
Provably Robust Score-Based Diffusion Posterior

Sampling for Plug-and-Play Image Reconstruction

Xingyu Xu∗

Carnegie Mellon University
Yuejie Chi†

Carnegie Mellon University

Abstract

In a great number of applications, the goal is to infer an unknown image from
a small number of noisy measurements collected from a known and possibly
nonlinear forward model describing certain sensing or imaging modality, which is
often ill-posed. Score-based diffusion models, thanks to their impressive empirical
success, have emerged as an appealing candidate of an expressive prior in image
reconstruction. In order to accommodate diverse tasks at once, it is of great interest
to develop efficient, consistent and robust algorithms that incorporate unconditional
score functions of an image prior distribution in conjunction with flexible choices
of forward models. This work develops an algorithmic framework for employing
score-based diffusion models as an expressive data prior in nonlinear inverse
problems with general forward models. Motivated by the plug-and-play framework
in the imaging community, we introduce a diffusion plug-and-play method (DPnP)
that alternatively calls two samplers, a proximal consistency sampler based solely
on the likelihood function of the forward model, and a denoising diffusion sampler
based solely on the score functions of the image prior. The key insight is that
denoising under white Gaussian noise can be solved rigorously via both stochastic
(i.e., DDPM-type) and deterministic (i.e., DDIM-type) samplers using the same set
of score functions trained for generation. We establish both asymptotic and non-
asymptotic performance guarantees of DPnP, and provide numerical experiments
to illustrate its promise in various tasks. To the best of our knowledge, DPnP is
the first provably-robust posterior sampling method for nonlinear inverse problems
using unconditional diffusion priors.

1 Introduction

In a great number of sensing and imaging applications, the paramount goal is to infer an unknown
image x⋆ ∈ R

d from a collection of measurements y ∈ R
m that are possibly noisy, incomplete, and

even nonlinear. Examples include restoration tasks such as inpainting, super-resolution, denoising,
as well as imaging tasks such as magnetic resonance imaging [LDP07], optical imaging [SEC+15],
microscopy imaging [HSMC17], radar and sonar imaging [PEPC10], and many more.

Due to sensing and resource constraints, the problem of image reconstruction is often ill-posed,
where the desired resolution of the unknown image overwhelms the set of available observations.
Consequently, this necessitates the need of incorporating prior information regarding the unknown
image to assist the reconstruction process. Over the years, numerous types of prior information
have been considered and adopted, from hand-crafted priors such as subspace or sparsity constraints
[Don06, CR12], to data-driven ones prescribed in the form of neural networks [UVL18, BJPD17].
These priors can be regarded as some sort of generative models for the unknown image, which postu-
late the high-dimensional image admits certain parsimonious representation in a low-dimensional
data manifold. It is desirable that the generative models are sufficiently expressive to capture the

∗
xingyuxu@andrew.cmu.edu

†
yuejiec@andrew.cmu.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

• Theoretical guarantees. We establish both asymptotic and non-asymptotic performance guarantees
of the proposed DPnP method. Asymptotically, we verify the correctness of our method by proving
that DPnP converges to the conditional distribution of x⋆ given measurements y, assuming exact
unconditional score estimates of the image prior. We next establish a non-asymptotic convergence
theory of DPnP, where its performance degenerates gracefully with respect to the errors of the
samplers, due to, e.g., score estimation errors and limited sampling steps. To the best of our
knowledge, this provides the first provably-robust method for nonlinear inverse problems using
unconditional score-based diffusion priors.

We further provide numerical experiments to illustrate its promise in solving both linear and nonlinear
image reconstruction tasks, such as super-resolution, phase retrieval, and quantized sensing. Due to
its plug-and-play nature, we expect it to be of broad interest to a wide variety of inverse problems.

Related works. Given its interdisciplinary nature, our work sits at the intersection of generative
modeling, computational imaging, optimization and sampling. Due to space limits, we postpone the
discussion of related works to Appendix A.

Notation. Let px denote the probability distribution of x, and px(·|y) denotes the conditional

distribution of x given y. We use X
(d)
= Y to denote random variables X and Y are equivalent

in distribution. The matrix Id denotes an identity matrix of dimension d. For two probability
distributions with density p(x) and q(x), the total variation distance between them is TV(p, q) :=∫
|p(x)− q(x)|dx. The χ2-divergence of p to q is χ2(p ∥ q) :=

∫ (p(x)−q(x))2

q(x) dx.

2 Score-based generative models

In this section, we set up the preliminary on diffusion-based generative models, which we will be
relying upon to develop our algorithm. The key components consist of a forward process, which
diffuses the data distribution p⋆ to the standard normal distribution by gradually injecting noise into
the samples, and a backward process, which reverses the forward process so that it can transform
the standard normal distribution to the data distribution p⋆. To facilitate understanding, it will be
convenient to formulate these processes in continuous time. For discrete-time formulation and
implementation, please refer to Appendix E.

2.1 The forward process and score functions

The continuous-time forward diffusion follows the Ornstein-Uhlenbeck (OU) process, defined by the
Stochastic Differential Equation (SDE) [SSDK+21]:

dXτ = −Xτdτ +
√
2 dBτ , τ ≥ 0, X0 ∼ p⋆, (1)

where (Bτ)τ≥0 is the standard d-dimensional Brownian motion. It can be shown that [Doo42, Eva12]
the marginal distribution of Xτ for τ ≥ 0 is

Xτ
(d)
= e−τX0 +

√
1− e−2τε, X0 ∼ p⋆, ε ∼ N (0, Id). (2)

It is then clear that the limiting distribution X∞ ∼ N (0, Id) as τ → ∞, i.e., the OU process diffuses
X0 ∼ p⋆ to the standard normal distribution. The score function of Xτ is defined by

s(τ, x) = ∇ log pXτ
(x). (3)

An enlightening property [Vin11] of the score function is that it can be interpreted as the minimum
mean-squared error (MMSE) estimate of εt given xt = x, fueled by Tweedie’s formula:

s(τ, x) = − 1√
1− e−2τ

EX0∼p⋆, ε∼N (0,Id)

(
ε | e−τX0 +

√
1− e−2τε = x

)
︸ ︷︷ ︸

=:ε(τ,x)

(4)

Consequently, this makes it possible to estimate the score functions via learning to denoise [Hyv05],
by estimating the denoising function ε(τ, ·), as typically done in practice [HJA20].

2.2 The reverse process and sampling

To enable sampling, one needs to “reverse” the forward diffusion process. Fortunately, it is possible
to leverage classical theory [And82, AGS05] to reverse the SDE, and apply discretization to the time-
reversal processes to collect samples. We shall describe two popular approaches below, corresponding
to stochastic (i.e., DDPM-type) and deterministic (i.e., DDIM-type) samplers respectively following
primarily the framework set forth in [SSDK+21].

3

Time-reversed SDEs and probability flow ODEs. Let us begin with the more general theory of
reversing SDEs, which will be useful in future sections. Consider a SDE given by

dMτ = αMτdτ +
√
βdBτ , τ ≥ 0, M0 ∼ pM0

, (5)

where α ∈ R and β > 0 are constants. For any positive time τ∞ > 0, define the reversed time
parameter

τ rev := τ rev(τ) = τ∞ − τ. (6)

We are now ready to describe the time-reversed processes.

1) The time-reversed SDE of (5) on the time interval [0, τ∞] is defined as

dM rev
τ rev = (−αM rev

τ rev + β∇ log pMτ rev (M
rev
τ rev)) dτ +

√
βdB̃τ , τ ∈ [0, τ∞], M rev

τ∞ ∼ pMτ∞
, (7)

where B̃ is an independent copy of B, i.e., another Brownian motion. It is a classical result [And82]

that the reversed process M rev shares the same path distribution as M , i.e., (M rev
τ)τ∈[0,τ∞]

(d)
=

(Mτ)τ∈[0,τ∞]. In other words, the joint distribution of (M rev
τ1 ,M rev

τ2 , · · · ,M rev
τk

) for any 0 ≤ τ1 ≤
τ2 ≤ · · · ≤ τk ≤ τ∞, for any integer k ≥ 1, coincides with that of (Mτ1 ,Mτ2 , · · · ,Mτk).

2) In place of the reversed SDE in (7), it is possible to consider the following probability flow ODE
[AGS05, SSDK+21]:

dM rev
τ rev =

(
−αM rev

τ rev +
β

2
∇ log pMτ rev (τ

rev,M rev
τ rev)

)
dτ, τ ∈ [0, τ∞], M rev

τ∞ ∼ pMτ∞
. (8)

The reversed ODE satisfies a slightly weaker guarantee than that of the reversed SDE, which

nevertheless suffices for most practical purposes [SSDK+21]: M rev
τ

(d)
= Mτ , τ ∈ [0, τ∞]. Note

that the reversed ODE only guarantees identical marginal distribution for each M rev
τ , whereas the

reversed SDE guarantees identical joint distribution.

Specializing the above to the OU process (1) with proper discretization then leads to popular samplers
used for generation, as follows.

DDPM-type stochastic samplers. Specializing the time-reversed SDE (7) to the OU process gives

dX rev
τ rev =

(
X rev

τ rev + 2s(τ rev, X rev
τ rev)

)
dτ +

√
2dB̃τ , τ ∈ [0, τ∞], X rev

τ∞ ∼ pXτ∞
.

As τ∞ → ∞, it can be seen from (2) that pXτ∞
converges to N (0, Id). Thus the solution of the above

SDE can be approximated by initializing X rev
τ∞ ∼ N (0, Id) instead. The DDPM sampler [HJA20]

can be viewed as a discretization of this SDE [SSDK+21].

DDIM-type deterministic samplers. On the other hand, the probability flow ODE (8) for the OU
process reads as

dX rev
τ rev =

(
X rev

τ rev + s(τ rev, X rev
τ rev)

)
dτ, τ ∈ [0, τ∞], X rev

τ∞ ∼ pXτ∞
. (9)

Again, as τ∞ → ∞, one may approximate the initialization with X rev
τ∞ ∼ N (0, Id). It is known

that the popular DDIM sampler [SSDK+21, SME20] is a discretization of this ODE [ZC22]. The
ODE-based deterministic samplers allow more aggressive choice of discretization schedules, as well
as fast ODE solvers [LZB+22], enabling significantly accelerated sampling process compared to the
SDE-based stochastic samplers.

3 Posterior sampling via diffusion plug-and-play

We are interested in solving (possibly nonlinear) inverse problems, where the aim is to infer an
unknown image x⋆ ∈ R

d from its measurements y ∈ R
m,

y = A(x⋆) + ξ,

where A : Rd → R
m is the measurement operator underneath the forward model, and ξ denotes

measurement noise. We focus on the Bayesian setting where the prior information of x⋆ is provided
in the form of some prior distribution p⋆(·), i.e.,

x⋆ ∼ p⋆(x), (10)

4

The posterior distribution given measurements y is defined as

p⋆(x|y) ∝ p⋆(x) p(y|x⋆ = x) = p⋆(x) eL(x;y). (11)

Here, L(·; y) is the log-likelihood function of the measurements. Notwithstanding, our framework
allows flexible choices of the forward model and the noise distributions. In addition, while this
formulation is derived from probabilistic interpretations, it also subsumes the “reward-guided” or
“loss-guided” setting [SZY+23], where L can be viewed as a reward function or a negative loss
function, both of which characterize preference over structural properties of x⋆.

Assumption on the forward model. Throughout the paper, for simplicity, we make the following
mild assumption on L, which is applicable to many applications of interest.

Assumption 1. We assume L(· ; y) is differentiable almost everywhere, and supx∈Rd L(x; y) < ∞.

Goal. Our goal is to sample x̂ from the posterior distribution x̂ ∼ p⋆(· | y) given estimates ŝ(τ, x)
(resp. ε̂(τ, x)) of the unconditional score functions s(τ, x) (resp. the noise function ε(τ, x)) in (3),
assuming knowledge of the likelihood function L(·; y).
3.1 Key ingredient: score-based denoising posterior sampling

We begin with an inspection on one of the most fundamental inverse problems: denoising under white
Gaussian noise. As shall be elucidated shortly, the denoising diffusion samplers turn out to be an
important building block in our algorithm for general inverse problems.

Image denoising under white Gaussian noise. Suppose that we have access to a noisy version of
x⋆ ∼ p⋆ contaminated by white Gaussian noise, given by

xnoisy = x⋆ + ξ, ξ ∼ N (0, η2Id), (12)

where η > 0 is the noise intensity assumed to be known. Our goal is to sample from p⋆(· |xnoisy)
given the score estimates ŝt(x) (resp. the noise estimates ε̂t(x)). We will develop our score-based
denoising posterior sampler, termed DDS, with two variants, DDS-DDPM and DDS-DDIM, which
can be viewed as analogues of the well-known DDPM and DDIM samplers in unconditional score-
based sampling respectively. Before proceeding, it is worth highlighting that the two variants will be
derived from different forward diffusion processes, since we observe the resulting variants empirically
lead to more competitive performance.

A stochastic DDPM-type sampler via heat flow. We begin with a stochastic DDPM-type sampler
for denoising, termed DDS-DDPM. We divide our development into the following steps.

1) Step 1: introducing the heat flow. Let us introduce a heat flow with initial distribution p⋆, defined
by the following SDE:

dYτ = dBτ , τ ≥ 0, Y0 ∼ p⋆, (13)

where (Bτ)τ≥0 is the standard d-dimensional Brownian motion. The solution of (13) is simply

Yτ = Y0 +Bτ , τ ≥ 0. (14)

Since Bτ ∼ N (0, τId), it readily follows that Bη2

(d)
= ξ, which together with Y0 ∼ p⋆ yield the

important observation that xnoisy = x⋆ + ξ can be viewed as an endpoint of the heat flow, in the

sense that xnoisy = x⋆ + ξ
(d)
= Yη2 .

2) Step 2: reversing the heat flow. Following similar reasonings in Section 2, the next step boils down
to reverse the heat flow (13). The time-reversal of the heat flow SDE (13) is (cf. (7)) given by

dY rev
η2−τ = ∇ log pYη2

−τ
(Y rev

η2−τ)dτ + dB̃τ , τ ∈ [0, η2], Y rev
η2 ∼ pYη2

, (15)

where (B̃τ)τ≥0 is an independent copy of (Bτ)τ≥0. As introduced earlier, the virtue of the
time-reversed SDE (15) is that it produces a process Y rev

τ with the same path distribution as Yτ ,

i.e., (Y rev
τ)τ∈[0,η2]

(d)
= (Yτ)τ∈[0,η2]. In particular, the joint distribution of (Y rev

0 , Y rev
η2) is the same

as that of (Y0, Yη2)
(d)
= (x⋆, xnoisy). This implies that the conditional distribution p⋆(· |xnoisy)

is the same as pY rev
0
(· |Y rev

η2 = xnoisy). Surprisingly, the latter admits a simple interpretation:

pY rev
0
(· |Y rev

η2 = xnoisy) is the distribution of Y rev
0 when we initialize (15) with Y rev

η2 = xnoisy!

Therefore, sampling the posterior p⋆(· |xnoisy) amounts to solving the following simple SDE:

dY rev
η2−τ = ∇ log pYη2

−τ
(Y rev

η2−τ)dτ + dB̃τ , τ ∈ [0, η2], Y rev
η2 = xnoisy. (16)

5

3) Step 3: connecting the score functions. It is now immediate to arrive at our proposed stochastic
sampler DDS-DDPM by discretization of this SDE (16), which requires knowledge of the score
functions ∇ log pYτ

(·). A key observation is that they can in fact be computed from the score
function s(τ, x) (cf. (3)), due to the following lemma, whose proof is provided in Appendix D.1.

Lemma 1 (Score function of Yτ). For τ ≥ 0, we have

∇ log pYτ
(x) =

1√
1 + τ

s

(
1

2
log(1 + τ),

x√
1 + τ

)
.

The resulting sampler, DDS-DDPM, is summarized in Algorithm 2 (deferred in the appendix)
using a discretization procedure with an exponential integrator [ZC22].

A deterministic DDIM-type sampler via OU process. We next develop a deterministic DDIM-type
sampler for denoising, termed DDS-DDIM.

1) Step 1: introducing a posterior-initialized OU process. To sample from the posterior distribution
p⋆(·|xnoisy), we first introduce a random variable w which has (unconditional) distribution

pw(x) := p⋆(x⋆ = x |x⋆ + ξ = xnoisy), (17)

in the same form of the desired posterior distribution p⋆(·|xnoisy). Here, since the noisy observation
xnoisy is given, we regard it as fixed.We then further introduce z = w−xnoisy, which is a “centered”
version of w, whose distribution is

pz(x) := pw(x+ xnoisy) = p⋆(x⋆ = x+ xnoisy |x⋆ + ξ = xnoisy).

The OU process with initial distribution pz is defined by the SDE:

dZτ = −Zτdτ + dBτ , τ ≥ 0, Z0 ∼ pz, (18)

where Bτ is the standard d-dimensional Brownian motion. As in (2), the marginal distribution of
Zτ is given by

Zτ
(d)
= e−τZ0 +

√
1− e−2τε, Z0 ∼ pz, ε ∼ N (0, Id), τ ≥ 0. (19)

2) Step 2: reversing the OU process. Following similar reasonings in Section 2, reversing the OU
process (18) will enable us to generate samples z ∼ pz . Then we can set w = z + xnoisy, which,
by definition, has distribution pw defined in (17), and is a sample from the desired posterior
distribution p⋆(·|xnoisy). We are thus led to solve the time-reversed probability flow ODE (cf. (8))
of (18), given by

dZrev
τ rev =

(
Zrev
τ rev+∇ log pZτ rev (τ

rev, Zrev
τ rev)

)
dτ, τ ∈ [0, τ∞], Zrev

τ∞ ∼ N (0, Id), τ rev = τ∞−τ.
(20)

3) Step 3: connecting the score functions. We are now one step away from our proposed deterministic
sampler DDS-DDIM, which is derived by discretization of the ODE (20). We need to know
the score functions ∇ log pZτ

(·), which again can be computed from the score function s(τ, x)
(cf. (3)), as documented by the following lemma, whose proof is provided in Appendix D.2.

Lemma 2 (Score function of Zτ). For τ ≥ 0, we have

∇ log pZτ
(x) = − e2τx

η2 + e2τ − 1
+

eτ−τ̃η2

η2 + e2τ − 1
s

(
τ̃ , e−τ̃xnoisy +

eτ−τ̃η2x

η2 + e2τ − 1

)
, (21)

where

τ̃ := τ̃(τ) =
1

2
log

(
η2(e2τ − 1)

η2 + e2τ − 1
+ 1

)
. (22)

After plugging this into (20) and solving the ODE for Zrev
τ , we see that Zrev

0 + xnoisy is the
desired sample from the posterior distribution p⋆(·|xnoisy), as argued before. Numerically, the ODE
(20) is solved by discretization with an exponential integrator [ZC22], resulting in the sampler
DDS-DDIM as summarized in Algorithm 3 (deferred in the appendix).

6

Algorithm 1 Diffusion Plug-and-Play (DPnP)

Input: Measurements y ∈ R
m, log-likelihood function L(·; y) of the forward model, score

estimates ŝ, annealing schedule (ηk)0≤k≤K .
Initialization: Sample x̂0 ∼ N (0, η0

4 Id)
Alternating sampling: for k = 0, 1, 2, . . . ,K − 1 do

(1) Proximal consistency sampler: Sample x̂k+ 1
2
∝ exp

(
L(· ; y)− 1

2η2
k

∥ · −x̂k∥2
)

using sub-

routine PCS(x̂k, y,L, ηk) (Alg. 4).

(2) Denoising diffusion sampler: Sample x̂k+1 ∼ exp
(
log p⋆(x)− 1

2η2
k

∥x− x̂k+ 1
2
∥2
)

using

subroutine DDS-DDPM(x̂k+ 1
2
, ŝ, ηk) (Alg. 2) or DDS-DDIM(x̂k+ 1

2
, ŝ, ηk) (Alg. 3).

Output: x̂K .

3.2 Our algorithm: diffusion plug-and-play

Now we turn to the general setting where the measurement operator A is arbitrary. From the
factorization of posterior distribution in (11), one intuitively understands that a posterior sampler
must obey two constraints simultaneously: (i) the data prior constraint, corresponding to the first
factor p⋆(x), which imposes that the posterior sampler should be less likely to sample at those points
where p⋆(x) is small; (ii) the measurement consistency constraint, corresponding to the second factor

eL(x;y), which imposes that A(x) ≈ y.

Diffusion plug-and-play (DPnP). We will apply the idea of alternatively enforcing these two
constraints from a sampling perspective in the same spirit of [VDC19, LST21, BB23]. Our algorithm,
dubbed diffusion plug-and-play (DPnP), alternates between two samplers, the denoising diffusion
sampler (DDS) and the proximal consistency sampler (PCS), which can be viewed as the substitutes
for the proximal operator and the gradient step respectively. Given the iterate x̂k and the annealing
parameter ηk at the k-th iteration, DPnP proceeds with the following two steps:

(i) Proximal consistency sampler to enforce the measurement consistency constraint. DPnP draws a

sample x̂k+ 1
2

from the distribution proportional to exp
(
L(x ; y)− 1

2η2
k

∥x− x̂k∥2
)

to promote

the image to be consistent with the measurements. This step, which we denote as the proximal
consistency sampler, can be achieved by small modifications of standard algorithms such as
Metropolis-Adjusted Langevin Algorithm (MALA) [RR98] given in Algorithm 4 (deferred in the
appendix).

(ii) Denoising diffusion sampler to enforce the data prior constraint. DPnP next draws a sample x̂k+1

from the distribution proportional to

exp

(
−
(
− log p⋆(x) +

1

2η2k
∥x− x̂k+ 1

2
∥2
))

∝ p⋆(x⋆ = x |x⋆ + ηkw = x̂k+ 1
2
) (23)

to promote the image to be consistent with the prior, where w ∼ N (0, Id). The last step, which
follows from the Bayes’ rule, makes it clear that this step can be precisely achieved by the denoising
diffusion sampler (developed in Section 3.1) using solely the unconditional score function.

Combining both steps lead to the proposed DPnP method described in Algorithm 1. Some comments
about the proposed DPnP method are in order.

• The proximal consistency sampler PCS can be viewed as a “soft” version of the proximal point
method [Dru17]. This can be seen from a first-order approximation: the maximum likelihood of
the distribution exp

(
L(·; y)− 1

2η2
k

∥ · −x̂k∥2
)

is attained at the point x′ ∈ R
d satisfying

∇x′L(x′; y)− 1

η2k
(x′ − x̂k) = 0, =⇒ x′ = x̂k + η2k∇x′L(x′; y) ≈ x̂k + η2k∇x̂k

L(x̂k; y),

Therefore, the proximal consistency sampler draws random samples “concentrated” around x′,
which approximates the implicit proximal point update, akin to a gradient step at x̂k.

• On the other end, the denoising posterior sampler DDS can be regarded as a “soft” version of the
proximal operator. In particular, when p⋆ is supported on a low-dimensional manifold M, it forces
x to reside in M, like the proximal map. To see this, note that denoising posterior distribution
vanishes outside M by (23).

7

• The proximal consistency sampler PCS admits a simple form when the forward model A is linear,
i.e. A(x) = Ax for some matrix A ∈ R

m×d, and the measurement noise ξ ∼ N (0,Σ) is Gaussian.
In this situation, the proximal consistency sampler PCS can be implemented directly by

x̂k+ 1
2
= PCS(x̂k, y,L, ηk) = x̃k + Σ̃

1/2
k wk, wk ∼ N (0, Id),

where x̃k =
(
A⊤Σ−1A+ 1

η2
k

Id

)−1 (
A⊤Σ−1y + 1

η2
k

x̂k

)
, and Σ̃k =

(
A⊤Σ−1A+ 1

η2
k

Id

)−1

.

4 Theoretical analysis

In this section, we establish both asymptotic and non-asymptotic performance guarantees of DPnP.

Asymptotic consistency. We begin with the asymptotic consistency of DPnP in the theorem below.

Theorem 1 (Asymptotic consistency of DPnP). Assume the score function estimate ŝ(τ, ·) is
accurate, i.e., ŝ(τ, x) = s(τ, x), and assume the ODE/SDEs in DDS and PCS are solved exactly.
Let (εl)l≥0 be a decreasing sequence of positive numbers satisfying liml→∞ εl = 0, and (kl)l≥0

be an increasing sequence of integers with k0 = 0. Set the annealing schedule ηk = εl, for
kl−1 ≤ k < kl, l = 1, 2, · · · Let minl′=1,2,··· |kl′ − kl′−1| → ∞, the output x̂kl

of DPnP converges
in distribution to the posterior distribution p⋆(·|y) for l → ∞.

In words, Theorem 1 establishes the asymptotic consistency of DPnP under fairly mild assumptions
on the forward model (cf. Assumption 1): as long as the sampled distributions of DDS and PCS are
exact, then running DPnP with a slowly diminishing annealing schedule of {ηk} will output samples
approaching the desired posterior distribution p⋆(·|y) when the number of iterations l goes to infinity.

Non-asymptotic error analysis. We now step away from the idealized setting when the sampled
distributions of DDS and PCS are exact. In practice, there are many sources of errors that can
influence the sampled distributions of DDS and PCS, e.g., the discretization error arising from
numerically solving ODE/SDE, and the score estimation error. In effect, these non-idealities will
make PCS and DDS inexact. That is, the distribution they generate will slightly deviate from the
distribution they ought to sample from. In this paper, we model such deviations by the total variation
distance from the distribution generated by PCS (resp. DDS) to the ideal distribution proportional to
exp(L(x; y)− 1

2η2
k

∥x− x̂k∥2) (resp. p⋆(x⋆ = x|x⋆ + ηkε = x̂k+ 1
2
)) uniformly over all iterations.

Analyzing these errors is out of the scope of this paper, and we point the interested readers to parallel
lines of works, e.g., [LWCC23, MV19, CLA+21], among many others. In our analysis, we will
assume a black-box bound for the total variation errors of PCS and DDS, which can be combined
with existing analyses of the respective samplers to bound the iteration complexity of DPnP.

Theorem 2 (Non-asymptotic robustness of DPnP). With the notation in DPnP (Algorithm 1), set
ηk ≡ η > 0. Under Assumption 1, there exists λ := λ(p⋆,L, η) ∈ (0, 1), such that the following
holds. Define a stationary distribution πη by πη(x) ∝ p⋆(x)qη(x), where qη is defined by

qη(x) := eL(·; y) ∗ pηε(x) =
1

(2π)d/2ηd

∫
e
L(x′; y)− 1

2η2 ∥x−x′∥2

dx′, ε ∼ N (0, Id), (24)

where ∗ denotes convolution. If PCS has error at most εPCS in total variation and DDS has error at

most εDDS in total variation per iteration, then for any accuracy goal εacc > 0, with K ≍ log(1/εacc)
1−λ ,

we have

TV(px̂K
, πη) ≲ εacc

√
χ2(px̂1

∥πη) +
1

1− λ
(εDDS + εPCS) log

(
1

εacc

)
. (25)

Before interpreting Theorem 2, we observe that q0(x) = eL(x;y), thus π0(x) ∝ p⋆(x)eL(x;y) coin-
cides with the desired posterior distribution p⋆(·|y). Thus Theorem 2 tells us that, assuming a constant
annealing schedule ηk = η, the output of DPnP converges in total variation to the distribution πη,
which is a distorted version of the desired posterior distribution up to level η, with sufficiently many
iterations. A few remarks are in order.

Non-diminishing η. It can be seen from Theorem 2 that even with a nonzero η, DPnP already
enforces the data prior strictly. On the other hand, the measurement consistency is distorted by
an order of η. This is usually tolerable, since the measurements are themselves contaminated by

8

Table 4: Evaluation of solving inverse problems on ImageNet 256 × 256 validation dataset (1k
samples). Despite considerable efforts to optimize parameters, pixel-based ReSample did not generate
meaningful results for phase retrieval.

Super-resolution Phase retrieval Quantized sensing Time
(4x, linear) (nonlinear) (nonlinear) per sample

Algorithm LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑
DPnP-DDIM (ours) 0.416 21.6 0.562 13.4 0.363 23.0 ∼ 240s
DPS [CKM+23] 0.473 20.2 0.677 13.4 0.542 18.7 ∼ 150s
LGD-MC (n = 5) [SZY+23] 0.416 20.9 0.592 12.8 0.384 22.3 ∼ 150s
ReSample (pixel-based) [SKZ+23] 0.464 20.1 - - 0.414 19.8 ∼ 180s

Experimental setups. We compare DPnP with the state-of-the-art algorithms including DPS
[CKM+23], LGD-MC [SZY+23], and pixel-based ReSample [SKZ+23] for super-resolution (lin-
ear), phase retrieval (nonlinear), and quantized sensing (nonlinear). Definitions of these forward
measurement models are in Appendix G.2. The annealing schedule {ηk} of DPnP is fixed across all
tasks (Appendix H.2), while DPS, LGD-MC, and ReSample are fine-tuned with reasonable effort for
best performance. All experiments are run on a single Nvidia L40 GPU. More details and experiments
are in Appendix G.

Sample images. We present the sample images of different algorithms for the most complicated
task of phase retrieval. For phase retrieval, Fourier transform is performed to the image with a coded
mask, and only the magnitude of the Fourier transform is taken as the measurement [SEC+15]. Due
to the nonlinearity of the operation of taking magnitude, the forward model is nonlinear. The samples
generated by different algorithms are shown in Table 1.

We also present the sample images for the nonlinear problem of quantized sensing. In quantized
sensing, each pixel of the image is randomly dithered and then quantized to one bit per channel.
Nonlinearity of quantizing renders this forward model nonlinear. The samples generated by different
algorithms are shown in Table 2.

Evaluation. We evaluate the performance of DPnP on the FFHQ validation dataset [KLA19] and the
ImageNet validation dataset [RDS+15]. Since DPnP-DDIM has similar performance with DPnP-
DDPM but admits much faster implementation, only DPnP-DDIM is evaluated. The LPIPS and
PSNR are shown in Table 3 and Table 4. These two metrics are arguably the more relevant ones for
solving inverse problems. For comparison under other metrics such as FID, SSIM, cf. Appendix G.4.

It can be seen that, DPnP is capable of solving both linear and nonlinear problems, and, in comparison
with prior state-of-the-art, performs better in recovering fine and crisper details.

6 Discussion

This paper sets forth a rigorous and versatile algorithmic framework called DPnP for solving nonlinear
inverse problems via posterior sampling, using image priors prescribed by score-based diffusion
models with general forward models. DPnP alternates between two sampling steps implemented by
DDS and PCS, to promote consistency with the data prior constraint and the measurement constraint
respectively. We provide both asymptotic and non-asymptotic convergence guarantees, establishing
DPnP as the first provably consistent and robust score-based diffusion posterior sampling method for
general nonlinear inverse problems.

Acknowledgments and Disclosure of Funding

This work is supported in part by Office of Naval Research under N00014-19-1-2404, and by National
Science Foundation under DMS-2134080 and ECCS-2126634. X. Xu is also gratefully supported by
the Axel Berny Presidential Graduate Fellowship at Carnegie Mellon University.

References

[AGS05] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the
space of probability measures. Springer Science & Business Media, 2005.

[And82] B. D. Anderson. Reverse-time diffusion equation models. Stochastic Processes and
their Applications, 12(3):313–326, 1982.

10

[BB23] C. A. Bouman and G. T. Buzzard. Generative plug and play: Posterior sampling for
inverse problems. arXiv preprint arXiv:2306.07233, 2023.

[BCSB18] G. T. Buzzard, S. H. Chan, S. Sreehari, and C. A. Bouman. Plug-and-play unplugged:
Optimization-free reconstruction using consensus equilibrium. SIAM Journal on
Imaging Sciences, 11(3):2001–2020, 2018.

[BDBDD24] J. Benton, V. De Bortoli, A. Doucet, and G. Deligiannidis. Nearly d-linear convergence
bounds for diffusion models via stochastic localization. In The Twelfth International
Conference on Learning Representations, 2024.

[BJPD17] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. Compressed sensing using generative
models. In International conference on machine learning, pages 537–546. PMLR,
2017.

[Bou23a] N. Bourbaki. Théories spectrales Chapitres 1 et 2. Springer, 2023.

[Bou23b] N. Bourbaki. Théories spectrales: Chapitres 3 à 5. Springer Nature, 2023.

[CCL+22] S. Chen, S. Chewi, J. Li, Y. Li, A. Salim, and A. R. Zhang. Sampling is as easy as
learning the score: theory for diffusion models with minimal data assumptions. arXiv
preprint arXiv:2209.11215, 2022.

[CCL+23] S. Chen, S. Chewi, H. Lee, Y. Li, J. Lu, and A. Salim. The probability flow ODE is
provably fast. Neural Information Processing Systems, 2023.

[CDC23] F. Coeurdoux, N. Dobigeon, and P. Chainais. Plug-and-play split Gibbs sam-
pler: embedding deep generative priors in Bayesian inference. arXiv preprint
arXiv:2304.11134, 2023.

[CDD23] S. Chen, G. Daras, and A. Dimakis. Restoration-degradation beyond linear diffusions:
A non-asymptotic analysis for DDIM-type samplers. In International Conference on
Machine Learning, pages 4462–4484, 2023.

[CICM23] G. Cardoso, Y. J. E. Idrissi, S. L. Corff, and E. Moulines. Monte carlo guided diffusion
for Bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023.

[CKM+23] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye. Diffusion posterior
sampling for general noisy inverse problems. In International Conference on Learning
Representations, 2023.

[CLA+21] S. Chewi, C. Lu, K. Ahn, X. Cheng, T. Le Gouic, and P. Rigollet. Optimal dimension
dependence of the metropolis-adjusted langevin algorithm. In Conference on Learning
Theory, pages 1260–1300. PMLR, 2021.

[CLL23] H. Chen, H. Lee, and J. Lu. Improved analysis of score-based generative model-
ing: User-friendly bounds under minimal smoothness assumptions. In International
Conference on Machine Learning, pages 4735–4763, 2023.

[CLS15] E. J. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: Theory
and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

[CLY23] H. Chung, S. Lee, and J. C. Ye. Fast diffusion sampler for inverse problems by
geometric decomposition. arXiv preprint arXiv:2303.05754, 2023.

[CR12] E. Candes and B. Recht. Exact matrix completion via convex optimization. Communi-
cations of the ACM, 55(6):111–119, 2012.

[Don06] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[Doo42] J. L. Doob. The Brownian movement and stochastic equations. Annals of Mathematics,
43(2):351–369, 1942.

11

[Dru17] D. Drusvyatskiy. The proximal point method revisited. arXiv preprint
arXiv:1712.06038, 2017.

[DS24] Z. Dou and Y. Song. Diffusion posterior sampling for linear inverse problem solving:
A filtering perspective. In International Conference on Learning Representations,
2024.

[Efr11] B. Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[Eva12] L. C. Evans. An introduction to stochastic differential equations, volume 82. American
Mathematical Soc., 2012.

[FBS24] Z. Fang, S. Buchanan, and J. Sulam. What’s in a prior? Learned proximal net-
works for inverse problems. In The Twelfth International Conference on Learning
Representations, 2024.

[FSR+23] B. T. Feng, J. Smith, M. Rubinstein, H. Chang, K. L. Bouman, and W. T. Freeman.
Score-based diffusion models as principled priors for inverse imaging. In 2023
IEEE/CVF International Conference on Computer Vision (ICCV), pages 10486–10497,
2023.

[GJP+24] S. Gupta, A. Jalal, A. Parulekar, E. Price, and Z. Xun. Diffusion posterior sampling is
computationally intractable. arXiv preprint arXiv:2402.12727, 2024.

[GL10] K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In Pro-
ceedings of the 27th international conference on international conference on machine
learning, pages 399–406, 2010.

[GMJS22] A. Graikos, N. Malkin, N. Jojic, and D. Samaras. Diffusion models as plug-and-play
priors. Advances in Neural Information Processing Systems, 35:14715–14728, 2022.

[HJA20] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

[HSMC17] J. Huang, M. Sun, J. Ma, and Y. Chi. Super-resolution image reconstruction for
high-density three-dimensional single-molecule microscopy. IEEE Transactions on
Computational Imaging, 3(4):763–773, 2017.

[Hyv05] A. Hyvärinen. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

[KEES22] B. Kawar, M. Elad, S. Ermon, and J. Song. Denoising diffusion restoration models.
Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

[Key81] R. Keys. Cubic convolution interpolation for digital image processing. IEEE transac-
tions on acoustics, speech, and signal processing, 29(6):1153–1160, 1981.

[KHR23] F. Koehler, A. Heckett, and A. Risteski. Statistical efficiency of score matching: The
view from isoperimetry. International Conference on Learning Representations, 2023.

[KLA19] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4401–4410, 2019.

[KVE21] B. Kawar, G. Vaksman, and M. Elad. Stochastic image denoising by sampling from
the posterior distribution. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1866–1875, 2021.

[LBA+22] R. Laumont, V. D. Bortoli, A. Almansa, J. Delon, A. Durmus, and M. Pereyra.
Bayesian imaging using plug & play priors: when Langevin meets Tweedie. SIAM
Journal on Imaging Sciences, 15(2):701–737, 2022.

12

[LDP07] M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed
sensing for rapid MR imaging. Magnetic Resonance in Medicine: An Official Journal
of the International Society for Magnetic Resonance in Medicine, 58(6):1182–1195,
2007.

[LHE+24] G. Li, Y. Huang, T. Efimov, Y. Wei, Y. Chi, and Y. Chen. Accelerating convergence of
score-based diffusion models, provably. arXiv preprint arXiv:2403.03852, 2024.

[LHW24] G. Li, Z. Huang, and Y. Wei. Towards a mathematical theory for consistency training
in diffusion models. arXiv preprint arXiv:2402.07802, 2024.

[LST21] Y. T. Lee, R. Shen, and K. Tian. Structured logconcave sampling with a restricted
Gaussian oracle. In Conference on Learning Theory, pages 2993–3050. PMLR, 2021.

[LWCC23] G. Li, Y. Wei, Y. Chen, and Y. Chi. Towards faster non-asymptotic convergence for
diffusion-based generative models. arXiv preprint arXiv:2306.09251, 2023.

[LZB+22] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. DPM-Solver: A fast ODE solver
for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

[MLE21] V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–
44, 2021.

[MSKV24] M. Mardani, J. Song, J. Kautz, and A. Vahdat. A variational perspective on solving
inverse problems with diffusion models. In The Twelfth International Conference on
Learning Representations, 2024.

[MV19] O. Mangoubi and N. K. Vishnoi. Nonconvex sampling with the metropolis-adjusted
langevin algorithm. In Conference on learning theory, pages 2259–2293. PMLR,
2019.

[PEPC10] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin. Sparsity and compressed sensing in
radar imaging. Proceedings of the IEEE, 98(6):1006–1020, 2010.

[PRS+24] C. Pabbaraju, D. Rohatgi, A. P. Sevekari, H. Lee, A. Moitra, and A. Risteski. Provable
benefits of score matching. Advances in Neural Information Processing Systems, 36,
2024.

[PW24] Y. Polyanskiy and Y. Wu. Information theory: From coding to learning. Cambridge
university press, 2024.

[RBL+22] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution
image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10684–10695, 2022.

[RDN+22] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125,
2022.

[RDS+15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–
252, 2015.

[REM17] Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regularization by
denoising (RED). SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

[RR98] G. O. Roberts and J. S. Rosenthal. Optimal scaling of discrete approximations to
Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 60(1):255–268, 1998.

[RS18] E. T. Reehorst and P. Schniter. Regularization by denoising: Clarifications and new
interpretations. IEEE transactions on computational imaging, 5(1):52–67, 2018.

13

[SC97] L. Saloff-Coste. Lectures on finite Markov chains, pages 301–413. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

[Sch12] H. Schaefer. Banach Lattices and Positive Operators, volume 215. Springer Science
& Business Media, 2012.

[SCS+22] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour,
R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image
diffusion models with deep language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022.

[SDWMG15] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256–2265, 2015.

[SE19] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

[SEC+15] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase
retrieval with application to optical imaging: a contemporary overview. IEEE signal
processing magazine, 32(3):87–109, 2015.

[SKZ+23] B. Song, S. M. Kwon, Z. Zhang, X. Hu, Q. Qu, and L. Shen. Solving inverse
problems with latent diffusion models via hard data consistency. arXiv preprint
arXiv:2307.08123, 2023.

[SME20] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2020.

[SSDK+21] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-
based generative modeling through stochastic differential equations. International
Conference on Learning Representations, 2021.

[SSXE21] Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in medical
imaging with score-based generative models. In International Conference on Learning
Representations, 2021.

[SVMK22] J. Song, A. Vahdat, M. Mardani, and J. Kautz. Pseudoinverse-guided diffusion models
for inverse problems. In International Conference on Learning Representations, 2022.

[SWC+23] Y. Sun, Z. Wu, Y. Chen, B. T. Feng, and K. L. Bouman. Provable probabilistic imaging
using score-based generative priors. arXiv preprint arXiv:2310.10835, 2023.

[SZY+23] J. Song, Q. Zhang, H. Yin, M. Mardani, M.-Y. Liu, J. Kautz, Y. Chen, and A. Vah-
dat. Loss-guided diffusion models for plug-and-play controllable generation. In
International Conference on Machine Learning, pages 32483–32498. PMLR, 2023.

[Tie94] L. Tierney. Markov Chains for Exploring Posterior Distributions. The Annals of
Statistics, 22(4):1701 – 1728, 1994.

[TYT+22] B. L. Trippe, J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. Jaakkola.
Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding
problem. arXiv preprint arXiv:2206.04119, 2022.

[TZ24] W. Tang and H. Zhao. Contractive diffusion probabilistic models. arXiv preprint
arXiv:2401.13115, 2024.

[UVL18] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 9446–9454, 2018.

[VBW13] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-play priors for
model based reconstruction. In IEEE Global Conference on Signal and Information
Processing, pages 945–948. IEEE, 2013.

14

[VDC19] M. Vono, N. Dobigeon, and P. Chainais. Split-and-augmented Gibbs sampler-
application to large-scale inference problems. IEEE Transactions on Signal Processing,
67(6):1648–1661, 2019.

[Vin11] P. Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[Wib18] A. Wibisono. Sampling as optimization in the space of measures: The Langevin
dynamics as a composite optimization problem. In Conference on Learning Theory,
pages 2093–3027. PMLR, 2018.

[WTN+23] L. Wu, B. Trippe, C. Naesseth, D. Blei, and J. P. Cunningham. Practical and asymptot-
ically exact conditional sampling in diffusion models. Advances in Neural Information
Processing Systems, 36, 2023.

[ZC22] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2022.

15

A Related works

Algorithmic unrolling and plug-and-play image reconstruction. Composite optimization algo-
rithms, which aim to minimize the sum of a measurement fidelity term and a regularization term
promoting desirable solution structures, have been the backbone of inverse problem solvers. To
unleash the power of deep learning, [GL10] advocates the perspective of algorithmic unrolling, which
turns an iterative algorithm into concatenations of linear and nonlinear layers like in a neural network.
[VBW13] recognized that the proximal mapping step in many composite optimization algorithms
can be regarded as a denoiser or denoising operator with respect to the given prior, and proposed to
“plug in” alternative denoisers, in particular state-of-the-art deep learning denoisers, leading to a class
of popular algorithms known as plug-and-play methods [BCSB18]; see [MLE21] for a review.

Regularization by denoising and score matching. [Vin11] pointed out a connection between score
matching and image denoising, which is a consequence of the Tweedie’s formula [Efr11]. The
regularization by denoising (RED) framework [REM17] follows the plug-and-play framework to
minimize a regularized objective function, where the regularizer is defined based on the plug-in image
denoiser; [RS18] later clarified that the RED framework can be interpreted as score matching by
denoising using the Tweedie’s formula. [KVE21] developed a stochastic image denoiser for posterior
sampling of image denoising using annealed Langevin dynamics. [FBS24] provided a framework to
learn exact proximal operators for inverse problems.

Plug-and-play posterior sampling. Motivated by the need to characterize the uncertainty, tack-
ling image reconstruction as posterior sampling from a Bayesian perspective is another important
approach. Our method is inspired by the plug-and-play framework but takes on a sampling perspec-
tive, exploiting the connection between optimization and sampling [Wib18]. Along similar lines,
[LBA+22, BB23] proposed Bayesian counterparts of plug-and-play for posterior sampling, where
they leveraged the connection to score matching for sampling from the image prior, but did not
consider score-based diffusion models for the image prior, which is a key aspect of ours; see also
[SWC+23]. [CDC23] extended the split Gibbs sampler [VDC19] in the plug-and-play framework,
and advocated the use of score-based diffusion models such as DDPM [HJA20] for image denoising
based on heuristic observations. In contrast, we rigorously derive the denoising diffusion samplers
from first principles, unraveling critical gaps from naïve applications of the generative samplers to
denoising, and offer theoretical guarantees on the correctness of our approach.

Score-based diffusion models as image priors. Several representative methods for solving inverse
problems using score-based diffusion priors alternates between taking steps along the diffusion pro-
cess and projecting onto the measurement constraint, e.g., [CKM+23, KEES22, SKZ+23, CLY23,
GMJS22, SVMK22]. However, these approaches do not possess asymptotic consistency guaran-
tees. [SZY+23] proposed to use multiple Monte Carlo samples to reduce bias. On the other hand,
[CICM23] developed Monte Carlo guided diffusion methods for Bayesian linear inverse problems
which tend to be computationally expensive, and [DS24] recently introduced a filtering perspective
and applied particle filtering. Although asymptotically consistent, these approaches are limited
to linear inverse problems. [TYT+22, WTN+23] introduced sequential Monte Carlo (SMC) algo-
rithms for conditional sampling using unconditional diffusion models that are asymptotically exact.
[MSKV24] developed a variational perspective that connects to the regularization by denoising
framework. [GJP+24] showed that the worst-case complexity of diffusion posterior sampling can
take super-polynomial time regardless of the algorithm in use.

Theory of diffusion models and score matching. A number of recent papers have studied the non-
asymptotic convergence rates of popular diffusion samplers, including but not limited to stochastic
DDPM-type samplers [CCL+22, CLL23, LWCC23, BDBDD24, TZ24], deterministic DDIM-type
samplers [LWCC23, CCL+23, CDD23], and accelerated samplers [LHE+24, LHW24]. In addition,
the statistical efficiency of score matching has also been investigated [KHR23, PRS+24].

B Discrete-time formulation of diffusion processes

The discrete-time forward and backward diffusion processes can be understood as two processes
constructed in the following manner:

1) a forward process
x0 → x1 → · · · → xT

that starts with samples from the target image distribution and diffuses into a noise distribution
(e.g., standard Gaussians) by gradually injecting noise into the samples;

16

2) a reverse process
xrev
T → xrev

T−1 → · · · → xrev
0

that starts from pure noise (e.g., standard Gaussians) and converts it into samples whose
distribution is close to the target image distribution.

Consider the forward Markov process in R
d that starts with a sample from the data distribution pX ,

and adds noise over the trajectory according to

x0 ∼ p⋆, (26a)

xt =
√

1− βt xt−1 +
√
βt wt, 1 ≤ t ≤ T, (26b)

where {wt}1≤t≤T ’s are independent standard Gaussian vectors, i.e., wt
i.i.d.∼ N (0, Id), and {βt ∈

(0, 1)} describes the noise-injection rates used in each step. Therefore, we can write xt equivalently
as

xt :=
√
ᾱt x0 +

√
1− ᾱt εt, εt ∼ N (0, Id), t = 0, 1, · · · , T. (27)

Here, (ᾱt)t=0,1,··· ,T is the schedule of diffusion given by

αt := 1− βt, ᾱt :=

t∏

k=1

αk, 1 ≤ t ≤ T. (28)

Clearly, it verifies that 1 ≥ ᾱ0 > ᾱ1 > · · · > ᾱT > 0. As long as ᾱT is vanishing, it is easy to
observe that the distribution of xT approaches N (0, Id).

Score functions. As will be seen, in order to sample from p⋆, it turns out to be sufficient to learn the
score functions of pxt

at each step of the forward process, defined as

s⋆t (x) = ∇ log pxt
(x), t = 0, 1, · · · , T. (29)

As in the continuous time, the score function can be viewed as a MMSE estimate:

s⋆t (x) = − 1√
1− ᾱt

Ex0∼p⋆, εt∼N (0,Id)(εt |
√
ᾱtx0 +

√
1− ᾱtεt = x)

︸ ︷︷ ︸
=:ε⋆t (x)

. (30)

Comparing (27) and (2), it can be checked that the discrete-time diffusion process can be embedded
into the continuous-time one via the time change

t 7→ 1

2
log

1

ᾱt
,

in the sense that

x⋆
t

(d)
= X 1

2
log 1

ᾱt

.

This establishes a correspondence between the continuous-time formulation and the discrete-time
formulation.

Within the discrete-time formulation, we assume the score function estimates are given as ŝt(·) :
R

d → R
d, t = 1, . . . , T such that ŝt ≈ s⋆t in analogy with the continuous-time counterpart.

C Details of algorithm subroutines

With the discrete-time perspective established in Appendix B, we are now ready to present the detailed
description and the implementation of our algorithms DDS-DDPM (Algorithm 2), DDS-DDIM

(Algorithm 3), and PCS (Algorithm 4).

D Score functions of diffusion denoising samplers

D.1 Proof of Lemma 1

Proof. The marginal distribution (14) of the heat flow can be written as

Yτ
(d)
= Y0 +

√
τε, Y0 ∼ p⋆, ε ∼ N (0, Id). (31)

Comparing (2) and (31), it is not hard to check that

Yτ
(d)
=

√
1 + τX 1

2
log(1+τ).

17

Algorithm 2 Denoising Diffusion Sampler (stochastic) DDS-DDPM(xnoisy, ŝ, η)

Input: noisy data xnoisy ∈ R
d, score estimates ŝ := {ŝt(·) : Rd → R

d, t = 1, . . . , T} or noise

estimates ε̂ = {ε̂t(·) : Rd → R
d, t = 1, . . . , T}, and noise level η > 0.

Scheduling: Compute the diffusion schedule (τt)0≤t≤T ′ by

τt = ᾱ−1
t − 1, 0 ≤ t ≤ T ′,

where

T ′ := max

{
t : 0 ≤ t ≤ T, ᾱt >

1

η2 + 1

}
.

Initialization: Set x̂T ′ = xnoisy.
Diffusion: for t = T ′, T ′ − 1, . . . , 1 do

x̂t−1 = x̂t − 2(
√
τt −

√
τt−1) ε̂t +

√
τt − τt−1 wt, wt ∼ N (0, Id).

where

ε̂t := ε̂t(
√
ᾱt x̂t) = − 1√

1− ᾱt
ŝt
(√

ᾱt x̂t

)
.

Output: x̂0.

Algorithm 3 Denoising Diffusion Sampler (deterministic) DDS-DDIM(xnoisy, ŝ, η)

Input: noisy data xnoisy ∈ R
d, score estimates ŝ := {ŝt(·) : Rd → R

d, t = 1, . . . , T} or noise

estimates ε̂ = {ε̂t(·) : Rd → R
d, t = 1, . . . , T}, and noise level η > 0.

Scheduling: Compute the diffusion schedule (ūt)0≤t≤T ′ by

ūt =
(η2 + 1)ᾱt − 1

η2 + ᾱt − 1
, 0 ≤ t ≤ T ′,

where

T ′ := max

{
t : 0 ≤ t ≤ T, ᾱt >

1

η2 + 1

}
.

Initialization: Draw zT ′ ∼ N (0, Id).
Diffusion: for t = T ′, T ′ − 1, . . . , 1 do

zt−1 =

√
(η2 − 1)ūt−1 + 1√
(η2 − 1)ūt + 1

zt +
√
(η2 − 1)ūt−1 + 1 ·

(
h(η, ūt−1)− h(η, ūt)

)
ε̂t,

where

h(η, u) := − arctan
η√

u−1 − 1
,

ε̂t := ε̂t

(√
ᾱtxnoisy +

η2
√
ūtᾱtzt

(η2 − 1)ūt + 1

)
= − 1√

1− ᾱt
ŝt

(√
ᾱtxnoisy +

η2
√
ūtᾱtzt

(η2 − 1)ūt + 1

)
.

Output: xnoisy + z0.

Denote θ = 1
2 log(1 + τ) as a short-hand. We have

pYτ
(x) = p√1+τXθ

(x) ∝ pXθ

(
1√
1 + τ

x

)
.

Therefore it follows that

∇ log pYτ
(x) = ∇x log pXθ

(
1√
1 + τ

x

)
=

1√
1 + τ

s

(
θ,

1√
1 + τ

x

)
,

where we used the definition s(θ, ·) = ∇ log pXθ
(·). Plugging the definition θ = 1

2 log(1 + τ) into
the above equation yields the desired result.

18

Algorithm 4 Proximal Consistency Sampler PCS(x, y,L, η) (adapted from Metropolis-Adjusted
Langevin Algorithm [RR98])

Input: starting point x ∈ R
d, measurements y ∈ R

m, log-likelihood function of the forward
model L(·; y), proximal parameter η > 0.
Hyperparameter: Langevin stepsize γ, and the number of iterations N .
Initialization: z0 = x.
Update: for n = 0, 1, · · · , N − 1 do

(1) One step of discretized Langevin: Set r = e−γ/η2

, and

zn+ 1
2
= rzn + (1− r)x+ η2(1− r)∇znL(zn; y) + η

√
1− r2wn, wn ∼ N (0, Id).

This is equivalent to drawing zn+ 1
2

from a distribution with density Q(·; zn), where

Q(z′; z) =
1

(2π(1− r2))d/2
exp

(
−
∥∥z′ −

(
rz + (1− r)x+ η2(1− r)∇zL(z; y)

)∥∥2

2(1− r2)

)
.

(2) Metropolis adjustment: Compute

q =
exp

(
L(zn+ 1

2
; y)− 1

2η2 ∥zn+ 1
2
− x∥2

)

exp
(
L(zn; y)− 1

2η2 ∥zn − x∥2
) ·

Q(zn; zn+ 1
2
)

Q(zn+ 1
2
; zn)

,

and set

zn+1 =

{
zn+ 1

2
, with probability min(1, q),

zn with probability 1−min(1, q).

Output: zN .

D.2 Proof of Lemma 2

Proof. We first compute the probability density function of z. Recall that z = w − xnoisy, thus
applying Bayes rule yields

pz(x) = pw(x+ xnoisy) = p⋆(x⋆ = x+ xnoisy|x⋆ + ξ = xnoisy)

=
p⋆(x+ xnoisy)pξ(−x)

px⋆+ξ(xnoisy)
∝ p⋆(x+ xnoisy)pξ(−x),

where ξ ∼ N (0, η2Id). It is straightforward to compute

pξ(−x) =
1

(2π)d/2ηd
e
− 1

2η2 ∥x∥2

,

therefore

pz(x) ∝ p⋆(x+ xnoisy)e
− 1

2η2 ∥x∥2

. (32)

We proceed to compute the probability density function of Zτ . According to (19), it follows that

pZτ
(x) = pe−τz ∗ p√1−e−2τε(x)

=

∫
pe−τz(x

′) p√1−e−2τε(x− x′)dx′

∝
∫

pz(e
τx′) exp

(
− 1

2(1− e−2τ)
∥x− x′∥2

)
dx′

∝
∫

p⋆(xnoisy + eτx′) exp

(
− 1

2η2
∥eτx′∥2

)
exp

(
− 1

2(1− e−2τ)
∥x− x′∥2

)
dx′,

∝
∫

p⋆(x′) exp

(
− 1

2η2
∥x′ − xnoisy∥2

)
exp

(
− 1

2(1− e−2τ)
∥x− e−τ (x′ − xnoisy)∥2

)
dx′,

(33)

where ∗ denotes convolution, the penultimate line follows from (32) and the last line follow from the
change of variable x′ 7→ e−τ (x′ − xnoisy). One may exercise some brute force to verify that

exp

(
− 1

2η2
∥x′ − xnoisy∥2

)
exp

(
− 1

2(1− e−2τ)
∥x− e−τ (x′ − xnoisy)∥2

)

19

= exp

(
− e2τ∥x∥2
2(η2 + e2τ − 1)

)
exp

(
− 1

2(1− e−2τ̃)

∥∥∥e−τ̃xnoisy +
eτ−τ̃η2x

η2 + e2τ − 1
− e−τ̃x′

∥∥∥
2
)

∝ exp

(
− e2τ∥x∥2
2(η2 + e2τ − 1)

)
p√1−e−2τ̃ε

(
e−τ̃xnoisy +

eτ−τ̃η2x

η2 + e2τ − 1
− e−τ̃x′

)
,

where τ̃ is as defined in (22). Plug this back into (33), we see

pZτ
(x) ∝ exp

(
− e2τ∥x∥2
2(η2 + e2τ − 1)

)∫
p⋆(x′)p√1−e−2τ̃ε

(
e−τ̃xnoisy +

eτ−τ̃η2x

η2 + e2τ − 1
− e−τ̃x′

)
dx′

∝ exp

(
− e2τ∥x∥2
2(η2 + e2τ − 1)

)∫
p⋆(eτ̃x′)p√1−e−2τ̃ε

(
e−τ̃xnoisy +

eτ−τ̃η2x

η2 + e2τ − 1
− x′

)
dx′

∝ exp

(
− e2τ∥x∥2
2(η2 + e2τ − 1)

)
pe−τx0

∗ p√1−e−2τ̃ε

(
e−τ̃xnoisy +

eτ−τ̃η2x

η2 + e2τ − 1

)

∝ exp

(
− e2τ∥x∥2
2(η2 + e2τ − 1)

)
pXτ̃

(
e−τ̃xnoisy +

eτ−τ̃η2x

η2 + e2τ − 1

)
,

where the second line applies the change of variable x′ 7→ eτ̃x′ in the integral, the penultimate

line follows from pe−τ̃x0
(x′) ∝ p⋆(eτ̃x′) (since x0 ∼ p⋆), and the last line follows from Xτ̃

(d)
=

e−τ̃x0 +
√
1− e−2τ̃ε.

Finally, from the above formula, we obtain

∇ log pZτ
(x) = ∇x

(
− e2τ∥x∥2
2(η2 + e2τ − 1)

)
+∇x log pXτ̃

(
e−τ̃xnoisy +

eτ−τ̃η2x

η2 + e2τ − 1

)

= − e2τx

η2 + e2τ − 1
+

eτ−τ̃η2

η2 + e2τ − 1
s

(
τ̃ , e−τ̃xnoisy +

eτ−τ̃η2x

η2 + e2τ − 1

)
,

where we used the definition s(τ̃ , ·) = ∇ log pXτ̃
(·).

E Discretization via the exponential integrator

E.1 General form of the exponential integrator

Consider a SDE of the form:

dMτ =
(
v(τ)Mτ + f(τ,Mτ)

)
dτ +

√
βdBτ , τ ∈ [0, τ∞], M0 ∼ pM0

,

where v : [0, τ∞] → R, f : [0, τ∞]× R
d → R

d are deterministic functions, and β > 0 is a constant.
Given discretization time points 0 = τ0 ≤ τ1 ≤ · · · ≤ τk ≤ τ∞, a naïve way to discretize the SDE is

Mτi+1
−Mτi ≈

(
v(τi)Mτi + f(τi,Mτi)

)
(τi+1 − τi) +

√
β
√

τi+1 − τiεi, i = 0, 1, · · · , k − 1,

where εi ∼ N (0, Id) is a standard d-dimensional Gaussian random vector which is independent of
Mτi . Although this approach is straightforward, it has the drawback that the linear term v(τ)Mτ is
discretized rather crude. For example, for the OU process where v ≡ −1, f ≡ 0, β = 2, the SDE
can be solved analytically as in (2), while the above approach still has a discretization error.

A more accurate discretization, known to significantly improve the quality of score-based generative
models, is given by the exponential integrator [ZC22], which preserves the linear term and discretizes
the SDE to

dM̂τ =
(
v(τ)M̂τ + f(τi, M̂τi)

)
dτ +

√
βdBτ , τ ∈ [τi, τi+1], i = 0, 1, · · · , k,

with initialization M̂0 ∼ pM0
. On each time interval [τi, τi+1], this is simply a linear SDE, which

can be explicitly solved by

M̂τ
(d)
= eV (τ)−V (τi)M̂τi +

(∫ τ

τi

eV (τ)−V (τ̃)dτ̃

)
f(τi, M̂τi) +

√
β

(∫ τ

τi

e2(V (τ)−V (τ̃))dτ̃

)1/2

εi,

where V is the antiderivative of v:

V (τ) =

∫ τ

0

v(τ̃)dτ̃ .

20

Taking τ = τi+1, we obtain

M̂τi+1

(d)
= eV (τi+1)−V (τi)M̂τi +

(∫ τi+1

τi

eV (τi+1)−V (τ̃)dτ̃

)
f(τi, M̂τi)

+
√
βeV (τi+1)

(∫ τi+1

τi

e2(V (τi+1)−V (τ̃))dτ̃

)1/2

εi, (34)

which provides an iterative formula to compute M̂τi+1
.

E.2 Discretization of DDS-DDPM

Plug the expression of ∇ log pYτ
in Lemma 1 into (16), and use the notation τ rev = η2− τ , we obtain,

for τ ∈ [0, η2], that

dY rev
τ rev =

1√
1 + τ rev

s

(
1

2
log(1 + τ rev),

Y rev
τ rev√

1 + τ rev

)
dτ + dB̃τ

= − 1√
τ rev

εcont
(
1

2
log(1 + τ rev),

Y rev
τ rev√

1 + τ rev

)
dτ + dB̃τ .

Choosing discretization time points. To discretize this SDE, we first choose the discretization time
points. Recalling (??), it is most reasonable to discretize at those time points 0 ≤ τ rev0 ≤ · · · ≤
τ revT ′ ≤ η2 which satisfy

1

2
log(1 + τ revt) =

1

2
log

1

ᾱt
, 0 ≤ t ≤ T ′.

This solves to

τ revt = ᾱ−1
t − 1. (35)

The requirement that τ revt ≤ η2 translates to ᾱt ≥ 1
1+η2 , which yields the following choice of T ′:

T ′ := max

{
t : 0 ≤ t ≤ T, ᾱt >

1

η2 + 1

}
. (36)

Applying the exponential integrator. Now we apply the exponential integrator to discretize the
SDE on each time interval τ rev ∈ [τt−1, τt], t = 1, · · · , T ′ as follows:

dŶ rev
τ rev = − 1√

τ rev
εcont

(
1

2
log(1 + τ revt),

Ŷ rev
τ rev
t√

1 + τ revt

)
dτ + dB̃τ ,

= − 1√
τ rev

ε⋆t

(
Ŷ rev
τ rev
t√

1 + τ revt

)
dτ + dB̃τ

= − 1√
τ rev

ε⋆t

(√
ᾱtŶ

rev
τ rev
t

)
dτ + dB̃τ .

The SDE can be integrated directly on τ rev ∈ [τt−1, τt] (see also (34), with v ≡ 0), yielding

Ŷ rev
τ rev
t−1

= Ŷ rev
τ rev
t

− 2(
√

τ revt −
√
τ revt−1) · ε⋆t

(√
ᾱtŶ

rev
τ rev
t

)
+

∫ η2−τt−1

η2−τt

dB̃τdτ

(d)
= Ŷ rev

τ rev
t

− 2(
√
τ revt −

√
τ revt−1) · ε⋆t

(√
ᾱtŶ

rev
τ rev
t

)
+
√
τ revt − τ revt−1wt,

where wt ∼ N (0, Id) is independent of Ŷ rev
τ rev
t

. Set x̂t = Ŷ rev
τ rev
t

, we obtain

x̂t−1
(d)
= x̂t − 2(

√
τt −

√
τt−1) · ε⋆t

(√
ᾱtx̂t

)
+
√

τt − τt−1wt, wt ∼ N (0, Id), (37)

which is exactly the update equation in Algorithm 2, except that ε⋆t is replaced by the noise estimate
ε̂t.

21

E.3 Discretization of DDS-DDIM

Plug in the expression of sZ in Lemma 2 into the probability flow ODE (20), we obtain

dZrev
τ rev =

η2 − 1

η2 + e2τ rev − 1
Zrev
τ revdτ +

eτ
rev−τ̃(τ rev)η2

η2 + e2τ rev − 1
s

(
τ̃(τ rev), e−τ̃(τ rev)xnoisy +

eτ
rev−τ̃(τ rev)η2x

η2 + e2τ rev − 1

)
dτ

=
η2 − 1

η2 + e2τ rev − 1
Zrev
τ revdτ − e2τ

rev

e2τ rev − 1
εcont

(
τ̃(τ rev), e−τ̃(τ rev)xnoisy +

eτ
rev−τ̃(τ rev)η2x

η2 + e2τ rev − 1

)
dτ,

where the second line used the definition (22).

Choosing discretization time points. Similar to the derivation in Appendix E.2, we discretize at
time points 0 = τ rev0 ≤ τ rev1 ≤ · · · ≤ τ revT ′ ≤ η2, which obey

τ̃(τ revt) =
1

2
log

1

ᾱt
, t = 0, 1, . . . , T ′, (38)

which solves to

τ revt =
1

2
log

η2 + ᾱt − 1

(η2 + 1)ᾱt − 1
. (39)

To make this well-defined, we require

η2 + ᾱt − 1

(η2 + 1)ᾱt − 1
> 0,

which is equivalent to

ᾱt >
1

1 + η2
.

This leads to the same choice of T ′ as in (36). We also set

τ∞ = τ revT ′ .

It is convenient to introduce a notation for the corresponding discrete schedule of τ revt , denoted by

ūt = e−2τ rev
t =

(η2 + 1)ᾱt − 1

η2 + ᾱt − 1
, t = 0, 1, · · · , T ′.

Applying the exponential integrator. Now we apply the exponential integrator, which discretizes
the ODE on each time interval τ rev ∈ [τt−1, τt], t = 1, · · · , T ′, as

dẐrev
τ rev =

η2 − 1

η2 + e2τ rev − 1
Ẑrev
τ revdτ − e2τ

rev

e2τ rev − 1
εcont

(
τ̃(τ revt), e−τ̃(τ rev

t)xnoisy +
eτ

rev
t −τ̃(τ rev

t)η2Ẑrev
τ rev

η2 + e2τ
rev
t − 1

)
dτ

=
η2 − 1

η2 + e2τ rev − 1
Ẑrev
τ revdτ − e2τ

rev

e2τ rev − 1
ε⋆t

(
√
ᾱtxnoisy +

eτ
rev
t
√
ᾱtη

2Ẑrev
τ rev

η2 + e2τ
rev
t − 1

)
dτ,

=
η2 − 1

η2 + e2τ rev − 1
Ẑrev
τ revdτ − e2τ

rev

e2τ rev − 1
ε⋆t

(
√
ᾱtxnoisy +

√
ūt
√
ᾱtη

2Ẑrev
τ rev

(η2 − 1)ūt + 1

)
dτ,

where the second line follows from (38), and the last line follows from dividing both the denominator

and the numerator in the fraction inside ε̂t by e2τ
rev
t . This is a first-order linear ODE on τ rev ∈

[τt−1, τt], which can be solved explicitly (cf. (34)) by

Ẑrev
τ rev =

√
(η2 − 1)e−2τ rev + 1√
(η2 − 1)ūt + 1

Ẑrev
τ rev
t

+
√
(η2 − 1)e−2τ rev + 1 ·

(
h(η, e−2τ rev

)− h(η, ūt)
)
· ε⋆t

(
√
ᾱtxnoisy +

√
ūt
√
ᾱtη

2Ẑrev
τ rev

(η2 − 1)ūt + 1

)
,

for τ rev ∈ [τt−1, τt], where

h(η, u) := − arctan
η√

u−1 − 1
.

22

Plug in τ rev = τt−1 in the above solution, and set zt = Ẑrev
τ rev
t

, we obtain

zt−1 =

√
(η2 − 1)ūt−1 + 1√
(η2 − 1)ūt + 1

zt (40)

+
√
(η2 − 1)ūt−1 + 1 ·

(
h(η, ūt−1)− h(η, ūt)

)
· ε⋆t
(√

ᾱtxnoisy +

√
ūt
√
ᾱtη

2zt
(η2 − 1)ūt + 1

)
.

The initialization, which should ideally be zT ′ = Ẑrev
τ∞ ∼ pZτ∞

, is approximated by zT ′ ∼ N (0, Id).
This is exactly the update equation and the initialization in Algorithm 3, except that ε⋆t is replaced by
the noise estimate ε̂t.

E.4 Discretization of PCS

We first note that the Metropolis-adjustment step in PCS (cf. Algorithm 4) is standard following the
classical form of MALA [RR98]. Therefore, we focus on explaining the Langevin step. Recall the
continuous-time Langevin dynamics for sampling from the distribution exp(L(·; y)− 1

2η2 ∥ · −x∥2):

dZτ = −∇Zτ
L(Zτ ; y)dτ +

1

η2
(Zτ − x)dτ +

√
2dBτ , τ ≥ 0, Z0 ∼ N (0, Id). (41)

The classical form of MALA, as in [RR98], performs one step of a straightforward discretization of
(41) as the Langevin step, as follows:

zn+ 1
2
≈ zn − γ∇znL(zn; y) +

γ

η2
(zn − x) +

√
2γwn, wn ∼ N (0, Id).

In our setting, due to the presence of the linear drift term 1
η2 (Zτ − x), which can be quite large when

η is small, we apply the exponential integrator instead. Set the discretization time points τn = nγ,
the exponential integrator reads as

dZτ = −∇Znγ
L(Znγ ; y)dτ +

1

η2
(Zτ − x)dτ +

√
2dBτ , nγ ≤ τ ≤ (n+ 1)γ.

Solve this linear SDE on nγ ≤ τ ≤ (n+ 1)γ directly (see also (34)) to obtain

Z(n+1)γ
(d)
= rZnγ + (1− r)x+ η2(1− r)∇Znγ

L(Znγ ; y) + η
√
1− r2wn, wn ∼ N (0, Id),

where r := e−γ/η2

. This is the same as the update equation for the Langevin step in PCS (cf. Algo-
rithm 4).

F Proof of main theorems

F.1 Proof of Theorem 1

Proof. We first collect the asymptotic correctness of our subroutines PCS and DDS in the following
two lemmas. The correctness of PCS is actually well-known, see e.g., [Tie94, Corollary 2].

Lemma 3 (Correctness of PCS). Under Assumption 1, with notation in Algorithm 4, in the
continuous-time limit: γ → 0, N → ∞, the algorithm PCS outputs samples with distribution
∝ exp(L(·; y) + 1

2η∥ · −x∥2).

The next lemma guarantees the correctness of DDS with exact unconditional score functions.

Lemma 4 (Correctness of DDS). Assume the score function estimation ŝt is accurate, i.e. ŝt = s⋆t . In

the continuous-time limit: T → ∞, ᾱT → 0, ᾱt−1

ᾱt
→ 1, unifomly in t, both DDS-DDIM and DDS-

DDPM output x obeying the posterior distribution p⋆(x⋆ = x |x⋆ + ηε = xnoisy), ε ∼ N (0, Id).

The proof of Theorem 1 is based on two lemmas on the one-step transition kernel of DPnP and
the asymptotic behavior of the transition kernel, which we will present soon. First, we set up some
notations. Denote

pη(x) := px⋆∼p⋆,ε∼N (0,Id)(x
⋆ + ηε = x) =

1

(2π)d/2ηd

∫
p⋆(z)e

− 1

2η2 ∥x−z∥2

dz.

23

From the first equality, it is clear that pη → p⋆ when η → 0+. We will also use the notation qη
defined in (24), which we recall here:

qη(x) :=
1

(2π)d/2ηd

∫
e
L(z;y)− 1

2η2 ∥x−z∥2

dz.

In virtue of the Assumption 1, we know that qη is finite for all x ∈ R
d.

For convenience, we introduce a notation for application of transition kernels. For a probability
distribution p(x) and a probability transition kernel K(x, x′), denote by p ◦ K the probability
distribution given by

p ◦ K(x′) =
∫

p(x)K(x, x′)dx.

The first lemma characterizes the one-step behavior of DPnP in terms of Markov transition kernels.

Lemma 5. Under the settings of Lemma 4 and Lemma 3, the one-step transition kernel of DPnP

with ηk = η is given by:

KDPnP,η(x, x
′) =

(∫
q0(z)

pη(z)
e
− 1

2η2 ∥z−x∥2− 1

2η2 ∥z−x′∥2

dz

)
p⋆(x′)
qη(x)

.

In other words, if x̂k has distribution px̂k
, then the distribution of x̂k+1 is

px̂k+1
(x′) = px̂k

◦ KDPnP,η(x) =

∫
px̂k

(x)KDPnP,η(x, x
′)dx.

The proof is postponed to Appendix F.3. The next lemma analyzes the ergodic properties of the
Markov chain with transition kernel KDPnP,η. These properties are known [BB23] but scattered in
different literatures, so we will provide a brief proof to be self-contained.

Lemma 6. The Markov transition kernel KDPnP,η has the following properties:

(i) (Stationary distribution.) Let πη be the probability distribution defined by

πη(x) = cηp
⋆(x)qη(x),

where cη > 0 is the normalization constant such that
∫
πη(x)dx = 1. Then KDPnP,η is

reversible with stationary distribution πη .

(ii) (Convergence.) For any initial distribution p, the distribution of the Markov chain with
kernel KDPnP,η converges to πη:

TV(p ◦ K(n)
DPnP,η, πη) → 0, n → ∞, (42)

where K
(n)
DPnP,η is the n-step transition kernel of KDPnP,η .

The proof is postponed to Appendix F.4. We now show how to prove Theorem 1 with the above
two lemmas. With the annealing schedule in Theorem 1, between steps kl−1 ≤ k < kl, which
consist of consecutive (kl − kl−1) steps, the transition kernel of one-step of DPnP is KDPnP,εl . As
(kl − kl−1) → ∞, Lemma 6 implies that

TV(px̂kl
, πεl) = TV(px̂kl−1

◦ K(kl−kl−1)
DPnP,εl

, πεl) → 0.

Under the assumption in Theorem 1 that εl → 0, we let l → ∞ to see liml→∞ πεl = c0p
⋆(·)eL(·;y) =

p⋆(·|y), thus px̂kl
→ p⋆(·|y), as claimed.

24

F.2 Proof of Lemma 4

Proof. For DDS-DDPM, we note that under the continuous-time limit in Lemma 4, the discretization
time points given by (35) verify

τ rev0 = 0, sup
0≤t≤T ′−1

|τ revt − τ revt+1| → 0, τ revT ′ →
(

1

1 + η2

)−1

− 1 = η2, T ′ → ∞.

Therefore, these discretization time points 0 = τ rev0 ≤ · · · ≤ τ revT ′ ≤ η2 form a partition of [0, η2],
which becomes infinitely fine in the continuous-time limit. Thus the discretized integrator (37)
converges to the solution of the SDE (16), which, as we have already argued in Appendix D, produces
samples obeying the denoising posterior distribution p⋆(·|xnoisy), as claimed.

The proof for DDS-DDPM follows similarly, by observing that the discretization time points in (35)
form an infinitely fine partition of [0,∞) in the continuous-time limit.

F.3 Proof of Lemma 5

Proof. The proof is based on computing the transition kernel of the two subroutines. We claim that

(i) Sampling with probability density proportional to exp(L(·; y)− 1
2η2 ∥ · −x∥2) is equivalent

to applying the following Markov transition kernel

KPCS,η(x, x
′) =

1

qη(x)
e
L(x′;y)− 1

2η2 ∥x′−x∥2

.

(ii) Sampling with probability p⋆(x⋆ |x⋆ + ηε = x), where ε ∼ N (0, Id), is equivalent to
applying the following Markov transition kernel:

KDDS,η(x, x
′) =

1

pη(x)
p⋆(x′)e

− 1

2η2 ∥x′−x∥2

.

It is then clear that

KDPnP,η(x, x
′) =

∫
KPCS,η(x, z)KDDS,η(z, x

′)dz =

(∫
q0(z)

pη(z)
e
− 1

2η2 ∥z−x∥2− 1

2η2 ∥z−x′∥2

dz

)
p⋆(x′)
qη(x)

,

as desired. We now prove the above two claims. For (i), note that by (23), we know KDDS,η(x, ·) ∝
p⋆(·)e−

1

2η2 ∥·−x∥2

. Thus it suffices to compute the normalization constant, which is
∫

p⋆(x′)e
− 1

2η2 ∥x′−x∥2

dx′ = pη(x),

by the definition of pη . Therefore

KDDS,η(x, x
′) =

1

pη(x)
p⋆(x′)e

− 1

2η2 ∥x′−x∥2

,

as claimed. The proof of (ii) follows similarly.

F.4 Proof of Lemma 6

Proof. We first introduce a fundamental lemma [PW24], which provides a simple method to bound
the total variation between two distributions.

Lemma 7 (Data-processing inequality). Let p, q be two probability distributions, and K be a
probability transition kernel. Then

TV(p ◦ K, q ◦ K) ≤ TV(p, q).

We now prove the two items in Lemma 6 separately.

Proof of (i). We first show that πη is well-defined, i.e.,
∫
p⋆(x)qnη(x)dx < ∞. This can be seen

from Assumption 1, which implies qη(x) ≲
∫
e
− 1

2η2 ∥x−z∥2

dz ≲ 1, hence
∫

p⋆(x)qη(x)dx ≲

∫
p⋆(x)dx = 1.

25

To show that KDPnP,η is reversible with stationary distribution πη , it suffices to verify

πη(x)KDPnP,η(x, x
′) = πη(x

′)KDPnP,η(x
′, x), ∀x, x′ ∈ R

d.

However, it is easily checked that both sides are equal to

cη

(∫
q0(z)

pη(z)
e
− 1

2η2 ∥z−x∥2− 1

2η2 ∥z−x′∥2

dz

)
p⋆(x′)p⋆(x).

Proof of (ii). We define an auxiliary Markov transition kernel Kaux,η = KDDS,η ◦ KPCS,η. More
explicitly,

Kaux,η(x, x
′) =

∫
KDDS,η(x, z)KPCS,η(z, x

′)dz =

(∫
p⋆(z)

qη(z)
e
− 1

2η2 ∥z−x∥2− 1

2η2 ∥z−x′∥2

dz

)
eL(x′;y)

pη(x)
.

(43)
It is easy to see that

p ◦ K(n)
DPnP,η = p ◦ KPCS,η ◦ K(n−1)

aux,η ◦ KDDS,η. (44)

Thus we are led to investigate the ergodic properties of Kaux,η . Similar to the proof of item (i) above,
it is not hard to show that Kaux,η is reversible with respect to the stationary distribution

µη(x) := cηpη(x)q0(x) = cηpη(x)e
L(x;y).

Moreover, one may check that
πη = µη ◦ KDDS,η. (45)

It is apparent that µ(x′) > 0 and Kaux,η(x, x
′)/µη(x

′) > 0 for all x, x′ ∈ R
d. By [Tie94, Corollary

1], such a Markov transition kernel obeys, for any probability distribution q, that

TV(q ◦ K(n)
aux,η, µη) → 0, n → ∞.

In view of (44) and (45), we set q = p ◦ KPCS,η and invoke the data-processing inequality to obtain

TV(p ◦ K(n)
DPnP,η, πη) = TV(q ◦ K(n−1)

aux,η ◦ KDDS,η, µη ◦ KDDS,η)

≤ TV(q ◦ K(n−1)
aux,η , µη)

→ 0,

as n → ∞. This completes the proof.

F.5 Proof of Theorem 2

Proof. Denote by K̃PCS,η and K̃DDS,η and the transition kernels for PCS and for DDS, respectively.
Note that these may deviate from the transition kernels KPCS,η and KDDS,η defined for the idealized
asymptotic setting in Appendix F. We have

TV(px̂N
, πη) = TV(px̂

N−
1
2

◦ K̃DDS,η, πη)

≤ TV(px̂
N−

1
2

◦ KDDS,η, πη) + TV(px̂
N−

1
2

◦ KDDS,η, px̂
N−

1
2

◦ K̃DDS,η)

≤ TV(px̂
N−

1
2

◦ KDDS,η, πη) + εDDS,

where the second line is triangle inequality, and the third line follows from the assumption in
Theorem 2 that DDS has error at most εDDS in total variation, by taking the input of DDS to be
x̂N− 1

2
.

Similarly, from px̂
N−

1
2

= px̂N−1
◦ K̃PCS,η and the assumption that PCS has error at most εPCS in

total variation, we can show

TV(px̂
N−

1
2

◦KDDS,η, πη) ≤ TV(px̂N−1
◦KPCS,η◦KDDS,η, πη)+εPCS = TV(px̂N−1

◦KDPnP,η, πη)+εPCS.

The above two inequalities together imply

TV(px̂N
, πη) ≤ TV(px̂N−1

◦ KDPnP,η, πη) + εDDS + εPCS.

Iterating this process, we obtain

TV(px̂N
, πη) ≤ TV(px̂1

◦ K(N−1)
DPnP,η, πη) + (N − 1)(εDDS + εPCS). (46)

It remains to bound TV(px̂1
◦ K(N−1)

DPnP,η, πη). For this, we need the following two lemmas.

26

Lemma 8 (Comparing TV and χ2-divergence, [PW24]). For any two distributions p, q, we have

TV(p, q) ≤
√

χ2(p ∥ q).
Lemma 9 (χ2-contractivity of KDPnP,η). There exists some λ := λ(p⋆,L, η) ∈ (0, 1), such that for
any probability distribution p(x), we have

χ2(p ◦ K(N)
DPnP,η ∥ πη) ≤ λ2Nχ2(p ∥πη).

A form of Lemma 9 is well-known for Markov chains with countable state spaces, but relatively
few sources provide a complete proof for the abstract setting we consider here with continuous state
space. For sake of completeness, we prove Lemma 9 in Appendix F.6.

Combining the above two lemmas, we obtain

TV(px̂1
◦ K(N−1)

DPnP,η, πη) ≤
√
χ2(px̂1

◦ K(N−1)
DPnP,η ∥ πη) ≤ λN−1

√
χ2(px̂1

∥πη).

Plug this into (46), we obtain

TV(px̂N
, πη) ≤ λN−1

√
χ2(px̂1

∥πη) + (N − 1)(εDDS + εPCS).

With N ≍ log(1/εacc)
1−λ such that λN−1 ≤ exp

(
− (N − 1)(1− λ)

)
≤ εacc, the desired result readily

follows.

F.6 Proof of Lemma 9

Proof. We need a few fundamental properties of reversible Markov chains, which are collected below.

First we set up some notations. Define the Hilbert space L2(π) to be the space of square-integrable

functions with respect to measure π, i.e., those functions f : Rd → C such that

∥f∥L2(π) :=

(∫
|f(x)|2π(x)dx

)1/2

< ∞.

The first well-known property [SC97] offers a way to represent a reversible transition kernel as a
self-adjoint operator (infinite-dimensional symmetric matrix).

Lemma 10 (Self-adjoint representation of reversible Markov operator). Assume K(x, x′) is a Markov
transition kernel that is reversible with respect to the stationary distribution π(x). Then the integral
operator K : L2(π) → L2(π) defined by

Kf(x) =

∫
K(x, x′)f(x′)dx′

is self-adjoint and compact. For any probability distribution p(x) such that
∫ p2(x)

π(x) dx < ∞, we have

∫
p(x) · Kf(x)dx =

∫
p ◦ K(x′)f(x′)dx′.

Moreover, the eigenvalues of K are the same as those of K.

The following theorem is a generalization of the classical Perron-Frobenius theory for finite-
dimensional transition matrix to strictly positive operators. The form we present here can be found in
[Sch12, Theorem V.6.6]; see also [Bou23b, Theorem III.6.7] for a more elementary treatment which
can also be adapted to the form we need.

Theorem 3 (Jentzsch). Let K(x, x′) be a Markov transition kernel. If K(x, x′) > 0 for any

x, x′ ∈ R
d, then K has a unique stationary distribution π. Moreover, 1 is a simple eigenvalue of K,

with π being the only left eigenfunction, and the constant function 1 being the only right eigenfunction.
In addition, there exists λ ∈ (0, 1) such that any other eigenvalue of K has modulus no larger than λ.

27

We are now ready to prove Lemma 9. We divide the proof into the following steps.

Step 1: controlling the eigenvalues of KDPnP,η. Recall the auxiliary kernel Kaux,η defined in
(43). It is a standard result in linear algebra or function analysis [Bou23a] that Kaux,η = KPCS,η ◦
KDDS,η has same eigenvalues as KDPnP,η = KDDS,η ◦ KPCS,η. From (43), it is easy to check
Kaux,η(x, x

′) > 0, thus Theorem 3 implies 1 is a simple eigenvalue of KDPnP,η. Moreover, there
exists λ := λ(p⋆,L, η) ∈ (0, 1), such that any other eigenvalue of Kaux,η has modulus no larger than
λ.

Since KDPnP,η has the same eigenvalues as Kaux,η , and, by Lemma 10, the operator KDPnP,η also has
the same eigenvalues as these two, we conclude that KDPnP,η is a self-adjoint compact operator on

L2(πη), of whom 1 is a simple eigenvalue. Moreover, any other eigenvalue of KDPnP,η has modulus
no larger than λ.

Step 2: establishing the contractivity of KDPnP,η in L2(πη). It is easy to verify that the constant

function 1, which takes value 1 for any x ∈ R
d, is a eigenfunction of KDPnP,η associated to the

simple eigenvalue 1, thus is the only (up to scaling) eigenfunction associated to that eigenvalue. It is

also a unit-length eigenfunction, since ∥1∥L2(πη) = (
∫
1 · πη(x)dx)

1/2 = 1. Therefore, the operator

KDPnP,η − 11
⊤ is a self-adjoint operator whose eigenvalues have modulus no larger than λ, where

11
⊤ is the orthogonal projection onto 1 in L2(πη), defined by

11
⊤f(x) ≡

∫
f(x′)πη(x

′)dx′, ∀x ∈ R
d.

Using the fact that KDPnP,η11
⊤ = 11

⊤KDPnP,η = 11
⊤, one may show (KDPnP,η − 11

⊤)N =

K(N)
DPnP,η − 11

⊤ by expanding the product, see e.g. [SC97]. Consequently, KN
DPnP,η − 11

⊤ is a

self-adjoint operator whose eigenvalues have modulus no larger than λN , i.e.,
∥∥KN

DPnP,η − 11
⊤∥∥

L2(πη)→L2(πη)
≤ λN , (47)

where ∥ · ∥L2(πη)→L2(πη) denotes the operator norm on L2(πη).

Step 3: bounding the inner product of p ◦ K(N)
DPnP,η − πη with any square-integrable function.

Note that when χ2(p ∥πη) = ∞, the conclusion is trivially true. For the rest part of the proof, we

assume χ2(p ∥πη) < ∞. Now, for any f ∈ L2(πη), by applying Lemma 10 iteratively, we obtain
∫

p ◦ K(N)
DPnP,η(x)f(x)dx =

∫
p(x′)KN

DPnP,ηf(x
′)dx′

=

∫
p(x′) · (KN

DPnP,η − 11
⊤)f(x′)dx′ +

∫
p(x′)11⊤f(x′)dx′

=

∫
p(x′) · (KN

DPnP,η − 11
⊤)f(x′)dx′ +

∫
f(x′)πη(x

′)dx′,

where the last line follows from the definition of 11⊤ and
∫
p(x′)dx′ = 1. Rearrange the terms to

see ∫ (
p ◦ K(N)

DPnP,η(x)− πη(x)
)
f(x)dx =

∫
p(x′) · (KN

DPnP,η − 11
⊤)f(x′)dx′. (48)

In particular, taking p = πη yields

0 =

∫
πη(x

′) · (KN
DPnP,η − 11

⊤)f(x′)dx′. (49)

Substract (49) from (48), and then take absolute value, we obtain
∣∣∣∣
∫ (

p ◦ K(N)
DPnP,η(x)− πη(x)

)
f(x)dx

∣∣∣∣

=

∣∣∣∣
∫ (

p(x′)− πη(x
′)
)
· (KN

DPnP,η − 11
⊤)f(x′)dx′

∣∣∣∣

≤
(∫ (

p(x′)− πη(x
′)
)2

πη(x)
dx

)1/2

·
∥∥(KN

DPnP,η − 11
⊤)f(x′)

∥∥
L2(πη)

28

≤
√
χ2(p ∥πη) · λN∥f∥L2(πη). (50)

Step 4: choosing an appropriate square-integrable function. Now, set

f(x) =
p ◦ K(N)

DPnP,η(x)− πη(x)

πη(x)
.

It is easily checked that
∫ (

p ◦ K(N)
DPnP,η(x)− πη(x)

)
f(x)dx = χ2(p ◦ K(N)

DPnP,η ∥ πη),

∥f∥L2(πη) =

√
χ2(p ◦ K(N)

DPnP,η ∥ πη).

Plug these equations into (50), we obtain

χ2(p ◦ K(N)
DPnP,η ∥ πη) ≤ λ2Nχ2(p ∥πη),

as claimed.

G Additional numerical results

G.1 Implementation details

Score functions used. We use the same pre-trained score functions as in [CKM+23].3

Normalization. All images are normalized in the usual way to fit into the range [−1, 1].

Parameters of our algorithm. We choose the same annealing schedule across all tasks. Please see
Appendix H for a detailed discussion.

Parameters of comparison methods. We made our best effort to fine-tune the other algorithms within
a reasonable amount of time for each task. We list the paramters, following the notations in the
original paper [CKM+23, SZY+23], as follows.

• Super-resolution: For DPS, the learning rate is set to 0.6. For LGD-MC, the MC sampling
variance rt = 0.05, the loss coefficient λ = 10−3, and the learning rate is set to 60.0. For
ReSample, the stochastic resampling variance parameter γ = 10 for FFHQ and γ = 4.0 for
ImageNet.

• Phase retrieval: For DPS, the stepsize is set to 0.8. For LGD-MC, the MC sampling variance
rt = 0.05, the loss coefficient λ = 10−3, and the learning rate is set to 400.0.

• Quantized sensing: For DPS, the stepsize is set to 100.0. For LGD-MC, the MC sampling
variance rt = 0.05, the loss coefficient λ = 2 × 10−5, and the learning rate is set to 500.0.
For ReSample, the stochastic resampling variance parameter γ = 4 for FFHQ and γ = 3.5 for
ImageNet.

G.2 Forward measurement operators

Super-resolution. The forward model for super-resolution is the usual bicubic downsampling operator
[Key81], which is a linear operator (in fact, a block Hankel matrix). We use a downsampling ratio of
4 in all our experiments. The measurement noise is set to be white Gaussian, with variance 0.2. Note
that the noise variance is moderately larger than that in [CKM+23] to better reflect the scenario in
practical inverse problems.

Phase retrieval. We consider phase retrieval with a coded mask, which is a classical inverse problem
[CLS15]. For a 256× 256 image x (for each color channel) in our experiments, we first generate a
random mask M ∈ R

256×256 (which is shared across color channels), then apply Fourier transform
F to M ⊙ x, where ⊙ denotes the Hadarmard (entrywise) product, and finally preserve only the
magnitudes of the Fourier transform. Formally, the forward measurement operator is A(x) =
mag(F(M ⊙x)), where mag(·) computes the entrywise magnitude of a matrix with complex entries.
The measurement noise is again set to be white Gaussian, with variance 0.2.

3https://github.com/DPS2022/diffusion-posterior-sampling

29

Table 7: FID and SSIM of solving inverse problems on FFHQ 256 × 256 validation dataset (1k
samples).

Super-resolution Phase retrieval Quantized sensing
(4x, linear) (nonlinear) (nonlinear)

Algorithm FID ↓ SSIM ↑ FID ↓ SSIM ↑ FID ↓ SSIM ↑
DPnP-DDIM (ours) 36.3 0.668 46.5 0.631 37.3 0.712
DPS [CKM+23] 38.6 0.636 52.0 0.494 42.1 0.601
LGD-MC (n = 5) [SZY+23] 36.8 0.651 82.3 0.414 40.3 0.639
ReSample (pixel-based) [SKZ+23] 40.2 0.641 - - 40.0 0.657

Table 8: FID and SSIM of solving inverse problems on ImageNet 256× 256 validation dataset (1k
samples).

Super-resolution Phase retrieval Quantized sensing
(4x, linear) (nonlinear) (nonlinear)

Algorithm FID ↓ SSIM ↑ FID ↓ SSIM ↑ FID ↓ SSIM ↑
DPnP-DDIM (ours) 47.5 0.510 73.5 0.289 43.2 0.623
DPS [CKM+23] 61.4 0.496 92.7 0.318 82.4 0.459
LGD-MC (n = 5) [SZY+23] 46.2 0.503 89.8 0.234 46.8 0.563
ReSample (pixel-based) [SKZ+23] 68.3 0.427 - - 53.7 0.491

H Ablation studies

H.1 Initialization

In the Algorithm 1, the initial guess x̂0 is set to be a properly scaled Gaussian random vector. However,
from Theorem 2 it can be infered that using a heuristic posterior sampler as the initializer could
decrease χ2(px̂1

∥πη), hence potentially improve the convergence speed of DPnP. By using existing
algorithms like DPS or LGD-MC as initializer, DPnP can improve upon the results of existing
algorithms towards the correct posterior distribution efficiently and provably. In our experiments, we
find it helpful to initialize DPnP with LGD-MC, which accelerates the algorithm significantly.

H.2 Annealing schedule

We discuss the choice of the annealing schedule ηk in DPnP (Algorithm 1). As seen in the theoretical
analysis (Theorem 2), if we set all the ηk ≡ η for some constant η > 0, then DPnP converges to a
distribution πη , which can be regarded as a version of the posterior distribution p⋆(·|y) distorted by
an order of O(η). The smaller η is, the more accurate the final distribution will be. On the other hand,
it was also seen that in many cases, the spectral gap is Ω(η), hence the convergence time is O(1η).

Therefore, smaller η would make it take longer to converge.4

To strike a balance between the accuracy and the convergence rate, we find it empirically successful
to adapt an gradually decreasing schedule for ηk, similar to [BB23]. In the first few iterations, we set
ηk to be a large constant. After this initial phase, we decrease ηk slowly, eventually to ηN which is
chosen to be a small constant. An example of such an annealing schedule is

η0 = η1 = · · · = ηK0
, η0 > 0 is a large constant,

ηk = (ηK/η0)
k−K0
K−K0 η0, K0 < k ≤ K, ηK > 0 a small constant,

where K0 < K is the length of the initial phase, which can be chosen as, e.g. K0 = K/5. For all the
numerical experiments, we set η0 = 0.4, ηN = 0.15, K0 = 4, K = 20.

4Strictly speaking, while the number of iterations required to converge increases as η gets smaller, the
computational complexity per iteration will decrease. However, in experiments, we observed that the latter effect
is not strong enough to compensate for the increase in overall complexity caused by the former.

31

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provides explicit description of the contributions
and the context.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the scope of our work and provide ablation studies.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

32

Justification: We provide clear statement of assumptions for our theory.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide algorithm tables and experimental setups with a reasonable level
of detail.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

33

Answer: [No]

Justification: The code is still in preparation to meet publication standard. We promise to
release it after this work is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings are given in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The computational cost of reporting error bars is too high. Most of the closely
related works do not include them.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

34

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are done on a single Nvidia L40 GPU. The time of execution
is reported.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully honor the NeurIPS Code of Ethics in this work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While our provably robust algorithm may potentially improve the fieldity
of diffusion-based methods in solving inverse problems, it awaits future research before
anything special can be said about potential societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

35

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models is released by this work.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are credited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

36

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Our contribution

	Score-based generative models
	The forward process and score functions
	The reverse process and sampling

	Posterior sampling via diffusion plug-and-play
	Key ingredient: score-based denoising posterior sampling
	Our algorithm: diffusion plug-and-play

	Theoretical analysis
	Numerical experiments
	Discussion
	Related works
	Discrete-time formulation of diffusion processes
	Details of algorithm subroutines
	Score functions of diffusion denoising samplers
	Proof of Lemma 1
	Proof of Lemma 2

	Discretization via the exponential integrator
	General form of the exponential integrator
	Discretization of DDS-DDPM
	Discretization of DDS-DDIM
	Discretization of PCS

	Proof of main theorems
	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Theorem 2
	Proof of Lemma 9

	Additional numerical results
	Implementation details
	Forward measurement operators
	Sample images for other inverse problems
	Additional performance metrics

	Ablation studies
	Initialization
	Annealing schedule

