex hull of the rows
of B;_; contain the unit ball, and so for any y* in By(y:) N A(n) there is some x; € A(m) such
that 9($tBt,1) = y* — Yt |

At round each round ¢, our loss is given by fi(xy, y;) = —x4Asy;. There are two barriers to
running our algorithm. First, the update for ¥, is determined by x;—; and not x;, yet we do not
see A;_1 prior to selecting z;_1, which would be required to take the appropriate step following
ft—1. Second, the loss depends on x; in addition to ;. To address both issues, we instead run
NESTEDOCO-UD with surrogate losses ft(gjt) = —u,A;_1y:, with action rounds relabeled to
account for the fact that x;_; influences the step for 4; (which does not change the behavior of the
algorithm). We set Ag = 0y, ,.

Theorem 53 Repeated play against an opponent using OGD with step size 0 = @(Tﬁl/ Nina
sequence of games (Ay, By) satisfying Assumption 4 can be cast as an instance of online control
with strongly 0-locally controllable dynamics, for which the regret of NESTEDOCO-UD is at most

T
Reg(NESTEDOCO-UD) < O <\/T+ 2(5'5 + et)> ,
=1

with efficient per-round computation.

Proof We first analyze regret with respect to the surrogate losses ft(yt) To run NESTEDOCO-UD
for a > 0, it suffices to calibrate the step size for the internal FTRL instance such that n% < fa.

Given that rewards are bounded in [—ﬁ, ﬁ], we have that each x; By is %-Lipschitz for the

£1 norm, and thus L-Lipschitz for the {5 norm, so we can take Gg = L. Further, the /5 radius of
A(n) is Rp = /2/2, and so we have that

LT
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Then, for a strongly 6-locally controllable instance with total perturbation bound Y7, |jw¢|| < E,
we obtain the regret bound

TL? G 2LRE

Reg,(NESTEDOCO-UD) < n—"r 4+ — + ——— (Thm. 22)
rl e (P,

for any
77<min< 7G’y o 2)
= Vi VT |

By Lemma 52, we can efficiently run NESTEDOCO-UD over the surrogate losses ft and bound
regret with respect to any y* € ) as:

y)<n——+ —+

> ; G Yy
gft(yt)*ft(* Tij b \m’l_zcilet_

Further, we can bound the error from the surrogate losses as

T T
Z (e, yt) Z (@, yt) — fr-1(n, yr)
i L
< W + fe(ze, ye) — fr(an, yes1)
t=1
(fo(un,y1) =0, fr(zr,yr) < 3 )
L TL?
< — _— A — AF Prop. 18
_2\/5'1‘77 5 +t:1$t( t 1)yt (Prop. 18)
L TL? &
< ﬁ +n—— + tz; O¢, (Assumption 4, Cauchy-Schwarz)

and likewise, for any (z*,y*) € A(m) x A(n) we can bound

T
Z v y) < = fr(t,y") Zx (A — A}y

INA
[\&)
=
+
Y
5..)"
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Combining the previous results, we have that for any (z*,y*) € A(m) x A(n), the regret of

NESTEDOCO-UD with respect to the true losses is bounded by

HM’%

2TL?2 G L L-
+= +—+2Z§t+‘[ YL
l—«

2
<3. max(MTGL V3 >++2Zét+fL Lo
1-a

for any o € (0, 1), which yields the theorem.

Theorem 16 follows directly from Theorem 53.
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