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Abstract

In repeated interaction problems with adaptive agents, our objective often requires anticipating and

optimizing over the space of possible agent responses. We show that many problems of this form

can be cast as instances of online (nonlinear) control which satisfy local controllability, with con-

vex losses over a bounded state space which encodes agent behavior, and we introduce a unified

algorithmic framework for tractable regret minimization in such cases. When the instance dynam-

ics are known but otherwise arbitrary, we obtain oracle-efficient O(
√
T ) regret by reduction to

online convex optimization, which can be made computationally efficient if dynamics are locally

action-linear. In the presence of adversarial disturbances to the state, we give tight bounds in

terms of either the cumulative or per-round disturbance magnitude (for strongly or weakly locally

controllable dynamics, respectively). Additionally, we give sublinear regret results for the cases

of unknown locally action-linear dynamics as well as for the bandit feedback setting. Finally, we

demonstrate applications of our framework to well-studied problems including performative pre-

diction, recommendations for adaptive agents, adaptive pricing of real-valued goods, and repeated

gameplay against no-regret learners, directly yielding extensions beyond prior results in each case.

Keywords: Online convex optimization, online control, Stackelberg games, local controllability

1. Introduction

Machine learning problems involving strategic or adaptive agents are commonly framed as Stack-

elberg games, wherein the leader aims to commit to an optimal strategy in anticipation of the fol-

lower’s best response. This approach has been effectively applied to challenges ranging from perfor-

mative feature manipulation (Hardt et al., 2015; Dong et al., 2018; Perdomo et al., 2020; Jagadeesan

et al., 2022b) and optimal pricing (Roth et al., 2015; Daskalakis and Syrgkanis, 2015; Nedelec et al.,

2020) to resource allocation in security games (Blum et al., 2014; Balcan et al., 2015; Alcantara-

Jiménez and Clempner, 2020) and learning in tabular games (Letchford et al., 2009; Peng et al.,

2019; Lauffer et al., 2022; Collina et al., 2023), often with a regret minimization objective. Addi-

tionally, several of these settings have been independently extended to account for agents that may

update their strategies gradually over time rather than optimally responding in each round (Zrnic

et al., 2021a; Brown et al., 2022; Braverman et al., 2017; Deng et al., 2019; Brown et al., 2023).

Despite their conceptual similarities, these problems have largely been approached as distinct areas

of study, each with their own growing body of techniques. Our aim in this work is to offer a unifying

perspective and algorithmic approach for problems of this form, through the lens of online control.
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For the broad family of online “Stackelberg-style” optimization problems, the language of con-

trol is quite natural to adopt: we are navigating a dynamical system where states corresponding to

agent strategies evolve as a function of our own actions, and where objectives which consider best-

response stability can be expressed in terms of the stationary behavior of this system. Our results

consider a general class of online control instances for representing such problems, which we intro-

duce in Section 2, and in Section 3 we give a sequence of no-regret algorithms for these instances

satisfying a range of robustness properties. In Section 4, we show that several online optimization

problems involving adaptive agents, including variants of online performative prediction (as in Ku-

mar et al. (2022)), online recommendations (as in Agarwal and Brown (2023)), adaptive pricing (as

in Roth et al. (2015)), and learning in time-varying games (as in Anagnostides et al. (2023)) can be

embedded in our framework and solved by our algorithms.

While there has been a great deal of recent progress in online linear control, yielding algorithms

which can optimize over stabilizing linear policies even with general convex costs, adversarial dis-

turbances, and unknown dynamics (Agarwal et al., 2019a; Simchowitz et al., 2020; Cassel et al.,

2022; Minasyan et al., 2022), the required assumptions and regret benchmarks for these algorithms

do not always type-check with the settings we are interested in. For the examples we consider,

we will often wish to allow for nonlinear dynamics (e.g. encoding an agent’s utility function) and

explicitly bounded spaces (e.g. via projection into the simplex), and we will seek to compete with

regret benchmarks which correspond to stable responses by the agent. Unfortunately, as we show

in Proposition 4, the latter goal is incompatible with linear policies even under linear dynamics and

in the absence of any disturbances: the performance of every linear policy can be Ω(T ) worse than

the best policy in the class of affine “state-targeting” policies.

In contrast, the orthogonal set of assumptions we identify enables tractable regret minimization

even for nonlinear control problems and comports with the requirements of Stackelberg optimiza-

tion across a wide range of settings, including the ability to compete with state-targeting policies.

For convex and compact state and action spaces X and Y , our first key assumption is that the dy-

namics D(x, y) : X ×Y → Y satisfy a notion of local controllability. While local controllability is

well-studied for continuous-time and asymptotic control (Aoki, 1974; Kuhn and Wohltmann, 1989;

Barbero-Liñán and Jakubczyk, 2013; Boscain et al., 2021), we are unaware of any prior applications

to finite-time online optimization, and we adapt existing definitions to be appropriate for this set-

ting. We say that D(x, y) is strongly locally controllable if every state in a fixed-radius ball around

y is reachable in a single round by an appropriate choice of x, and that D(x, y) is weakly locally

controllable if the reachable radius around y is allowed to vanish near the boundary of Y . We also

assume that our loss ft in each round is determined (or well-approximated by) an adversarially-

chosen convex function depending only on the state yt.

When these conditions hold, we show in Theorem 5 that this is sufficient to obtain O(
√
T ) re-

gret with respect to the loss of the best fixed state, provided that dynamics are known and we have

offline access to an oracle for non-convex optimization; the oracle call can be removed if dynamics

are locally action-linear, i.e. given by (or locally well-approximated by) a function linear in x at

each fixed y. If adversarial disturbances to the dynamics are present, our approach can be extended

for both weakly (Theorem 8) and strongly (Theorem 9) locally controllable dynamics with addi-

tional regret scaling linearly in total disturbance magnitude, provided that each round’s disturbance

cannot be too large in the case of weak local controllability; we give lower bounds showing that

each dependence on disturbance magnitude is tight. The aforementioned results all extend to the

case where the dynamics (absent disturbances) are given by a known but time-dependent function
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Dt(x, y). If dynamics are unknown but time-invariant, and locally action-linear with appropriate

regularity parameters, we obtain sublinear regret provided that a “near-stabilizing” action is known

at t = 1. We additionally extend our approach to the bandit feedback setting, where we obtain

O(T 3/4) regret. In Section 4 we show that each of the following, with appropriate assumptions, can

be cast as a locally controllable instance with state-only convex surrogate losses:

• Performative prediction: Minimize prediction loss Ez∼pt ft(xt, z) for a classifier xt, where

the distribution pt in each round is updated according to the prior classifier and distribution.

• Adaptive recommendations: Maximize the reward ft(it) when showing menus Kt ¦ [n] of

size k j n to an agent, whose choice it ∼ p(Kt, vt) in each round depends on preferences

which are influenced by choices in prior rounds (encoded in the “memory vector” vt).

• Adaptive pricing: Maximize profit ïpt, xtð - ct(xt) for selling bundles of goods xt to an

agent at prices pt and with costs ct, where the agent’s purchased bundle xt is a function of

their utility function, consumption rate, and existing reserves.

• Repeated gameplay: Maximize the reward x¦t Atyt obtained from playing a sequence of

time-varying games (At, Bt) against a no-regret learning agent.

In each case, application of our algorithms from Section 3 yields results which extend beyond the

applicability regimes of prior work, such as by enabling relaxation of previous assumptions or a

novel extension to adversarial or dynamic problem variants.

1.1. Related Work

Online control. Much of the recent progress in online control (Agarwal et al., 2019a,b; Cassel

et al., 2022; Minasyan et al., 2022) considers linear systems with general convex losses, benchmark-

ing against a class of (“strongly stable”) fast-mixing linear policies introduced for linear-quadratic

control (Cohen et al., 2018) by leveraging the framework of “OCO with memory” (Anava et al.,

2014). Results have also been shown for nonlinear policy classes via neural networks (Chen et al.,

2022), and for nonlinear dynamics with oracles in episodic settings (Kakade et al., 2020), via ap-

proximation with random Fourier features (Lale et al., 2021; Luo et al., 2022), via adaptive regret for

time-varying linear systems (Gradu et al., 2022; Minasyan et al., 2022), and via dynamic regret over

actions in terms of disturbance “attenuation” (Muthirayan and Khargonekar, 2022). For a further

overview of online control and its historical context, see Hazan and Singh (2022). In contrast to the

bulk of prior work in which states and actions are bounded implicitly via policy stability notions,

we consider state and action spaces which are bounded explicitly, as enabled by nonlinearity in dy-

namics (e.g. via projection, or range decay of dynamics near the boundary). These works also view

disturbances as intrinsic to the system, and account for their influence directly in regret benchmarks

(the “optimal policy” will face the same sequence of disturbances in hindsight, regardless of state).

Within the context of Stackelberg optimization where a fixed protocol largely determines an agent’s

strategy updates, we view the role of disturbances as more akin to adversarial corruptions as con-

sidered in reinforcement learning (Lykouris et al., 2021; Zhang et al., 2021); while we incur linear

dependence, our regret benchmarks are agnostic to alternate counterfactual disturbance sequences.
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Strategizing against learners. Initially formulated within the context of repeated auctions (Braver-

man et al., 2017), a recent line of work has considered the problem of optimizing long-run rewards

in a repeated game against a no-regret learner across a range of tabular and Bayesian settings (Deng

et al., 2019; Mansour et al., 2022; Brown et al., 2023; Zhang et al., 2023). While bounds on attain-

able reward have been known in terms of the Price of Anarchy (Blum et al., 2008; Hartline et al.,

2015b), this sequence of results has highlighted important connections with Stackelberg equilibria:

the Stackelberg value of the game is attainable on average against any no-regret learner, and it is the

maximum attainable value against many common no-regret algorithms (such as no-swap learners,

as shown by Deng et al. (2019)). This theme has emerged in other simultaneous learning settings as

well; notably, Zrnic et al. (2021b) show that long-run outcomes in strategic classification are shaped

by relative learning rates between parties, which can designate either as the Stackelberg leader.

Nested convex optimization. The technique of identifying convex structure nested inside a more

general problem has been applied broadly across a range of online optimization settings (Neu and

Olkhovskaya, 2021; Shen et al., 2023; Flokas et al., 2019). For repeated interaction problems in-

volving an agent with unknown utility, such as optimal pricing, Roth et al. (2015) identify utility

conditions under which the non-convex objective over prices becomes convex in the space of agent

actions, and where explorability properties resembling local controllability hold, which enables

convex optimization by locally learning agent preferences; this “revealed preferences” approach

has also been applied to strategic classification (Dong et al., 2018). In recent work concerning rec-

ommendations for agents with history-dependent preferences (Agarwal and Brown, 2022, 2023),

properties related to local controllability are leveraged to enable tractable optimization as well. We

consider each of these settings as applications in Section 4.

2. Model and Preliminaries

Let X and Y be convex and compact subsets of Euclidean space, respectively denoting the action

and state spaces, where we assume dim(X ) g dim(Y). Further, we assume that Y contains a ball

of radius r around the origin 0, and is contained in a ball of radius R around the origin.

An instance of our control problem consists of choosing a sequence of actions {xt ∈ X} over

T rounds, which will yield a sequence of states {yt ∈ Y}, and we will incur losses determined by

adversarially chosen functions {ft}. Let the initial state be y0 = 0. In the basic version of our

problem, upon choosing each xt for rounds t ∈ [T ], we observe the state update to

yt = D(xt, yt−1),

where D : X ×Y → Y is an arbitrary continuous function which we refer to as the dynamics of our

problem. We sometimes allow disturbances to the dynamics, where yt = D(xt, yt−1) + wt+1 for

{wt} chosen adversarially. In some cases we allow time-varying dynamics D : X ×Y ×[T ] → Y ,

where the dynamics in each round are denoted by Dt(xt, yt−1).
Here and in Section 3, we assume that our loss in round is given by ft(yt), where each ft is

a L-Lipschitz convex function revealed after playing xt; we relax these assumptions for some of

our applications in Section 4, e.g. to allow dependence on xt as well. We generally measure will

performance with respect to the best fixed state, and the regret for an algorithm A yielding {yt} is

RegT (A) =
T∑

t=1

ft(yt)−min
y∈Y

T∑

t=1

ft(y).
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In Proposition 4, we relate this benchmark to the class of “state-targeting” policies, which can

sometimes be expressed by affine functions, and we compare their performance to linear policies.

Throughout, we use ∥·∥ to donate the Euclidean norm, and we let Bϵ(y) = {ŷ : ∥y − ŷ∥ f ϵ}
denote the norm ball of radius ϵ around y. We let ΠY(·) denote Euclidean projection into the set Y;

un denotes the uniform distribution over n items, and ∆(n) denotes the probability simplex.

2.1. Locally Controllable Dynamics

A number of properties under the name “local controllability” have been considered for various

continuous-time and asymptotic control settings (Aoki, 1974; Kuhn and Wohltmann, 1989; Barbero-

Liñán and Jakubczyk, 2013; Boscain et al., 2021), generally relating to the notion that all states in a

neighborhood around a given state are reachable. We give two formulations of local controllability

for our setting, which we take as properties of the dynamics D holding over all inputs.

Definition 1 (Weak Local Controllability) For Ä ∈ (0, 1], an instance (X ,Y, D) satisfies (weak)

Ä-local controllability if for any y ∈ Y and y∗ ∈ BÄ·Ã(y)(y), there is some x such thatD(x, y) = y∗,

where Ã(y) = minŷ∈bd(Y) ∥ŷ − y∥ is the distance from y to the boundary of Y .

Definition 2 (Strong Local Controllability) For Ä > 0, an instance (X ,Y, D) satisfies strong Ä-

local controllability if for any y ∈ Y and y∗ ∈ BÄ(y) ∩ Y , there is some x such that D(x, y) = y∗.

We often refer to weak local controllability simply as local controllability. This property ensures

that there is always some action xt which results in the next state yt staying fixed at yt−1, as well as

some action which moves the state to any point in a surrounding ball; in the weak case, the size of

the reachable ball is allowed to decay as yt approaches the boundary of Y . The parameter Ä controls

the speed at which we can navigate the state space: when Ä = 1 in the weak case (or Ä g R in the

strong case), we can always immediately reach some point on the boundary of Y , yet for Ä close to

zero we may only be able to move in a small neighborhood. Our results use local controllability to

minimize regret over Y by reduction to online convex optimization. As we prove in Appendix A,

up to a quantifier alternation which vanishes as Ä approaches 0, a property of this form is essentially

necessary: competing with the best state y is impossible if we cannot remain in its neighborhood.

Proposition 3 Suppose there is some y ∈ Y and values ³, ´ > 0 such that for all ŷ ∈ B³(y) and

x ∈ X , D(x, ŷ) /∈ B´(ŷ). Then, there are losses such that RegT (A) = Ω(T ) for any algorithm A.

2.2. States vs. Policies

While regret benchmarks in online control are typically expressed in terms of a reference class of

policies, we note that there is a class of “state-targeting” policies which track the reward of fixed

states (asymptotically, and up to the influence of disturbances), and which can be implemented if

D is known; we maintain the formulation in terms of fixed states for clarity with respect to our

motivations for Stackelberg optimization. Existing no-regret algorithms for online control typically

compete with linear policies, and choose actions each round by implementing policies which are

linear in multiple past states (as in e.g. Agarwal et al. (2019a)). Here, we show that all such poli-

cies can be arbitrarily suboptimal when compared to state-targeting policies, even for dynamics

which are linear up to projection and with fixed convex losses over states, as they may yield actions

and states which remain fixed at 0 in every round even if the optimal state is always immediately

accessible under the dynamics. We prove Proposition 4 in Appendix A.
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Proposition 4 For an instance (X ,Y, D), let the class of state-targeting policies for Ŷ ¦ Y be

given by PŶ = {Pŷ : ŷ ∈ Ŷ} where Pŷ(y) = argmin{x∈X :D(x,y)∈Ŷ} ∥D(x, y)− ŷ∥2. Define the

regret of a policy class P as

RegT (P) = min
P∈P

(
T∑

t=1

ft(yt)

)
−min

y∈Y

(
T∑

t=1

ft(y)

)
,

where yt is updated by playing P at each round. For any Ä-locally controllable instance, there is a

set Ŷ ¦ Y for which RegT (PŶ) = O(
√
TÄ−1). Further, for any class PK where each K ∈ PK is

a matrix yielding actions xt = −Kyt−1, there is an instance where RegT (PK) g Ω(T ) for Ä = 1.

If dynamics are linear up to projection with D(xt, yt−1) = ΠY(By + Ax) for full-rank A, and

dim(X ) = dim(Y), note that Pŷ(y) = A−1(ŷ −By) implements any Pŷ for sufficiently large X .

3. No-Regret Algorithms for Locally Controllable Dynamics

Here we give a sequence of no-regret algorithms satisfying a range of robustness properties. Our

primary algorithm NESTEDOCO, presented in Section 3.1, operates over known time-varying dy-

namics without disturbances and requires an offline non-convex optimization oracle, and we identify

conditions in Section 3.2 which remove the oracle requirement. In Section 3.3 we give two algo-

rithms, NESTEDOCO-BD and NESTEDOCO-UD, which allow adversarial disturbances to weakly

and strongly locally controllable dynamics, respectively. In Section 3.4 we extend NESTEDOCO to

accommodate unknown dynamics under appropriate regularity conditions (provided an initial “ap-

proximately stabilizing” action is known at t = 1), and in Section 3.5 we give an algorithm which

obtains O(T 3/4) regret under bandit feedback.

3.1. Nonlinear Control via Online Convex Optimization

When dynamics satisfy local controllability and yt−1 is not too close to bd(Y), all points yt in a

ball around yt−1 are feasible with an appropriate xt; this enables execution of an online convex

optimization (OCO) algorithm over Y by playing the action xt which yields a state update to the

target yt chosen at each iteration, computed via offline non-convex optimization. Here we assume

that D is known and can be queried for any inputs, and that disturbances to the state are not present.

We allow the dynamics to change over time, potentially as a function of previous actions xs and

losses fs for s < t, provided that Dt can be determined in each round. We use Follow the Regular-

ized Leader (FTRL) as our OCO subroutine (Shalev-Shwartz and Singer, 2006; Abernethy et al.,

2008), yet we note that it may be substituted for any OCO algorithm whose per-round step size is

guaranteed to be sufficiently small (such as OGD with a constant learning rate); statements of the

FTRL algorithm and its key properties are provided in Appendix B. We instantiate FTRL over a

contracted space Ỹ ¦ Y , calibrated to ensure that the minimum loss over Ỹ is close to that for Y ,

yet where each step of FTRL lies within the feasible region ensured by (weak) local controllability.

Theorem 5 For a Ä-locally controllable instance (X ,Y, D) without disturbances and with Dt

known at each t, the regret of NESTEDOCO for convex L-Lipschitz losses ft : Y → R is at most

RegT (NESTEDOCO) f 2L
√
(1 +R(rÄ)−1)TGµ−1

with respect to any state y∗ ∈ Y , with T queries made to a non-convex optimization oracle.

The proof for Theorem 5 is given in Appendix C.
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Algorithm 1 Nested Online Convex Optimization (NESTEDOCO).

Let È : Y → R be µ-strongly convex with argminyÈ(y) = 0 and maxy,y′ |È(y)− È(y′)| f G

Let ¸ = (Gµ)1/2((1 + R
rÄ)TL

2)−1/2

Let Ỹ = {y : 1
1−¶y ∈ Y} for ¶ = ¸ L

rÄµ

Initialize FTRL to run for T rounds over Ỹ with regularizer È and parameter ¸
for t = 1 to T do

Let y∗ be the point chosen by FTRL

Use Oracle(yt−1, y
∗) to compute xt = argminx ∥Dt(x, yt−1)− y∗∥2

Play action xt
Observe yt and loss ft(yt), update FTRL

end for

3.2. Efficient Updates for Action-Linear Dynamics

While NESTEDOCO requires no assumptions on the dynamics beyond local controllability, there

are large classes of dynamics for which the oracle call can be removed. We say that dynamics are

action-linear if yx = D(x, y) is linear in x, for yx ∈ int(Y) (and arbitrary for yx ∈ bd(Y)).

Proposition 6 For a Ä-locally controllable and action-linear instance (X ,Y, D), the per-round

optimization problem for Oracle(yt−1, y
∗) in NESTEDOCO is convex.

Proof For y = yt−1 ∈ Ỹ ¦ int(Y), we have D(x, y) = Ay · x+ by for some matrix Ay and vector

by, and so we can solve xt = argminx∈X ∥Ay · x+ by − y∗∥2 efficiently.

The class of action-linear dynamics is quite general, owing to the flexibility permitted by nonlinear

parameterizations of (Ay, by) in terms of y; in Appendix D, we show that local controllability holds

for multiple explicit families of instances when appropriate eigenvalue conditions are satisfied. We

can further relax this condition to accommodate dynamics where action-linearity holds only locally

in the neighborhood of stabilizing actions (i.e. actions x∗ where D(x∗, y) = y).

Definition 7 (Locally Action-Linear Dynamics) An instance (D,X ,Y) is locally action-linear if,

for any y ∈ int(Y), x∗ such that D(x∗, y) = y, and x such that D(x, y) ∈ int(Y), the dynamics

are given by D(x, y) = Ayx + by + qy(x), where Ay is a matrix and by is a vector, both with

norms bounded by some absolute constant, where and qy : X → R
dim(Y) is any function where

∥qy(x)∥ f C ∥Ay(x− x∗)∥1+c for some constants C, c > 0.

By this condition, for any x in a sufficiently small neighborhood around x∗, the deviation of

dynamics (and thus the resulting yt+1) from action-linearity vanishes. Note that our algorithm

always chooses a target yt will always be near yt−1; as such, these deviations from non-action-

linearity can be modeled as disturbances with magnitude strictly less than our per-round step size

∥yt+1 − yt∥ (along with universal constant factors). The existence of an efficient implementation

follows as a straightforward corollary of Theorem 8 in Section 3.3, which extends NESTEDOCO to

accommodate bounded adversarial disturbances, as we can then select actions by disregarding the

influence of qy and only considering the local approximation D(x, y) = Ayx + by at each state y
(assuming that each decomposition between qy and the action-linear component is known).
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3.3. Adversarial Disturbances

Our algorithm NESTEDOCO can be extended to accommodate adversarial disturbances, where the

state is updated as yt = D(xt, yt−1) + wt, with {wt} chosen adversarially. In the weak local

controllability case, we show a sharp threshold effect in terms of whether or not ∥wt∥ is allowed to

exceed the undisturbed distance from the boundary by a factor of Ä
1+Ä : if disturbances are bounded

below this threshold, regret minimization remains feasible with a tight Θ(E) dependence on the total

disturbance magnitude, yet if disturbances may exceed this, no sublinear regret rate is attainable

even for a constant total disturbance magnitude. When Ä is small, an adversary can push us to the

boundary faster than we can “undo” past disturbances, causing our feasible range to decay.

Theorem 8 (Bounded Disturbances for Weak Local Controllability) For any Ä ∈ (0, 1], sup-

pose that a sequence of adversarial disturbances wt for a Ä-locally controllable instance (X ,Y, D)
satisfies

∑T
t=1 ∥wt∥ f E and ∥wt∥ f Ä−³Ä

1+Ä · Ã (D(xt, yt−1)), for some ³ ∈ R. If ³ > 0, there is

an algorithm NESTEDOCO-BD with regret for convex Lipschitz losses ft bounded by

RegT (NESTEDOCO-BD) f O
(√

T · (³Ä)−1 + E
)
,

and there is an instance where any algorithm A obtains RegT (A) = Ω(E). If ³ < 0, there is an

instance such that any algorithm A obtains RegT (A) g Ω (T ) even when E = O(1).

The maximum disturbance bound can be removed when dynamics are strongly locally controllable,

as the ensured feasible range of the dynamics does not vanish at the boundary of the state space. For

such instances, we can minimize regret (with tight O(E · Ä−1) dependence) even if disturbances are

only implicitly bounded by the state space diameter (which is at least Ä, without loss of generality).

Theorem 9 (Unbounded Disturbances for Strong Local Controllability) For any Ä > 0 and

strongly Ä-locally controllable instance (X ,Y, D) with disturbanceswt satisfying
∑T

t=1 ∥wt∥ f E,

there is an algorithm NESTEDOCO-UD with regret for convex Lipschitz losses ft bounded by

RegT (NESTEDOCO-UD) f O
(√

T + E · Ä−1
)
,

and there is an instance where any algorithm A obtains RegT (A) g Ω
(
E · Ä−1

)
.

In each case, our lower bounds in terms ofE hold for the same constants obtained by our algorithms,

and our algorithms obtain the stated regret guarantees even when E is not known in advance. We

present the algorithms and analysis for each theorem in Appendix E; both operate by tracking de-

viations from an idealized trajectory without disturbances, and calibrating parameters to preserve

sufficient reachability margin for applying corrections towards this trajectory in each round. The

lower bounds both proceed by considering an instance with a fixed target state y∗ and losses which

track the distance from y∗, along with an adversary whose goal is to maximize this distance by

selecting disturbances which push the current state away from y∗.

3.4. Unknown Dynamics

Up until this point, we have assumed that the dynamics D can be queried arbitrarily in each round.

While this has required minimal assumptions on D beyond local controllability, accommodation of
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unknown dynamics is often desired in online control (Cassel et al., 2022; Minasyan et al., 2022) and

for several of our applications (Roth et al., 2015; Agarwal and Brown, 2023). Here we give con-

ditions under which regret minimization can be implemented without advance knowledge of D by

an algorithm PROBINGOCO, which maintains continuously-updating local linear approximations

of D near yt across rounds. Crucially, we assume that D is time-invariant and locally action-linear

with sufficiently small Lipschitz parameters, and that for the initial state y0 some near-stabilizing

action x1 is known, i.e. ∥D(x1, y0)− y0∥ f ϵ, for some ϵ = o(
√
T ).

Theorem 10 For any Ä-locally controllable and time-invariant instance (D,X ,Y) which satisfies

local action-linearity and appropriate Lipschitz conditions, there is an algorithm PROBINGOCO

with RegT (PROBINGOCO) f O(
√
T ) for convex Lipschitz losses ft and unknown dynamics D,

provided that at t = 1 we are given some x1 such that ∥D(x1, y0)− y0∥ = o(
√
T ).

We state PROBINGOCO and prove Theorem 10 in Appendix F, along with additional details

on the regularity and near-stability assumptions. The crux of our analysis, beyond that from our

previous results, hinges on being able to maintain and update local linear approximations of D
throughout our optimization which are sufficiently accurate to allow us to discard the effects of

both learned representation errors and action non-linearity from qy(x) as bounded disturbances. We

implement each update from our nested regret minimization algorithm as a series of O(dim(X ))
steps involving small near-orthogonal perturbations to our targets yt, which we then use to update

our local estimate for D.

3.5. Bandit Feedback

We can extend our approach from NESTEDOCO to accommodate bandit feedback for convex losses

by replacing FTRL with the FKM algorithm (Flaxman et al., 2004) and appropriately recalibrat-

ing parameters. FKM obtains O(T 3/4) regret, which is the best currently-known bound for bandit

convex optimization without additional assumptions (e.g. strong convexity), and we obtain an anal-

ogous bound here for nested optimization. We note that this extension to bandit feedback can again

be applied for any algorithm with a small per-round step-size bound, though this property does not

hold for algorithms which sample from larger sets to reduce variance of gradient estimators (e.g.

those from Abernethy et al. (2008); Hazan and Levy (2014)).

Theorem 11 For any Ä-locally controllable instance (D,X ,Y), there is an oracle-efficient algo-

rithm NESTEDBCO with expected regret bounded by

RegT (NESTEDBCO) = O
(
nRLT 3/4(rÄ)−1

)

for L-Lipschitz convex losses ft under bandit feedback.

We present the NESTEDBCO algorithm and prove Theorem 11 in Appendix G.

4. Applications for Online Stackelberg Optimization

We give several applications of our framework to online Stackelberg problems involving strategic or

adaptive agents, each cast as an instance of online control with nonlinear dynamics where local con-

trollability holds, and where our objectives are well-approximated by convex surrogate losses only
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over the state. Each application extends prior work by either allowing for more relaxed assump-

tions, unifying distinct problem instances, or giving a novel formulation to account for dynamic and

adversarial behavior; analysis and comparison to related work is contained in Appendices H-K.

4.1. Online Performative Prediction

Performative Prediction was introduced by Perdomo et al. (2020) to capture settings in which the

data distribution may shift as a function of the classifier itself. We consider the online formula-

tion of Performative Prediction introduced in Kumar et al. (2022) as an instance of online convex

optimization with unbounded memory, which we extend to accommodate a stateful variant of the

problem (as in Brown et al. (2022)) in which the update to the distribution is a function of both the

classifier and the current distribution itself. Let X ¦ R
n denote our space of classifiers, and let p0

be the initial distribution over Rn. When a classifier xt is deployed, the distribution is updated to

pt = (1− ¹)pt−1 + ¹D(xt, yt−1)

where D(xt, y) = A(xt, yt−1) + À, for a random variable À ∈ R
n with mean µ and covariance Σ,

and with yt = A(xt, yt−1), where A satisfies Ä-local controllability for some Ä > 0 and appropriate

smoothness notions. We also assume there is some linear s : X → Y such that A(x, y) = s(x) if

y = s(x). We then receive loss f̃t(xt, pt) = Ez∼pt [ft(xt, z)], where each ft is convex and Lipschitz.

This generalizes the model of Kumar et al. (2022), in which A(x, y) = A ∈ R
n×n is taken

to be a fixed matrix; there, Ä-local controllability is satisfied for some Ä > 0 provided that A is

nonsingular. Their aim is to compete with the best fixed classifier by running regret minimization

over X . Here we run NESTEDOCO over Y , taken over the range of s, which allows us to compete

against the best fixed classifier as well by the properties of s; while the classifiers xt we play will

generally not result in stabilizing points ofA, their excess loss compared to each s−1(yt) is bounded.

Theorem 12 (Regret Minimization for Performative Prediction) For any ¹ > 0, the dynamics

for Online Performative Prediction are Ä-locally controllable, and NESTEDOCO obtains regret

O(
√
T (Ä−1 + ¹−1)) with respect to the best fixed classifier.

4.2. Adaptive Recommendations

Online interactions with economic agents of various types are ubiquitous, and the resulting control

problems tend to be manifestly nonlinear; here we treat two diverse examples from this space.

The Adaptive Recommendations problem, as introduced by Agarwal and Brown (2022), is about

providing menu recommendations repeatedly to an agent, whose choice distribution is a function of

their past selections, while the controller’s reward in each round depends on adversarial losses over

the choice. In each round t ∈ [T ], we show the agent a (possibly randomized) menu Kt containing

k (out of n) items, and the agent’s instantaneous choice distribution conditioned on seeing Kt is

pt(i;Kt, vt−1) =

{
si(vt−1)∑

j∈Kt
sj(vt−1)

i ∈ Kt

0 i /∈ Kt

where each si : ∆(n) → [¼, 1] is the agent’s preference scoring function for item i, for some ¼ > 0,

taking as input the agent’s memory vector v ∈ ∆(n). The memory vector updates each round as

vt = (1− ¹t)vt−1 + ¹tpt,

10
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where ¹t ∈ [¹, 1] for ¹ > 0 is a possibly time-dependent update speed, and we receive loss ft(pt),
where each ft is convex and L-Lipschitz. Note that the set of feasible choice distributions when

considering all menu distributions xt ∈ ∆(
(
n
k

)
) depends on the memory vector vt. The regret

benchmark considered by Agarwal and Brown (2022) is the intersection of all such sets, denoted

the “everywhere instantaneously-realizable distribution” set EIRD = ∩v∈∆ IRD(v), where IRD(v)
is the “instantaneously realizable distribution” set for v, given as the convex hull of the choice

distributions p(Kt) resulting from each menu Kt ∈ [
(
n
k

)
] when v is the memory vector. It is shown

that the set is non-empty when ¼ is not too small, and algorithms which minimize regret with respect

to any distribution in EIRD are given in Agarwal and Brown (2022) and Agarwal and Brown (2023)

under varying assumptions regarding the scoring functions and update speed.

While the prior work considers a bandit version of the problem with unknown dynamics, here we

consider a full-feedback deterministic variant of the problem for simplicity, which further allows us

to circumvent barriers posed by uncertainty Agarwal and Brown (2022, 2023) and relax structural

assumptions (e.g. on ¹t or si). We can cast this as an instance of our framework by taking X =
∆(
(
n
k

)
) and Y = EIRD, where D expresses updates to the memory vector. We assume v0 = un,

and we reparameterize to run our algorithm over ∆(n). We optimize surrogate losses f∗t (vt), and

bound excess regret from ft(pt).

Theorem 13 (Regret Minimization over EIRD) For ¼ > k−1
n−1 , the dynamics for Adaptive Rec-

ommendations over EIRD are ¹-locally controllable, and NESTEDOCO obtains regretO(
√
T¹−1).

In Agarwal and Brown (2023), a property for scoring functions is considered which enables regret

minimization over a potentially much larger set of distributions than EIRD. A scoring function

si : ∆(n) → [¼Ã , 1] is said to be (Ã, ¼)-scale-bounded for Ã > 1 if, for all v ∈ ∆(n), we have that

Ã−1((1− ¼)vi + ¼) f si(v) f Ã((1− ¼)vi + ¼).

The set considered is the ϕ-smoothed simplex ∆ϕ(n) = {(1 − ϕ)v + ϕun : v ∈ ∆(n)}, for

ϕ = Θ(k¼Ã2), where it is shown that IRD(v) contains a ball around v for v ∈ ∆ϕ(n). We take

Y = ∆ϕ(n), which satisfies local controllability, and optimize over f∗t (vt) with NESTEDOCO.

Theorem 14 (Regret Minimization over ∆ϕ(n)) For (Ã, ¼)-scale-bounded scoring functions si,
for any ¼ > 0 and Ã > 1, the dynamics for Adaptive Recommendations over ∆ϕ(n) are Ω(¹¼ϕ)-
locally controllable, and NESTEDOCO obtains regret O(

√
T (¹¼ϕ)−1).

4.3. Adaptive Pricing

Here we consider an Adaptive Pricing problem for real-valued goods, formulated as a dynamic

extension of the setting of Roth et al. (2015) where purchase history and consumption affect demand.

In each round we set per-unit price vectors pt ∈ R
n
+, and an agent buys some bundle of goods

xt ∈ R
n
+, which results in us obtaining a reward ïpt, xtð − ct(xt), where our production cost

function ct at each round is convex and Lc-Lipschitz, and may be chosen adversarially.

Departing from Roth et al. (2015), we consider an agent who maintains goods reserves yt−1 ∈
R
n
g0 and consumes an adversarially chosen fraction ¹t ∈ [¹, 1] of every good’s reserve at each round

(for some ¹ > 0). The agent then chooses a bundle xt to maximize their utility g(pt, xt, yt) =
v(yt) − ïpt, xtð, where yt = (1 − ¹t)yt−1 + xt is their updated reserve bundle. We make several
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regularity assumptions on the agent’s valuation function v : Rn+ → R+, all of which are satisfied by

several classically studied utility families (which we discuss in Appendix 4.3). Notably, we assume

that v is strictly concave and increasing, and homogeneous; the range is bounded under rationality.

Our aim will be to set prices which allow us to compete with the best stable reserve policy, e.g.

against any pricing policy where the agent maintains the same reserve bundle yt = y∗ at each round

for some y∗ regardless of ¹t. We take an appropriate convex set of such bundles as our state space,

for which we show that local controllability holds. Observe that to induce a purchase of xt = ¹tyt−1,

it suffices to set prices pt = ∇v(yt−1), as we then have that ∇xt(v((1−¹t)yt−1+xt)−ïpt, xtð) = 0.

By homogeneity of v, we also have that ï∇v(yt), ¹tytð = ¹tk · v(yt) for some k, and we show that

optimization via the concave surrogate rewards

f∗t (yt) = ¹tk · v(yt)− ct(¹tyt)

will closely track our true rewards ft(pt, xt) = ïpt, xtð − ct(xt). While neither our true nor sur-

rogate rewards will be Lipschitz, we extend NESTEDOCO to obtain sublinear regret over Hölder

continuous losses by appropriately calibrating our step size (which may be of independent interest).

Theorem 15 (Regret Minimization over Stable Reserve Policies) For any ¹ > 0, the dynamics

for Adaptive Pricing can are ¹-locally controllable, and NESTEDOCO obtains regret o(T¹−1) with

respect to the best stable reserve policy.

4.4. Steering Learners in Online Games

A recent line of work (Deng et al., 2019; Mansour et al., 2022; Brown et al., 2023) explores maxi-

mizing rewards in a repeated game against a no-regret learner, and Anagnostides et al. (2023) study

of no-regret dynamics in time-varying games. We consider these questions in unison, and aim to

optimize reward against a no-regret learner for game matrices chosen adversarially and online.

Consider adversarial sequences of two-player m × n bimatrix games (At, Bt), where m > n;

we assume that the convex hull of the rows of each Bt contains the unit ball. As Player A, we

choose strategies xt ∈ ∆(m) each round to maximize our reward against Player B, who chooses

their strategies yt ∈ ∆(n) according to a no-regret algorithm (in particular, online projected gradient

descent). The game (At, Bt) is only revealed after both players have chosen strategies for round t.
Our aim here is to illustrate the feasibility of steering the opponent’s trajectory, and so we consider

games where Player A’s reward is predominantly a function only of Player B’s actions. We assume

that ∥xAt − xA∗
t ∥ f ¶t for any x ∈ ∆(m), where each A∗

t is a matrix with identical rows, and that

per-round changes to Bt are bounded, with ∥xBt − xBt−1∥ f ϵt for any x ∈ ∆(m). We measure

the regret of an algorithm A with respect to any profile (x, y) ∈ ∆(m)×∆(n), where

RegT (A) = max
(x,y)∈∆(m)×∆(n)

T∑

t=1

xAty − xtAtyt.

When Player B plays OGD with step size ¹ = Θ(T−1/2), their strategy updates each round as

yt+1 = Π∆(n) (yt + ¹(xtBt)) ,

with y1 = un, and yields regret O(
√
T ) for Player B with respect to any y ∈ ∆(n) for the loss

sequence {xtBt : t ∈ [T ]}. To cast this in our framework, we consider ∆(n) = Y as our state

12



ONLINE STACKELBERG OPTIMIZATION VIA NONLINEAR CONTROL

space, where we select actions xt−1 to induce desired updates to yt and optimize over the surrogate

losses {umA∗
t yt : t ∈ [T ]}. While we do not see Bt prior to choosing each xt, we view our update

errors from instead selecting an action in terms of the dynamics resulting from Bt−1 as adversarial

disturbances and run NESTEDOCO-UD, as the dynamics are strongly locally controllable.

Theorem 16 (Regret Minimization in Online Games) For ¹ = Θ(T−1/2), repeated play against

OGD in online m × n games can be cast as a ¹-strongly locally controllable instance of online

control with nonlinear dynamics, for which NESTEDOCO-UD obtains regretO(
√
T+

∑
t(¶t+ϵt)).
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Appendix A. Omitted Proofs for Section 2

Proof of Proposition 3. Without loss of generality, assume ³ f ´/2 and that T is even. Let

ft = ∥yt − y∥ for each t. Consider any round t where yt−1 ∈ B³(y); then, for all actions xt, we

have that yt /∈ B³(y), as B³(y) ¦ B´(yt−1); as such, we incur loss ft(yt) g ³ in round t. Now

suppose yt−1 /∈ B³(y); then, we must have incurred loss at least ft−1(yt−1) g ³ in round t − 1.

As losses are non-negative, our total loss is at least ³T/2, as loss ³ is incurred at least every other

round; given that the best fixed state y∗ = y incurs total loss 0, we have that RegA(T ) = Ω(T ) for

any algorithm A.

Proof of Proposition 4. We begin by observing that for instances (X ,Y, D), the class of state-

targeting policies contains a policy which obtains the reward of the best fixed state up toO(
√
TÄ−1),

for sufficiently large T . Consider the set Ŷ = {y∗ ∈ Y : Ã(y∗) g (TÄ)−1/2}. Note that the reward

of any y ∈ Y is matched by some y∗ ∈ Ŷ up to O(
√
TÄ−1) for any fixed inner radius r, outer

radius R, and Lipschitz constant L. For any such y∗, note that under the policy Py∗ when starting

at y0 = 0, the distance between yt and y∗ in each round t is updated to at most:

∥yt − y∗∥ f max (0, Ä · Ã(yt−1)) .

It is straightforward to see that Ŷ is convex, and so our state yt will never leave Ŷ on its path to y∗;

as such, we reach y∗ within O(
√
TÄ−1) rounds, after which point our reward exactly tracks that of

y∗. For some y∗ ∈ Ŷ , this yields a regret for Py∗ of at most O(
√
TÄ−1) to the best fixed state in Y .

Next, consider an instance where X and Y are both the unit ball in R
n. With y0 = 0, let the

dynamics be given by

yt = ΠY (yt−1 + xt) .

Observe that this satisfies Ä-local controllability for any Ä f 1, as a ball of radius Ã(yt−1) is always

feasible around yt−1. Let each loss ft = ∥y − p∥2, for some p ̸= 0. Immediately we can see that

any matrix policy K ∈ PK has regret Ω(T ), as the action xt = 0 will be played in each round.

Appendix B. Follow the Regularized Leader

Here we state the FTRL algorithm and several of its key properties; see e.g. Hazan (2021) for proofs

of Propositions 17 and 18.

Algorithm 2 Follow the Regularized Leader (FTRL)

Choose a time horizon T , step size ¸, and µ-strongly convex regularizer È : Y → R

Let y1 = argminy∈Y È(y)
for t = 1 to T do

Play yt and observe loss ft(yt)
Set ∇t = ∇ft(yt)
Set yt+1 = argminy∈Y

(
¸ ·∑t

s=1∇¦
s y + È(y)

)

end for
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Proposition 17 For a µ-strongly convex regularizer È : Y → R where |È(y)− È(y′)| f G for all

y, y′ ∈ Y , and for convex L-Lipschitz losses f1, . . . , fT , the regret of FTRL is bounded by

RegT (FTRL) f ¸
TL2

µ
+
G

¸
.

Proposition 18 Any pair of points yt and yt+1 chosen by FTRL satisfies ∥yt+1 − yt∥ f ¸Lµ .

Appendix C. Analysis for NESTEDOCO

Proof of Theorem 5. First we show that any point chosen by FTRL will be feasible under local

controllability, by induction. It is straightforward to see that Ỹ is convex and Ỹ ¦ Y; further, any

y ∈ Ỹ is bounded away from bd(Y). By the definition of Ỹ , we have that y = (1 − ¶)y′ for some

y′ ∈ Y . Recall that Br(0) ¦ Y , and note that B¶r(y) = {y + ¶ŷ : ŷ ∈ Br(0)}. Let y′′ be any point

in Br(0). By convexity of Y , we then have that any point (1− ¶)y′ + ¶y′′ lies in Y , and so for any

y ∈ Ỹ we have that Br¶(y) ¦ Y . Each yt−1 lies in Ỹ , and so we have that Ã(yt−1) g r¶; as such,

any point yt in Br¶Ä(yt−1) ¦ BÄ·Ã(yt−1)(yt−1) is feasible. Given that ¸Lµ f r¶Ä, by Proposition 18

we have that yt ∈ Br¶Ä(yt−1) in each round for the chosen point. Each action will be selected by

solving for

argmin
xt∈X

∥D(xt, yt−1)− y∗∥2

via a call to Oracle(yt−1, y
∗). Each call is guaranteed to have a solution which achieves an

objective of 0 where D(xt, yt−1) = y∗ for some y∗ ∈ BÄ·Ã(yt−1)(yt−1) by local controllability,

yielding an exact state update to yt = y∗ as we assume Oracle can solve arbitrary non-convex

minimization problems. To bound the regret, first note that for any y∗ ∈ Y , we have

T∑

t=1

ft(yt) f ¸
TL2

µ
+
G

¸
+

T∑

t=1

ft((1− ¶)y∗)

by Proposition 17, as (1 − ¶)y∗ ∈ Ỹ for any y∗ ∈ Y . Then, observe that for any y∗ ∈ Y , we have

that

T∑

t=1

ft((1− ¶)y∗) f
T∑

t=1

(ft(y
∗) + L ∥¶y∗∥)

f
T∑

t=1

(ft(y
∗) + ¶LR) .

Combining the previous claims, we have that

T∑

t=1

ft(yt)− ft(y
∗) f ¶TLR+ ¸

TL2

µ
+
G

¸

= ¸

(
1 +

R

rÄ

)
TL2

µ
+
G

¸

= 2

√
(1 + R

rÄ)TGL
2

µ
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upon setting ¶ = ¸ L
rÄµ and ¸ =

√
Gµ

(1+ R
rρ

)TL2
, which yields the theorem.

Appendix D. Examples and Analysis for Action-Linear Dynamics

As a simple yet general example of dynamics which are both action-linear and locally controllable,

consider update rules in which a step is taken by applying a nonsingular matrix transformation to the

action, where the matrix can be parameterized by the state, with projection back into Y if necessary.

Example 1 Let both X and Y be given by the unit ball B1(0) in R
n. For any fixed y, let the updates

from D(x, y) be given by

D(x, y) = ΠY (y +Ay · x) ,

where each Ay is a square matrix with minimum absolute eigenvalue |¼n(Ay)| g Ã(y) · Ä for some

Ä > 0. Then, the instance (X ,Y, D) is action-linear and satisfies Ä-local controllability.

Proof for Example 1. It is straightforward to see that D(x, y) is action-linear. To show Ä-local

controllability, let y∗ be any point in BÄ·Ã(y)(y). It suffices to show that there is some x∗ ∈ X
such that Ay · x∗ = y∗ − y. As Ay is non-singular, we can solve for x∗ = A−1

y (y∗ − y), where

∥y∗ − y∥ f Ä · Ã(y) and
∣∣¼1(A−1

y )
∣∣ f 1

Ä·Ã(y) , and so we have that x∗ ∈ B1(0) = X .

We can also extend this to include state-parameterized generalizations of any linear system governed

by nonsingular matrices over a bounded-radius state space (for a sufficiently large action space).

Example 2 Let Y be given by the radius-R ball BR(0) in R
n, and let X = BcR(0). For any fixed

y, let the updates from D(x, y) be given by

D(x, y) = ΠY (Ky · y +Ay · x) ,

where both Ky and Ay are square matrices. For any y, let My = Ky − I , and suppose we take

c large enough such that c · |¼n(Ay)| g |¼1(My)| + Ã(y) · Ä for some Ä > 0. Then, the instance

(X ,Y, D) is action-linear and satisfies Ä-local controllability.

Proof for Example 2. Here, again it is evident that D(x, y) is action-linear, and so it suffices to

show that there is some x∗ ∈ X such that

Ky · y +Ay · x∗ = y +My · y +Ay · x∗

= y∗

for any y∗ in BÄ·Ã(y)(y). As in the proof for Example 1, we have that ∥My · y∥ f R · |¼1(My)|, and

for large enough c there is some x∗ such that Ay · x∗ = ŷ for any ŷ where ∥ŷ∥ f R · |¼1(My)| +
Ã(y) ·Ä. Thus, any point y∗ ∈ BR·|¼1(My)|+Ã(y)·Ä(y+My ·y) is feasible by some x∗, which contains

the ball BÃ(y)·Ä(y).
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Appendix E. Algorithms for Adversarial Disturbances

E.1. NESTEDOCO-BD and Proofs for Theorem 8

We show that it is possible simulate NESTEDOCO over the undisturbed states ŷt under the assump-

tion that the dynamics are in ³Ä-locally controllable for some ³ ∈ (0, 1) while retaining sufficient

range in the feasible region around yt to correct for the disturbance wt−1 from the previous round.

Here, the oracle call for computing xt in each round is updated to consider the true state yt−1.

Algorithm 3 NESTEDOCO with Adversarial Disturbances (NESTEDOCO-BD).

Initialize NESTEDOCO for T rounds over (X ,Y, D) for ³Ä-locally controllable dynamics

for t = 1 to T do

Let ŷt be the target state chosen by NESTEDOCO

Use Oracle(yt−1, ŷt) to compute xt = argminx∈X ∥D(x, yt−1)− ŷt∥2
Play action xt.
Observe disturbed state yt = ŷt + wt and loss ft(yt).
Update NESTEDOCO with state ŷt and loss ft(ŷt).

end for

Theorem 8 follows directly from Theorems 19, 20, and 21. Intuitively, when the per-round

disturbance magnitude is at most Ä−³Ä
1+Ä · Ã (D(xt, yt−1)), one can calibrate NESTEDOCO for the

case of ³Ä-locally controllable dynamics and maintain sufficient “slack” to correct for the previous

round’s disturbance in every round. When disturbances exceed Ä
1+Ä · Ã (D(xt, yt−1)), an adversary

can continually push the state towards the boundary of Y , which may require vanishing disturbance

magnitude as rounds progress due to the limited range promised by local controllability near the

boundary.

Theorem 19 For a Ä-locally controllable instance (X ,Y, D) with convex losses ft : Y → R and

adversarial disturbances wt where ∥wt∥ f Ä−³Ä
1+Ä · Ã (D(xt, yt−1)) and

∑T
t=1 ∥wt∥ f E, the regret

of NESTEDOCO-BD with respect to the reward of any state is bounded by

RegT (NESTEDOCO-BD) f O
(√

T · (³Ä)−1 + E
)
,

with T queries made to an oracle for non-convex optimization.

Proof We show by induction that each call to Oracle(yt−1, ŷt) yields a feasible action xt satisfy-

ing ŷt = D(xt, yt−1). This is immediate for t = 1, and suppose this holds up to some round t− 1,

where we have that yt−1 = ŷt−1 + wt−1. Given that NESTEDOCO selects actions under ³Ä-local

controllability, we can bound

∥ŷt − ŷt−1∥ f ³Ä · Ã(ŷt−1).

Further, the magnitude of the disturbance wt−1 is bounded by

∥wt−1∥ f Ä− ³Ä

1 + Ä
· Ã(ŷt−1),
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yielding that

∥ŷt − yt−1∥ f ∥ŷt − ŷt−1 − wt−1∥

f
(
³Ä+

Ä− ³Ä

1 + Ä

)
· Ã(ŷt−1). (yt−1 = wt−1 + ŷt−1)

As such, we have that

Ä · Ã(yt−1) g Ä

(
1− Ä− ³Ä

1 + Ä

)
· Ã(ŷt−1)

= Ä

(
³+

1− ³

1 + Ä

)
· Ã(ŷt−1),

and so by Ä-local controllability some feasible action xt exists, as ŷt lies in BÄ·Ã(yt−1). The re-

gret bound for NESTEDOCO holds over the states ŷt, and so we can bound the total regret of

NESTEDOCO-BD with respect to any y∗ ∈ Y as:

T∑

t=1

ft(yt)− ft(y
∗) f

T∑

t=1

ft(ŷt)− ft(y
∗) + L ∥yt − ŷt∥

f RegT (OEN-FTRL) + L
T∑

t=1

∥wt∥ (Thm. 5)

f 2

√
(1 + R

r³Ä)TGL
2

µ
+ LE.

We show that the dependence on E is tight up to the constant. Note that we we can obtain regret

O(
√
T · (³Ä)−1) + LE in the following instance via NESTEDOCO-BD.

Theorem 20 (Regret Lower Bound for Bounded Disturbances) Suppose for any ³ > 0 and Ä ∈
(0, 1] an adversary can choose wt with ∥wt∥ f Ä−³Ä

1+Ä · Ã (D(xt, yt−1)), where
∑T

t=1 ∥wt∥ = E for

any E. There is a Ä-locally controllable instance (X ,Y, D) with L-Lipschitz convex losses ft such

that any algorithm A obtains regret RegT (A) g max(LE, Ä−³Ä1+Ä TL).

Proof Consider any norm ∥·∥ over Rn. Let Y be the unit ball B1(0), and let each ft(yt) = L ∥yt∥.

Consider any action space X and dynamics D where Ä-local controllability exactly characterizes

the range of D, i.e. for any y and y′, there is some x such that D(x, y) = y′ if and only if y′ ∈
BÄ·Ã(y)(x, y).

First, note that Ã(y) = 1− ∥y∥ for any y ∈ Y . In each round t , suppose an algorithm plays an

action xt at state yt−1 which yields an target undisturbed update ŷ = D(xt, yt−1). The adversary

can then choose any wt satisfying ∥wt∥ f Ä−³Ä
1+Ä · (1− ∥ŷt∥); suppose each wt is given by

wt = ŷt ·
Ä−³Ä
1+Ä · (1− ∥ŷt∥)

∥ŷt∥
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if ŷt is non-zero, and an arbitrary vector wt with ∥wt∥ = Ä−³Ä
1+Ä if ŷt = 0. This satisfies the

disturbance norm bound, and further yields yt = ŷt + wt, where for non-zero ŷ we have

yt = ŷt ·
(
1 +

Ä−³Ä
1+Ä · (1− ∥ŷt∥)

∥ŷt∥

)

and thus for any ŷ,

∥yt∥ g ∥ŷt∥+
Ä− ³Ä

1 + Ä
· (1− ∥ŷt∥)

g Ä− ³Ä

1 + Ä
,

yielding a loss ft(yt) g L · Ä−³Ä1+Ä at a disturbance cost of ∥wt∥ = Ä−³Ä
1+Ä (1 − ∥ŷt∥). Assuming the

adversary continues this strategy in each round until any disturbance budget E =
∑T

t=1 ∥wt∥ is

exhausted, this yields a regret for any algorithm of at least

RegT (A) g min

(
LE,

Ä− ³Ä

1 + Ä
TL

)
,

as y∗ = 0 obtains total loss 0.

The disturbance upper bound is indeed necessary for Ä-locally controllable dynamics. We show a

sharp threshold effect at Ä
1+Ä · Ã(D(xt, yt−1)), wherein an adversary who is allowed to exceed this

limit by any amount can force an algorithm to incur linear regret even with only a constant budget.

Note that for any Ä ∈ (0, 1] and ³ < 0, there is some ´ ∈ [0, 1) such that Ä−³Ä1+Ä g Ä
1+´Ä .

Theorem 21 Suppose an adversary can choose any state disturbances wt with ∥wt∥ f Ä
1+´Ä ·

Ã (D(xt, yt−1)), for any Ä ∈ (0, 1] and any ´ ∈ [0, 1). Then, there is a Ä-locally controllable

instance (X ,Y, D) with convex losses ft such that any algorithm A obtains regret RegT (A) =
Θ(T ) even if

∑T
t=1 ∥wt∥ = O(1).

Proof Consider any instance (X ,Y, D) where Ä-local controllability exactly characterizes the range

of D, i.e. for any y and y′, there is some x such that D(x, y) = y′ if and only if y′ ∈ BÄ·Ã(y)(x, y).
Let dt = Ã(yt) for each round. Beginning at any round t, suppose the adversary observes an

action xt which yields an update ŷt = D(xt, yt−1). Let zt = argminy∈bd(Y) ∥y − ŷt∥, and suppose

the adversary chooses the disturbance:

wt = argmin
w:∥w∥f ρ

1+βρ
·Ã(ŷt)

∥ŷt + wt − zt∥ .

This forces yt closer to the boundary at each round, regardless of the choice of xt:

dt =

(
1− Ä

1 + ´Ä

)
· Ã(ŷt)

f
(
1 + Ä− Ä

1 + ´Ä
− Ä2

1 + ´Ä

)
dt−1 (Ã(ŷt) f (1 + Ä)dt−1)

f 1 + ´Ä+ ´Ä2 − Ä2

1 + ´Ä
dt−1

f
(
1− (1− ´)Ä2

1 + ´Ä

)
dt−1,
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where Ã(ŷt) f (1+ Ä)dt−1 holds by our assumption on D(x, y). Assuming the adversary applies a

disturbance wt selected as above in each round t f T , we have that

dt f
(
1− (1− ´)Ä2

1 + ´Ä

)t
· d0,

where the magnitude of each disturbance is bounded by

∥wt∥ f Ä+ Ä2

1 + ´Ä
dt−1

f Ä+ Ä2

1 + ´Ä

(
1− (1− ´)Ä2

1 + ´Ä

)t−1

· d0,

where we take the initial state distance to the boundary d0 = Ã(y0) to be a constant bounded away

from zero. This yields that the sum of disturbance magnitudes E =
∑T

t=1 ∥wt∥ is at most:

T∑

t=1

∥wt∥ f d0
Ä+ Ä2

1 + ´Ä
·
T∑

t=1

(
1− (1− ´)Ä2

1 + ´Ä

)t−1

f d0 ·
Ä+ Ä2

(1− ´)Ä2

= O(1).

Now suppose that the loss at each round is given by ft(yt) = ∥yt − y0∥. Then, our regret with

respect to y0 is at least:

T∑

t=1

ft(yt)− ft(y0) f
T∑

t=1

d0 − dt

f d0

(
T −

T∑

t=1

(1− ´)Ä2

1 + ´Ä

)

f d0


T −

1− (1−´)Ä2
1+´Ä

(1−´)Ä2
1+´Ä




f d0

(
T − 1 + ´Ä

(1− ´)Ä2

)

= Θ(T ).

Together, the previous three theorems yield Theorem 8.

E.2. NESTEDOCO-UD and Proofs for Theorem 9

We can remove the bound on the maximum disturbance for strongly locally controllable instances,

as the feasible update sets do not vanish at the boundary of Y . Recall that an instance (X ,Y, D)
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satisfies strong Ä-local controllability for Ä > 0 if, for any y ∈ Y and y∗ ∈ BÄ(y)∩Y , there is some

x such that D(x, y) = y∗. We assume without loss of generality that Ä f 2R, where R is the radius

of Y .

Intuitively, our algorithm tracks the target state which would be chosen by FTRL in the absence

of all disturbances (by recording the loss counterfactual loss rather than the one truly experienced),

and always seeks to minimize distance to that state.

Algorithm 4 NESTEDOCO with Unbounded Disturbances (NESTEDOCO-UD).

Initialize FTRL for T rounds over Y with step size ¸ =
√

Gµ
TL2 .

for t = 1 to T do

Let ŷt be the target state chosen by FTRL.

Use Oracle(yt−1, ŷt) to compute xt = argminx∈X ∥D(x, yt−1)− ŷt∥2.

Play action xt.
Observe disturbed state yt = D(xt, yt−1) + wt and loss ft(yt).
Update FTRL with state ŷt and loss ft(ŷt).

end for

Theorem 22 For a strongly Ä-locally controllable instance (X ,Y, D) with convex losses ft : Y →
R and adversarial disturbances wt where

∑T
t=1 ∥wt∥ f E, the regret of NESTEDOCO-UD is

bounded by

RegT (NESTEDOCO-UD) f O
(√

T + E · Ä−1
)

with respect to the reward of any state, with T queries made to an oracle for non-convex optimiza-

tion.

Proof We begin by bounding the total state error
∑t

t=1 ∥yt − ŷt∥ across rounds. First, note that

for any fixed Ä > 0, and any desired ³ ∈ (0, 1), we have that ¸Lµ f Ä³ for sufficiently large T , as

¸Lµ =
√

G
Tµ ; we assume this holds for any given choice of ³, and so we have that ∥ŷt+1 − ŷt∥ f

Ä³ by Proposition 18. For a total disturbance budget E, we separately consider disturbances wt
depending on whether or not the accumulated disturbance error up to wt is driven to 0 in the next

round. Define W+ and W− as:

W+ = {wt : D(xt+1, yt) ̸= ŷt+1}

and

W− = {wt : D(xt+1, yt) = ŷt+1}

with E+ =
∑

wt∈W+
∥wt∥ and E− =

∑
wt∈W−

∥wt∥. First, observe that at each round t corre-

sponding to wt ∈ W−, given that ∥ŷt+1 − yt∥ f Ä we have that ∥wt∥ = ∥yt − ŷt∥ f (1 + ³)Ä, as

∥ŷt+1 − ŷt∥ f ³Ä. As such, we have that

∑

t:wt∈W−

ft(yt)− ft(ŷt) f
∑

t:wt∈W−

L ∥yt − ŷt∥

f (1 + ³)LE−.

27



BROWN PAPADIMITRIOU ROUGHGARDEN

Next, consider any wt ∈ W+. As our instance is strongly Ä-locally controllable, we must have that

∥ŷt+1 − yt∥ > Ä, as otherwise there would some feasible action xt+1 which would be selected that

would yield wt ∈ W−. Since ∥ŷt+1 − ŷt∥ f ³Ä, it then must be the case that ∥wt∥ = ∥yt − ŷt∥ >
(1− ³)Ä, and so we can bound the number of disturbances in W+ as:

|W+| f
E+

(1− ³)Ä
.

Assuming a maximal distance ∥ŷt − yt∥ = 2R for each round t corresponding to some wt ∈ W+,

this yields

∑

t:wt∈W+

ft(yt)− ft(ŷt) f
∑

t:wt∈W+

L ∥yt − ŷt∥

f 2LRE+

(1− ³)Ä

We can assume ³ is small enough to yield 2R
Ä g (1 + ³) · (1− ³), and so we have

T∑

t=1

ft(yt)− ft(ŷt) f
2LRE

(1− ³)Ä
.

The regret bound for FTRL holds over the states ŷt, and so we can bound the total regret of

NESTEDOCO-BD with respect to any y∗ ∈ Y as:

T∑

t=1

ft(yt)− ft(y
∗) f

T∑

t=1

ft(ŷt)− ft(y
∗) +

T∑

t=1

ft(yt)− ft(ŷt)

f ¸
TL2

µ
+
G

¸
+

2LRE

(1− ³)Ä
(Prop. 17)

f 2

√
TGL2

µ
+

2LRE

(1− ³)Ä
.

Theorem 23 (Regret Lower Bound for Unbounded Disturbances) Suppose an adversary can

choose any state disturbances wt with
∑T

t=1 ∥wt∥ = E. For any Ä ∈ (0, 1], there is a strongly

Ä-locally controllable instance (X ,Y, D) with convex losses ft such that any algorithm A obtains

regret RegT (A) = min(2LREÄ , 2TLR).

Proof Let Y = [−R,R] for any R > 0 and let ft(yt) = −Lyt + LR for each y. Suppose strong

Ä-local controllability exactly characterizes the range of D, i.e. for any y, y′ ∈ Y there is some x
such that D(x, y) = y′ if and only if |y − y′| f Ä. Consider an adversary who chooses disturbances

wt in each round such that yt = −R until their disturbance budget E is exhausted. This requires a

disturbance of magnitude at most R + Ä for w1, as we assume y0 = 0, and at most Ä in subsequent

rounds, and thus the adversary can force any algorithm to remain at yt = −R for (E −R)Ä−1

rounds.
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As such, any algorithm must incur loss of at least 2LR(E −R)Ä−1 across these rounds, and

further must incur average loss LR over the subsequent 2RÄ−1 rounds (if T is not yet reached), for

an additional loss of 2LR2Ä−1, as they can only decrease per-round loss by LÄ given the restriction

on the range of D. As the optimal state y∗ = R obtains loss 0, the total regret is at least:

T∑

t=1

ft(yt)− ft(y
∗) g min

(
2LRE

Ä
, 2TLR

)
.

Together, the previous two theorems yield Theorem 9. Note that for both algorithms it remains com-

putationally efficient to optimize over action-linear dynamics, as the constraint thatD(x, yt−1) ∈ Y
can be encoded as a convex contraint over X .

Appendix F. Unknown Dynamics: Analysis for PROBINGOCO

Algorithm 5 Probing Online Convex Optimization (PROBINGOCO).

Let n = dim(X ), let y0 = 0, and let x1 ∈ X such that ∥D(x1, y0)− y0∥ f ϵ = o(
√
T )

Initialize NESTEDOCO-BD to run over Y for T/(2n+ 1) rounds

Run ESTIMATE for 2n+ 1 rounds:

Play x1
for i = 1 to n do

Play x1 + ϵ · ei
Play x1 − ϵ · ei

end for

Solve for estimates (Ây, b̂y) which are consistent with with the previous 2n + 1 observed state

updates, up to error O(ϵ)
for t = 2n+ 1 to T do

Let t∗ = t
Using (Ây, b̂y), target y = yt∗

Let y∗ be the next point chosen by NESTEDOCO-BD

for i = 1 to n do

Using (Ây, b̂y), target y = yt∗ +
2i−1
2n (y∗ − yt∗) + ϵ · ei

Using (Ây, b̂y), target y = yt∗ +
2i
2n(y

∗ − yt∗)− ϵ · ei
end for

Update estimates (Ây, b̂y), solving for values which are consistent with the previous 2n + 1
observed state updates, up to error O(ϵ)

end for

Proof of Theorem 10 Assume the following hold for D(x, y) at each y:

• D(x, y) = Ay · x+ by + y + qy(x), for a function qy : X → R
n;

• Ay has a largest absolute eigenvalue bounded by an absolute constant, smallest absolute

eigenvalue bounded away from 0, and is L³-Lipschitz in the matrix ℓ2 norm;
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• by has a norm bounded by an absolute constant, and is L´-Lipschitz;

• ∥qy(x)∥ f ϵ for any x such that ∥Ay · x+ by − y∥ = O(
√
T ).

In the neighborhood of any y∗, observe that playing x = A−1
y (y∗ − y − by) yields an update to

y∗+wϵ, where the error term wϵ has magnitude bounded linearly in terms of the neighborhood size

as well as polynomial in the relevant constants. We assume sufficiently small values of ϵ, L³, and

L´ (whose relative bounds may trade off with each other, and in general will be inverse-polynomial

in problem parameters other than T ) to bound the error of this process in accordance with the

requirements of Theorem 8, as well as to ensure that estimation error for (Ây, b̂y) is uniformly

bounded for all t f T . Given ϵ = o(
√
T ), this yields estimation error terms wt f C

√
T in each

round, for small enough C to obtain the obtain the desired regret bound.

Appendix G. Bandit Feedback: Analysis for NESTEDBCO

We first state the FKM algorithm and its bounds for regret and per-round step size.

Algorithm 6 FKM (Flaxman et al., 2004)

Input: decision set K containing 0, set v1 = 0, parameters ¸, ¶̃.

Let v1 ∈ int(K) such that ∇R(v1) = 0,

for t = 1 to T do

Draw ut ∈ S uniformly, set yt = vt + ¶̃ut
Play yt, observe loss ft(yt), set gt =

n
¶̃
ft(yt)ut

Update vt+1 = ΠKδ̃
[vt − ¸gt], where K¶̃ = {(1− ¶̃)v : v ∈ K}

end for

Proposition 24 (Flaxman et al. (2004)) For L-Lipschitz convex losses and a domain K with di-

ameter 2R which contains a ball of radius r around the origin, FKM obtains expected regret

RegT (FKM) f ¸
n2

¶̃2
T +

4R2

¸r2
+

8¶̃RLT

r
,

with each point yt contained in K. Further, each pair of consecutive points yt, yt+1 chosen by FKM

satisfies ∥yt+1 − yt∥ f 2¶̃ + ¸nL

¶̃
.

The NESTEDBCO algorithm is essentially equivalent to NESTEDOCO, replacing FTRL with

FKM and recalibrating parameters.

Proof of Theorem 11. Following the proof of Theorem 5, to apply the bound of FKM to our setting

(along with excess regret at most ¶LR per round from contracting Y to Ỹ), the key step is to show

that each point selected by FKM is feasible under weakly locally controllable dynamics over Ỹ , i.e.

∥yt+1 − yt∥ f r¶Ä. Let ¶̃ = 1
T 1/4 = r¶Ä/4, and let ¸ = R

2nrLT 3/4 . Assume for simplicity that

r f 1 and T 1/4 g R
r . When instantiating FKM over Ỹ with parameters ¸ and ¶̃, by Proposition 24

30



ONLINE STACKELBERG OPTIMIZATION VIA NONLINEAR CONTROL

Algorithm 7 Nested Bandit Convex Optimization (NESTEDBCO).

Let ¶̃ = 1
T 1/4 = r¶Ä/4, let ¸ = R

2nrLT 3/4

Let Ỹ = {y : 1
1−¶y ∈ Y}

Initialize FKM to run for T rounds over Ỹ with parameters ¸, ¶̃
for t = 1 to T do

Let y∗ be the point chosen by FKM

Use Oracle(yt−1, y
∗) to compute xt = argminx ∥Dt(x, yt−1)− y∗∥2

Play action xt
Observe yt and loss ft(yt), update SCRIBLE

end for

we then have

∥yt+1 − yt∥ f 2¶̃ +
¸nL

¶̃

f r¶Ä/2 +

(
R

2nrLT 3/4

)
nL

¶̃

f r¶Ä/2 + ¶̃/2

f r¶Ä,

and so each selected point is feasible. This allows us to bound our regret by

RegT (NESTEDBCO) = RegT (FKM) + ¶LRT

= ¸
n2

¶̃2
T +

4R2

¸r2
+

8¶̃LRT

r
+ ¶LRT

= ¸
16n2

r2¶2Ä2
T +

4R2

¸r2
+ 2¶ÄLRT + ¶LRT (¶̃ = r¶Ä/4)

f 16¸n2T 3/2 +
4R2

¸r2
+

12LRT 3/4

rÄ
(¶ = 4

rÄT 1/4 , r f 1)

f 16nLRT 3/4

r
+

12LRT 3/4

rÄ
(¸ = R

2nrLT 3/4 )

= O
(
nRLT 3/4(rÄ)−1

)
.

Appendix H. Background and Proofs for Section 4.1: Performative Prediction

H.1. Background

Introduced by Perdomo et al. (2020), the Performative Prediction problem captures settings in which

the data distribution for which a classifier is deployed may shift as a function of the classifier itself,

notably including strategic classification Hardt et al. (2015) as well as problems related to rein-

forcement learning and causal inference. While a number of extensions of strategic classification to
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online settings have been considered Dong et al. (2018); Zrnic et al. (2021b); Ahmadi et al. (2023),

the bulk of the literature on performative prediction considers settings with a fixed loss function and

distribution “update map” Perdomo et al. (2020); Miller et al. (2021); Jagadeesan et al. (2022b);

Mendler-Dünner et al. (2020); Piliouras and Yu (2022); Brown et al. (2022), where the update map

may sometimes depend on the current distribution (as in the Stateful Performative Prediction set-

ting of Brown et al. (2022)). For the location-scale family of update maps introduced by Miller

et al. (2021) (and additionally explored by Jagadeesan et al. (2022b) from a regret minimization

perspective), which yields a convex “performative risk” objective function, a formulation of Online

Performative Prediction is given by Kumar et al. (2022) as an application of online convex opti-

mization with unbounded memory, in which the classification loss function may change over time

and the distribution updates may occur gradually.

Here, we generalize the problem formulation of Kumar et al. (2022) to also accommodate no-

tions of statefulness similar to that in Brown et al. (2022). In particular, the instances we con-

sider will resemble location-scale maps when restricting attention only the performatively stable

classifiers for each distribution, yet the update effect of a non-stable classifier may be distribution-

dependent and nonlinear, provided that the update map satisfies local controllability (viewing clas-

sifiers as actions and distributions as states) and mild regularity properties (e.g. invertibility and

Lipschitz conditions).

H.2. Model

In the setting of Online Performative Prediction we consider, as formulated by Kumar et al. (2022),

in each round t ∈ [T ] we deploy some classifier xt, and observe samples from some distribution pt,
which may change dynamically as a function of the history of interactions. Here, we take X ¦ R

n

as our space of classifiers, e.g. representing weight vectors for regression, which we assume is

bounded and convex. The initial data distribution is given by some distribution p0 over Rn. In each

round, upon deploying a classifier xt, the distribution is updated according to

pt = (1− ¹)pt−1 + ¹D(xt, yt−1),

for ¹ ∈ (0, 1], where D(xt, yt−1) is the distribution update map taking as input our classifier xt and

some representation of the state y ∈ Y , where we assume Y ¦ R
n is convex, contains Br(0), is

bounded with radius R, and that y0 = 0. We make the following assumptions on D.

Assumption 1 We assume the distribution update map D(x, y) operates as follows:

• D(x, y) = A(x, y) + À, with A : X ×Y → Y ,

• À is a random variable in R
n with mean µ and covariance Σ,

• A(x, y) satisfies Ä-local controllability and has an inverse action mapping X(y, y∗) where

A(X(y, y∗), y) = y∗,

defined over feasible pairs, which is Ly-Lipschitz in y (when feasibility of y∗ holds), and

• There is a linear invertible function s : X → Y such that A(x, y) = s(x) if y = s(x), where

s−1 : Y → X is S-Lipschitz.
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Further, A(x, y) is known and À can be sampled freely.

The inverse action mapping assumption simply enforces that classifiers need not change drastically

to have the same update effect under small changes to the state. The final assumption imposes a lin-

ear structure over performatively stable classifiers (i.e. classifiers for which the resulting distribution

will remain fixed under D, as formulated by Perdomo et al. (2020)), but we note that the distribu-

tion may update in an arbitrarily nonlinear fashion (subject to the other conditions) when xt is not

a performatively stable classifier for the distribution induced by the previous state yt−1. The ability

to accommodate a state component is reminiscent of prior work involving notions of statefulness in

performative prediction such as Brown et al. (2022). Our setting generalizes that of Kumar et al.

(2022), in which the map A is taken to be a fixed matrix. For any nonsingular matrix A there is im-

mediately a linear map s(x) = A−1x, and local controllability can be defined in terms of the largest

and smallest absolute eigenvalues of A (as a special case of our Example 1 with a fixed matrix). We

view the nonsingularity assumption (and invertibility in the more general case) as fairly mild, as it

amounts to assuming that the distribution map can depend on all parameters of classifier without

any necessary (linear) dependency structure imposed, and that no two classifiers are equivalent only

to the population but not the optimizer (as otherwise one could simply reduce dimensionality of X ).

However, even in the case where A is singular, we note that this issue is resolvable augmenting the

state representation yt to incorporate the choice of free classifier parameters which affect loss but

not distribution updates (e.g. by adding a vector wt to yt which is orthogonal to the range of A and

linear in xt). We assume invertibility here for simplicity, and we take Y to be simply be given by

the range of s over X . At each round t, some scoring function ft(x, z) is chosen adversarially, and

our loss is then given by

f̃t(xt, pt) = E
z∼pt

[ft(xt, z)].

We assume each ft is convex and Lz-Lipschitz in both x and z, and that p0 = y0 + À. We measure

our regret with respect to the best performatively stable classifier, i.e. the loss of any classifier as if

were held constant indefinitely as the distribution updates. We define our regret as follows:

RegT (A) = max
x∗

T∑

t=1

f̃t(xt, pt)− f̃t(x
∗,D(x∗, s(x∗)))

Here, the role of s(x∗) captures the convergence of the distribution to a stable point, resulting from

taking the limit of the distribution update rule as t grows large.

As in many of the applications we consider, here our loss is determined both by our action (the

classifier) and the state (in terms of the distribution). Our approach for casting Online Performative

Prediction as an instance of online nonlinear control in our framework will be to define appropriate

surrogate convex losses which depend only on the state, over which we run NESTEDOCO. Here,

these will correspond to losses only over the updated distribution component D(xt, yt−1), which we

show closely track our true incurred loss.

H.3. Analysis

For each round t, define the surrogate loss f∗t (y) as:

f∗t (y) = E
z∼yt+À

[
ft(s

−1(y), z)
]
.
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Lemma 25 Each f∗t (y) is convex and (1 + S)Lz-Lipschitz in y.

Proof Consider any individual sample v ∼ À. We can then view g(y) = (s−1(y), y+v) as a vector-

valued function which is (1 + S∗)-Lipschitz. The function ft(g(y)) is a Lz-Lipschitz and convex

function of this linear function of y, and thus ft(s
−1(y), y+ v) is convex and (1+S∗)Lz-Lipschitz

in y. The function f∗t (y) is an average of such functions, taken over the expectation of À, and thus

is convex and (1 + S∗)Lz-Lipschitz in y as well.

Observe that f∗t (y) = f̃t(s
−1(y),D(s−1(y), y). We will run NESTEDOCO for these losses over

the Ä-locally controllable instance (X ,Y, A), where we can track the current state yt = A(xt, yt−1)
at each step as a function of our past actions given knowledge of A, and can compute gradients

of f∗t (yt) to arbitrary desired precision by sampling from À. This will yield the regret bound from

Theorem 5 with respect to the surrogate losses, and the key challenge will be to analyze our error

between the true and surrogate losses.

Lemma 26 For any round t we have that

f̃t(xt, pt)− f∗t (yt) f (1− ¹)hM +
¸Lz(1 + S)

µ
·
(
Ly +

1− ¹

¹

)

Proof For any h < t, the loss of xt over the distribution yt−h + À = D(xt−h, yt−h−1) can be

expressed as

f̂t(xt, yt−h) = E
z∼À+yt−h

[ft(xt, z)] ,

which is convex and Lz-Lipschitz in both parameters when taking the expectation over À. For

round t in isolation, using the inverse action mapping bound and the bound on ∥yt − yt−1∥ from

Proposition 18 we have that

f̂t(xt, yt)− f∗t (yt) = f̂t(xt, yt)− f̂t(s
−1(yt), yt)

= f̂t(X(yt−1, yt), yt)− f̂t(X(yt, yt), yt)

f ¸LyLz
µ

,

and further for previous states that

f̂t(xt, yt−h)− f∗t (yt) = (Ly + h)
¸Lz(1 + S)

µ
.

We can decompose the distribution pt into updates from past rounds as

pt = (1− ¹)tp0 +

t−1∑

h=0

¹(1− ¹)hD(xt−h, yt−h−1)

which then yields a loss discrepancy of at most

f̃t(xt, pt)− f∗t (yt) f (1− ¹)tft(xt, p0) +
¸Lz(1 + S)

µ

(
t−1∑

h=0

¹(1− ¹)h(Ly + h)

)

f ¸Lz(1 + S)

µ
·
(
Ly +

1− ¹

¹
+ (1− ¹)t

)
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between the true and surrogate loss for round t.

We can now bound the cumulative regret of NESTEDOCO for the problem.

Theorem 27 For any ¹ > 0, when Assumption 1 holds for the distribution update rule, Online

Performative Prediction can be cast as a Ä-locally controllable instance of online control with non-

linear dynamics, for which NESTEDOCO obtains regret

RegT (NESTEDOCO) f 2

√
(1 + Ly +

R
rÄ +

2−¹
¹ )TGL2

z(1 + S)2

µ

with respect to the best performatively stable classifier classifier.

Proof Combining the previous results with Theorem 5, we have that for any x∗ ∈ X our regret is

at most

T∑

t=1

f̃t(xt, pt)− f̃t(D(x∗, s(x∗))) f
T∑

t=1

f̂t(yt)− f̃t(x
∗,D(x∗, s(x∗))) +

T∑

t=1

f̃t(xt, pt)− f∗t (yt)

f ¸

(
1 + Ly +

2− ¹

¹
+
R

rÄ

)
TLz(1 + S)

µ
+
G

¸

= 2

√
(1 + Ly +

R
rÄ +

2−¹
¹ )TGL2

z(1 + S)2

µ

upon setting ¸ =
√

Gµ

(1+Ly+
R
rρ

+ 2−θ
θ

)TL2
z(1+S)

2
.

Theorem 12 follows directly from Theorem 27. For Online Performative Prediction, in the full

generality of the setting considered, the per-round optimization problem may not be convex, in

which case we make use of the non-convex optimization oracle access for NESTEDOCO. How-

ever, in each of the following applications we show that the action selection step can indeed be

implemented efficiently without imposing additional restrictions on the dynamics.

Appendix I. Background and Proofs for Section 4.2: Adaptive Recommendations

I.1. Background

Motivated by problems involving preference dynamics and feedback loops in recommendation sys-

tems (see e.g.Flaxman et al. (2016)), a number of recent works Hazla et al. (2019); Gaitonde et al.

(2021); Dean and Morgenstern (2022); Jagadeesan et al. (2022a); Agarwal and Brown (2022, 2023)

have explored models of repeated recommendation where given to an agent whose preferences or

opinions evolve over time. Several of these models Hazla et al. (2019); Dean and Morgenstern

(2022); Jagadeesan et al. (2022a) consider population-level effects for settings where a single rec-

ommendation is given each round and consumers (or producers) update their behavior according to

linear dynamics. Nonlinear preference dynamics with menus of recommendations for a single agent

are considered in Agarwal and Brown (2022, 2023), where the aims to minimize regret for adver-

sarial losses over the agent’s choices. The Adaptive Recommendations formulation of Agarwal and
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Brown (2022) somewhat resembles the “Dueling Bandits” setting of Yue et al. (2012), where k > 1
actions are chosen in each round, yet where preferences can now evolve dynamically as a function

of the history rather than remaining fixed. Whereas Agarwal and Brown (2022, 2023) study a bandit

formulation of the problem with unknown preference dynamics, here we consider a full-feedback

model with known dynamics, allowing for relaxed structural assumptions (on the agent’s “mem-

ory horizon” and “preference scoring functions”) at the cost of stronger informational assumptions,

while maintaining the overall dynamics of the problem.

I.2. Model

Here, we are tasked with repeatedly recommending menus of content to an agent. Out of a universe

of n elements (e.g. video channels, clothing items), we show a subset of size k (denoted Kt) to

the agent in each round, for T total rounds. The agent chooses one item i ∈ Kt from the menu,

according to a distribution in terms of their preferences, which are a function of their selection

history. Conditioned on being shown a menu Kt, the agent’s choice distribution has positive mass

only on the k items i ∈ Kt. The agent’s representation of their selection history is given by their

memory vector vt ∈ ∆(n), and choices are determined by their preference scoring functions si :
∆(n) → [¼, 1] for each i, which map the agent’s memory vector to relative preference scores for

each item. The menu we show to the agent may be chosen from some distribution xt ∈ ∆(
(
n
k

)
), and

for eachKt ∈ [
(
n
k

)
] the agent’s menu-conditional distribution pt(·;Kt, vt−1) ∈ ∆(n) is proportional

to the scores si(vt) for items in Kt, given as

pt(i;Kt, vt−1) =
si(vt−1)∑

j∈Kt
sj(vt−1)

for each i ∈ Kt, with pt(j;Kt, vt−1) = 0 for j /∈ Kt. The joint item choice distribution, considering

both random selection of a menu Kt according to xt, and the agent’s choice from Kt, is given by

pt(·;xt, vt−1) =
∑

Kt∈(nk)

xt(Kt) · pt(·;Kt, vt−1)

which we may denote simply by the vector pt ∈ ∆(n), or as a function pt(xt). In contrast to prior

work, here we consider a deterministic variant of the problem as an illustration of the flexibility

of our framework for online nonlinear control. In particular, we assume that the agent’s memory

vector vt updates according to its expectation over pt as

vt = (1− ¹t)vt−1 + ¹tpt,

where ¹t ∈ [¹, 1] is the per-round update speed, and we assume that the agent’s scoring functions si
are known. We receive convex and L-Lipschitz losses ft(pt) in each round in terms of the agent’s

choices, over which we aim to minimize regret with respect to some distribution set Y ¦ ∆(n).

The prior work (Agarwal and Brown, 2022, 2023) has considered two particular subsets of

∆(n) as regret benchmarks. We show that both can be cast as locally controllable instances of

online control, and further, we make use of local controllability to give a general characterization

of convex sets Y ¦ ∆(n) over which sublinear regret is attainable. We recall some key definitions

and results from (Agarwal and Brown, 2022, 2023).
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Definition 28 (Instantaneously Realizable Distributions) The set of instantaneously realizable dis-

tributions at a memory vector v ∈ ∆(n) is given by

IRD(v) = convhull
{
p(·;K, v) : K ∈

[(n
k

)]}
.

Each such set IRD(vt−1) corresponds to the feasible distributions pt, given the agent’s scoring

functions and memory vt−1. It is shown by Agarwal and Brown (2023) that each IRD sets can be

directly characterized in terms of the ratios between target frequencies and scores.

Proposition 29 (Menu Times for IRD Agarwal and Brown (2023)) Given a memory vector v ∈
∆(n) and target distribution p ∈ ∆(n), let the menu time µi for item i be given by

µi =
k · p(i)

si(v)∑n
j=1

p(j)
sj(v)

,

where
∑n

i=1 µi = k. Then, p ∈ IRD(v) if and only if µi f 1 for each i ∈ [n].

We recall the prior benchmark sets considered, and the corresponding assumptions which yield

feasibility of regret minimization. We state informal analogues of the prior results as translated to

our setting, which we then show formally below.

Definition 30 (Everywhere Instantaneously Realizable Distributions) The set of everywhere in-

stantaneously realizable distributions is given by

EIRD =
⋂

v∈∆(n)

IRD(v).

Proposition 31 (Corollary of Agarwal and Brown (2022)) If ¼ g k
n + k

n(n−1) , then EIRD is

non-empty, and there is a o(T ) regret algorithm with respect to any distribution p ∈ EIRD.

Distributions pt ∈ EIRD are always feasible regardless of vt−1 by an appropriate choice of xt, but

EIRD may be quite small in relation to ∆(n). Under stronger assumptions for each si, a potentially

much larger set becomes feasible as a regret benchmark.

Definition 32 (ϕ-Smoothed Simplex) The ϕ-smoothed simplex ∆ϕ(n) for ϕ ∈ [0, 1] is given by

∆ϕ(n) = {(1− ϕ)v + ϕun : v ∈ ∆(n)}

Definition 33 (Scale-Bounded Functions) A scoring function si : ∆(n) → [¼Ã , 1] is said to be

(Ã, ¼)-scale-bounded for Ã > 1 and ¼ > 0 if, for all v ∈ ∆(n), we have that

Ã−1((1− ¼)vi + ¼) f si(v) f Ã((1− ¼)vi + ¼).

For such functions, each score si(v) cannot be too far from item i’s weight in memory, and it is

shown that IRD(v) contains a ball around v for each v ∈ ∆ϕ(n), for an appropriate choice of ϕ.

Proposition 34 (Corollary of Agarwal and Brown (2023)) If each si is (Ã, ¼)-scale-bounded, then

there is a o(T ) regret algorithm with respect to any distribution p ∈ ∆ϕ(n), for ϕ = Θ(k¼Ã2).

We extend these results to general convex benchmark sets Y ¦ ∆(n), where we can characterize the

feasibility of regret minimization via local controllability using the menu times µi. When Ä-local

controllability holds over a set Y , we can minimize regret via NESTEDOCO using surrogate losses

f∗t (vt), which closely track our true losses ft(pt).
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I.3. Analysis

We make use of the menu time quantities µi for a memory vector v and target distribution p to

translate our notion of local controllability to the Adaptive Recommendations setting. Let Y be any

convex subset of ∆(n), let X = ∆(
(
n
k

)
), where the dynamics Dt(xt, vt−1) are given by

Dt(xt, vt−1) = (1− ¹t)vt−1 + ¹tpt(xt).

Note that Dt(xt, vt−1) is action-linear in xt, and thus we can solve for xt efficiently (in terms of

dim(X ) = O(nk)); further, there is a construction given in Agarwal and Brown (2023) for removing

exponential dependence on k when computing menu distributions. We consider Y as an (n − 1)-
dimensional subset of Rn, where we define the the ball BÄ(v) of radius Ä around a point v ∈ Y
as:

BÄ(v) = {p ∈ ∆(n) : ∥p− v∥ f Ä}.

Theorem 35 An instance of Adaptive Recommendations (X ,Y, D) satisfies Ä¹-local controllabil-

ity if, for any v ∈ Y and p ∈ BÄ·Ã(v), we have that

(k − 1)p(i)

si(v)
f

n∑

j ̸=i

p(j)

sj(v)

for every i ∈ [n].

This follows immediately from Proposition 31 and the definition of local controllability, which

can analogously extend to strong local controllability. We can use this formulation to unify the

feasibility analysis for each of the previously considered sets.

Lemma 36 For ¼ g k−1
n−1 + ϵ and ϵ g 0, the EIRD set contains a ball of radius Ä = Θ( ϵ

nk+ϵ)
around un, and any instance (X , EIRD, D) satisfies ¹-local controllability.

Proof For any v ∈ ∆(n), i ∈ [n], and p ∈ BÄ(un) we have p(i) f 1
n + Ä

√
2

2 and si(v) g k−1
n−1 + ϵ,

yielding that

(k − 1)p(j)

sj(v)
f 1 + Än

√
2

2
n
n−1 + ϵn

k−1

,

and over all items j ̸= i (with sj(v) f 1) we have

n∑

j ̸=i

p(j)

sj(v)
g 1− 1

n
− Ä

√
2

2
.

Observe that the bounds for each term are equalized at n−1
n when Ä = ϵ = 0, and so un ∈ EIRD

whenever ¼ g k−1
n−1 . We can specify ϵ(Ä) in terms of Ä to maintain equality, and thus inclusion of

38



ONLINE STACKELBERG OPTIMIZATION VIA NONLINEAR CONTROL

p ∈ EIRD. Taking ϵ(Ä) in terms of Ä as

ϵ(Ä) =
Än(k − 1)
2(n−1)√

2n
− Ä

=
Än(k−1)

√
2

2(
1− 1

n − Ä
√
2

2

)

= (k − 1)

(
1
n + Ä

√
2

2

1− 1
n − Ä

√
2

2

− 1

n− 1

)

gives us that

1

n− 1
+

ϵ(Ä)

k − 1
g

1
n + Ä

√
2

2

1− 1
n − Ä

√
2

2

for Ä g 0, and so we maintain that p ∈ EIRD. Inverting, we have

Ä(ϵ) =
ϵ2(n−1)√

2n

n(k − 1) + ϵ

as the radius of a ball around un contained in EIRD. To see that EIRD is ¹-locally controllable,

consider any vt−1 and v∗ in EIRD where v∗ ∈ BÃ(vt−1)(vt−1), and let vt = (1−¹t)vt−1+¹tv
∗. By

playing an action distribution xt which induces pt(xt) = v∗, the memory vector is then updated to

vt. This is feasible for any vt ∈ B¹·Ã(vt−1)(vt−1), as each corresponds to some v∗ ∈ BÃ(vt−1)(vt−1).

We remark that for the EIRD set, if losses are given over pt rather than vt, one can define dynamics

which directly consider the state to simply be the induced distribution pt in each round, which

satisfies strong local controllability with any pt ∈ EIRD feasible at each round; in general, we

consider dynamics to view the memory vector as the state, as the feasible updates pt are a function

of vt. Such is the case for the ϕ-smoothed simplex, for which we can state an analogous local

controllability result.

Lemma 37 If each si is (Ã, ¼)-scale-bounded, then any instance (X ,∆ϕ(n), D) over the ϕ-smoothed

simplex for ϕ = Θ(k¼Ã2) satisfies Ω(¹¼ϕ)-local controllability.

Proof The following lemma from Agarwal and Brown (2023) shows that a ball of distributions

around any memory vector v ∈ ∆ϕ(n) is feasible under IRD(v).

Lemma 38 (IRD for Scale-Bounded Preferences Agarwal and Brown (2023)) Let each si be (Ã, ¼)-
scale-bounded with Ã f

√
4(n− 1)/k, and let v ∈ ∆ϕ(n) be a vector in the ϕ-smoothed simplex,

for ϕ g Θk¼Ã2. Then, p ∈ IRD(v) for any vector p ∈ B¼ϕ(v) ∩∆ϕ(n).

Let d = min(¼ϕ, Ã(vt−1)) f ¼ϕÃ(vt−1) for any vt−1 in ∆ϕ(n). Any v∗ ∈ Bd(vt−1) then is

contained in IRD(vt−1), and so playing xt such that pt(xt) = v∗ yields an update to vt = (1 −
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¹t)vt−1 + ¹v∗, which is feasible for any vt ∈ Bd¹(vt−1), and so Ω(¹¼ϕ)-local controllability holds.

For any such set Y which yields locally controllable dynamics for the instance (X ,Y, D), we can

minimize regret over Y via NESTEDOCO, where we optimize with respect to the surrogate losses

f∗t (vt). Note that for our regret benchmark of the best per-round instantaneously distribution in Y ,

any fixed vector v∗ which is instantaneously targeted across all rounds yields an item distribution

pt = v∗ in each round, and so f∗t (v
∗) = ft(p

∗). We assume that y0 is bounded inside Y (which

typically will hold for y0 = un).

Theorem 39 For any Ä-locally controllable instance (X ,Y, D) of Adaptive Recommendations

with update speed ¹ > 0, running NESTEDOCO over the surrogate losses f∗t (vt) yields regret

RegT (NESTEDOCO) f 2

√
(2 + R

rÄ +
1
¹ )TGL

2

µ

with respect to the true losses ft(pt) over Y .

Proof Beyond applying the regret bound for NESTEDOCO from Theorem 5, the key step here is to

bound surrogate loss errors as:

T∑

t=1

ft(pt)− ft(v
∗) f

T∑

t=1

f∗t (vt)− ft(v
∗) +

T∑

t=1

ft(vt)− ft(pt)

f ¸

(
1 +

R

rÄ

)
TL2

µ
+
G

¸
+

T∑

t=1

ft(vt)− ft

(
vt − (1− ¹t)vt−1

¹t

)

f ¸

(
1 +

R

rÄ

)
TL2

µ
+
G

¸
+

T∑

t=1

ft(vt)− ft

(
vt−1 +

vt − vt−1

¹t

)

f ¸

(
1 +

R

rÄ

)
TL2

µ
+
G

¸
+ L

(
1 +

1

¹

) T∑

t=1

∥vt − vt−1∥

f ¸

(
2 +

R

rÄ
+

1

¹

)
TL2

µ
+
G

¸

= 2

√
(2 + R

rÄ +
1
¹ )TGL

2

µ

upon setting ¸ =
√

Gµ

(2+ R
rρ

+ 1

θ
)TL2

, which yields the theorem.

Theorems 13 and 14 follow from Theorem 39, as well as from Lemmas 36 and 37, respectively.

Appendix J. Background and Proofs for Section 4.3: Adaptive Pricing

J.1. Background

While there is a large literature on designing online mechanisms for pricing discrete goods via auc-

tions (Mehta et al., 2007; Kanoria and Nazerzadeh, 2020; Golrezaei et al., 2020; Morgenstern and
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Roughgarden, 2016; Feng et al., 2019; Braverman et al., 2017), there is comparatively little work

related to online pricing problems for real-valued goods. Most work for such problems to date re-

quires strong assumptions on valuation functions, often either assuming linearity (Jia et al., 2014)

or additivity (Agrawal et al., 2023), or requiring approximability via discretization (Mussi et al.,

2022). Here, we introduce a novel formulation for an Adaptive Pricing problem which builds on the

myopic-demand fixed-cost setting of Roth et al. (2015), which we extend to accommodate adver-

sarial consumption rates for the agent (which affect demand, as a function of the agent’s reserves)

as well as adversarial production costs. As in Roth et al. (2015), our setting can accommodate

general convex (increasing) production cost functions and concave (increasing) valuations for the

agent, provided that valuations additionally are homogeneous; to our knowledge, this encompasses

a much wider class of valuations and costs than considered by any prior work on no-regret dynamic

pricing for real-valued goods.

J.2. Model

In each round t, an agent (the consumer) begins with goods reserves yt−1 ∈ R
n
g0 (with y0 =

0), then consumes an adversarially chosen fraction ¹t ∈ [¹, 1] of each good simultaneously (e.g.

corresponding to their rate of manufacturing downstream items, using the goods as components),

updating their reserves to (1 − ¹t)yt−1. We (the producer) show the consumer some vector pt ∈
R
n
+ of per-unit prices for each good, and the consumer purchases some bundle of goods xt. The

consumer’s valuation function for reserves of goods is given by v : Rn+ → R+, and their selection

of xt = x∗(pt, ¹t, yt−1) is given by

x∗(pt, ¹t, yt−1) = argmax
x∈Rn

+

v(x+ (1− ¹t)yt−1)− ïpt, xð.

We later discuss behavior of x∗ when the argmax is undefined; it will suffice for us to only consider

price vectors for which it is defined. This updates the consumer’s reserves to yt = xt+(1−¹t)yt−1.

Upon seeing the consumer’s purchased bundle xt, we receive their payment ïpt, xtð minus our

production cost ct(xt) : R
n
+ → R+, where ct is adversarially chosen. Our utility is then given by

ft(pt, xt) = ïpt, xtð − ct(xt).

We make the following assumptions on production costs ct and the consumer’s valuation v.

Assumption 2 (Production Costs) We assume that for each ct, the following hold over Rn+:

• ct is non-negative, convex, and Lc-Lipschitz,

• limϵ→0 ct(ϵ · 1) f C0 for some C0 g 0, and

• ct(x) g ϕ ∥x∥+ C0 for some ϕ > 0.

Further, each ct is revealed prior to setting prices pt+1.

Assumption 3 (Consumer Valuations) We assume that the following hold over some set Y ¦ R
n
+:

• v is non-negative, continuous, and differentiable,

• v is strictly concave and increasing,
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• v is (¼, ´)-Hölder continuous for some ¼ g 1 and ´ ∈ (0, 1], i.e.

∣∣v(y)− v(y′)
∣∣ f ¼

∥∥y − y′
∥∥´ ,

and

• v is homogeneous of degree k for some k ∈ (0, 1), i.e. v(by) = bkv(y) for any b > 0.

Further, v is known to the producer.

Given the concavity assumption, we note that it is without loss of generality to assume that

k ∈ (0, 1) for the homogeneity parameter. There are several well-studied valuation families which

satisfy these properties for an appropriate set Y; see Roth et al. (2015) for proofs of each example.

Example 3 (Constant Elasticity of Substitution (CES)) Valuations of the form

v(y) =

(
n∑

i=1

³iy
»
i

)´
,

with each ³i, », ´ > 0 and », ´» < 1, are Hölder continuous, differentiable, strictly concave,

non-decreasing, and homogeneous over a convex set in R
n
+.

Example 4 (Cobb-Douglas) Valuations of the form

v(y) =

n∏

i=1

y³i
i ,

with ³i > 0 and
∑n

i=1 ³i < 1 are Hölder continuous, differentiable, strictly concave, non-

decreasing, and homogeneous over a convex set in R
n
+.

We initially assume that Assumption 3 holds over all of Rn+, but will restrict our attention to the

set Y ¦ R
n
+ of bundles where v(y) g ϕ ∥y∥ for each y ∈ Y , and we note that our results can be

extended to arbitrary downward-closed convex sets (where by ∈ Y for any y ∈ Y and b ∈ (0, 1]).
In Section J.3 we that show Assumptions 2 and 3 yield several important properties which enable

optimization via our framework. We show a unique mapping between price vectors and bundle

purchases (for any fixed reserves and consumption rate), that restricting attention to Y is justified

under rationality constraints, and that Y is convex.

Further, there is some price vector which yields a reserve update to any yt ∈ Y in a neighbor-

hood around yt−1, yielding local controllability. Crucially, we show that there are concave surrogate

rewards f∗t (yt) which will closely track our true rewards ft(pt, xt), leveraging the following prop-

erty of homogeneous functions.

Proposition 40 (Euler’s Theorem for Homogeneous Functions) A continuous and differentiable

function v : Y → R+ is homogeneous of degree k if and only if

ï∇v(y), yð = k · v(y).
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We run NESTEDOCO directly over these concave surrogate rewards (by inverting the sign of

each), where each pt can be computed efficiently in terms of yt−1 and ¹t, and we show that the

surrogate reward distance from our true rewards is bounded. While our rewards will not be Lipschitz

over Y in general, we show that appropriately calibrating our step size yields sublinear regret with

dependence on the Hölder continuity parameters. We measure our regret with respect to the set of

stable reserve policies, i.e. pricing policies where yt remains constant.

Definition 41 (Regret for Stable Reserve Policies) Let PY = {Py : y ∈ Y} be the set of stable

reserve policies, where for any yt−1 and ¹t satisfying (1 − ¹t)yt−1 f y∗, playing prices computed

by a policy pt = P ∗
y (yt−1, ¹) yields

(1− ¹t)yt−1 + x∗(pt, ¹t, yt−1) = y∗.

It is straightforward to see that any P ∗
y ∈ PY maintains the invariant that yt = y∗, provided that

some such pt is always feasible.

J.3. Analysis

We show a series of results establishing the key conditions allowing us to formulate this problem as

a locally controllable instance of online nonlinear control. We first show that any positive bundle is

the unique optimal purchase for some positive price vector.

Lemma 42 For any reserves yt−1 ∈ R
n
g0, consumption rate ¹t ∈ [¹, 1], and vector yt ∈ R

n
+ where

yt > (1− ¹t)yt−1 elementwise, the bundle xt = yt − (1− ¹t)yt−1 is the unique solution to

xt = x∗(pt, ¹t, yt−1)

for prices pt = ∇v(yt).

Proof Recall that the consumer’s bundle choice is given by

x∗(pt, ¹t, yt−1) = argmax
x∈Rn

+

v(x+ (1− ¹t)yt−1)− ïpt, xð.

Note that v((1− ¹t)yt−1 + x)− ïpt, xð is strictly concave in x for any x ∈ R
n
+, as the gradients

∇xv((1− ¹t)yt+1 + x) = ∇ytv(yt)

are preserved at each point yt = (1−¹t)yt+1+x, and subtracting the linear function ïx, ptð does not

affect strict concavity. We also have that pt ∈ R
n
+ for prices pt = ∇v(yt), as v is strictly concave

and non-decreasing. This yields that v((1 − ¹t)yt−1 + x) − ïpt, xð has a unique global maximum

at xt = yt − (1− ¹t)yt−1, as ∇x(v((1− ¹t)yt+1 + x)− ïpt, xð) = 0.

As such, the argmax for x∗(pt, ¹t, yt−1) is unique whenever pt = ∇v(y) for some y ∈ R
n
+. We let

p∗(xt; yt−1, ¹t) = ∇v((1− ¹t)yt−1 + xt) denote this price vector which induces a purchase of xt.
For any other price vector p, the maximizing bundle xt either approaches a point on the boundary of

R
n
+, or grows unboundedly. We restrict our attention to bundles contained in R

n
+, and show that the

issue of unboundedness is resolved by rationality considerations for the producer. We characterize

the per-round rewards of stable reserve policies as concave functions of y ∈ R
n
+, and show that the

optimal such policy corresponds to some state y∗ ∈ Y , where Y is convex and bounded.
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Lemma 43 The round-t reward of a stable reserve policy Py corresponding to any y ∈ R
n
+ is given

by a strictly concave function

ft(Py) = ¹tk · v(y)− ct(¹ty).

Proof We first note that we can maintain yt = y in every round by Lemma 42, as y0 = 0 and

(1 − ¹t)y < y. As such, a bundle xt = ¹ty is purchased in each round at prices ∇v(y), and our

reward is given by

ft(Py) = ft(p
∗(¹ty; y, ¹t), ¹ty)

= ï∇v(y), ¹tyð − ct(¹ty)

= ¹tk · v(y)− ct(¹ty),

where the final step follows from Proposition 40 for homogeneous functions. The function ¹tk ·v(y)
is strictly concave, which is preserved upon subtracting the convex function ct(¹ty).

Lemma 44 The set Y = {y ∈ R
n
+ : v(y) g ϕ ∥y∥} is convex.

Proof Consider any two points y, y′ ∈ Y , and let y′′ = ay + (1 − a)y′ for any a ∈ [0, 1]. Recall

that y∗ ∈ R
n
+ belongs to Y if and only if v(y∗) g ϕ ∥y∗∥. By concavity of v, we have that

v(y′′) = v(ay + (1− a)y′)

g av(y) + (1− a)v(y′)

g ϕ ∥ay∥+ ϕ
∥∥(1− a)y′

∥∥
g ϕ

∥∥ay + (1− a)y′
∥∥

= ϕ
∥∥y′′
∥∥

and so y′′ ∈ Y , yielding convexity of Y .

Lemma 45 For any z ∈ R
n
+ where z /∈ Y , there is some y ∈ Y such that ft(Py) g ft(Pz) for any

¹t and ct.

Proof Consider some z /∈ Y such that v(z) = È ∥z∥, for È < ϕ, and let y =
(
È
ϕ

)1/k
z. By

homogeneity of v, we have that v(y) = ϕ
Èv(z) = ϕ ∥z∥, and so y ∈ Y as ∥z∥ > ∥y∥. For any round

with costs ct and consumption rate ¹t we then have that:

ft(Py)− ft(Pz) = ¹tk (v(y)− v(z))− ct(¹ty) + ct(¹tz)

= ¹tk

(
È

ϕ
− 1

)
È ∥z∥ − ct(¹ty) + ct(¹tz) (homogeneity of v)

g ¹tk

(
È

ϕ
− 1

)
È ∥z∥+ ¹tϕ ∥z − y∥ ( lower bound and convexity of ct)

g ¹tk

(
È

ϕ
− 1

)
È ∥z∥+ ¹t

(
1−

(
È

ϕ

)1/k
)
ϕ ∥z∥

g ¹t

(
1− È

ϕ

)
ϕ ∥z∥ − ¹t

(
1− È

ϕ

)
È ∥z∥ (k, Èϕ < 1)

> 0. (ϕ > È)
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Thus the optimal Py for any cost and consumption sequence corresponds to some y ∈ Y . We can

also bound the radius of Y .

Lemma 46 Let V = maxy∈Rn
+:∥y∥=1 v(y). Then, for every y ∈ Y we have that

∥y∥ f
(
V

ϕ

) 1

1−k

.

Proof Let y∗ = argmaxy:∥y∥=1 v(y), where we have v(y∗) = V . Consider the vector by∗ for any

b > 0. By homogeneity of v, we have that

v(by∗) = bkv(y∗)

= bkV.

For any b >
(
V
ϕ

) 1

1−k
we have that

v(by∗) =
b

b1−k
· V

f bϕ,

where ∥by∗∥ > b and thus by∗ /∈ Y . This holds for all vectors with norm b, as any such vector z
will have at most bkV by homogeneity, which yields the result.

The previous result also implies that by ∈ Y for any b < 1 and y ∈ Y . We assume that V > ϕ,

which is without loss of generality as we may otherwise take ϕ to be smaller artificially; we assume

ϕ is small enough to ensure that Y contains a ball B1(y1) of radius 1 around some y1 ∈ Y , and we

let R =
(
V
ϕ

) 1

1−k
. We consider the dynamics to be given by

Dt(pt, yt−1) = (1− ¹t)yt−1 + x∗(pt, ¹t, yt−1).

We let Z = R
n
+ denote our action space of price vectors; while dynamics here are not action-linear,

we can still compute our desired action pt = ∇v(yt) efficiently, as we assume we have knowledge

of v. While the dynamics depend on ¹t, our choice of action pt depends only on the target update

yt to the consumer’s reserves, by Lemma 42. Further, upon observing xt, we can solve for ¹t as

¹t = 1− yt − xt
yt−1

for purposes of representing our surrogate losses, which are given by

f∗t (yt) = ¹tk · v(y)− ct(¹ty).

We now show that the dynamics satisfy local controllability.

Lemma 47 (Local Controllability) The instance (Z,Y, Dt) satisfies ¹-local controllability for each

round t.
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Proof We show that ¹-local controllability holds over all of Rn+, which implies ¹-local controllabil-

ity over Y as each distance Ã(yt−1) while the feasible update region remains the same. By Lemma

42, any update where yt g (1 − ¹t)yt−1 elementwise is feasible. Each Ã(yt−1) over Rn+ is simply

the minimum element of yt, which we denote here by m. Each element of yt−1 is decreased by

at least ¹m, and so any yt in the ℓ∞ ball of radius ¹m = ¹Ã(yt−1), and thus the ℓ2 ball of radius

¹Ã(yt−1), is feasible.

We are now ready to analyse the regret of NESTEDOCO for the problem. The remaining key issues

to resolve will be the errors between our true and surrogate rewards ft and f∗t , as well as the lack

of Lipschitz continuity for our rewards. We will make use of more general formulations of the

guarantees of FTRL, (see e.g. Hazan (2021)).

Proposition 48 For a µ-strongly convex regularizer È : Y → R where |È(y)− È(y′)| f G for all

y, y′ ∈ Y , and for convex losses f1, . . . , fT , the regret of FTRL is bounded by

RegT (FTRL) f
T∑

t=1

(gt(yt)− gt(yt+1)) +
G

¸
,

where gt(y) = ï∇tft(yt), yð and gt(yt)− gt(yt+1) g µ
¸ ∥yt+1 − yt∥2.

We show that this implies a regret bound for (¼, ´)-Hölder continuous convex losses, recovering

the ¼-Lipschitz bounds when ´ = 1.

Theorem 49 For (¼, ´)-Hölder continuous convex losses, FTRL with obtains regret bounded by

RegT (FTRL) f T¼

(
¸¼

µ

)´/(2−´)
+
G

¸

and chooses points which satisfy ∥yt+1 − yt∥ f
(
¸¼
µ

)1/(2−´)
in each round.

Proof For (¼, ´)-Hölder continuous convex losses ft, we have that

gt(yt)− gt(yt+1) = ï∇tft(yt), yt − yt+1ð
= ï∇tft(yt), (2yt − yt+1)− ytð
f ft(2yt − yt+1)− ft(yt)

by convexity of ft, where ∥(2yt − yt+1)− yt∥ = ∥yt − yt+1∥, and so

gt(yt)− gt(yt+1) f ¼ ∥yt − yt+1∥´

by Hölder continuity. Combining with the lower bound on gt(yt) − gt(yt+1) from Proposition 48

gives us that

µ

¸
∥yt+1 − yt∥2 f gt(yt)− gt(yt+1) f ¼ ∥yt − yt+1∥´

and thus

gt(yt)− gt(yt+1) f ¼

(
¸¼

µ

)´/(2−´)
,
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yielding a regret bound of

RegT (FTRL) f T¼

(
¸¼

µ

)´/(2−´)
+
G

¸

with per-round distance at most ∥yt+1 − yt∥ f
(
¸¼
µ

)1/(2−´)
.

We note that the concave surrogate rewards f∗t (yt) are a sum of a (k¼, ´)-Hölder continuous func-

tion and a (Lc, 1)-Hölder continuous (i.e. Lipschitz) function; we assume that each function is

(L, ´)-Hölder continuous with L = k¼+ Lc, which is sufficient for for large enough T as we will

have ∥yt − yt−1∥ f 1 and thus ∥yt − yt−1∥ f ∥yt − yt−1∥´ . We use a similar analysis to bound

the error between true and surrogate rewards, yielding our regret bound for NESTEDOCO.

Theorem 50 The regret of NESTEDOCO with respect to the stable reserve policies PY is bounded

by

RegT (NESTEDOCO) f 2L

(
G

µ

)´/2(
T

(
3 +

(
R

¹

)´))(2−´)/2

.

Proof We reparameterize to treat the bundle y1 where B1(y1) ¦ Y as the origin, and assume the

choice of regularizer has y1 as its minimum. By Theorem 5, for any step size and ¶ > 0 such that

∥yt − yt−1∥ f ¶¹, running NESTEDOCO for the ¹-locally controllable instance (Z,Y, D) over the

surrogate rewards f∗t , with inradius 1 and radius R, obtains

T∑

t=1

f∗t (y
∗)−

T∑

t=1

f∗t (yt) f TL(¶R)´ + TL

(
¸L

µ

)´/(2−´)
+
G

¸

f TL

(
1 +

(
R

¹

)´)(¸L
µ

)´/(2−´)
+
G

¸

f 2L

(
G

µ

)´/2(
T

(
1 +

(
R

¹

)´))(2−´)/2

∆
= RegT (f

∗)

for any y∗ ∈ Y , upon setting ¶ = 1
¹

(
¸¼
µ

)1/(2−´)
and ¸ =

(
G
KT

)(2−´)/2
, where

K∗ = L

(
1 +

(
R

¹

)´)(L
µ

)´/(2−´)
.
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Note that the surrogate rewards exactly track the true rewards when a stable reserve policy Py∗

is played, and so our regret with respect to the best stable reserve policy Py∗ is at most

T∑

t=1

ft(Py∗)−
T∑

t=1

ft(yt) f RegT (f
∗) +

T∑

t=1

f∗t (yt)− ft(pt, xt)

f RegT (f
∗) +

T∑

t=1

ï∇v(yt), ¹yt − xtð − ct(¹yt) + ct(xt)

f RegT (f
∗) +

T∑

t=1

(1− ¹t) (ï∇v(yt), yt−1 − ytð+ L ∥yt − yt−1∥)

(xt = (1− ¹t)yt−1)

f RegT (f
∗) +

T∑

t=1

(ï∇v(yt), yt − (2yt − yt−1)ð+ L ∥yt − yt−1∥)

f RegT (f
∗) +

T∑

t=1

v(yt)− v(2yt − yt−1) + L ∥yt − yt−1∥

(concavity of v)

f RegT (f
∗) +

T∑

t=1

2L ∥yt − yt−1∥´ (Hölder, ∥yt − yt−1∥ f 1)

f RegT (f
∗) + 2TL

(
¸L

µ

)´/(2−´)

f 2L

(
G

µ

)´/2(
T

(
3 +

(
R

¹

)´))(2−´)/2

upon updating K∗ to K as

K = L

(
3 +

(
R

¹

)´)(L
µ

)´/(2−´)
,

which yields the theorem.

Theorem 15 follows directly from Theorem 50.

Appendix K. Background and Proofs for Section 4.4: Steering Learners

K.1. Background

While much of the literature related to no-regret learning in general-sum games considers either

rates of convergence to (coarse) correlated equilibria Blum et al. (2008); Anagnostides et al. (2022)

or welfare guarantees for such equilibria Roughgarden (2015); Hartline et al. (2015a), a recent line

of work Braverman et al. (2017); Deng et al. (2019); Mansour et al. (2022) has considered the

question of optimizing one’s reward when playing against a no-regret learner. A target benchmark

which has emerged for this problem is the value of the Stackelberg equilibrium of a game (the
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optimal mixed strategy to “commit to”, assuming an opponent best responds), which was shown

by attainable by Deng et al. (2019) against any no-regret algorithm and optimal in many cases (e.g.

for no-swap learners), both up to o(T ) terms, and further which may yield higher reward for the

optimizer than (coarse) correlated equilibria.

We show a class of instances for which the problem for optimizing reward against a learner

playing according to gradient descent can be formulated as a locally controllable instance of online

nonlinear control with adversarial perturbations and surrogate state-based losses. The simplest non-

trivial instances we consider are those where the optimizer’s reward is a function only of the learner’s

actions (i.e. all rows of their reward matrix are identical), and the optimization problem amounts to

steering the learner to a desired strategy via one’s choice of actions. Additionally, we allow the

game matrices to change over time, which has not been substantially considered in prior work to

our knowledge. We require that the learner’s matrices do not change too quickly (which we model as

adversarial disturbances to dynamics), and the optimizer’s matrices can change arbitrarily provided

that they remain close to some row-identical matrix (which we model as imprecision in our surrogate

loss function).

K.2. Model

Here we are tasked with playing a sequence of bimatrix games against a no-regret learning oppo-

nent, where the game matrices may change adversarially in each round. We assume the following

properties hold for the adversarial sequence of games.

Assumption 4 For a sequence {(At, Bt) : t ∈ [T ]} of m× n bimatrix games, with m > n:

• Each entry of At and Bt lies in [− L
2
√
n
, L
2
√
n
]

• the convex hull of the of the rows of each Bt contains the unit ball in R
n,

• ∥xAt − xA∗
t ∥ f ¶t for any x ∈ ∆(m), where each row of A∗

t is identical, and

• ∥xBt − xBt−1∥ f ϵt for any x ∈ ∆(m).

Each game (At, Bt) is revealed after Players A and B commit to their respective strategies

xt ∈ ∆(m) and yt ∈ ∆(n). Observe that due to the first property, for any z ∈ B1(0), there is

some x ∈ ∆(m) such that xB = z. By the second property, we have that xA∗
t = x′A∗

t for any

x, x′ ∈ ∆(m).

We recall the Online Gradient Descent algorithm with convex losses ℓt from Zinkevich (2003).

Algorithm 8 Online Gradient Descent (OGD)

Input: Convex set Y ¦ R
n, initial point y1 ∈ Y , and step sizes ¹1, . . . , ¹T .

for t = 1 to T do

Play yt and observe loss ℓt(yt).
Set ∇t = ∇ℓt(yt).
Set yt+1 = ΠY (yt − ¹t∇t) = argminy∈Y ∥yt − ¹t∇t − y∥.

end for
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Proposition 51 (Zinkevich (2003)) For differentiable convex losses ℓt : Y → R, with ¹t+1 f ¹t
for each t f T , then for all y∗ ∈ Y the regret of OGD is bounded by

T∑

t=1

ℓt(yt)− ℓt(y
∗) f 2R2

B

¹T
+

T∑

t=1

¹t
2
∥∇t∥2 ,

where RB is the radius of Y . If ∥∇t∥ f GB and ¹t =
2RB

GB

√
T

for all t f T , we have that

T∑

t=1

ℓt(yt)− ℓt(y
∗) f 2RBGB

√
T .

We assume that Player B plays according to OPGD in our setup, with y1 = un and ¹ = RB

GB

√
T

.

At each round t, we (Player A) choose some mixed strategy xt ∈ ∆(n), and Player B plays some

mixed strategy yt ∈ ∆(n). Utilities for each player are given by the game (At, Bt) as

uAt (xt, yt) = xtAtyt;

uBt (xt, yt) = xtBtyt.

Note that the loss gradient −∇uBt (xt, yt) each round for Player B (for negative utilities) is given by

∇t = − xtB,

and so their mixed strategy is updated at each round according to

yt = Π∆(n) (yt−1 + ¹(xt−1Bt−1)) .

Our utility is given by xtAtyt = unA
∗
t yt + xt(At − A∗

t )yt, as xt does not affect rewards from

A∗
t . We benchmark the regret of an algorithm A against the optimal profile (x, y) ∈ ∆(m)×∆(n):

RegT (A) = max
(x,y)∈∆(m)×∆(n)

T∑

t=1

xAty − xtAtyt.

Note that the per-round average utility for the maximizing (x, y) is at least as high as that ob-

tained by the Stackelberg equilibrium of the average game
(∑

t
At
T ,
∑

t
Bt
T

)
, as for this objective

one can choose both players’ strategies without restriction. We remark that finding the Stackelberg

equilibrium for any fixed game (A∗
t , Bt) in our setting, where A∗

t has identical rows, is straight-

forward: it suffices to optimize over [n], as any fixed action j ∈ [n] is a best response to some

x ∈ ∆(m) by our assumption on the rows of Bt, and as our rewards are only a function of Player

B’s strategy y. However, we are not aware of any prior work which enables competing with the

average-game Stackelberg value against a learning opponent when games arrive online.

K.3. Analysis

We first show that the problem can be formulated via known, strongly ¹-locally controllable dynam-

ics with adversarial disturbances. AsBt changes slowly between rounds, we can run NESTEDOCO-UD

with disturbances representing the error resulting from assuming thatBt does not change fromBt−1.
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Lemma 52 Given the knowledge available prior to selecting xt, updates for yt+1 can be expressed

via known action-linear dynamics (X ,Y, Dt) which satisfy strong ¹-local controllability, and with

adversarial disturbances wt satisfying
∑T

t=1 ∥wt∥ f ¹
∑T

t=1 ϵt.

Proof First, note that we can compute Player B’s current strategy yt, as it is a function only of

games and strategies up to round t− 1, all of which are observable. Given the update rule for OGD,

we can formulate the dynamics Dt(xt, yt) update as

Dt(xt, yt) = Π∆(n) (yt + ¹(xtBt))

= Π∆(n) (yt + ¹(xtBt−1) + ¹(xt(Bt −Bt−1)))

= Π∆(n) (yt + ¹(xtBt−1)) + wt

where wt represents the error from assuming Bt = Bt−1. by standard properties of Euclidean

projection, and the change bound onBt, we have that ∥wt∥ f ∥¹(xt(Bt −Bt−1))∥ f ¹ϵt . Further,

the update is action-linear (up to projection, prior to wt).

To see that Dt satisfies strong ¹-local controllability, we recall that the convex hull of the rows

of Bt−1 contain the unit ball, and so for any y∗ in B¹(yt) ∩ ∆(n) there is some xt ∈ ∆(m) such

that ¹(xtBt−1) = y∗ − yt.

At round each round t, our loss is given by ft(xt, yt) = −xtAtyt. There are two barriers to

running our algorithm. First, the update for yt is determined by xt−1 and not xt, yet we do not

see At−1 prior to selecting xt−1, which would be required to take the appropriate step following

ft−1. Second, the loss depends on xt in addition to yt. To address both issues, we instead run

NESTEDOCO-UD with surrogate losses f̃t(ỹt) = −unAt−1yt, with action rounds relabeled to

account for the fact that xt−1 influences the step for yt (which does not change the behavior of the

algorithm). We set A0 = 0m,n.

Theorem 53 Repeated play against an opponent using OGD with step size ¹ = Θ(T−1/2) in a

sequence of games (At, Bt) satisfying Assumption 4 can be cast as an instance of online control

with strongly ¹-locally controllable dynamics, for which the regret of NESTEDOCO-UD is at most

RegT (NESTEDOCO-UD) f O

(
√
T +

T∑

t=1

(¶t + ϵt)

)
,

with efficient per-round computation.

Proof We first analyze regret with respect to the surrogate losses f̃t(yt). To run NESTEDOCO-UD

for ³ > 0, it suffices to calibrate the step size for the internal FTRL instance such that ¸Lµ f ¹³.

Given that rewards are bounded in [− L
2
√
n
, L
2
√
n
], we have that each xtBtyt is L√

n
-Lipschitz for the

ℓ1 norm, and thus L-Lipschitz for the ℓ2 norm, so we can take GB = L. Further, the ℓ2 radius of

∆(n) is RB =
√
2/2, and so we have that

¹ =

√
2

L2T
.
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Then, for a strongly ¹-locally controllable instance with total perturbation bound
∑T

t=1 ∥wt∥ f E,

we obtain the regret bound

RegT (NESTEDOCO-UD) f ¸
TL2

µ
+
G

¸
+

2LRE

(1− ³)¹
(Thm. 22)

for any

¸ f min

(√
Gµ

L2T
, ³

√
2

T

)
.

By Lemma 52, we can efficiently run NESTEDOCO-UD over the surrogate losses f̃t and bound

regret with respect to any y∗ ∈ Y as:

T∑

t=1

f̃t(yt)− f̃t(y
∗) f ¸

TL2

µ
+
G

¸
+

√
2L ·

∑T
t=1 ϵt

1− ³
.

Further, we can bound the error from the surrogate losses as

T∑

t=1

ft(xt, yt)− f̃t(yt) =
T∑

t=1

ft(xt, yt)− ft−1(un, yt)

f L

2
√
n
+
T−1∑

t=1

ft(xt, yt)− ft(un, yt+1)

(f0(un, y1) = 0, fT (xT , yT ) f L
2
√
n

)

f L

2
√
n
+ ¸

TL2

µ
+
T−1∑

t=1

xt(At −A∗
t )yt (Prop. 18)

f L

2
√
n
+ ¸

TL2

µ
+

T∑

t=1

¶t, (Assumption 4, Cauchy-Schwarz)

and likewise, for any (x∗, y∗) ∈ ∆(m)×∆(n) we can bound

T∑

t=1

f̃t(y
∗)− ft(x

∗, y∗) f − fT (x
∗, y∗)−

T−1∑

t=1

x∗(At −A∗
t )y

∗

f L

2
√
n
+

T∑

t=1

¶t.
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Combining the previous results, we have that for any (x∗, y∗) ∈ ∆(m) × ∆(n), the regret of

NESTEDOCO-UD with respect to the true losses is bounded by

T∑

t=1

ft(xt, yt)− ft(x
∗, y∗) f

T∑

t=1

f̃t(ỹt)− f̃t(y
∗) +

T∑

t=1

ft(xt, yt)− f̃t(yt) +
T∑

t=1

f̃t(y
∗)− ft(x

∗, y∗)

f ¸
2TL2

µ
+
G

¸
+

L√
n
+ 2

T∑

t=1

¶t +

√
2L ·∑T

t=1 ϵt
1− ³

f 3 ·max

(√
TGL2

µ
,

√
T

2³2

)
+

L√
n
+ 2

T∑

t=1

¶t +

√
2L ·

∑T
t=1 ϵt

1− ³

for any ³ ∈ (0, 1), which yields the theorem.

Theorem 16 follows directly from Theorem 53.
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