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Abstract

Large-scale machine learning problems make the

cost of hyperparameter tuning ever more pro-

hibitive. This creates a need for algorithms that

can tune themselves on-the-fly. We formalize the

notion of “tuning-free” algorithms that can match

the performance of optimally-tuned optimization

algorithms up to polylogarithmic factors given

only loose hints on the relevant problem parame-

ters. We consider in particular algorithms that can

match optimally-tuned Stochastic Gradient De-

scent (SGD). When the domain of optimization is

bounded, we show tuning-free matching of SGD

is possible and achieved by several existing algo-

rithms. We prove that for the task of minimizing

a convex and smooth or Lipschitz function over

an unbounded domain, tuning-free optimization

is impossible. We discuss conditions under which

tuning-free optimization is possible even over un-

bounded domains. In particular, we show that the

recently proposed DoG and DoWG algorithms

are tuning-free when the noise distribution is suf-

ficiently well-behaved. For the task of finding a

stationary point of a smooth and potentially non-

convex function, we give a variant of SGD that

matches the best-known high-probability conver-

gence rate for tuned SGD at only an additional

polylogarithmic cost. However, we also give an

impossibility result that shows no algorithm can

hope to match the optimal expected convergence

rate for tuned SGD with high probability.

1. Introduction

The hyperparameters we supply to an optimization algo-

rithm can have a significant effect on the runtime of the

algorithm and the quality of the final model (Yang et al.,

2021; Sivaprasad et al., 2020). Yet hyperparameter tuning is
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costly, and for large models might prove intractable (Black

et al., 2022). As a result, researchers often resort to using a

well-known optimizer like Adam (Kingma & Ba, 2015) or

AdamW (Loshchilov & Hutter, 2019) with widely used or

default hyperparameters. For example, GPT-3 (Brown et al.,

2020), BLOOM (Workshop et al., 2022), LLaMA (Tou-

vron et al., 2023a), and LLaMA2 (Touvron et al., 2023b)

all use either Adam or AdamW with identical momentum

parameters and similar training recipes.

This situation presents an immense opportunity for algo-

rithms that can tune hyperparameters on-the-fly. Yet such

algorithms and their limits are still poorly understood in the

setting of stochastic optimization. Let us make our setting

more specific. We consider the minimization problem

min
x∈X

f(x), (OPT)

where f : X → R is differentiable and lower bounded by

f∗. We assume that we have access to (stochastic) gradients

g(x) that satisfy certain regularity conditions that we shall

make precise later.

Our main objects of study are tuning-free algorithms. To

make this notion more precise, let A be an optimiza-

tion algorithm that takes in n problem parameters a =
(a1, a2, . . . , an) and after T (stochastic) gradient accesses

returns a point x such that with high probability

f(x)− f∗ f ErrorA(f, a, T ). (1)

The function ErrorA characterizes how well the algorithm

A minimizes the function f in T steps given the supplied

parameters. Let a∗ = a∗(f, T ) denote the set of parameters

that minimizes the right hand side of equation (1) for a

specific function f and number of steps T . In order for an

algorithm to find a∗(f, T ), it must start somewhere. We

assume that we can easily find lower and upper bounds

on the optimal parameters: two sets a and a such that for

i = 1, 2, . . . , n we have

ai f a∗i f ai.

Such hints on problem parameters can often be easily esti-

mated in practice, and are a much easier ask than the optimal

parameters. To be a tuning-free version of A, an algorithm

B has to approximately match the performance of A with

optimally tuned parameters given those hints, a definition

we make rigorous next.
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Definition 1.1. (Tuning-free algorithms). We call an al-

gorithm B a tuning-free version of A if given hints a, a on

the optimal parameters a∗ for a function f it achieves the

same error as A with the optimal parameters up to only

polylogarithmic degradation that depends on the hints and

the number of (stochastic) gradient accesses T . That is, ifA
achieves error f(x) − f∗ f ErrorA(f, a∗(f, T ), T ), then

B achieves the guarantee:

f(x)− f∗ f º · ErrorA(f, a∗, T ), (B-error)

where º = poly log
(

a1

a
1

, . . . , an

a
n

, T
)

is a polylogarithmic

function of the hints.

Clearly, asking a tuning-free algorithm B to achieve exactly

the same error as A is too much: we ought to pay some

price for not knowing a∗ upfront. On the other hand, if we

allow polynomial dependencies on the hints, then our hints

have to be very precise to avoid large errors. This beats the

point of being tuning-free in the first place.

The algorithm A that we are primarily concerned with is

Stochastic Gradient Descent (SGD). SGD and its variants

dominate in practice, owing to their scalability and low mem-

ory requirements (Bottou et al., 2018). We consider three

classes of functions: (a) L-smooth and convex functions, (b)

G-Lipschitz and convex functions, and (c) L-smooth and

potentially nonconvex functions. We ask for tuning-free al-

gorithms for each of these function classes. We give precise

definitions of these classes and our oracle model later in

Section 1.1.

In the setting of deterministic optimization, we have a very

good understanding of tuning-free optimization: there are

many methods that, given only hints on the problem pa-

rameters required by Gradient Descent (GD), achieve the

same rate as GD up to only polylogarithmic degradation.

We review this case briefly in Section 4. Despite immense

algorithmic developments in stochastic optimization (Duchi

et al., 2010; Levy, 2017; Levy et al., 2018; Li & Orabona,

2019; Kavis et al., 2019; Carmon & Hinder, 2022; Ivgi et al.,

2023; Cutkosky et al., 2023) and the related setting of on-

line learning (Orabona & Pál, 2016; Cutkosky & Boahen,

2016; Cutkosky, 2019; Mhammedi et al., 2019; Mhammedi

& Koolen, 2020; Orabona & Cutkosky, 2020) we are not

aware of any algorithms that fit our definition as tuning-

free counterparts of SGD for any of the function classes we

consider. The main question of our work is thus:

Can we find tuning-free counterparts for SGD

in the setting of stochastic optimization and the

classes of functions we consider (convex and

smooth functions, convex and Lipschitz functions,

and nonconvex and smooth functions)?

Our contributions. We answer the above question in the

negative for the first two function classes and make some

progress towards answering it for the third. In particular,

our main contributions are:

• For convex optimization: if the domain of optimiza-

tion is bounded, we highlight results from the litera-

ture showing tuning-free optimization matching SGD

is possible. If the domain of optimization X is un-

bounded, we give an impossibility result that shows

no algorithm can be a tuning-free counterpart of SGD

for smooth and convex functions (Theorem 2), as well

as for Lipschitz and convex functions (Theorem 3).

Additionally if the stochastic gradient noise has a cer-

tain large signal-to-noise ratio (defined in Section 4.2),

then tuning-free optimization is possible even when

the domain of optimization X is unbounded and can

be achieved by the recently-proposed DoG (Ivgi et al.,

2023) and DoWG (Khaled et al., 2023) algorithms for

both smooth and/or Lipschitz functions (Theorem 4).

• For nonconvex optimization: We consider two differ-

ent notions of tuning-free optimization that correspond

to the best-known convergence error bounds for SGD

in expectation (Ghadimi & Lan, 2013) and with high

probability (Liu et al., 2023). We show tuning-free

optimization is impossible in the former setting (The-

orem 5). On the other hand, for the latter, slightly

weaker notion, we give a positive result and give a

tuning-free variant of SGD (Theorem 6).

1.1. Preliminaries

In this section we review some preliminary notions and

definitions that we shall make use of throughout the paper.

We say that a function f : X → R is convex if for any

x, y ∈ X we have

f(tx+ (1− t)y) f tf(x) + (1− t)f(y) for all t ∈ [0, 1].

We call a function G-Lipschitz if |f(x)− f(y)| f
G ∥x− y∥ for all x, y ∈ X . All norms considered in this

paper are Euclidean. We let log+ x
def
= 1+ log x. A differen-

tiable function f is L-smooth if for any x, y ∈ X we have

∥∇f(x)−∇f(y)∥ f L ∥x− y∥.
Oracle model. All algorithms we consider shall access

gradients through one of the two oracles defined below.

Definition 1.2. We say that O(f) is a deterministic first-

order oracle for the function f if given a point x ∈ X the

oracle returns the pair {f(x),∇f(x)}.

If we only allow the algorithm access to stochastic gradients,

then we call this a stochastic oracle. Our main lower bounds

are developed under the following noise model.

Assumption 1.1. The stochastic gradient estimates are

bounded almost surely. That is, there exists some R g 0

2



Tuning-Free Stochastic Optimization

such that for all x ∈ X

∥ĝ(x)−∇f(x)∥ f R.

The stochastic oracle model we consider allows for access

to both function values and stochastic gradients satisfying

Assumption 1.1.

Definition 1.3. We say that O(f,Rf ) is a stochastic first-

order oracle for the function f with bound Ãf if, given

a point x ∈ X , it returns a pair of random variables
[

f̂(x), ĝ(x)
]

such that (a) the estimates are unbiased

E[f̂(x)] = f(x), E[ĝ(x)] = ∇f(x), and (b) the stochastic

gradients satisfy Assumption 1.1 with R = Ãf .

The above oracle restricts the noise to be bounded almost

surely. We shall develop our lower bounds under that oracle.

However, for some of the upper bounds we develop, we

shall relax the requirement on the noise from boundedness

to being sub-gaussian (see Section 4.2), and we shall make

this clear then.

2. Related Work

This section reviews existing approaches in the literature

aimed at reducing or eliminating hyperparameter tuning.

Parameter-free optimization. An algorithm A is

called parameter-free if it achieves the convergence rate

Õ
(

G∥x0−x∗∥√
T

)

given T stochastic gradient accesses for any

convex function f with stochastic subgradients bounded

in norm by G, with possible knowledge of G (Orabona,

2023, Remark 1). There exists a vast literature on such

methods, particularly in the setting of online learning, see

e.g. (Orabona & Cutkosky, 2020). Parameter-free optimiza-

tion differs from tuning-free optimization in two ways: (a)

the Õ(·) can suppress higher-order terms that are not per-

mitted according to the tuning-free definition, and (b) gives

the algorithm possible knowledge of a parameter like G
whereas tuning-free algorithms can only get to see upper

and lower bounds on G. Nevertheless, many parameter-

free methods do not need any knowledge of G (Cutkosky,

2019; Mhammedi et al., 2019; Mhammedi & Koolen, 2020).

However, Cutkosky & Boahen (2017b; 2016) give lower

bounds showing that any online learning algorithm insisting

on a linear dependence on ∥x0 − x∗∥ (as in optimally tuned

SGD) must suffer from potentially exponential regret. If

we do not insist on a linear dependence on ∥x0 − x∗∥, then

the best achievable convergence bound scales ∥x0 − x∗∥3,

and this is tight (Mhammedi & Koolen, 2020). None of the

aforementioned lower bounds apply to the setting of stochas-

tic optimization, since in general online learning assumes

an adversarial oracle, which is stronger than a stochastic

oracle.

Tuning-free algorithms in the deterministic setting. Gra-

dient descent augmented with line search (Nesterov, 2014;

Beck, 2017) is tuning-free for smooth convex and nonconvex

optimization. Bisection search (Carmon & Hinder, 2022) is

tuning-free for both convex and smooth as well as convex

and Lipschitz optimization, as is a restarted version of gradi-

ent descent with Polyak stepsizes (Hazan & Kakade, 2019).

In the smooth setting, the adaptive descent method of (Mal-

itsky & Mishchenko, 2020) is also tuning-free. There are

also accelerated methods (Lan et al., 2023), methods for

the Lipschitz setting (Defazio & Mishchenko, 2023), meth-

ods based on online learning (Orabona, 2023), and others.

Renegar & Grimmer (2021) show that for strongly convex

optimization, a simple restarting scheme suffices to obtain

tuning-free algorithms in the deterministic setting.

Algorithms for the stochastic setting. Observe that be-

cause online learning is a more general setting than the

stochastic one, we can apply algorithms from online con-

vex optimization here, like e.g. (Mhammedi & Koolen,

2020) coupled with an appropriate online-to-batch conver-

sion (Hazan, 2022). In more recent work (Carmon & Hinder,

2022; Ivgi et al., 2023), we see algorithmic developments

specific to the stochastic setting. We discuss the conver-

gence rates these algorithms achieve in more detail in Sec-

tion 4.1. There are algorithms based on line search in the

stochastic setting, but proving their convergence requires

either extra assumptions like interpolation (Vaswani et al.,

2019), or using large minibatch sizes (Paquette & Schein-

berg, 2020). This drawback of stochastic line search is

unavoidable, as (Vaswani et al., 2021, Theorem 4) shows ap-

plying stochastic line search on a quadratic objective results

in non-convergence.

Other hyperparameter tuning approaches. In practice,

hyperparameters are often found by grid search, random

search, or methods based on Bayesian optimization (Bischl

et al., 2023); None of these approaches come with effi-

cient theoretical guarantees. Another approach is “meta-

optimization” where we have a sequence of optimization

problems and seek to minimize the cumulative error over

this sequence. Often, another optimization algorithm is

then used to select the learning rates, e.g. hypergradi-

ent descent (Baydin et al., 2018). Meta-optimization ap-

proaches are quite difficult to establish theoretical guaran-

tees for, and only recently have some theoretical results been

shown (Chen & Hazan, 2023). Our setting in this paper is

different, since rather than seek to minimize regret over a se-

quence of optimization problems, we have a single function

and an oracle that gives us (stochastic) gradient estimates

for this function.

Concurrent work. In concurrent work, Carmon & Hinder

(2024) and Attia & Koren (2024) also study lower bounds

for first-order stochastic optimization. In both papers, like
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in our work, the algorithm is provided with a certain range

that the problem parameters fall in (what we term as hints)

and must make use of only that to minimize the function

with stochastic gradient evaluations. Carmon & Hinder

(2024) study what is the minimum possible multiplicative

factor slowdown any algorithm must suffer compared to

optimally-tuned baselines when provided access only to

hints, which they term the price of adaptivity. They pro-

vide lower bounds for stochastic convex optimization for

Lipschitz functions in expectation and with high probabil-

ity, and also consider the case where some of the problem

parameters have no uncertainty (e.g. when we know the

Lipschitz constant but not the initial distance to the opti-

mum). Our lower bound in this setting (Theorem 3) rules

out any polylogarithmic price of adaptivity as impossible.

Additionally, we also give lower bounds for nonconvex and

smooth convex optimization (Theorems 2 and 5).

Attia & Koren (2024) study stochastic optimization in a

similar setting to ours, and give a new upper bound for

restarted non-convex SGD that achieves a similar conver-

gence guarantee to Theorem 6. We give our upper bound

under a slightly more general noise distribution (that the

noise has subgaussian norm) at the cost of a polylogarithmic

dependence on the problem dimension. We also additionally

give a lower bound that rules out the stronger in-expectation

convergence guarantee for nonconvex SGD. In the convex

setting, Attia & Koren (2024) give lower bounds for smooth

and nonsmooth stochastic optimization that show a poly-

nomial dependence on the hints is the best we can hope to

achieve, and give a matching upper bound based on restarted

SGD with AdaGrad-like stepsizes. In contrast, for our upper

bounds in this case we study more specifically which noise

distributions are amenable to optimization and prove results

for the DoG and DoWG algorithms (with no restarting pro-

cedures). Additionally, we also investigate whether tuning-

free optimization is possible under a bounded domain and

provide guarantees for DoG/DoWG there (Theorem 1).

3. Tuning-Free Optimization Under a

Bounded Domain

We begin our investigation by studying the bounded setting,

where we make the following assumption on the minimiza-

tion problem (OPT):

Assumption 3.1. The optimization domain X is bounded.

There exists some constant D > 0 such that ∥x− y∥ f D
for all x, y ∈ X .

We seek a tuning-free version of SGD. Recall that SGD

achieves with probability at least 1− ¶ the following con-

vergence guarantee (Jain et al., 2019; Liu et al., 2023)

f(xout)− f∗ f Å ·
{

LD2

T
+ ÃD√

T
if f is L-smooth,

√
G2+Ã2D√

T
if f is G-Lipschitz,

(2)

where ¿ = poly log 1
¶

and Ã is an upper bound on the

stochastic gradient noise (per Assumption 1.1). To achieve

the convergence guarantee given by equation (2), we need

to know the parameters D,Ã, and L in the smooth case or

G in the nonsmooth case. Per Definition 1.1, a tuning-free

version of SGD will thus be given the hints D ∈ [D,D],
Ã ∈ [Ã, Ã], and either L ∈ [L,L] in the smooth setting or

G ∈ [G,G] in the nonsmooth setting. Given those hints,

we then ask the algorithm to achieve the same rate as equa-

tion (2) up to a multiplicative polylogarithmic function of

the hints.

It turns out that tuning-free optimization under a bounded

domain is solvable in many ways. Many methods from

the online learning literature, e.g. (Cutkosky & Boahen,

2017a; Mhammedi et al., 2019; Cutkosky, 2019) can solve

this problem when combined with standard online-to-batch

conversion bounds. We give the details for this construction

for one such algorithm in the next proposition:

Proposition 1. Coin betting through Online Newton Steps

with Hints (Cutkosky, 2019, Algorithm 1) is tuning-free in

the bounded setting.

The proof of this result is provided in the appendix, and

essentially just combines (Cutkosky, 2019, Theorem 2) with

online-to-batch conversion.

In this paper, we shall focus particularly on methods that

fit the stochastic gradient descent paradigm, i.e. that use

updates of the form xk+1 = xk − ¸kgk, where gk is the

stochastic gradient at step k. Two methods that fit this

paradigm are DoG (Ivgi et al., 2023) and DoWG (Khaled

et al., 2023). DoG uses stepsizes of the form

¸t =
rt√
ut

, rt = max
kft

(∥xk − x0∥ , rϵ),

ut =

t
∑

k=0

∥gk∥2,
(3)

where rϵ is a parameter that we will always set to D. Simi-

larly, DoWG uses stepsizes of the form

¸t =
r2t√
vt
, rt = max

kft
(∥xk − x0∥ , rϵ),

vt =

t
∑

k=0

r2k∥gk∥2.
(4)

The next theorem shows that in the bounded setting, both

DoG and DoWG are tuning-free.
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Theorem 1. DoG and DoWG are tuning-free in the

bounded setting. That is, there exists some º =

poly log(D
D
, Ã
Ã
, T, ¶−1) such that

f(xout)− f∗ f º ·
{

LD2

T
+ ÃD√

T
if f is L-smooth,

√
G2+Ã2D√

T
if f is G-Lipschitz.

This rate is achieved simultaneously for both classes of

functions without prior knowledge of whether f is smooth

or Lipschitz (and thus no usage of the hints L,L,G,G).

This theorem essentially comes for free by modifying the

results in (Ivgi et al., 2023; Khaled et al., 2023), and while

the proof modifications are quite lengthy we claim no sig-

nificant novelty here. We note further that unlike (Cutkosky,

2019, Algorithm 1), both DoG and DoWG are single-loop

algorithms– they do not restart the optimization process or

throw away progress. This is a valuable property and one

of the reasons we focus on these algorithms in the paper.

Moreover, DoG and DoWG are universal. An algorithm is

universal if it achieves the same rate as SGD for Lipschitz

functions and also takes advantage of smoothness when it

exists (Levy, 2017), without any prior knowledge of whether

f is smooth. DoG and DoWG enjoy this property in the

bounded domain setting.

4. Tuning-free Optimization Under an

Unbounded Domain

We now continue our investigation to the general, un-

bounded setting where X = R
d. Now, the diameter D

in Assumption 3.1 is infinite. The convergence of SGD is

then characterized by the initial distance to the optimum

D∗ = ∥x0 − x∗∥ (Liu et al., 2023). We can show that SGD

with optimally-tuned stepsizes achieves with probability at

least 1− ¶ the convergence rates

f(xout)− f∗ f Å ·
{

LD2
∗

T
+ ÃD∗√

T
if f is L-smooth,

√
G2+Ã2D∗√

T
if f is G-Lipschitz,

(5)

where Å = poly log 1
¶

, Ã is the maximum stochastic gradi-

ent noise norm, and D∗ = ∥x0 − x∗∥ is the initial distance

from the minimizer. An algorithm is a tuning-free version of

SGD in the unbounded setting if it can match the best SGD

rates given by Equation (5) up to polylogarithmic factors

given access to the hints D,D, Ã, Ã, and G,G or L,L. This

is a tall order: unlike in the bounded setting, a tuning-free

algorithm now has to compete with SGD’s convergence on

any possible initialization.

Deterministic setting. When there is no stochastic gra-

dient noise, i.e. Ã = 0 and the algorithm accesses gradi-

ents according to the deterministic first-order oracle (Def-

inition 1.2), Tuning-free versions of gradient descent ex-

ist. For example, the Adaptive Polyak algorithm (Hazan &

Kakade, 2019), a restarted version of gradient descent with

the Polyak stepsizes (Polyak, 1987) is tuning-free:

Proposition 2 (Hazan & Kakade (2019)). The Adaptive

Polyak algorithm from (Hazan & Kakade, 2019) is tuning-

free in the deterministic setting.

This is far from the only solution, and we mention a few

others next. Parameter-free methods augmented with nor-

malization are also tuning-free and universal, e.g. plugging

in d0 = D in (Orabona, 2023) gives tuning-free algorithms

matching SGD. The bisection algorithm from (Carmon &

Hinder, 2022) is also tuning-free, as is the simple doubling

trick. Finally, T-DoG and T-DoWG, variants of DoG and

DoWG which use polylogarithmically smaller stepsizes than

DoG and DoWG, are also tuning-free, as the following di-

rect corollary of (Ivgi et al., 2023; Khaled et al., 2023)

shows.

Proposition 3. T-DoG and T-DoWG are tuning-free in the

deterministic setting.

T-DoG and T-DoWG use the same stepsize structure as DoG

and DoWG (given in equations (3) and (4)), but divide these

stepsizes by running logarithmic factors as follows

T-DoG: ¸t =
rt√

ut log+
ut

u0

,

T-DoWG: ¸t =
r2t√

vt log+
vt

v0

.

Both methods achieve the same convergence guarantee as

in equation (5) up to polylogarithmic factors in the hints.

4.1. Impossibility Results in the Stochastic Setting

The positive results in the deterministic setting give us some

hope to obtain a tuning-free algorithm. Unfortunately, the

stochastic setting turns out to be a tougher nut to crack. Our

first major result, given below, slashes any hope of finding

a tuning-free algorithm for smooth and stochastic convex

optimization.

Theorem 2. For any polylogarithmic function º : R4 → R

and any algorithm A, there exists a time horizon T , an

L-smooth and convex function f , and a stochastic oracle

O(f, Ãf ), and valid hints L,L,D,D, Ã, Ã such that the al-

gorithmA initialized at some x0 returns with some constant

probability a point xout satisfying

ErrorA = f(xout)− f∗

> º

(

L

L
,
D

D
,
Ã

Ã
, T

)

·
[

LD2
∗

T
+

ÃfD∗√
T

]

,

where D∗ = ∥x0 − x∗∥ is the initial distance to the opti-

mum and Ãf is the maximum norm of the stochastic gradient

noise.
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Proof idea. This lower bound is achieved by 1-dimensional

functions. In particular, we construct two one-dimensional

quadratic functions f and h with associated oracles

O(f, Ãf ) and O(h, Ãh), and we supply the algorithm with

hints that are valid for both functions and oracles. We

show that with some constant probability, the algorithm

observes the same stochastic gradients from both O(f, Ãf )
and O(h, Ãh) for the entire run. Since the algorithm cannot

tell apart either oracle, it must guarantee that equation (5)

holds with high probability for both f and h if it is to be

tuning-free. Now, if we choose f and h further apart, ensur-

ing that their respective oracles return the same gradients

with some constant probability becomes harder. On the

other hand, if we choose f and h too close, the algorithm

can conceivably guarantee that equation (5) holds (up to

the same polylogarithmic factor of the hints) for both of

them. By carefully choosing f and h to balance out this

tradeoff, we show that no algorithm can be tuning-free in the

unbounded and stochastic setting. The full proof is provided

in Section 8.3 in the appendix.

Comparison with prior lower bounds. The above theorem

shows a fundamental separation between the deterministic

and stochastic settings when not given knowledge of the

problem parameters. The classical lower bounds for deter-

ministic and stochastic optimization algorithms (Nesterov,

2018; Woodworth & Srebro, 2016; Carmon et al., 2019)

rely on a chain construction that is agnostic to whether the

optimization algorithm has access to problem parameters.

On the other hand, lower bounds from the online learn-

ing literature show that tuning-free optimization matching

SGD is impossible when the oracle can be adversarial (and

not stochastic), see e.g. (Cutkosky & Boahen, 2017b; 2016).

However, adversarial oracles are much stronger than stochas-

tic oracles, as they can change the function being optimized

in response to the algorithm’s choices. Our lower bound

is closest in spirit to the lower bounds from the stochastic

multi-armed bandits literature that also rely on confusing

the algorithm with two close problems (Mannor & Tsitsiklis,

2004).

Our next result shows that tuning-free optimization is also

impossible in the nonsmooth case.

Theorem 3. For any polylogarithmic function º : R4 → R

and any algorithm A, there exists a time horizon T , valid

hints L,L,D,D, Ã, Ã, an G-Lipschitz and convex function

f and an oracleO(f, Ãf ) such that the algorithmA returns

with some constant probability a point xout satisfying

ErrorA = f(xout)− f∗

> º

(

G

G
,
D

D
,
Ã

Ã
, T

)

·
[√

G2 + Ã2D∗√
T

]

.

The proof technique used for this result relies on a similar

construction as Theorem 2 but uses the absolute loss instead

of quadratics.

Existing algorithms and upper bounds in the stochastic

setting. Carmon & Hinder (2022) give a restarted variant of

SGD with bisection search. If f is G-Lipschitz and all the

stochastic gradients are also bounded by G, their method

uses the hint G g G and achieves the following convergence

rate with probability at least 1− ¶

f(x̂)− f∗ f cº

(

¸ϵ

(

G+
ºG

T

)

+
D∗G√

T
+

D∗G

T

)

, (6)

where c is an absolute constant, º a poly-logarithmic and

double-logarithmic factor, and ¸ϵ an input parameter. If we

set ¸ϵ = D/T f D∗

T
, then the guarantee of this method

becomes

f(x̂)− f∗ f cº

(

D∗G√
T

+
D∗G

T

)

. (7)

Unfortunately, this dependence does not meet our bar as

the polynomial dependence on G is in a higher-order term.

A similar result is achieved by DoG (Ivgi et al., 2023). A

different sort of guarantee is achieved by Mhammedi &

Koolen (2020), who give a method with regret

1

T

T−1
∑

t=0

ïgt, xt − x∗ð f cº

(

GD∗√
T

+
GD3

∗
T

)

, (8)

for some absolute constant c and polylogarithmic factor º.
This result is in the adversarial setting of online learning, and

clearly does not meet the bar for tuning-free optimization

matching SGD due to the cubic term D3
∗.

4.2. Guarantees Under Benign Noise

In the last subsection, we saw that tuning-free optimization

is in general impossible. However, it is clear that some-

times it is possible to get within the performance of tuned

SGD with self-tuning methods (Ivgi et al., 2023; Defazio

& Mishchenko, 2023). However, the oracles used in The-

orems 2 and 3 provide stochastic gradients g(x) such that

the noise is almost surely bounded (i.e. satisfies Assump-

tion 1.1):

∥g(x)−∇f(x)∥ f R.

So boundedness is clearly not enough to enable tuning-free

optimization. However, we know from prior results (e.g.

(Carmon & Hinder, 2022)) that if we can reliably estimate

the upper bound R on the noise, we can adapt to unknown

distance to the optimum D∗ or the smoothness constant

L. The main issue that the oracles in the lower bound of

Theorem 2 make it impossible to do that: while the noise

n(x) = g(x)−∇f(x) is bounded almost surely by R, the

6
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algorithm only gets to observe the same noise n(x) for the

entire optimization run. This foils any attempt at estimating

R from the observed trajectory.

A note on notation in this section and the next. In the past

section we used Ã to denote a uniform upper bound on the

gradient noise, while in this section and the next we use Ã
to denote the variance of the stochastic gradient noise n(x)
rather than a uniform upper bound on it. Instead, we use R
to denote the uniform upper bound on the noise.

We will see that for some notion of benign noise, tuning-free

optimization matching SGD is possible. We will develop our

results under a more general assumption on the distribution

of the stochastic gradient noise g(x)−∇f(x)
Assumption 4.1. (Noise with Sub-Gaussian norm). For all

x ∈ R
d, the noise vector n(x) = g(x)−∇f(x) satisfies

• n(x) is unbiased: E [g(x)] = ∇f(x).

• n(x) has sub-gaussian norm with modulus R:

Prob (∥n(x)∥ g t) f 2 exp

(−t2
2R2

)

.

• n(x) has bounded variance: E

[

∥n(x)∥2
]

= Ã2 <

+∞.

This assumption is very general, it subsumes bounded noise

(where R = Ãf ) and sub-gaussian noise. The next definition

gives a notion of signal-to-noise that turns out to be key in

characterizing benign noise distributions.

Definition 4.1. Suppose the stochastic gradient noise sat-

isfies Assumption 4.1. We define the signal-to-noise ratio

associated with the noise as

Ksnr =
Ã

R
f 1.

To better understand the meaning of Ksnr, we consider the

following example. Let Y be a random vector with mean

E [Y ] = µ and variance E

[

∥Y − µ∥2
]

= Ã2. Suppose

further that the errors ∥Y − µ∥ are bounded almost surely

by some R. Then Y − µ satisfies the assumptions in As-

sumption 4.1. Let Y1, . . . , Yb be independent copies of Y .

Through standard concentration results (see Lemma 8) we

can show that with high probability and for large enough b

Ã̂
def
=

1

b

b
∑

i=1

∥Y − µ∥2 ≊ Ã2.

Now observe that if the ratio Ksnr is small, then we cannot

use the sample variance Ã̂ as an estimator for the almost-

sure bound R. But if the ratio Ksnr is closer to 1, then we

have Ã2
≊ R2 and we can use Ã̂ as an estimator for R. This

fixes the problem we highlighted earlier: now we are able to

get an accurate estimate of R from the observed stochastic

gradients. The next proposition gives examples of noise

distributions where Ksnr is close to 1.

Proposition 4. Suppose that the noise vectors g(x)−∇f(x)
follow one of the following two distributions:

• A Gaussian distribution with mean 0 and covariance
Ã2

d
· Id×d, with Ã > 0.

• A Bernoulli distribution, where [g(x) − ∇f(x)] =
±Ãϕ(x) with equal probability for some ϕ such that

∥ϕ(x)∥2 = 1 almost surely.

Then Ksnr = O(1).

We now give an algorithm whose convergence rate char-

acterized by the signal-to-noise ratio Ksnr. We combine

a variane estimation procedure with the T-DoG/T-DoWG

algorithms in Algorithms 2 and 3. The next theorem gives

the convergence of this algorithm. This theorem is generic,

and does not guarantee any tuning-free matching of SGD,

but can lead to tuning-free matching of SGD if the signal to

noise ratio is high enough.

Theorem 4. Suppose we are given access to stochas-

tic gradient estimates g(x) such that the noise vectors

[g(x) − ∇f(x)] ∈ R
d satisfy Assumption 4.1 with mod-

ulus R and signal-to-noise ratio Ksnr. If we run T-DoG

or T-DoWG with variance estimation (Algorithms 2 and 3)

with a minibatch size b g 2 large enough to satisfy

c ·





√

log 2bT
¶

b
+

log 2(b(d)T
¶

b



 f K2
snr − ¹,

where c is some absolute constant and ¹ ∈ [0,Ksnr] is some

known constant. Then Algorithms 2 and 3 with either option

returns a point xout such that with probability at least 1− ¶,

• If f is L-smooth:

f(xout)− f∗ f cº

(

LD2
∗b

Ttotal
+

¹−1RD∗
√
b√

Ttotal

)

,

where D∗ = ∥x0 − x∗∥, c is an absolute constant, º is

a polylogarithmic factor of the hints, and Ttotal denotes

the total number of stochastic gradient accesses.

• If f is G-Lipschitz:

f(xout)− f∗ f cº

√
G2 + ¹−2R2D∗

√
b√

Ttotal

.

7
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Note on dimension dependence in Theorem 4. We note

that the logarithmic dimension dependence on the dimension

d can be removed if, rather than assuming the norm of the

noise is subgaussian, we assumed it was bounded.

On the surface, it looks like Theorem 4 simply trades off

knowledge of the absolute bound on the noise R with

knowledge of some constant ¹ that lies in the interval

[0,Ksnr]. In order to see how Theorem 4 can be useful,

consider the special cases given in Proposition 4. For these

noise distributions, we see that choosing a minibatch size

b ≈ O(log 2dT
¶

+ 1) suffices to ensure Algorithms 2 and 3

converges with the simple choice ¹ = 1
2 . Even though

we had no apriori knowledge of the variance Ã2 and did

not assume the noise distribution was stationary, we could

still optimize the function. In general, the minibatch size

b ≈ O(log 2dT
¶

+ 1) suffices as long as Ksnr is bounded

away from zero by some constant. The final cost of run-

ning the algorithm is Ttotal = b · T = ºT , where º is some

polylogarithmic factor. Therefore, we only pay a logarith-

mic price for not knowing the distribution. Of course, if

Ksnr is small enough, there can be no optimization– there is

not enough signal to do any estimation of the sub-gaussian

modulus R. The distribution used in Theorem 2 does force

Ksnr f 1
T

.

5. Nonconvex Tuning-Free Optimization

In this section, we consider the case where the optimization

problem (OPT) is possibly nonconvex. Throughout the

section, we assume that f is L-smooth and lower bounded

by some f∗ ∈ R. In this setting, SGD with a tuned stepsize

achieves the following rate in expectation

1

T

T−1
∑

t=0

∥∇f(xt)∥2

f c

[
√

L(f(x0)− f∗)Ã2

T
+

L(f(x0)− f∗)

T

]

,

(9)

for some absolute constant c > 0. This rate is known to be

tight for convergence in expectation (Arjevani et al., 2019).

However, it is not known if it is tight for returning a high

probability guarantee. The best-known high-probability

convergence rate for SGD is given by (Liu et al., 2023,

Theorem 4.1) and guarantees with probability at least 1− ¶
that

1

T

T−1
∑

t=0

∥∇f(xt)∥2 f 5

√

L(f(x0)− f∗)R2

T
+

2(f(x0)− f∗)L

T
+

12R2 log 1
¶

T
.

(10)

We now consider tuning-free algorithms that can match the

performance of SGD characterized by either equation (9)

Algorithm 1 Restarted SGD

Require: Initialization y0, probability ¶, hints

R,R,∆,∆, L, L, total budget Ttotal

1: Set ¸ϵ =
1
L

and

N = 1 +









log





min(L,
√

5TR
2

2∆ )

max(L,
√

5TR2

∆
)













(11)

2: if Ttotal < N then

3: Return y0.

4: end if

5: Set the per-epoch iteration budget as T = +Ttotal/N,.
6: for n = 1 to N do

7: ¸ = ¸ϵ2
n

8: Run SGD for T iterations with stepsize ¸ starting

from y0 to get outputs xn
1 , . . . , x

n
T .

9: Set yn, ĝn = FindLeader(S, ¶, T ) (see Algo-

rithm 4).

10: end for

11: Return y = argminn∈[N ] ∥ĝn∥.

or equation (1). Per Definition 1.1, an algorithm B is given

(1) an initialization x0, (2) a budget of Ttotal stochastic

gradient accesses, and (3) hints L,L,R,R,∆,∆ on the

problem parameters such that (a) if L is the smoothness

constant of f then L ∈ [L,L], (b) R ∈ [R,R], and (c)

∆
def
= f(x0)− f∗ ∈ [∆,∆]. We call B strongly tuning-free

if it matches the performance of SGD characterized by equa-

tion (9) up to polylogarithmic factors. Alternatively, if it

instead matches the weaker guarantee given by equation (10)

then we call it weakly tuning-free.

Our first result in this setting shows that we cannot hope to

achieve the rate given by equation (9) in high probability,

even given access to hints on all the problem parameters.

Theorem 5. For any polylogarithmic function º : R4 → R

and any algorithm A, there exists a time horizon T , valid

hints L,L,∆,∆, Ã, Ã, an L-smooth and lower-bounded

function f and an oracle O(f, Ãf ) such that the algorithm

A returns with some constant probability a point xout satis-

fying

ErrorA = ∥∇f(xout)∥2

> º

(

L

L
,
∆

∆
,
Ã

Ã
, T

)

·
[
√

L∆Ã2

T
+

L∆

T

]

,

where ∆ = f(x0)− f∗

Surprisingly, our next theorem shows that the rate given

by equation (10) is achievable up to polylogarithmic factors

given only access to hints. To achieve this, we use a restarted

variant of SGD (Algorithm 6) combined with a “Leader

8
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Finding” procedure that selects a well-performing iterate by

subsampling.

Theorem 6. (Convergence of Restarted SGD) Let f be

an L-smooth function lower bounded by f∗ and suppose

the stochastic gradient noise vectors satisfy Assumption 4.1.

Suppose that we are given the following hints on the problem

parameters: (a) L ∈ [L,L], (b) Rf ∈ [R,R], and (c)

∆f
def
= f(x0)−f∗ ∈ [∆,∆]. Then there exists some absolute

constant c such that the output of Algorithm 1 satisfies after

Ttotal · log+ 1
¶

stochastic gradient evaluations

∥∇f(y)∥2 f c · R
2 log

2dmax(log 1
¶
,N)

¶

Ttotal
+

c ·N ·





√

L(f(y0)− f∗)R2

Ttotal
+

(f(y0)− f∗)L

Ttotal



 ,

where c is an absolute constant, N is a polylogarithmic

function of the hints defined in equation (11), and d is the

problem dimensionality.

Discussion of Theorem 6. This theorem shows that in the

nonconvex setting, we pay only an additional polylogarith-

mic factor to achieve the same high-probability rate as when

we know all parameters. We emphasize that we do not know

if the rate given by equation (10) is tight, but it is the best

in the literature. Finally, the logarithmic dimension depen-

dence on the dimension d can be removed if, rather than

assuming the norm of the noise is subgaussian, we assumed

that it was bounded almost surely.

Proof Idea. The proof is an application of the so-called

“doubling trick” with a careful comparison procedure. If we

start with a small enough stepsize, we only need to double a

logarithmic number of times until we find a stepsize ¸′ such

that ¸∗

2 f ¸′ f ¸∗, where ¸∗ is the optimal stepsize for SGD

on this problem. We therefore run SGD for N epochs with a

carefully chosen N , each time doubling the stepsize. At the

end of every SGD run, we run the FindLeader procedure

(Algorithm 4) to get with high probability a point yn such

that

∥∇f(yn)∥2 f
1

T

T−1
∑

t=0

∥∇f(xn
t )∥2,

where xn
1 , . . . , x

n
T are the SGD iterates from the n-th epoch.

Finally, we know that at least one of these N points

y1, . . . , yN has small gradient norm, so we return the point

with the minimal estimated gradient norm and bound the

estimation error as a function of T . The total number of

gradient accesses performed is at most N(T + MT ) ≈
Ttotal · log+ 1

¶
. Therefore, both the restarting and compari-

son procedures add at most a logarithmic number of gradient

accesses.

Related work. Many papers give high probability bounds

for SGD or AdaGrad and their variants in the nonconvex

setting (Ghadimi & Lan, 2013; Madden et al., 2020; Lei &

Tang, 2021; Li & Orabona, 2019; 2020; Faw et al., 2022;

Kavis et al., 2022), but to the best of our knowledge none

give a tuning-free algorithm matching SGD per Defini-

tion 1.1. The FindLeader procedure is essentially extracted

from (Madden et al., 2020, Theorem 13), and is similar to

the post-processing step in (Ghadimi & Lan, 2013).

Comparison with the convex setting. The rate achieved

by Theorem 6 stands in contrast to the best-known rates

in the convex setting, where we suffer from a polynomial

dependence on the hints, as in equation (7). One potential

reason for this divergence is the difficulty of telling apart

good and bad points. In the convex setting, we ask for a

point y with a small function value f(y). And while the

oracle gives us access to stochastic realizations of f(y),
the error in those realization is not controlled. Instead, to

compare between two points y1 and y2 we have to rely

on stochastic gradient information to approximate f(y1)−
f(y2), and this seems to be too difficult without apriori

control on the distance between y1 and y2. On the other

hand, in the nonconvex setting, such comparison is feasible

through sampling methods like e.g. Algorithm 4.

6. Conclusion and Open Problems

We have reached the end of our investigation. To summa-

rize: we defined tuning-free algorithms and studied several

settings where tuning-free optimization was possible, and

several where we proved impossibility results. Yet, many

open questions remain. For example, tuning-free optimiza-

tion might be possible in the finite-sum setting where we can

periodically evaluate the function value exactly. The upper

bounds we develop in both the convex and nonconvex set-

tings require quite stringent assumptions on the noise (such

as boundedness or sub-gaussian norm), and it is not known

if they can be relaxed to expected smoothness (Gower et al.,

2019; Khaled & Richtárik, 2020) or some variant of it. In

the nonconvex case we only consider smooth objectives

whereas in deep learning the objectives are usually highly

nonsmooth, and exploring this area may yield more practi-

cally useful insights. Finally, we did not study tuning-free

algorithms for strongly convex objectives. We leave these

questions to future work.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be
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6510, 2018.

Li, X. and Orabona, F. On the convergence of stochastic

gradient descent with adaptive stepsizes. In Chaudhuri,

K. and Sugiyama, M. (eds.), The 22nd International Con-

ference on Artificial Intelligence and Statistics, AISTATS

2019, 16-18 April 2019, Naha, Okinawa, Japan, vol-

ume 89 of Proceedings of Machine Learning Research,

pp. 983–992. PMLR, 2019.

Li, X. and Orabona, F. A high probability analysis

of adaptive SGD with momentum. arXiv preprint

arXiv:2007.14294, abs/2007.14294, 2020.

Liu, Z., Nguyen, T. D., Nguyen, T. H., Ene, A., and

Nguyen, H. L. High probability convergence of stochas-

tic gradient methods. arXiv preprint arXiv:2302.14843,

abs/2302.14843, 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-

larization. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net, 2019.

Madden, L., Dall’Anese, E., and Becker, S. High-

probability convergence bounds for non-convex stochas-

tic gradient descent. arXiv preprint arXiv:2006.05610,

abs/2006.05610, 2020.

Malitsky, Y. and Mishchenko, K. Adaptive gradient descent

without descent. In Proceedings of the 37th International

Conference on Machine Learning, ICML 2020, 13-18

July 2020, Virtual Event, volume 119 of Proceedings

of Machine Learning Research, pp. 6702–6712. PMLR,

2020.

Mannor, S. and Tsitsiklis, J. N. The sample complexity of

exploration in the multi-armed bandit problem. J. Mach.

Learn. Res., 5:623–648, 2004. ISSN 1532-4435.

Mhammedi, Z. and Koolen, W. M. Lipschitz and

comparator-norm adaptivity in online learning. In Aber-

nethy, J. D. and Agarwal, S. (eds.), Conference on Learn-

ing Theory, COLT 2020, 9-12 July 2020, Virtual Event

[Graz, Austria], volume 125 of Proceedings of Machine

Learning Research, pp. 2858–2887. PMLR, 2020.

Mhammedi, Z., Koolen, W. M., and van Erven, T. Lipschitz

adaptivity with multiple learning rates in online learning.

In Beygelzimer, A. and Hsu, D. (eds.), Conference on

Learning Theory, COLT 2019, 25-28 June 2019, Phoenix,

AZ, USA, volume 99 of Proceedings of Machine Learning

Research, pp. 2490–2511. PMLR, 2019.

Nesterov, Y. Universal gradient methods for convex op-

timization problems. Mathematical Programming, 152

(1-2):381–404, 2014. doi: 10.1007/s10107-014-0790-0.

Nesterov, Y. Lectures on Convex Optimization. Springer

Publishing Company, Incorporated, 2nd edition, 2018.

ISBN 3319915770.

Orabona, F. Normalized gradients for all. arXiv preprint

arXiv:2308.05621, abs/2308.05621, 2023.

Orabona, F. and Cutkosky, A. ICML 2020 tutorial on

parameter-free online optimization. ICML Tutorials,

2020.

Orabona, F. and Pál, D. Coin betting and parameter-free on-

line learning. In Lee, D. D., Sugiyama, M., von Luxburg,

U., Guyon, I., and Garnett, R. (eds.), Advances in Neural

Information Processing Systems 29: Annual Conference

on Neural Information Processing Systems 2016, Decem-

ber 5-10, 2016, Barcelona, Spain, pp. 577–585, 2016.

Paquette, C. and Scheinberg, K. A stochastic line search

method with expected complexity analysis. SIAM Journal

on Optimization, 30(1):349–376, 2020. doi: 10.1137/

18M1216250.

Polyak, B. T. Introduction to Optimization. Translations

Series in Mathematics and Engineering. Optimization

Software Inc., New York, 1987.

Renegar, J. and Grimmer, B. A simple nearly optimal restart

scheme for speeding up first-order methods. Foundations

of Computational Mathematics, 22(1):211–256, 2021.

doi: 10.1007/s10208-021-09502-2.

Sivaprasad, P. T., Mai, F., Vogels, T., Jaggi, M., and Fleuret,

F. Optimizer benchmarking needs to account for hyperpa-

rameter tuning. In Proceedings of the 37th International

Conference on Machine Learning, ICML 2020, 13-18

July 2020, Virtual Event, volume 119 of Proceedings

of Machine Learning Research, pp. 9036–9045. PMLR,

2020.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,

M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,

E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E.,

and Lample, G. LLaMA: Open and efficient founda-

tion language models. arXiv preprint arXiv:2302.13971,

abs/2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,

A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,

Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,

M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,

Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,

A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,

V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,

12



Tuning-Free Stochastic Optimization

Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,

Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,

I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,

K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,

Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,

Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,

M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,

and Scialom, T. LLaMA 2: Open foundation and fine-

tuned chat models. arXiv preprint arXiv:2307.09288,

2023b.

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G.,

and Lacoste-Julien, S. Painless stochastic gradient: Inter-

polation, line-search, and convergence rates. In Wallach,

H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
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Appendix

7. Proofs for Section 7

Proposition 1. Coin betting through Online Newton Steps with Hints (Cutkosky, 2019, Algorithm 1) is tuning-free in the

bounded setting.

Proof. In the bounded setting, Cutkosky (2019) give an algorithm that takes as parameters ϵ, ³ and achieves the following

regret

T−1
∑

t=0

ïgt, xt − x∗ð f ϵ+GD + ∥x∗ − x0∥G log





∥x∗ − x0∥G exp(³/4G2)

ϵ

(

1 +

∑T−1
t=0 ∥gt∥

2

³

)4.5




+ ∥x∗ − x0∥

√

√

√

√

√

√

T−1
∑

t=0

∥gt∥2 log







(

∑T−1
t=0 ∥gt∥

2
)10

exp(³/2G2)∥x∗∥2

ϵ2
+ 1






.

If we set ϵ = D ·G, ³ = G2, and use the upper bound ∥x0 − x∗∥ f D and simplify we get the regret

T−1
∑

t=0

ïgt, xt − x∗ð f GD +GD +DG log

[

DG

DG

(

1 +
G2T

G2

)4.5
]

+D

√

√

√

√

T−1
∑

t=0

∥gt∥2
√

log
T 10G20D2

D2G2

Observe that because G f G and D f D the above can be simplified to

T−1
∑

t=0

ïgt, xt − x∗ð f GD log+

[

DG

DG

(

1 +
G2T

G2

)4.5
]

+D

√

√

√

√

T−1
∑

t=0

∥gt∥2
√

log
T 10G20D2

D2G2

Call the maximum of the two log terms º, then the above rate is

T−1
∑

t=0

ïgt, xt − x∗ð f GDº+D

√

√

√

√

T−1
∑

t=0

∥gt∥2
√
º. (12)

Applying online-to-batch conversion starting from equation (12) proves the algorithm is tuning-free. For the smooth setting,

it suffices to observe that under a bounded domain we have for any t

∥gt∥ f ∥gt −∇f(xt)∥+ ∥∇f(xt)∥
= ∥gt −∇f(xt)∥+ ∥∇f(xt)−∇f(x∗)∥
f Ã + L ∥xt − x∗∥
f Ã + LD.

Combining this and following online-to-batch conversion as in (Levy, 2017) shows the algorithm considered is tuning-free

in the smooth setting as well.

We will make use of the following two lemmas throughout the upper bound proofs for DoG and DoWG.

Lemma 1. (Ivgi et al., 2023, Lemma 7). Let S be the set of nonnegative and nondecreasing sequences. Let Ct ∈ Ft−1

and let Xt be a martingale difference sequence adapted to Ft such that |Xt| f Ct with probability 1 for all t. Then for all

¶ ∈ (0, 1) and X̂t ∈ Ft−1 such that

∣

∣

∣X̂t

∣

∣

∣ f Ct with probability 1, we have that with probability 1− ¶ that for all c > 0

∣

∣

∣

∣

∣

t
∑

i=1

yiXi

∣

∣

∣

∣

∣

f 8yt

√

√

√

√¹t,¶

t
∑

i=1

(Xi − X̂i)2 + [c] ¹2t,¶ + Prob (∃t f T | Ct > c)

15



Tuning-Free Stochastic Optimization

Lemma 2. (Ivgi et al., 2023, Lemma 3). Let s0, s1, . . . , sT be a positive increasing sequence. Then,

max
tfT

t−1
∑

i=0

si
st
g 1

e

(

T

log+
sT
s0

− 1

)

.

Lemma 3. (Ivgi et al., 2023, Lemma 1). Suppose that f is convex and has a minimizer x∗. Then the iterates generated by

DoG satisfy for each t:

b−1
∑

k=a

rk ïgk, xk − x∗ð f rb(2db + rb)
√
ub−1.

Lemma 4. Suppose that f is convex and has a minimizer x∗. Then iterates generated by DoWG satisfy for every t:

t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð f 2rt
[

dt + rt
]√

vt−1 +
t−1
∑

k=0

r2k ï∇f(xk)− gk, xk − x∗ð

Proof. This is a modification of (Khaled et al., 2023, Lemma 3) to account for the case where gk ̸= ∇f(xk) (i.e. when the

gradients used are not deterministic), following (Ivgi et al., 2023, Lemma 1). We start

d2k+1 f ∥xk − ¸kgk − x∗∥2

= ∥xk − x∗∥2 + ¸2k∥gk∥2 − 2¸k ïgk, xk − x∗ð .

Rearranging we get

2¸k ïgk, xk − x∗ð f d2k − d2k+1 + ¸2k∥gk∥2

Multiplying both sides by
r2
k

2¸k
we get

r2k ïgk, xk − x∗ð f
1

2

r2k
¸k

(

d2k − d2k+1

)

+
r2k¸k
2
∥gk∥2.

We then follow the same proof as in (Khaled et al., 2023, Lemma 3) to get

t−1
∑

k=0

r2k ïgk, xk − x∗ð f 2rt
[

dt + rt
]√

vt−1. (13)

We then decompose

t−1
∑

k=0

r2k ïgk, xk − x∗ð =
t−1
∑

k=0

r2k ïgk −∇f(xk), xk − x∗ð+
t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð .

Plugging back into equation (13) we get

t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð f 2rt
[

dt + rt
]√

vt−1 +

t−1
∑

k=0

r2k ï∇f(xk)− gk, xk − x∗ð (14)

7.1. Proof of Theorem 1

Theorem 1. DoG and DoWG are tuning-free in the bounded setting. That is, there exists some º = poly log(D
D
, Ã
Ã
, T, ¶−1)

such that

f(xout)− f∗ f º ·
{

LD2

T
+ ÃD√

T
if f is L-smooth,

√
G2+Ã2D√

T
if f is G-Lipschitz.

This rate is achieved simultaneously for both classes of functions without prior knowledge of whether f is smooth or

Lipschitz (and thus no usage of the hints L,L,G,G).
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Proof of Theorem 1. We first handle the case that T < 4 log+
D
D

. In this case we just return x0. If f is G-Lipschitz, then by

convexity we have

f(x0)− f∗ f ï∇f(x0), x0 − x∗ð f ∥∇f(x0)∥ ∥x0 − x∗∥ f GD f 2GD√
T

√

log+
D

D
.

If f is L-smooth, then by smoothness we have

f(x0)− f∗ f
L

2
∥x0 − x∗∥2 f

LD2

2
f 2LD2

T
log+

D

D
.

Therefore in both cases the point we return achieves a small enough loss almost surely. Throughout the rest of the proof, we

shall assume that T g 4 log+
D
D

.

Part 1: DoG. In the nonsmooth setting, this is a straightforward consequence of (Ivgi et al., 2023, Proposition 3). In

particular, when using DoG with rϵ = D, then Corollary 1 in their work gives that with probability 1− ¶ there exists some

Ä ∈ [T ] and some absolute constant c > 0 such that

f(xÄ )− f∗ f c · DG√
T

log
60 log 6t

¶
log

2D

D
,

where x̂t
def
= 1∑

t−1

i=0
ri

∑t−1
i=0 rixi.

For the smooth setting, we start with Lemma 3 to get

t−1
∑

k=0

rk ï∇f(xk), xk − x∗ð f rt
(

2dt + rt
)√

ut−1 +

t−1
∑

k=0

rk ï∇f(xk)− gk, xk − x∗ð . (15)

We follow (Ivgi et al., 2023, Proposition 3) and modify the proof in a straightforward manner to accommodate the assumption

of bounded noise (rather than bounded gradients). Define

Äk = min {min {i | ri g 2rÄi−1} , T} , Ä0
def
= 0.

We denote by K the first index such that ÄK = T . Define

Xk =

〈

gk −∇f(xk),
xk − x∗

dk

〉

, X̂k = 0, yk = rkdk.

Observe that xk is determined by Fk−1, and since rk = maxtfk (∥xk − x0∥ , rϵ), it is also determined by Fk−1. Therefore

E [Xk | Fk−1] = r2k

〈

E [gk −∇f(xk)] ,
xk − x∗

dk

〉

= 0.

Moreover, observe that

|Xk| f ∥gk −∇f(xk)∥
∥xk − x∗∥

dk
f Ã.

Therefore the Xk form a martingale. Then we can apply Lemma 1 to get that with probability 1− ¶ that for every t ∈ [K]

∣

∣

∣

∣

∣

t−1
∑

k=0

rk ïgk −∇f(xk), xk − x∗ð
∣

∣

∣

∣

∣

f 8dtrt¹t,¶

√

√

√

√

t−1
∑

k=0

(Xk)2 + Ã2

f 8dtrt¹t,¶

√

√

√

√

t−1
∑

k=0

∥gk −∇f(xk)∥2 + Ã2

f 8dtrt¹t,¶
√

Ã2t+ Ã2

f 16dtrt¹t,¶Ã
√
T . (16)
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Now observe that we can use equation (16) to get

∣

∣

∣

∣

∣

∣

Äi−1
∑

k=Äi−1

rk ïgk −∇f(xk), xk − x∗ð

∣

∣

∣

∣

∣

∣

f
∣

∣

∣

∣

∣

Äi−1
∑

k=0

rk ïgk −∇f(xk), xk − x∗ð
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Äi−1−1
∑

k=0

rk ïgk −∇f(xk), xk − x∗ð
∣

∣

∣

∣

∣

f 16dÄirÄi¹t,¶Ã
√
T + 16dÄi−1

rÄi−1
¹t,¶Ã

√
T

f 32dÄirÄi¹t,¶Ã
√
T . (17)

Now observe that by convexity we have for k ∈ {Äi−1, Äi−1 + 1, . . . , Äi − 1}

0 f f(xk)− f∗ f ï∇f(xk), xk − x∗ð f
rk

rÄi−1

ï∇f(xk), xk − x∗ð .

Summing up from k = Äi−1 to k = Äi − 1 we get

Äi−1
∑

k=Äi−1

ï∇f(xk), xk − x∗ð f
1

rÄi−1

Äi−1
∑

k=Äi−1

rk ï∇f(xk), xk − x∗ð

=
1

rÄi−1

Äi−1
∑

k=Äi−1

rk ï∇f(xk), xk − x∗ð

=
1

rÄi−1

Äi−1
∑

k=Äi−1

rk ï∇f(xk)− gk, xk − x∗ð+
1

rÄi−1

Äi−1
∑

k=Äi−1

rk ïgk, xk − x∗ð . (18)

We now use Lemma 3 to get that

Äi−1
∑

k=Äi−1

rk ïgk, xk − x∗ð f 2rÄi
(

dÄi + rÄi
)√

uÄi−1. (19)

Plugging in the upper bounds from equations (17) and (19) into equation (18) we get

Äi−1
∑

k=Äi−1

ï∇f(xk), xk − x∗ð f
rÄi
rÄi−1

[

2
(

dÄi + rÄi
)√

uÄi−1 + 32dÄi¹t,¶Ã
√
T
]

. (20)

Now observe that

rk+1 f rk + ∥xt+1 − xt∥ = rk

(

1 +
∥gk∥√
uk

)

f 2rk.

It follows that
rÄi

rÄi−1
f 2. Moreover by the definition of the Äi we have that

rÄi−1

rÄi−1

f 2. Therefore

rÄi
rÄi−1

=
rÄi

rÄi−1

rÄi−1

rÄi−1

f 2 · 2 = 4. (21)

using equation (21) in equation (20) we get

Äi−1
∑

k=Äi−1

ï∇f(xk), xk − x∗ð f 4
[

2
(

dÄi + rÄi
)√

uÄi−1 + 32dÄi¹t,¶Ã
√
T
]

.

Summing up over the i, we get

T−1
∑

t=0

ï∇f(xt), xt − x∗ð f
K
∑

i=0

Äi−1
∑

k=Äi−1

ï∇f(xk), xk − x∗ð f 4K
[

2
(

dÄi + rÄi
)√

uÄi−1 + 32KdÄi¹t,¶Ã
√
T
]

.

18
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Observe that by definition we have

K f 1 + log
rT
r0

= log
2rT
r0

.

Therefore using the last equation and convexity we have

T−1
∑

t=0

(f(xt)− f∗) f 4 log
2rT
r0

[

2
(

dT + rT
)√

uT−1 + 32dT ¹T,¶Ã
√
T
]

.

Note that because the domain is bounded we have max(rT , dT ) f D, and we used r0 = D, therefore

T−1
∑

t=0

(f(xt)− f∗) f 4 log
2D

D

[

4D
√
uT−1 + 32D¹T,¶Ã

√
T
]

. (22)

Observe that by our assumption on the noise and smoothness we have

uT−1 =

T−1
∑

k=0

∥gk∥2

f 2

T−1
∑

k=0

∥gk −∇f(xk)∥2 + 2

T−1
∑

k=0

∥∇f(xk)∥2

f 2TÃ2 + 2

T−1
∑

k=0

∥∇f(xk)∥2

f 2TÃ2 + 4L

T−1
∑

k=0

(f(xk)− f∗) .

Using this in equation (22) gives

T−1
∑

t=0

(f(xt)− f∗) f 4 log
2D

D



8DÃ
√
T + 2

√
LD

√

√

√

√

T−1
∑

t=0

(f(xt)− f∗) + 32D¹T,¶Ã
√
T





f 8 log
2D

D
D
√
L

√

√

√

√

T−1
∑

t=0

(f(xt)− f∗) + 160 log
2D

D
¹T,¶ÃD

√
T . (23)

Observe that if y2 f ay + b, then by the quadratic equation and the triangle inequality we have

y f a+
√
a2 + 4b

2
.

Squaring both sides gives

y2 f 1

4
(a+

√

a2 + 4b)2 f 1

2

(

2a2 + 4b
)

= a2 + 2b. (24)

Applying this to equation (23) with the following choices

y =

√

√

√

√

T−1
∑

t=0

f(xt)− f∗, a = 8 log
2D

D
D
√
L, b = 160 log

2D

D
¹T,¶ÃD

√
T ,

then we obtain

T−1
∑

t=0

(f(xt)− f∗) f 64 log2
2D

D
LD2 + 320 log2

2D

D
¹T,¶ÃD

√
T .
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Dividing both sides by T and using Jensen’s inequality we finally get

f(x̂t)− f∗ f
1

T

T−1
∑

t=0

(f(xt)− f∗)

f 64 log2
2D

D

LD2

T
+ 320 log2

2D

D
¹T,¶

ÃD√
T
.

This shows DoG is tuning-free in this setting.

Plugging back into equation (15) we get with probability 1− ¶ that

t−1
∑

k=0

rk ï∇f(xk), xk − x∗ð f rt
(

2dt + rt
)√

ut−1 + 16dtrt¹t,¶Ã
√
T .

Now we can divide both sides by rt to get

t−1
∑

k=0

rk
rt
ï∇f(xk), xk − x∗ð f

(

2dt + rt
)√

ut−1 + 16dt¹t,¶Ã
√
T .

Part 2: DoWG. By Lemma 4 we have that our iterates satisfy

t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð f 2rt
[

dt + rt
]√

vt−1 +

t−1
∑

k=0

r2k ï∇f(xk)− gk, xk − x∗ð

Define

Xk =

〈

gk −∇f(xk),
xk − x∗

dk

〉

, X̂k = 0, yk = r2kdk.

Observe that xk is determined by Fk−1, and since rk = maxtfk (∥xk − x0∥ , rϵ), it is also determined by Fk−1. Therefore

E [Xk | Fk−1] = r2k

〈

E [gk −∇f(xk)] ,
xk − x∗

dk

〉

= 0.

Moreover, observe that

|Xk| f ∥gk −∇f(xk)∥
∥xk − x∗∥

dk
f Ã.

Therefore the Xk form a martingale. Then we can apply Lemma 1 to get that with probability 1− ¶ that for every t ∈ [T ]

∣

∣

∣

∣

∣

t−1
∑

k=0

r2k ïgk −∇f(xk), xk − x∗ð
∣

∣

∣

∣

∣

f 8dtr
2
t ¹t,¶

√

√

√

√

t−1
∑

k=0

(Xk)2 + Ã2

f 8dtr
2
t ¹t,¶

√

√

√

√

t−1
∑

k=0

∥gk −∇f(xk)∥2 + Ã2

f 8dtr
2
t ¹t,¶

√

Ã2t+ Ã2

f 16dtr
2
t ¹t,¶Ã

√
T .

Plugging this back into equation (14) we get

t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð f 2rt
[

dt + rt
]√

vt−1 + 16dtr
2
t ¹t,¶Ã

√
T . (25)

We now divide the proof in two cases:
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• If f is G-Lipschitz: then Ã = supx∈Rd ∥∇f(x)− g(x)∥ f 2G and therefore equation (25) reduces to

t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð f 2rt
[

dt + rt
]√

vt−1 + 32dtr
2
t ¹t,¶G

√
T .

And we have

vt−1 =

t−1
∑

k=0

r2k∥gk∥2 f r2tG
2T.

Therefore

t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð f 2r2t
[

dt + rt
]

G
√
T + 32dtr

2
t ¹t,¶G

√
T

f 34r2t
[

dt + rt
]

¹t,¶G
√
T

f 68r2tDG
√
T¹t,¶.

Using convexity we have

t−1
∑

k=0

r2k(f(xk)− f∗) f
t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð f 68r2tDG
√
T¹t,¶.

Dividing both sides by
∑t−1

k=0 r
2
k and using Jensen’s inequality we get

f(x̃t)− f∗ f
1

∑t−1
k=0 r

2
k

t−1
∑

k=0

r2k(f(xk)− f∗)

f r2t
∑t−1

k=0 r
2
k

68DG
√
T¹t,¶. (26)

We now use Lemma 2 to conclude that there exists some t f T such that

r2t
∑t−1

k=0 r
2
k

f e
(

T

2 log+

rk

rϵ

− 1

) (27)

Note that by the fact that rT f D, r0 = D, and that we assume T g 4 log+
D
D

(see the beginning of this proof) we

have

T

2 log+
rT
r0

− 1 g T

2 log+
D
D

− 1 g T

4 log+
D
D

.

Plugging this into equation (27) we get

r2t
∑t−1

k=0 r
2
k

f 4e

T
log+

D

D
f 11

T
log+

D

D
.

Using this in conjunction with equation (26) we thus have that for some t f T

f(x̃t)− f∗ f
748DG¹T,¶√

T
log+

D

D
.
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• If f is L-smooth: Observe that by straightforward algebra, our assumption on the noise, and smoothness

vt−1 =

t−1
∑

k=0

r2k∥gk∥2

f 2
t−1
∑

k=0

r2k∥gk −∇f(xk)∥2 + 2
t−1
∑

k=0

r2k∥∇f(xk)∥2

f 2r2tÃ
2T + 2

t−1
∑

k=0

r2k∥∇f(xk)∥2

f 2r2tÃ
2T + 4L

t−1
∑

k=0

r2k(f(xk)− f∗).

Using the last line estimate in equation (25) with the triangle inequality we get

t−1
∑

k=0

r2k ï∇f(xk), xk − x∗ð f 4rt
[

dt + rt
]



rtÃ
√
T +
√
L

√

√

√

√

t−1
∑

k=0

r2k(f(xk)− f∗)



+ 16dtr
2
t ¹t,¶Ã

√
T .

By convexity we have

ï∇f(xk), xk − x∗ð g f(xk)− f∗.

Therefore

t−1
∑

k=0

r2k(f(xk)− f∗) f 4rt
[

dt + rt
]
√
L

√

√

√

√

t−1
∑

k=0

r2k(f(xk)− f∗) + 20r2t ¹t,¶
[

dt + rt
]

Ã
√
T . (28)

Observe that if y2 f ay + b, then we have shown in equation (24) that y2 f a2 + 2b. Applying this to equation (28)

with a = 4rt
[

dt + rt
]√

L and b = 20r2t ¹t,¶
[

dt + rt
]

Ã
√
T gives

t−1
∑

k=0

r2k(f(xk)− f∗) f 16r2t
[

dt + rt
]2

L+ 40r2t ¹t,¶
[

dt + rt
]

Ã
√
T

= r2t

(

16
[

dt + rt
]2

L+ 40¹t,¶
[

dt + rt
]

Ã
√
T
)

.

Dividing both sides by
∑t−1

k=0 r
2
k and using Jensen’s inequality we get

f(x̂t)− f∗ f
1

∑t−1
k=0 r

2
k

t−1
∑

k=0

r2k(f(xk)− f∗) f
r2t

∑t−1
k=0 r

2
k

(

16
[

dt + rt
]2

L+ 40¹t,¶
[

dt + rt
]

Ã
√
T
)

,

where x̂t =
1∑

t−1

k=0
r2
k

∑t−1
k=0 r

2
kxk. We now use Lemma 2 to conclude that there exists some Ä f T such that

f(x̂Ä )− f∗ f
e

(

T

2 log+

rk

rϵ

− 1

)

(

16
[

dt + rt
]2

L+ 40¹Ä,¶
[

dt + rt
]

Ã
√
T
)

.

By assumption on T we have T

2 log+
D

D

− 1 g T

4 log+
D

D

, therefore

f(x̂Ä )− f∗ f
4e log+

D
D

T

(

16
[

dt + rt
]2

L+ 40¹Ä,¶
[

dt + rt
]

Ã
√
T
)

f 700¹T,¶ log+
D

D
·
(

LD2

T
+

ÃD√
T

)

,

where in the last line we used that max(dt, rt) f D.
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8. Proofs for Section 4

8.1. Proof of Proposition 2

Proposition 2 (Hazan & Kakade (2019)). The Adaptive Polyak algorithm from (Hazan & Kakade, 2019) is tuning-free in

the deterministic setting.

Proof. By (Hazan & Kakade, 2019, Theorem 2) we have that the point returned by the algorithm x satisfies

f(x)− f∗ f











2GD∗√
T

log+
f(x∗)−f̂0

GD∗√
T

if f is G-Lipschitz,

2LD2
∗

T
log+

f(x∗)−f̂0
LD2

∗
T

if f is L-smooth.

provided that f̂0 f f∗, where f̂0 is a parameter supplied to the algorithm. To get a valid lower bound on f∗, observe that by

the convexity of f we have

f(x0)− f∗ f ï∇f(x0), x0 − x∗ð f ∥∇f(x0)∥ ∥x0 − x∗∥ f ∥∇f(x0)∥D.

It follows that

f∗ g f(x0)− ∥∇f(x0)∥D.

And thus we can use f̂0 = f(x0)− ∥∇f(x0)∥D.

8.2. Proof of Proposition 3

Proposition 3. T-DoG and T-DoWG are tuning-free in the deterministic setting.

Proof. This is shown in (Khaled et al., 2023, Supplementary material section 7) for DoWG. The proof for DoG is similar

and we omit it for simplicity.

8.3. Proof of Theorem 2

Proof. Let Ã > 0. Let L = ÃT . Define the functions

f1(x)
def
=

L

2
x2 + Ãx

f2(x)
def
=

L

2
x2 − Ã

T − 1
x

f(x)
def
=

1

T
f1(x) +

(

1− 1

T

)

f2(x)

=
L

2
x2.

We shall consider the stochastic oracle O(f, Ãf ) that returns function values and gradients as follows:

O(f, Ãf )(x)
def
= {fz(x),∇fz(x)} =

{

{f1(x),∇f1(x)} with probability 1
T
,

{f2(x),∇f2(x)} with probability 1− 1
T
.

Clearly we have E [fz(x)] = f(x) and E [∇fz(x)] = ∇f(x). Moreover,

∥∇f1 −∇f(x)∥ = Ã, ∥∇f2(x)−∇f(x)∥ =
Ã

T − 1
f Ã.

It follows that Ãf f Ã. Therefore O(f, Ãf ) is a valid stochastic first-order oracle. This oracle is similar to the one used

by Attia & Koren (2023) in their lower bound on the convergence of AdaGrad-Norm. The minimizer of the function f is

clearly xf
∗ = 0.
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Let u g 0, we shall choose it later. Define

h1(x)
def
=

L

2
(x− u)2 + (Ã − (T − 1)Lu)x+

(T − 1)L

2
u2,

h2(x)
def
=

L

2
(x− u)2 + Lux− Ã

T − 1
x− L

2
u2,

h(x)
def
=

L

2
(x− u)

2
.

with the oracle O(h, Ãh) given by

O(h, Ãh)(x)
def
= {hz(x),∇hz(x)} =

{

{h1(x),∇h1(x)} with probability 1
T
,

{h2(x),∇h2(x)} with probability 1− 1
T
.

Observe that

E [hz(x)] =
1

T

[

L

2
(x− u)2 + Ãx− (T − 1)Lux+

(T − 1)L

2
u2

]

+
T − 1

T

[

L

2
(x− u)2 + Lux− Ãx

T − 1
− L

2
u2

]

=
L

2
(x− u)2 +

Ãx

T
− T − 1

T
Lux+

T − 1

T

L

2
u2 +

T − 1

T
Lux− Ãx

T
− T − 1

T

L

2
u2

= h(x).

We can similarly prove that E [∇hz(x)] = h(x). Moreover,

∥∇h1(x)−∇h(x)∥ = ∥Ã − (T − 1)Lu∥ f Ã + (T − 1)Lu,

∥∇h2(x)−∇h(x)∥ =
∥

∥

∥

∥

−Ã
T − 1

+ Lu

∥

∥

∥

∥

f Ã

T − 1
+ Lu.

It follows that Ãh f Ã + (T − 1)Lu, therefore O(h, Ãh) is a valid stochastic oracle. Finally, observe that the minimizer of

h is xh
∗ = u.

We fix the initialization x0 = v > 0. Then the initial distance from the optimum for both f and h are:

D∗(f) = |v − 0| = v, D∗(h) = |v − u| . (29)

And recall that

Ãf f Ã, Ãh f Ã + (T − 1)Lu. (30)

Observe that both f and h share the same smoothness constant L. We supply the algorithm with the following estimates:

L = L, L = L,
D = min(v, |u− v|), D = max(v, |u− v|),

Ã = Ã, Ã = Ã + TLu.
(31)

We note that in light of equations (29) and (30) and the definitions of f and h, the hints given by equation (31) are valid for

both problems. Now observe the following:

h2(x) =
L

2
(x− u)2 + Lux− Ã

T − 1
x− L

2
u2

=
L

2
(x2 − 2ux+ u2) + Lux− Ã

T − 1
x− L

2
u2

=
L

2
x2 − Ã

T − 1
x

= f2(x).
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And by the linearity of expectation we have that ∇h2(x) = ∇f2(x). Therefore both oracles O(f, Ãf ) and O(h, Ãh) return

the same stochastic gradient and stochastic function values with probability 1− 1
T

.

We thus have that over a run of T steps, with probability (1 − 1
T
)T ≈ e−1 the algorithm will only get the evaluations

{h2(x),∇h2(x)} from either oracle, and will get the same hints defined in equation (31). In this setting, the algorithm

cannot distinguish whether it is minimizing h or minimizing f , and therefore must minimize both. This is the main idea

behind this proof: we use that the algorithm is tuning-free, which gives us that the output of the algorithm xout satisfies with

probability 1− ¶

h(xout)− h∗ f c · poly
(

log+
L

L
, log+

Ã

Ã
, log+

D

D
, log

1

¶
, log T

)(

LD∗(h)2

T
+

ÃhD∗(h)√
T

)

. (32)

We shall let º
def
= poly

(

log+
L
L
, log+

Ã
Ã
, log+

D
D
, log 1

¶
, log T

)

and note that because all of the relevant parameters (the hints,

the horizon T , and the probability ¶) supplied to the algorithm are unchanged for h and f , this º will be the same for h and

f . Continuing from equation (32) and substituting the expressions for D∗(h) and Ãh from equations (29) and (30) we get

h(xout)− h∗ f cº

(

L(u− v)2

T
+

(Ã + (T − 1)Lu) |u− v|√
T

)

f cº

(

L(u− v)2

T
+

Ã |u− v|√
T

+
√
TLu |u− v|

)

.

Using the definition of h and the fact that h∗ = 0 we have

L

2
∥xout − u∥2 f cº

(

L(u− v)2

T
+

Ã |u− v|√
T

+
√
TLu |u− v|

)

.

Multiplying both sides by 2
L

and then using the definition L = ÃT we get

∥xout − u∥2 f 2cº

(

(u− v)2

T
+

Ã |u− v|√
TL

+
√
Tu |u− v|

)

= 2cº

(

(u− v)2

T
+
|u− v|
T

3
2

+
√
Tu |u− v|

)

This gives by taking square roots and using the triangle inequality

|xout − u| f
√
2cº
(

|u− v|T− 1
2 +

√

|u− v|T− 3
4 + T

1
4

√

u |u− v|
)

.

And finally this implies

xout g u−
√
2cº
(

|u− v|T− 1
2 +

√

|u− v|T− 3
4 + T

1
4

√

u |u− v|
)

. (33)

Similarly, applying the tuning-free guarantees to f and using that D∗(f) = v we have

L

2
∥xout∥2 = f(xout)− f∗ f cº

(

LD∗(f)2

T
+

ÃD∗(f)√
T

)

= cº

(

Lv2

T
+

Ãv√
T

)

This gives

∥xout∥2 f 2cº

(

v2

T
+

Ãv√
TL

)

= 2cº

(

v2

T
+

v

T
3
2

)

.

Which gives

xout f
√
2cº

(

v√
T

+

√
v

T
3
4

)

(34)
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Now let us consider the difference between the lower bound on xout given by equation (33) and the upper bound given by

equation (34),

u−
√
2cº
(

|u− v|T− 1
2 +

√

|u− v|T− 3
4 + T

1
4

√

u |u− v|
)

−
√
2cº

(

v√
T

+
v

T
3
4

)

(35)

Let us put u = v + 1 and v = T 2, then equation (35) becomes

(

T 2 + 1
)

−
√
2cº
(

T
−1

2 + T
−3

4 + T
1
4

√

T 2 + 1
)

−
√
2cº
(

T 2− 1
2 + T 2− 3

4

)

. (36)

Now observe that

º = poly

(

log+
L

L
, log+

D

D
, log+

Ã + TLu

Ã
, log+

1

¶
, log T

)

= poly

(

log+ 1, log+ T 2, log+(1 + T 2 + T 4), log+
1

¶
, log+ T

)

= poly

(

log+ T, log+
1

¶

)

.

We set ¶ = e−1

4 , therefore we finally get that º = poly(log T ), plugging back into equation (36) we get that the difference

between the lower bound of equation (33) and the upper bound of equation (34) is

(

T 2 + 1
)

−
√

2cpoly(log T )
(

T
−1

2 + T
−3

4 + T
1
4

√

T 2 + 1
)

−
√

2cpoly(log T )
(

T 2− 1
2 + T 2− 3

4

)

.

It is obvious that for large enough T , this expression is positive. Moreover, this situation happens with a positive probability

of at least e−1

2 since by the union bound

Prob(Algorithm incorrect for f, h ∪ Oracle doesn’t output all {h2,∇h2}) f 2¶ +

(

1− (1− 1

T
)T
)

⪅ 1− e−1

2
.

By contradiction, it follows that no algorithm can be tuning-free.

8.4. Proof of Theorem 3

Proof. We consider the following functions

f(x) = G |x| ,
f1(x) = G |x|+Gx,

f2(x) = G |x| − G

T − 1
x.

We consider the stochastic oracle O(f, Ãf ) that returns function values and gradients as follows:

O(f, Ãf )(x)
def
= {fz(x),∇fz(x)} =

{

{f1(x),∇f1(x)} with probability 1
T
,

{f2(x),∇f2(x)} with probability 1− 1
T
.

Clearly we have E [fz(x)] = f(x) and E [∇fz(x)] = ∇f(x). It is also not difficult to prove that ∥∇f(x)−∇fz(x)∥ f G.

We define a second function

h(x) = G |x− u| ,
h1(x) = (2− T )G |x− u| − (T − 1)G |x|+Gx,

h2(x) = G |x| − G

T − 1
x.

(37)
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And we shall use the oracle O(h, Ãh) given by

O(h, Ãh)(x)
def
= {hz(x),∇hz(x)} =

{

{h1(x),∇h1(x)} with probability 1
T
,

{h2(x),∇h2(x)} with probability 1− 1
T
.

By direct computation we have that E [hz(x)] = h(x) and E [∇hz(x)] = ∇h(x). From the definition of the functions

in equation (37) it is immediate that all the gradients and stochastic gradients are bounded by GT . It follows that Ãh f GT .

All in all, this shows O(h, Ãh) is a valid stochastic oracle.

We set x0 = 1, observe that, like in Theorem 2, with some small but constant probability both oracles return the same

gradients and function values, and therefore the algorithm cannot distinguish between them. It is therefore forced to

approximately minimize both, giving us the guarantee:

f(xout)− f∗ f c · º · G√
T

h(xout)− h∗ f c · º · (GT ) |1− u|√
T

= cº |1− u|G
√
T

This gives

|xout| f
cº√
T

(38)

|xout − u| f cº |1− u|
√
T

Let us put u = 1− 1
T

, then

∣

∣

∣

∣

x−
(

1− 1

T

)∣

∣

∣

∣

f cº√
T

This implies

xout g 1− 1

T
− cº√

T
(39)

And equation (38) implies

xout f
cº√
T

(40)

Because º = poly(log T ) (by direct computation), we have that the lower bound on xout given by equation (39) exceeds the

upper bound on the same iterate given by equation (40) as T becomes large enough, and we get our contradiction.

9. Proofs for Section 4.2

We have the two following algorithm-independent lemmas:

Lemma 5. Suppose that Y is a sub-exponential random variable (see Definition 9.1) with mean 0 and sub-exponential

modulus R2, i.e. for all t > 0

Prob (|Y | g t) f 2 exp

(

− t

R2

)

.

Let Y1, . . . , Yn be i.i.d. copies of Y . Then with probability 1− ¶ it holds that

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Yi

∣

∣

∣

∣

∣

f cR2

[

√

1

n
log

2

¶
+

1

n
log

2

¶

]

,

where c > 0 is an absolute constant.
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Proof. By Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3) we have

Prob

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Yi

∣

∣

∣

∣

∣

g t

)

f 2 exp

[

−cmin

(

t2

R4
,
t

R2

)

n

]

,

for some c > 0. Let us set t as follows

t =

{

R2
√

1
cn

log 2
¶

if 1
cn

log 2
¶
< 1,

R2
[

1
cn

log 2
¶

]

if 1
cn

log 2
¶
g 1.

Then

t

R2
=

{
√

1
cn

log 2
¶

if 1
cn

log 2
¶
< 1,

[

1
cn

log 2
¶

]

if 1
cn

log 2
¶
g 1.

,
t2

R4
=

{

1
cn

log 2
¶

if 1
cn

log 2
¶
< 1,

[

1
cn

log 2
¶

]2
if 1

cn
log 2

¶
g 1.

By combining the two cases above we get

min

(

t

R2
,
t2

R4

)

=
1

cn
log

2

¶
.

Therefore

2 exp

[

−cmin

(

t2

R4
,
t

R2

)

n

]

= ¶.

It follows that with probability at least 1− ¶ we have,

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Yi

∣

∣

∣

∣

∣

f
{

R2
√

1
cn

log 2
¶

if 1
cn

log 2
¶
< 1,

R2
[

1
cn

log 2
¶

]

if 1
cn

log 2
¶
g 1.

f R2

[

√

1

cn
log

2

¶
+

1

cn
log

2

¶

]

.

Recall the definition of sub-exponential random variables:

Definition 9.1. We call a random variable Y R-sub-exponential if

Prob (|Y | g t) f 2 exp

(−t
R

)

for all t g 0.

Definition 9.2. We call a random variable Y R-sub-gaussian if

Prob (|Y | g t) f 2 exp

(−t2
R2

)

for all t g 0.

Lemma 6. (Vershynin, 2018, Lemma 2.7.7) A random variable Y is R-sub-gaussian if and only if Y 2 is R2-sub-exponential.

Lemma 7. (Vershynin, 2018, Exercise 2.7.10) If A is E-sub-exponential then A− E [A] is c · E-sub-exponential for some

absolute constant c.

Lemma 8. Suppose that X is a random variable that satisfies the assumptions in Definition 4.1 and X1, . . . , Xn are all

i.i.d. copies of X . Then with probability 1− ¶ we have that

∣

∣

∣

∣

∣

n
∑

i=1

(∥Xi∥2 − Ã2)

∣

∣

∣

∣

∣

f c · Ã2 ·K−2
snr

[

√

n log
1

¶
+ log

1

¶

]

.
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Proof. By assumption we have that ∥Xi∥ is R-sub-gaussian, therefore by Lemma 6 we have that ∥Xi∥2 is R2-sub-

exponential. By Lemma 7 we then have that ∥Xi∥2 − Ã2 is c1 · R2-sub-exponential for some absolute constant c. By

Lemma 5 applied to Yi = ∥Xi∥2 − Ã2 we have with probability 1− ¶ that

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(∥Xi∥ − Ã2)

∣

∣

∣

∣

∣

f c2 · (c1R2)

[

√

1

n
log

2

¶
+

1

n
log

2

¶

]

,

where c2 > 0 is some absolute constant. Using the definition of the signal-to-noise ratio K−1
snr =

R
Ã

we get that for some

absolute constant c
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(∥Xi∥ − Ã2)

∣

∣

∣

∣

∣

f c · Ã2 ·K−2
snr

[

√

1

n
log

2

¶
+

1

n
log

2

¶

]

.

9.1. Proof of Theorem 4

The main idea in the proof is the following lemma, which characterizes the convergence of the sample variance estimator of

b i.i.d. random variables by the number of samples b as well as the signal-to-noise ratio K−1
snr.

Lemma 9. Let Y be a random vector in R
d such that Z = Y − E [Y ] satisfies the assumptions in Definition 4.1. Let

Y1, Y2, . . . , Yb be i.i.d. copies of Y . Define the sample mean and variance as

Ŷ =
1

b

b
∑

i=1

Yi, Ã̂2 =
1

b

b
∑

i=1

∥

∥Yi − Y
∥

∥

2
.

Then it holds with probability 1− ¶ that

∣

∣

∣

∣

Ã̂2

Ã2
− 1

∣

∣

∣

∣

f c ·K−2
snr ·





√

log 2b
¶

b
+

log 2(b(d)
¶

b



 ,

where c is an absolute (non-problem-dependent) constant, b ( d =
def
= max(b, d), Ã2 def

= E

[

∥Y − E [Y ]∥2
]

, and K−2
snr is the

ratio defined in Definition 4.1.

Proof. We shall use the shorthand µ = E [Y ]. We have

Ã̂2 =
1

b

b
∑

i=1

∥

∥

∥Yi − Ŷ
∥

∥

∥

2

=
1

b

b
∑

i=1

∥

∥

∥
Yi − µ+ µ− Ŷ

∥

∥

∥

2

=
1

b

b
∑

i=1

[

∥Yi − µ∥2 +
∥

∥

∥µ− Ŷ
∥

∥

∥

2

+ 2
〈

Yi − µ, µ− Ŷ
〉

]

=
1

b

b
∑

i=1

∥Yi − µ∥2 +
∥

∥

∥µ− Ŷ
∥

∥

∥

2

− 2

b

b
∑

i=1

〈

Yi − µ, Ŷ − µ
〉

We have by the triangle inequality

∣

∣Ã̂2 − Ã2
∣

∣ f
∣

∣

∣

∣

∣

1

b

b
∑

i=1

∥Yi − µ∥2 − Ã2

∣

∣

∣

∣

∣

+
∥

∥

∥µ− Ŷ
∥

∥

∥

2

+

∣

∣

∣

∣

∣

2

b

b
∑

i=1

〈

Yi − µ, Ŷ i − µ
〉

∣

∣

∣

∣

∣

(41)
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By Lemma 8, we may bound the first term on the right hand side of equation (41) as

∣

∣

∣

∣

∣

1

b

b
∑

i=1

∥Yi − µ∥2 − Ã2

∣

∣

∣

∣

∣

f c · Ã2 ·K−2
snr





√

log 1
¶

b
+

log 2
¶

b



 . (42)

For the second term on the right hand side of equation (41), we apply (Jin et al., 2019, Corollary 7) to Xi = µ− Yi and

obtain

∥

∥

∥

∥

∥

b
∑

i=1

[µ− Yi]

∥

∥

∥

∥

∥

f c ·
√

bR2 log
2d

¶
= cR

√

b log
2d

¶
.

Squaring both sides we get

∥

∥

∥

∥

∥

b
∑

i=1

[µ− Yi]

∥

∥

∥

∥

∥

2

f c2R2b log
2d

¶

Therefore

∥

∥

∥

∥

∥

1

b

b
∑

i=1

[µ− Yi]

∥

∥

∥

∥

∥

2

f c2R2 log 2d
¶

b
. (43)

For the third term on the right hand side of equation (41) we have

b
∑

i=1

〈

Yi − µ, Ŷ − µ
〉

=

b
∑

i=1

〈

Yi − µ,
1

b

b
∑

j=1

[Yi − µ]

〉

=
1

b
∥Yi − µ∥2 + 1

b

∑

j ̸=i

ïYi − µ, Yj − µð .

Taking absolute values of both sides and using the triangle inequality we get

∣

∣

∣

∣

∣

1

b

b
∑

i=1

〈

Yi − µ, Ŷ − µ
〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

b
∥Yi − µ∥2 + 1

b

∑

j ̸=i

ïYi − µ, Yj − µð

∣

∣

∣

∣

∣

∣

f 1

b
∥Yi − µ∥2 +

∣

∣

∣

∣

∣

∣

1

b

∑

j ̸=i

ïYi − µ, Yj − µð

∣

∣

∣

∣

∣

∣

. (44)

By our sub-gaussian assumption on ∥Y − µ∥, the first term on the right hand side of equation (44) can be bounded with

high probability as

∥Yi − µ∥ f c

√

R2 log
2

¶
= cR

√

log
2

¶
. (45)

Define Zi,j = ïYi − µ, Yj − µð. Observe that for each i, we have that the random vectors Zi,1, . . . , Zi,i−1, Zi,i+1, · · · , Zi,n

are all independent, and therefore E [Yi,j ] = 0 for i ̸= j. Observe that by the Cauchy-Schwartz inequality

|Zi,j | = |ïYi − µ, Yj − µð| f ∥Yi − µ∥ ∥Yj − µ∥ .

Observe that each of ∥Yi − µ∥ and ∥Yj − µ∥ is sub-gaussian with modulus R, therefore by (Vershynin, 2018, Lemma 2.7.7)

their product is sub-exponential with modulus R2. It follows that

Prob (|Zi,j | g t) f Prob (∥Yi − µ∥ ∥Yj − µ∥ g t) f 2 exp

(

− t

R2

)

.
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Therefore Zi,j is also sub-exponential with modulus R2. By Lemma 5 we then get that for any fixed i, with probability at

least 1− ¶ we have

∣

∣

∣

∣

∣

∣

∣

∣

1

b− 1

∑

j=1,...,b
j ̸=i

Zi,j

∣

∣

∣

∣

∣

∣

∣

∣

f c ·R2

[

√

1

b− 1
log

2

¶
+

1

b− 1
log

2

¶

]

, (46)

for some absolute constant c > 0. Multiplying both sides of equation (46) by b−1
b

and then using straightforward algebra we

get

∣

∣

∣

∣

∣

∣

∣

∣

1

b

∑

j=1,...,b
j ̸=i

Zi,j

∣

∣

∣

∣

∣

∣

∣

∣

f cR2

[

√

1

b− 1
log

2

¶
+

1

b− 1
log

2

¶

]

· b− 1

b

= cR2

[

√

1

b
log

2

¶
·
√

b

b− 1
+

1

b
log

2

¶
· b

b− 1

]

b− 1

b

= cR2

[

√

1

b
log

2

¶

√

b− 1

b
+

1

b
log

2

¶

]

f cR2

[

√

1

b
log

2

¶
+

1

b
log

2

¶

]

. (47)

We now use the union bound over all i with the triangle inequality to get

∣

∣

∣

∣

∣

∣

∣

∣

1

b

n
∑

i=1

1

b

∑

j=1,...,b
j ̸=i

Zi,j

∣

∣

∣

∣

∣

∣

∣

∣

f 1

b

n
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

1

b

∑

j=1,...,b
j ̸=i

Zi,j

∣

∣

∣

∣

∣

∣

∣

∣

f cR2

[
√

1

b
log

2b

¶
+

1

b
log

2b

¶

]

. (48)

Combining equations (45) and (48) we get that with probability 1− ¶ there exists some absolute constant c′ > 0

∣

∣

∣

∣

∣

1

b

b
∑

i=1

〈

Yi − µ, Ŷ − µ
〉

∣

∣

∣

∣

∣

f c′R2





√

log 2b
¶

b
+

log 2b
¶

b



 . (49)

Combining equations (42), (43) and (49) into equation (41) we get

∣

∣Ã̂2 − Ã2
∣

∣ f
∣

∣

∣

∣

∣

1

b

b
∑

i=1

∥Yi − µ∥2 − Ã2

∣

∣

∣

∣

∣

+
∥

∥

∥µ− Ŷ
∥

∥

∥

2

+

∣

∣

∣

∣

∣

2

b

b
∑

i=1

〈

Yi − µ, Ŷ i − µ
〉

∣

∣

∣

∣

∣

f c1 · Ã2 ·K−2
snr





√

log 2
¶

b
+

log 2
¶

b



+ c2
R2 log 2d

¶

b
+ c3R

2





√

log 2b
¶

b
+

log 2b
¶

b



 .

For some absolute constants c1, c2, c3 > 0. Therefore, using the definition K−1
snr =

R
Ã

and simplifying in the last equation

we finally get that

∣

∣Ã̂2 − Ã2
∣

∣ f c4 · Ã2K−2
snr





√

log 2b
¶

b
+

log 2(b(d)
¶

b



 ,

for some absolute constant c4 > 0. Dividing both sides by Ã2 yields the statement of the lemma.
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Algorithm 2 T-DoG + Variance Estimation

Require: initial point x0 ∈ X , initial distance estimate rϵ > 0, minibatch size b, ¹ > 0.

1: Initialize rϵ = D, ³ = 84 · log(60 log(6T )/¶) · ¹−1.

2: for t = 0, 1, 2, . . . , T − 1 do

3: Update distance estimator: rt ← max (∥xt − x0∥ , rt−1).
4: Sample b stochastic gradients µ1

t , µ
2
t , . . . , µ

b
t at xt and compute:

µ̂t =
1

b

b
∑

i=1

µi
t, Ã̂2

t =
1

b

b
∑

i=1

∥

∥µi
t − µ̂i

t

∥

∥

2
, Ã2

t = max
kft

Ã̂2
k.

5: Compute a new stochastic gradient gt evaluated at xt.

6: Update the gradient sum ut = ut−1 + ∥gt∥2.

7: Set the stepsize:

¸t ←
rt

³
√

ut + ´Ã2
t

1

log2+

(

1 +
ut+Ã2

t

v0+Ã2
0

) . (50)

8: Gradient descent step: xt+1 ← xt − ¸t∇f(xt).
9: end for

Algorithm 3 T-DoWG + Variance Estimation

Require: initial point x0 ∈ X , initial distance estimate rϵ > 0, minibatch size b, ¹ > 0.

1: Initialize rϵ = D, ³ = 84 · log(60 log(6T )/¶) · ¹−1.

2: for t = 0, 1, 2, . . . , T − 1 do

3: Update distance estimator: rt ← max (∥xt − x0∥ , rt−1).
4: Sample b stochastic gradients µ1

t , µ
2
t , . . . , µ

b
t at xt and compute:

µ̂t =
1

b

b
∑

i=1

µi
t, Ã̂2

t =
1

b

b
∑

i=1

∥

∥µi
t − µ̂i

t

∥

∥

2
, Ã2

t = max
kft

Ã̂2
k.

5: Compute a new stochastic gradient gt evaluated at xt.

6: Update weighted gradient sum: vt ← vt−1 + r2t ∥gt∥2.

7: Set the stepsize:

µt ←
r2t

³
√

vt + ´r2tÃ
2
t

1

log2+

(

1 +
vt+r2

t
Ã2
t

v0+r2
0
Ã2
0

) . (51)

8: Gradient descent step: xt+1 ← xt − µt∇f(xt).
9: end for
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Proof of Theorem 4. First, observe that at every timestep t, conditioned on Ft = Ã (g1:t−1, x1:t) we have by Lemma 9 that

with probability 1− ¶
T

that the sample variance Ã̂2
t satisfies for some c > 0

∣

∣

∣

∣

Ã̂2
t

Ã2(xt)
− 1

∣

∣

∣

∣

f c ·K−2
snr ·





√

log 2bT
¶

b
+

log 2(b(d)T
¶

b



 ,

where c is an absolute constant and Ã2
t = Ã2(xt) denotes the variance of the noise at xt (we do not assume that the noise

distribution is the same for all t). By our assumption on the minibatch size we have that for some u ∈ [0,K2
snr]

c ·K−2
snr ·





√

log 2bT
¶

b
+

log 2(b(d)T
¶

b



 f 1− ¹

K2
snr

.

And therefore
∣

∣

∣

∣

Ã̂2
t

Ã2(xt)
− 1

∣

∣

∣

∣

f 1− ¹

K2
snr

.

Which gives

Ã̂2
t

Ã2
t

g 1−
(

1− ¹

K2
snr

)

=
¹

K2
snr

.

Multiplying both sides by Ã2
t we get

Ã̂2
t g Ã2

t

¹

K2
snr

g R2¹.

Therefore Ã̂2
t /¹ is, with high probability, an upper bound on any noise norm, and we can use that as normalization in

T-DoG/T-DoWG. This is the key idea of the proof, and it’s entirely owed to Lemma 9. The rest of the proof follows (Ivgi

et al., 2023) with only a few changes to incorporate the variance estimation process.

Following (Ivgi et al., 2023), we define the stopping time

Tout = min {t | rt > 3d0} .

And define the proxy sequences

˜̧k =

{

¸k if k < Tout,
0 otherwise.

µ̃k =

{

µk if k < Tout,
0 otherwise.

(52)

Lemma 10. (Modification of (Ivgi et al., 2023, Lemma 8)) Under the conditions of Theorem 4 both the DoG (50) and

DoWG (51) updates satisfy for all t f T

Ät ∈ Ã(g0, µ
1
0, . . . , µ

b
0 . . . , gt−1, µ

t−1
0 , . . . , µt−1

b ),

|Ät ïgt −∇f(xt), xt − x∗ð| f
6d20

82¹T,¶

,

t
∑

k=0

Ä2k∥gk∥2 f
9d20

84¹T,¶

,

t
∑

k=0

(Äk ïgk, xk − x∗ð)2 f
122d40
84¹T,¶

,

where Ät stands for either the DoG stepsize proxy ˜̧k or the DoWG stepsize proxy µ̃k.

Proof. The modification of this lemma to account for bounded noise g(xk) − ∇f(xk) rather than bounded gradients is

straightforward, and we omit it for simplicity.

33



Tuning-Free Stochastic Optimization

Lemma 11. (Modification of (Ivgi et al., 2023, Lemma 9)) Under the conditions of Theorem 4 both the DoG (50) and

DoWG (51) updates satisfy for all t f T with probability at least 1− ¶

t−1
∑

k=0

˜̧k ïgk −∇f(xk), x∗ − xkð f d20.

Proof. The modification is straightforward and omitted.

Lemma 12. (Modification of (Ivgi et al., 2023, Lemma 10)) Under the conditions of Theorem 4, if
∑t−1

k=0 Ät ïgk −∇f(xk), x∗ − xkð f d20 for all t f T , then Tout > T .

Proof. The modification is straightforward and omitted.

By Lemmas lemmas 11 and 12 we get that rT f 3d0 and it follows that dt = maxkft dk f maxkft rt + r0 f 4d0. Then,

a straightforward modification of Theorem 1 to handle the slightly smaller stepsizes used by T-DoG/T-DoWG shows that

both methods are tuning-free. The proof is very similar to Theorem 1 and is omitted.

10. Proofs for Section 5

10.1. Proof of Theorem 5

Proof. We use the exact same construction from Theorem 2 with the following hints:

L = L, L = L

∆ =
L

2
min(v, |u− v|), ∆ =

L

2
max(v, |u− v|).

Ã = Ã, Ã = Ã + TLu,

where u > 0 and v > 0 are parameters we shall choose later. Suppose that we have that the algorithm’s output point x
satisfies

∥∇f(x)∥2 f cº

[
√

L(f(x0)− f∗)Ã2

T
+

L(f(x0)− f∗)

T

]

.

We now use the fact that f(x0)− f∗ = L
2 (x− x∗)2 to get

L2∥xout − x∗∥2 = ∥∇f(x)∥2

f cº

√

L2(x0 − x∗)2Ã2
f

T
+ cº

L2(x0 − x∗)2

T

= cº
L |x0 − x∗|Ãf√

T
+ cº

L2(x0 − x∗)2

T
.

Dividing both sides by L2 we get

∥xout − x∗∥2 f cº
|x0 − x∗|Ãf

L
√
T

+ cº
∥x0 − x∗∥2

T
.

Taking square roots and using the triangle inequality gives

|xout − x∗| f
√
cº
√

|x0 − x∗|
√

Ãf

L

1

T
1
4

+
√
cº
|x0 − x∗|√

T
. (53)

Applying equation (53) to the function f with x0 = v > 0, x∗ = 0, Ãf = Ã, and L = Ã
√
T we get

|xout| f
√
cº

√

v

T
+
√
cº

v√
T
.
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Therefore

xout f
√
cº

√

v

T
+
√
cº

v√
T
. (54)

On the other hand, applying equation (53) to the function h = L
2 (x− u)2 (as in the proof of Theorem 2) we obtain

|xout − u| f
√
cº
√

|u− v|
√

(Ã + LTu)

L

1

T
1
4

+
√
cº
|u− v|√

T

=
√
cº
√

|u− v|
√

1√
T

+ Tu
1

T
1
4

+
√
cº
|u− v|√

T

f
√
cº
√

|u− v|
[

1

T
1
4

+
√
Tu

]

1

T
1
4

+
√
cº
|u− v|√

T

=
√
cº

√

|u− v|√
T

+
√
cºT

1
4

√

u |u− v|+
√
cº
|u− v|√

T
.

Therefore

xout g u−
[

√
cº

√

|u− v|√
T

+
√
cºT

1
4

√

u |u− v|+
√
cº
|u− v|√

T

]

. (55)

Combining equations (54) and (55) gives

u−
[

√
cº

√

|u− v|√
T

+
√
cºT

1
4

√

u |u− v|+
√
cº
|u− v|√

T

]

f
√
cº

√

v

T
+
√
cº

v√
T
.

Dividing both sides by
√
cº,

v +
√
v√

T
g u√

cº
−
[

√

|u− v|√
T

+ T
1
4

√

u |u− v|+ |u− v|√
T

]

Put v = T 2 and u = T 2 + 1, then we get

√
T + 1 g T 2 + 1√

cº
−
[

1√
T

+ T
1
4

√

T 2 + 1 +
1√
T

]

.

For large enough T , since º = poly(log T ), this inequality does not hold. Therefore we get our contradiction.

10.2. Proof of Theorem 6

Theorem 7. ((Liu et al., 2023), High-probability convergence of SGD in the nonconvex setting). Let f be L-smooth and

possibly nonconvex. Suppose that the stochastic gradient noise is R2-sub-gaussian. Then for any fixed stepsize ¸ such that

¸L f 1 we have

1

T

T−1
∑

t=0

∥∇f(xt)∥2 f
2(f(x0)− f∗)

¸T
+ 5¸R2 +

12R2 log 1
¶

T
.

Proof. This is a very straightforward generalization of (Liu et al., 2023, Theorem 4.1), and we include it for completeness.

By (Liu et al., 2023, Corollary 4.4) we have that if ¸tL f 1 and 0 f wt¸
2
tL f 1

2R2

T
∑

t=1

[

wt¸t

(

1− ¸tL

2

)

− vt

]

∥∇f(xt)∥2 + wT∆T+1 f w1∆1 +

(

T
∑

t=2

(wt − wt−1)∆t + 3R2
T
∑

t=1

wt¸
2
tL

2

)

+ log
1

¶
.

(56)
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Choose ¸t = ¸ and wt¸
2L = 1

4R2 , wt =
1

6R2¸
.

vt = 3R2w2
t ¸

2
t (¸tL− 1)2 =

3R2¸2(¸L− 1)2

36R4¸2
=

(1− ¸L)2

12R2
.

Then

wt¸t

(

1− ¸tL

2

)

− vt =
1

6R2

(

1− ¸L

2

)

− (1− ¸L)2

12R2

=
1

6R2

[

(1− ¸L

2
)− (1− ¸L)2

2

]

=
1

6R2

[

(1− ¸L

2
)− 1 + ¸2L2 − 2¸L

2

]

=
1

12R2

[

1 + ¸L− ¸2L2
]

The expression 1 + x− x2 is minimized for x ∈ [0, 1] at x = 1 and has value 1. Therefore

wt¸t

(

1− ¸tL

2

)

− vt g
1

12R2
.

Plugging into equation (56) we get

T
∑

t=1

1

12R2
∥∇f(xt)∥2 f

∆1

6R2¸
+

(

3¸

8
T

)

+ log
1

¶
.

Therefore

1

T

T
∑

t=1

∥∇f(xt)∥2 f
2∆1

¸T
+ 5¸R2 +

12R2 log 1
¶

T
.

10.3. Restarting SGD

We will use the following lemma from (Madden et al., 2020):

Lemma 13. (Madden et al., 2020, Lemma 33) Let Z = k ∈ {1, 2, . . . ,K} with probability pk and
∑K

k=1 pk = 1. Let

Z1, . . . , Zm be independent copies of Z. Let Y = (Y1, . . . , Ym). Let X = (X1, . . . , XK) be a random vector on the reals

independent of Z. Then for any µ > 0 we have

Prob

(

min
k∈Y

Xk > e¸

)

f exp(−m) + Prob

(

K
∑

k=1

ptXk > µ

)

Theorem 8. (Convergence of FindLeader) If we run Algorithm 4 on a set V of P points v1, v2, . . . , vP , with sampling

budget M and per-point estimation budget K, then the output of the algorithm satisfies for some absolute constant c > 0
and all µ > 0

Prob

(

∥∇f(slead)∥2 > eµ + c · R
2 log 2dM

¶

K

)

f ¶ + exp(−M) + Prob

(

1

P

P
∑

p=1

∥∇f(vp)∥2 > µ

)

.

And

∥gm∗ −∇f(slead)∥ f c · R
2 log 2d

¶

K
. (57)
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Algorithm 4 FindLeader(S, ¶, K)

1: Require: set of points V , desired accuracy ¶, and per-point estimation budget K.

2: Set M = log 1
¶

and let P = |V |.
3: Construct the set S = (s1, . . . , sM ) by sampling M points from v1, . . . , vP with replacement such that

Prob(vi ∈ S) ∝ 1√
i+ 1

,

T
∑

i=1

Prob(vi ∈ S) = 1.

4: for m = 1 to M do

5: Sample K stochastic gradients gm1 , . . . , gmK evaluated at sm and compute their average

ĝm =
1

K

K
∑

k=1

gk.

6: Compute and store hm = ∥ĝm∥.
7: end for

8: Find the point slead ∈ S with the minimal average stochastic gradient norm:

m∗ = arg min
m∈1,2,...,M

hm, slead = Sm∗ .

9: Return slead and its estimated gradient norm gm∗ .

Proof. The proof of this theorem loosely follows the proofs of (Ghadimi & Lan, 2013, Theorem 2.4) and (Madden et al.,

2020, Theorem 13). First, define the following two sets of true gradients for the iterates in V and P respectively:

UV = {∇f(v1),∇f(v2), . . . ,∇f(vP )} US = {∇f(s1),∇f(s2), . . . ,∇f(sM )} .

Lemma 13 gives us

Prob

(

min
m∈1,2,...,M

∥∇f(sm)∥2 > eµ

)

f exp(−M) + Prob

(

1

P

P
∑

p=1

∥∇f(vp)∥2 > µ

)

We now compute how using the minimum from the stochastic estimates ĝm affects the error. Fix m. Observe that because

the norm of the stochastic gradient noise ∥g(x)−∇f(x)∥ is sub-gaussian with modulus R2, then using (Jin et al., 2019,

Corollary 7) we get with probability at least 1− ¶
M

that for some absolute constant c1

∥ĝm −∇f(sm)∥ f c1 ·

√

R2 log 2dM
¶

K

Squaring both sides gives

∥ĝm −∇f(sm)∥2 f c1 ·
R2 log 2dM

¶

K
.

Taking a union bound gives us that for all m ∈ [M ] we have with probability ¶ that

max
m∈[M ]

∥ĝm −∇f(sm)∥2 f c1 ·
R2 log 2dM

¶

K
. (58)
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We have by straightforward algebra

min
m∈S
∥ĝm∥2 f min

m∈[M ]

[

∥ĝm −∇f(sm) +∇f(sm)∥2
]

f min
m∈[M ]

[

2∥ĝm −∇f(sm)∥2 + 2∥∇f(sm)∥2
]

f min
m∈[M ]

[

2 max
³∈[M ]

∥ĝ³ −∇f(s³)∥2 + 2∥∇f(sm)∥2
]

= 2 max
m∈[M ]

∥ĝm −∇f(sm)∥2 + 2 min
m∈[M ]

∥∇f(sm)∥2.

Let m∗ be the argmin. Then

∥∇f(sm∗)∥2 f 2∥∇f(sm∗)− ĝsm∗ ∥2 + 2∥ĝsm∗ ∥2

f 2∥∇f(sm∗)− ĝsm∗ ∥2 + 4 max
m∈[M ]

∥ĝm −∇f(sm)∥2 + 4 min
m∈[M ]

∥∇f(sm)∥2

f 6 max
m∈[M ]

∥ĝm −∇f(sm)∥2 + 4 min
m∈[M ]

∥∇f(sm)∥2

f 6c1
R2 log 2dM

¶

K
+ 4 min

m∈[M ]
∥∇f(sm)∥2.

Therefore there exists some absolute constant c such that

Prob

(

∥∇f(sm∗)∥2 > eµ + c · R
2 log 2dM

¶

K

)

f ¶ + exp(−M) + Prob

(

1

P

P
∑

p=1

∥∇f(vp)∥2 > µ

)

.

It remains to put slead = sm∗ .

Proof of Theorem 6. First, observe that Theorem 7 gives that SGD run for T steps with a fixed stepsize ¸ such that ¸L f 1

1

T

T−1
∑

t=0

∥∇f(xt)∥2 f
2(f(x0)− f∗)

¸T
+ 5¸R2 +

12R2 log 1
¶

T
. (59)

Minimizing the above in ¸ gives

¸∗ = min

(

1

L
,

√

2(f(x0)− f∗)

5TR2

)

.

We set

¸0 = min

(

1

L
,

√

2∆

5TR

)

.

Observe that ¸0 f ¸∗. Now let

N∗ = +log ¸∗
¸0
,

=









log





max(L,
√

5TR
2

2∆ )

max(L,
√

5TR2

∆ )













.

First, if we exit Algorithm 1 at line 4, i.e. if Ttotal < N , then by the L-smoothness of f we have

∥∇f(y0)∥2 f 2L(f(y0)− f∗)

f N · 2L(f(x0)− f∗)

Ttotal

f log





max(L,
√

5TR
2

2∆ )

max(L,
√

5TR2

∆ )



 · L(f(x0)− f∗)

Ttotal
.
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This fulfills the theorem’s statement. From here on our, we assume that N g Ttotal. Observe that our choice of N guarantees

that N g N∗. Let Ä be the first n (in the loop on line 2 of Algorithm 1) such that

¸∗
2
f ¸Ä f ¸∗.

Plugging ¸ = ¸Ä into Equation (59) we get with probability at least ¶ that

1

T

T−1
∑

t=0

∥∇f(xÄ
t )∥2 f

2(f(x0)− f∗)

¸ÄT
+ 5¸ÄR

2 +
12R2 log 1

¶

T

f 4(f(x0)− f∗)

¸∗T
+ 5¸∗R

2 +
12R2 log 1

¶

T

f 2

[

2(f(x0)− f∗)

¸∗T
+ 5¸∗R

2

]

+
12R2 log 1

¶

T

f 13

[
√

L(f(x0)− f∗)R2

T
+

(f(x0)− f∗)L

T

]

+
12R2 log 1

¶

T
. (60)

We now apply Theorem 8 with the parameters:

V =
{

xÄ
0 , x

Ä
1 , . . . , x

Ä
T−1

}

,

M = log
1

¶
,

K = T,

µ = 13

[
√

L(f(x0)− f∗)R2

T
+

(f(x0)− f∗)L

T

]

+
12R2 log 1

¶

T
.

The theorem combined with equation (60) gives us that with probability at least 1− 4¶

∥∇f(yÄ )∥2 f 13 · e ·
[
√

L(f(x0)− f∗)R2

T
+

(f(x0)− f∗)L

T

]

+
12R2 log 1

¶

T
+ c · R

2 log 2dM
¶

T
. (61)

By straightforward algebra

∥ĝr∥2 = min
n∈[N ]

∥ĝn∥2 f min
n∈[N ]

[

∥ĝn −∇f(yn) +∇f(yn)∥2
]

f min
n∈[N ]

[

2∥ĝn −∇f(yn)∥2 + 2∥∇f(yn)∥2
]

f min
n∈[N ]

[

2 max
³∈[N ]

∥ĝ³ −∇f(s³)∥2 + 2∥∇f(yn)∥2
]

= 2 max
n∈[N ]

∥ĝn −∇f(yn)∥2 + 2 min
n∈[N ]

∥∇f(yn)∥2.

Recall that we have r = argminn∈[N ] ∥ĝn∥2, then as in the proof of Theorem 8 we have

∥∇f(yr)∥2 f 2∥∇f(yr)− ĝyr
∥2 + 2∥ĝyr

∥2

f 2∥∇f(yr)− ĝyr
∥2 + 4 max

n∈[N ]
∥ĝn −∇f(yn)∥2 + 4 min

n∈[N ]
∥∇f(yn)∥2

f 6 max
n∈[N ]

∥ĝn −∇f(yn)∥2 + 4 min
n∈[N ]

∥∇f(yn)∥2. (62)

Observe that because that we passed the budget K = T to the FindLeader procedure, we can use Equation (57) and the

union bound to that with probability 1− ¶,

max
n∈[N ]

∥ĝn −∇f(yn)∥2 f c · R
2 log 2dN

¶

T
. (63)
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And clearly

min
n∈[N ]

∥∇f(yn)∥2 f ∥∇f(yÄ )∥2. (64)

Using the estimates of equations (61), (63) and (64) to upper bound the right hand side of equation (62) gives us that with

probability at least 1− 5¶

∥∇f(yr)∥2 f 6c · R
2 log 2dN

¶

T
+ 4

[

13 · e ·
[
√

L(f(x0)− f∗)R2

T
+

(f(x0)− f∗)L

T

]

+
12R2 log 1

¶

T
+ c · R

2 log 2dM
¶

T

]

.

Combining the terms and substituting in the definition of Ttotal gives the theorem’s statement.

40


