®

Check for
updates

Individual Fairness with Group
Awareness Under Uncertainty

Zichong Wang'!, Jocelyn Dzuong!, Xiaoyong Yuan?, Zhong Chen?,
Yanzhao Wu!, Xin Yao?*, and Wenbin Zhang!®)

! Florida International University, Miami, USA
{ziwang,wenbin.zhang}@fiu.edu
2 Clemson University, Clemson, USA
3 Southern Illinois University, Carbondale, USA
4 Lingnan University, Hong Kong SAR, China

Abstract. As machine learning (ML) extends its influence across
diverse societal realms, the need to ensure fairness within these sys-
tems has markedly increased, reflecting notable advancements in fair-
ness research. However, most existing fairness studies exclusively opti-
mize either individual fairness or group fairness, neglecting the potential
impact on one aspect while enforcing the other. In addition, most of
them operate under the assumption of having full access to class labels,
a condition that often proves impractical in real-world applications due
to censorship. This paper delves into the concept of individual fairness
amidst censorship and also with group awareness. We argue that this
setup provides a more realistic understanding of fairness that aligns with
real-world scenarios. Through experiments conducted on four real-world
datasets with socially sensitive concerns and censorship, we demonstrate
that our proposed approach not only outperforms state-of-the-art meth-
ods in terms of fairness but also maintains a competitive level of predic-
tive performance.
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1 Introduction

In recent years, the widespread utilization of machine learning algorithms in
various domains has raised a growing societal concern regarding the bias and
discrimination inherent in these algorithms. This is particularly consequential in
high-stakes decision-making scenarios such as job applicant ranking [8], criminal
justice [11], and credit scoring [51]. To this end, algorithmic fairness has garnered
significant attention, leading to the development of a large collection of fair ML
notions and algorithms [42]. These are typically categorized as either group or
individual fairness [33]: Group fairness involves identifying sensitive attributes
(e.g., race or gender) which could be potential sources of bias, and then evalu-
ating whether the outcome statistics of the classifiers (e.g., prediction accuracy
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14945, pp. 89-106, 2024.
https://doi.org/10.1007/978-3-031-70362-1_6



90 Z. Wang et al.

and true positive rate) are similar across different subgroups [39]; Individual
fairness studies bias at a much finer granularity, ensuring that similar individu-
als receive similar probability distributions over class labels, thereby mitigating
unfair treatment [19].

The majority of these prior studies approach fairness as a supervised learning
problem, presuming the presence of class labels to quantify and mitigate bias.
However, this assumption is unrealistic in many real-world applications due to
the prevailing censorship [22,28,41]. For instance, consider Fig. 1 as an example
of an ML-based job screening task. Here, the actual application results, i.e., class
labels, remain unknown for censored individuals like d3 and d4. This censoring
phenomenon can be attributed to various causes. For instance, in the case of
applicant dy, the study concluded before the applicant received their application
result, resulting in a lack of information about d4’s class label. In other cases,
applicants may become lost to follow-up, withdraw, or experience competing
events that make further follow-up impossible. For instance, the applicant ds
might have received alternative job opportunities and chosen to withdraw from
the application system, leading to an unknown application outcome or class
label. Due to the inability to handle such censorship information, existing fair-
ness works either exclude observations with uncertain class labels [11,18,52] or
ignore the censorship information [38,40]. Both strategies can introduce substan-
tial bias, as censored information contains important details and cannot simply
be ignored [6]. For instance, this omission can skew critical components of indi-
vidual fairness, such as the similarity metric, leading to inappropriate similarity
evaluation due to the exclusion of censorship information [5].
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Fig. 1. An example depicts the issue of censoring and disparity in individual fairness
without group awareness. Individuals ds and ds4 are censored, while others, i.e., di
and d2, are not censored. Individuals are arranged in ascending order of their survival
times, with the shortest survival time, i.e., T, at the far left. The study concludes
at the orange dashed line and the center sample provides prior information to predict
other samples. (Color figure online)

Moreover, existing research on fairness often treats individual fairness and
group fairness as distinct tasks, failing to consider potential implications among
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them [19,26,55]. However, this separation of objectives could introduce addi-
tional bias into each other. Still considering the example depicted in Fig. 1, the
centered individual ds has her loan application known as approved while the
loan decisions for male applicant d; and female applicant d3 will be determined
by the individual fairness enforced ML algorithm. As we can see in the input
space (Fig.1 (a)), these individuals have equal similarity distances: (di,d2) =
(d1,d3) = (d2,d3)=3, while the distances become (d;,d2) = 20, (d1,d3) = 70, and
(d2,d3) = 90 in the output space (Fig.1 (b)). This suggests these three indi-
viduals are alike with respect to their input attributes. However, in the output
space, while the results are individual fairness constraints enforced, d; continues
to exhibit similarity to ds, whereas d3 becomes distinct from dy. This disparity
arises as the average constraint scalar is inconsistent across groups for individual
fairness constraints without group awareness (i.e., the average constraint scalar
for males is higher than that for females); d; is under more stringent individual
fairness constraints, positioning him nearer to ds, while d3, experiencing more
lenient individual fairness constraints, is positioned farther from ds. As a result,
d1, who is closer to ds in the output space, receives the same approval outcome,
while d3, who is farther away, receives a distinct decline decision, leading to an
inequitable outcome for her job application (ds, with group awareness, would be
placed to the position of df, ensuring a fair outcome). In addition, while met-
rics evaluating both input and output space similarities can be properly defined
by domain experts, the Lipschitz condition needed in existing individual fairness
studies to calibrate the distance between them is non-trivial to specify, which has
been another major obstacle to wider adoption in real-world applications [34].

Therefore, there is a pressing need to address fairness in the presence of cen-
sorship while simultaneously balancing the impact of individual and group fair-
ness, which is still largely unexplored and presents unique challenges: i) Quan-
tifying and mitigating bias in censored settings. Most of the existing fair-
ness notions and algorithms often overlook censorship information, rendering
them inapplicable [2,4,39]. ii) Achieve a balance between individual and
group fairness. Most existing fairness work considers individual or group fair-
ness independently, overlooking the potential complications between them [37].
iii) Unbounding the Lipschitz condition. Existing individual fairness works
usually rely on the Lipschitz condition to align the difference in the metrics of
input and output spaces, restricting its applicability in real-world scenarios [34].

To tackle the above challenges, this paper investigates fairness with censor-
ship and the interplay between group and individual fairness for fairness guaran-
tees more in line with realistic assumptions. The key contributions of this paper
can be summarized as follows:

— We present a new research challenge that focuses on the intersection of indi-
vidual and group fairness in learning with censorship.

— We analyze the impact of individual fairness constraints on group fairness,
and devise notions to measure individual and individual-group bias amidst
censorship.
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— We introduce fairCox, an individual-centric debiasing algorithm with built-in
group awareness, custom-designed for applications amidst censorship.

— Extensive experimental results on four real-world socially sensitive datasets
with censorship.

The organization of this paper is as follows: A review of the pertinent lit-
erature is provided in Sect.2. Section 3 introduces the notations and problem
definition. Our proposed approach and fairness metrics are thoroughly expli-
cated in Sect. 4. Section 5 elucidates the experimental framework and discusses
the outcomes. Finally, Sect.6 concludes the paper.

2 Related Work

In this section, we give a brief overview of related work on fairness in ML and
survival analysis.

2.1 Fairness in ML

Fairness in ML is a well-explored research area with numerous studies conducted
to quantify and mitigate ML bias [12,13,43,45,46,56]. Existing fairness work
can be typically categorized into group and individual fairness [31]. The for-
mer [16,32,44,47,48,50] seeks to ensure statistical equality among subgroups
defined by sensitive attribute(s), while the latter [3,19,21,35,37] aims to ensure
that similar individuals receive similar probability distributions over class labels,
promoting equitable treatment irrespective of individuals’ sensitive attributes.
While individual fairness offers a finer granularity in scrutinizing potential biases
and discrimination compared to group fairness, it relies on the Lipschitz con-
dition [3]. Specifically, individual fairness requires that the similarity distance
between individuals in the output space should not exceed their similarity dis-
tance in the input space [19]. However, specifying a suitable Lipschitz constant
to compare these distances accurately can be difficult, due to the variation in
distance metrics between the input and output spaces. Moreover, most exist-
ing fairness works often prioritize a single fairness goal-be it individual or group
fairness-overlooking the potential implications among various fairness objectives.
As discussed in Sect. 1, this oversight has the potential to introduce additional
bias, leading to deprived subgroups facing persistent challenges in accessing
loans [36]. Additionally, a common limitation of these approaches is the inher-
ent assumption of the availability of class labels, rendering them inapplicable in
censorship settings where labels can be uncertain [54].

2.2 Survival Analysis

The prevalence of survival data, also known as censored data, motivates the study
of survival analysis to address the challenges of accessing partial survival infor-
mation from study cohorts [14]. Among the numerous survival models proposed,
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the Cox Proportional Hazards (CPH) model stands out as the most widely uti-
lized [15], describing the multiplicative relationship between risk, as conveyed by
the hazard function, and covariates. In recent times, deep neural networks have
also been employed to capture the nonlinearity of censored data [25]. In contrast,
an alternative approach explores tree-based methods [24], with a particular focus
on random forests due to their superior capabilities in handling the nonlinear
effects of variables and free of assumptions like proportional hazards. Given the
widespread use of survival models, it becomes imperative to include consider-
ations of fairness. Recent work in this domain includes FSRF [55], which aims
to achieve group fairness amidst censorship by ensuring consistency in pairwise
comparisons between model predictions and true outcomes across subgroups.
On the other hand, IDCPH [26] shifted focus towards individual fairness in con-
texts with censored data. However, IDCPH’s reliance on the Lipschitz condition
can limit its applicability in various contexts. To this end, IFS [53] attains cen-
sored individual fairness by enforcing consistency based on rankings between the
input and output spaces. A significant drawback, however, lies in its surrogate
assessment of individual fairness loss. Specifically, IF'S quantifies bias based on
the focused individual to form the ranking, using the bias surrogate, instead
of considering individuals within the ranking who are the actual subjects of
discrimination.

To jointly address these challenges, our method proposes a holistic approach
that aims for individual fairness in censored settings while concurrently ensuring
equitable treatment across various subgroups, and it also bypasses the Lipschitz
constraints present in traditional individual fairness methods.

3 Notations and Problem Definition

Each individual d; in the censored data D can typically be described as d; = {z;,
T, §}, where: i) x; denotes the set of observed features with a special attribute,
referred as sensitive attribute s;, that differentiates between favored and deprived
subgroups (e.g., male vs. female), ii) T denotes the survival time, i.e., the time
of the event, and iii) ¢ is the event indicator, signaling whether the event has
been observed (i.e., =1 when the event is observed otherwise the survival time
is censored, creating uncertainty to the class label).

To model survival data, the hazard function is commonly used, which stipu-
lates the instantaneous rate of event occurrence at a specified time ¢:

Prt<T<t+AtT>t
htle) = lim e <A+t feus

(1)

Given the hazard function, we can compute the survival function, S(t|x) = Pr
(T' > t|z), which indicates the probability that an event occurs after a specific
time ¢, and vice versa. Mathematically, as shown in Eq. 2:

S(t|x) = exp (—/O h(t|x)dt) , h(t|z) = ho(t) exp(8 ). (2)
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where hg(t) represents the baseline hazard function (i.e., when x = 0). Addition-
ally, G is a set of undetermined parameters that can be estimated as the partial
likelihood in Eq. 3:

exp(87 z;)
1:0;=1 ZjiTj >T; eXp(ﬁij>

L(B) = , B =arg max L (f) (3)

In this work, our primary goal is to quantify individual unfairness with group
awareness amidst censorship as well as to model a fair survival function H(-) to
mitigate the quantified bias amidst censorship.

4 Methodology

The presence of censorship restricts the suitability of widely employed fairness
notions and algorithms that have been introduced in existing ML fairness studies.
In addition, existing works often treat individual and group fairness as separate
goals, resulting in models that enhance individual fairness at the cost of group
fairness. To this end, our proposed model aims to measure individual fairness
amidst censorship precisely. By pinpointing the origins of individual bias, it also
becomes feasible to further quantify associated group-level bias. Specifically, in
Sect. 4.1, we start by outlining a criterion to identify the origins of individual
bias from a ranking perspective. The intuition is that individuals should have
the same position in the input space and output space obtained through different
reference individuals. This enables a direct evaluation of individuals facing unfair
treatment, while also facilitating the measurement of group-level bias. Expanding
upon this, Sect. 4.2 further introduces a metric specifically designed to quantify
the disparity of individual unfairness between groups. Finally, Sect. 4.3 presents
the model to achieve individual fairness with group awareness under censorship.

4.1 Quantifying Individual Fairness with Censorship

This section introduces a novel individual fairness notion, namely Cumulative
Ranked Individual Fairness (CRIF@Fk ), specifically tailored to address censorship
scenarios, offering a refined approach to evaluating bias by examining individuals
within the ranking list instead of the reference individual to form the list. This
is achieved by assessing both the direct discriminatory effect on the individuals
themselves and the indirect impact through their neighbors. This strategy can
identify individuals who are genuinely discriminated against, while at the same
time circumventing the constraints imposed by the Lipschitz condition.

To illustrate the overarching concept, take the example shown in Fig.2. The
rankings, established based on similarity with d; as the reference, are orga-
nized in descending order in both the input and output spaces, represented as
{da,ds3,ds} and {da,d4,ds}, respectively. In this example, the bias originates
within the ranking list (i.e., da, d3, d4) rather than the reference d;. To quantify
such ranking-based bias, we evaluate the changes in the ranking of each d; (i.e.,
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Fig. 2. An illustration of quantifying individual bias from a ranking perspective, where
similarity rises from 0 moving from right to left.

da, d3 or dy) relative to the reference d,. (i.e., di) and the shift in the relative
positions of d; and his/her neighbors, which also simultaneously eliminates the
need for specifying a Lipschitz constant, thus improving the applicability. Tak-
ing ds as a specific example, let’s illustrate two types of associated bias. First,
there is a discrepancy in his/her proximity to the reference d; in the output
space compared to the input space, potentially receiving different outcomes of
their socially sensitive application. Second, a relative disadvantage compared to
his/her neighbor d4 in the output space. This dual consideration allows for a
more nuanced understanding of how an individual’s ranking position is affected
in different contexts. Finally, the overall individual unfairness of ds is deter-
mined by calculating the average value of d3’s individual unfairness across all
his/her associated ranking lists. Mathematically, the proposed CRIF is defined
as follows:

M RIFr

Sim p/ (
CRIFQk = 4
N Z rz RIF(SilmD (ds) ( )

where N is the total number of 1nd1v1duals, k refers to the length of the top-k
ranking list formed with d, as the reference, and M indicates the number of
occurrences where d; is among these top-k ranking lists (emphasizing the top-k
individuals in line with the fundamental principle of individual fairness, which
mandates that similar individuals should be treated similarly). In addition, D’
and D indicate the output and input spaces, respectively, while the formulation

RIF‘Silm [(d) denotes the Ranked Individual Fairness of d;,
. k .
SlmD(dZ') 1 SlmD(dl ‘,dr)
RIFS, + (5)
Sim((di) — logz(pos( d; )+1) k-1 posZ:1 log,(pos + 1)
dipos #di

where (-) can be either D’ or D, sequence {lpes}h ., represents the ordered list
of individual indices obtained from the similarity matrix Sim(-) for the reference
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d,, and Simp(dy,,,,d,) denotes the similarity in the input space between the
individual at the pos-th position of the ordering list, d; ., and the reference d,.
Note that both RIFgim,,(4,) and RIFgiy ,(4,) compute the RIF using the sim-
ilarity values from Simp (i.e., input space), with the corresponding similarity
being used only for deriving the ordering list {5, which directly quantifies indi-
vidual bias while eliminating the necessity of specifying a Lipschitz constant. In
addition, Simp is typically contingent upon the specific problem at hand and
can be assessed by domain experts [29,30], while the exponential of the negative
difference in risk scores is utilized as the similarity metric for Simp/, and Simp-
can thus be formally defined as:

Simpr(a,,a,) = (1= (ICs, — Cu,])) x exp (~|exp(8' @) — exp(87a;)])  (6)

where the feature z; characterizes individual d; (x; and d; are used interchange-
ably for simplicity). The term |C,, — Cy,| measures the concordance difference
between d, and d;, which adjusts the similarity between these two individuals,
while incorporating essential survival information. This adjustment is necessary
and achieved by measuring the difference in the concordances between two indi-
viduals, ensuring that the similarity measure accurately reflects the orders among
all individuals that can actually be ranked. Specifically, the concordance C,, for
an individual d; is defined as follows:

1

C,. —

Y Lh(tles) < h(tleo)|oc = 1] (7)

T FT

where 1 represents the indicator function, and z~ and z . denote individuals with
longer (1% = max(7},,T;,)) and shorter survival times (T« = min(T,,T%;))
respectively. The event indicator of the shorter survival time (7<) is denoted as
d<; 0-=1 means shorter time is not censored, and thus this pair-wise comparison
is permissible for comparison. With identified permissible pairs, C';, represents
the proportion of all other individuals that are correctly ranked with the sample
x; in relation to their actual survival times.

Overall, our proposed CRIFQE is obtained by calculating the average ratio
between the RIF from the output space reflected in the input space and the actual
input space. Therefore, as the CRIFQE score increases, ranging between 0 and
1, the model becomes fairer due to enhanced consistency between orderings in
its input and output spaces. In other words, if two individuals are ranked closely
in the input space (e.g., their personal circumstances), then they should also be
ranked closely in the output space (e.g., their application results).

4.2 Quantifying Individual-Group Fairness with Censorship

To further tackle the limitation of neglecting the implications between individ-
ual and group fairness in existing fairness works, this section introduces a novel
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metric to assess the disparity of individual fairness among various subgroups,
as well as in the presence of censorship. To accomplish this goal while adher-
ing to the core principle of group fairness, we employ CRIF, as explained in
the preceding section, to evaluate if the ML model treats different subgroups
equally when assigning favorable outcomes. Specifically, we evaluate the individ-
ual unfairness of each individual d; within a subgroup Dy, thereby evaluating
the model’s parity across each subgroup. Building on this, Group Fairness (GF),
which is designed to measure the level of individual fairness of each subgroup
D, is formally defined in Eq. 8:

Ds; | d,
! RIFSlmD/ (di)
G < RIFE ®)
Simp (d;)
where | - | represent the number of individuals in the subgroup D,,. Based on

GFDSi , the Individual Group Disparity (IGD) is introduced to capture the largest
deviation in the model’s discriminative abilities across different demographic
groups D, and Dy, during the optimization process for individual fairness, and
is mathematically defined as follows:

IGD = min
V D,;,D,,€D,D, #D,,

{ ‘ Min(GFDsi ) GFDSy‘ ) ' } (9)

Max(GFp, ,GFp, )

The IGDp,, value ranges from 0 to 1, with a score of 1 indicating equal
individual fairness among all subgroups, signifying unbiased treatment, while
a score of 0 symbolizes a disparity in treatment between subgroups, indicating
biased outcomes. To summarize, utilizing IGD allows for the identification of any
disparity across groups, revealing whether the model favors certain subgroups
over others while enforcing individual fairness amidst censorship.

4.3 Mitigating Bias Under Censorship

With the integration of fairness definitions that meticulously account for cen-
sorship, we introduce a debiasing algorithm, fairCox. This is structured around
the standard Cox proportional hazard model, devised to produce forecasts that
ensure equitable risk predictions across individuals. In addition, fairCox simul-
taneously harmonizes the disparities in individual unfairness amongst varying
subgroups. Essentially, fairCox augments the partial likelihood maximization
of the CPH model by integrating our individual and individual-group fairness
quantification metrics, CRIF@Qk and IGD. Its design is such that it aspires to
individual fairness while diminishing the disparity in individual fairness across
different subgroups. Below, we detail the loss functions for each optimization
objective and present the total objective function for optimizing our framework.

First, to maintain the maximization of model utility, the utility loss function
Lusiiity 1s formulated as the negative log partial likelihood of the CPH model.
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Based on the partial likelihood presented show in Eq.3, we define Ly as
follows:

£utility = - Z (ﬂ—rmz - IOg Z exp(ﬁT:Bj)) (10)
7:0;,=1 JT;2>T;

Second, we incorporate individual fairness quantification as the individual
fairness regularizer, denoted as Ly = CRIFQk, along with the loss function,
denoted as Lg¢, for the IGD objective, aiming to promote group equality with
respect to individual fairness. Specifically, our aim is to equalize the levels of
individual unfairness across all subgroups, where Li;s = IGD. Please note that
this loss function exhibits symmetry between any two given groups. Finally, we
define the unified objective function as:

Liotal = Lutitity + oLis + pligr (11)

In summary, fairCoz, weighted by the hyperparameters a and p, jointly opti-
mizes utility, individual fairness, and group equality-informed individual fair-
ness objectives for individuals with group-awareness fairness learning amidst
censorship.

5 Experiment

5.1 Datasets

We validate the proposed model using four real-world censored datasets that
involve socially sensitive concerns and exhibit a range of distinct characteristics:
i) The ROSSI dataset comprises data on individuals who were convicted and
subsequently released from Maryland state prisons, with a one-year follow-up
period [22]. ii) The COMPAS dataset, a pivotal resource in algorithmic fair-
ness research, contains information used to predict recidivism rates in Broward
County [1]. iii) The KKBoz dataset is derived from the WSDM-KKBox’s Churn
Prediction Challenge 2017 [28]. iv) The Support dataset offers data on patients
admitted to five tertiary care academic centers [27]. Table 1 presents a summary
of key details for these datasets, with a notable emphasis on the explicit inclusion
of survival information, aligning with real-world scenarios.

5.2 Baselines

To assess the effectiveness of our approach, we compared it against six base-
line models: IDCPH [26], FSRF [55], CPH [15], RSF [24], DeepSurv [25], and
IFS [53]. Among them, IDCPH and IFS have recently introduced a censored
individual fairness model, while FSRF focuses on group-level fairness consider-
ations. In addition, CPH is the conventional and widely utilized approach to
model censored data, RSF is considered a state-of-the-art survival model using
random forests, and DeepSurv is a recent deep learning model designed for cen-
sored data. Other fairness methodologies are not included for comparison as they
are incapable of handling censorship information by design.
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Table 1. Summary of the datasets used in the evaluations.

ROSSI |COMPAS |KKBox |Support
Sample# 432 10,325 2,814,735/8,873
Feature# 9 14 18 14
Sensitive Attribute Race Race Gender |Gender
Sensitive Value African |African Female |Female

American American
Censored# 318 7,558 975,834 2,840
Censored Rate% [73.6 73.2 34.7 32.0

99

5.3 Evaluation Metrics

Our evaluation encompasses a range of fairness and performance metrics to pro-
vide a thorough assessment. To gauge fairness, the proposed individual fairness
metrics CRIF@10 and individual-group fairness metrics IGD are employed. Note
that existing widely-used fairness metrics could not be applied as they are not
adaptable to censorship settings. In evaluating performance, we align with prior
works [26,55] and consider three typical survival performance metrics: C-index,
Brier score, and Time-dependent AUC. The C-index, introduced by [23], assesses
a model’s ability to discriminate between outcomes through the correct pairwise
ordering and equals to the area under ROC Curve (AUC) in the absence of
censorship. The Brier score [7], on the other hand, calculates the mean squared
discrepancy between the predicted probability of outcome assignment and the
actual outcome. Finally, the Time-dependent AUC [9] quantifies the probability
that a randomly chosen pair of individuals, one who has experienced the event
and another who hasn’t at time t, are correctly ranked. A higher value is pre-
ferred for both C-index and Time-dependent AUC, whereas a lower Brier score
is indicative of better prediction. To demonstrate the generalization of fairCox,
we build Simp: by incorporating the Euclidean distance with feature scaling.

5.4 Experimental Results

Evaluation of the Performance and Fairness of fairCox. To evaluate
the effectiveness of fairCox, we compare its performance and fairness against
six state-of-the-art baselines. All methods are trained using the same proce-
dure to ensure a fair comparison, and the results from 5-fold cross-validation
are summarized in Table2. As we can see, fairCox significantly outperforms all
other baselines in reducing discrimination (CRIFQ10 and IGD) while achiev-
ing comparable prediction performance, measured by C-index, Brier score, and
Time-dependent AUC. Specifically, baseline methods exhibit inferior fairness
performance, attributable to either a disregard for fairness considerations or
an overlooked intermediate potential relationship between individual and group
fairness. Even against the FSRF baseline, which is specifically for group fairness,
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Table 2. Evaluation results of different models with the best results marked in bold.
The numbers in parentheses represent the relative performance improvement of fairCox
compared to the best baseline (Bolding indicates the best results).

Dataset |Method |Metrics
CRIF@10%/IGD% C-index%|Brier Score%) Time-dependent AUC%
ROSSI [IDCPH [43.41 32.77 52.28 25.68 63.92
FSRF 26.82 20.53 61.44 14.66 65.12
CPH 33.41 24.65 64.24 19.45 65.46
RSF 36.17 29.39 65.47 15.05 79.54
DeepSurv|31.43 23.15 66.67 14.52 80.12
IFS 45.83 30.78 65.78 14.79 77.63
fairCox |50.63 48.94 63.67 15.07 78.35
(10.47%) ((49.34%)|(—4.49%)|(—3.79%) (—2.21%)
COMPAS|IDCPH |70.27 62.18 62.16 23.37 60.30
FSRF 40.41 31.38 52.28 13.78 63.92
CPH 73.51 59.73 69.24 18.89 67.72
RSF 72.64 62.47 72.61 13.02 71.33
DeepSurv|73.78 63.85 75.21 12.54 73.68
IFS 74.27 63.47 73.83 12.98 71.47
fairCox |[77.65 74.91 71.47 12.83 70.67
(4.55%) |(17.32%)|(—4.97%)|(—2.31%) (—4.01%)
KKBox |[IDCPH [56.61 51.72 72.61 21.13 73.31
FSRF 38.75 56.85 78,53 13.57 79.72
CPH 47.32 44.63 80.02 17.42 78,47
RSF 42.41 38.69 82.32 13.84 80.22
DeepSurv|43.45 39.54 83.01 14.32 80.69
IFS 57.60 54.78 81.97 14.41 80.04
fairCox |64.47 62.85 82.43 14.45 81.95
(11.93%) [(14.73%)|(—0.69%)|(—6.48%) (1.56%)
Support |[IDCPH [62.53 53.14 62.58 28.53 72.72
FSRF 50.15 62.47 59.28 12.98 73.92
CPH 58.92 49.82 69.31 20.31 77.64
RSF 51.17 44.57 71.73 15.50 80.77
DeepSurv|53.44 46.30 72.32 14.89 81.13
IFS 65.61 62.82 70.03 15.37 81.38
fairCox |72.17 70.40 70.69 13.83 78.47
(14.88%) [(12.07%)|(—2.25%)|(—6.55%) (—3.56%)

fairCox yields remarkable results in promoting group fairness. This is particularly
noteworthy since FSRF, despite its focus on group fairness, fails to address the
dynamic interplay between individual and group fairness, leading to outcomes
that may not be fair to every individual within the group. This finding under-
scores the importance of incorporating both individual and group fairness con-
siderations. By integrating considerations for both individual and group fairness,
fairCox distinctly overshadows baselines that focus solely on one, illustrating its
comprehensive advantage in fostering fairness. Additionally, the enhancement in
the overall predictive performance of fairCox underlines the importance of anti-
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discriminatory designs in improving prediction accuracy, presumably due to the
reduction of overfitting through fairness regularization.

ROSSI COMPAS KKBox Support

le+
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Fig. 3. Exploring hyperparameters study results in four real-world datasets.

Effect of Different o and i Values on Fairness and Predictive Per-
formance. Two critical hyperparameters, o and p, are employed to optimize
individual fairness and individual-group fairness objectives of fairCox, respec-
tively. To evaluate the effects of them on both the performance and fairness, we
conduct hyperparameter sensitivity experiments, varying a and p within the set
{le=3,1e72,1e 1, 1e°, 1et, 1e2, 1e®}. Figure3 presents the results of the hyper-
parameter sensitivity analysis. As one can see, it is evident that increments in
a and p are inversely proportional to the performance of fairCox. Moreover, an
increase in a enhances the model’s individual fairness performance and slightly
moderates the discrepancy in individual fairness performance across diverse sub-
groups. This occurs as all samples are subjected to stringent constraints, how-
ever, it will lead to a significant decrease in performance. Conversely, elevating
1 allows the model to equilibrate the individual fairness performance variances
between different subgroups more effectively.

Effect of Different Numbers of Neighbors k-values on Individual Fair-
ness and Predictive Performance. In our framework, different values of the
number of neighbors k affect model fairness and predictive performance. Hence,



102 Z. Wang et al.

. ROSSI N . COMPAS .
st " .
o
° o8
5 S A O
50 g " I\ . 8.50 2
27 o — 2 ras 2
2ot £, § E2” gui i\ .
® 5T 00 @ A ) o -
z c c - P / c ]
e : g ° ' \ O &
L v @ \ O £
o “ i
a ] » \ 50 f_,i
- . \ E
= |
%U o % 10 20 30 40
k
" Support )
‘\3 75 i
) &
Q 50 2
e o 8 d -
Ce X  C X 73 5 X [}
A ® N 2 © v z
e c S Qror & = © g
o 6 = [7) - Q.
g 5 s Yo .
b4 2
v 50 &
£ =
=
% % W
k k
—o— 1IGD% —o— CRIF@k% —%— C-index%
Brier score% —*— Time-dependent AUC%

Fig. 4. Exploring the choice of k-value effect model performance and fairness.

we conducted experiments using a range of values for k = {4, 7,10, 15, 20, 30,50},
maintaining all other training parameters constant. The comparative analysis of
fairCox’s predictive performance and fairness under various settings is depicted
in Fig. 4. As k increases, fairCox exhibits enhanced performance on CRIF@k and
IGD, indicating more effective optimization for both individual and group fair-
ness. However, the model’s predictive accuracy remains largely unaltered when k
is modest (e.g., less than 15 for ROSSI, 20 for COMPAS, 15 for KKBox, and 10
for Support), indicating an optimal balance between fairness and performance
within this range. Conversely, larger k values increase the number of samples
per comparison, introducing more noise and thus resulting in reduced precision
due to diminished weights for accurate labels and ambiguous categorizations. In
conclusion, a k value of 10 achieves the best measure of fairness and performance.

Ablation Study. To validate the design of fairCox, we conduct ablation studies
to examine the impact of varying loss function parts on the model. Specifically,
we devise a fairCox variant by assigning a value of i to zero. Under this configu-
ration, the individual-group fairness loss (Ligs) bears no impact on the total loss,
steering the model to only optimize individual fairness. The results are illustrated
in Table 3. We can clearly see that although the individual fairness of fairCox-
exhibits minor enhancement compared to fairCox, the individual-group fairness
and predictive performance decrease significantly. This is because fairCox- over-
looks the disparities in individual fairness constraints across different subgroups,
resulting in compromised model performance for deprived groups. Overall, these
findings highlight the crucial need to take group disparity into consideration
when applying individual fairness constraints.
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Table 3. Ablation study results for fairCox and fairCox-.

Dataset |CRIF@10% IGD% C-index% Brier%
fairCox-|fairCox|fairCox-|fairCox|fairCox- fairCox|fairCox-|fairCox
ROSSI  [53.29 [50.63 [33.15 |48.94 |64.42 |63.67 [14.73 [15.07
COMPAS|80.64 |77.65 [63.47 |74.91 |70.14 |71.47 |13.02 |12.83
KKBox [68.67 [64.47 |50.96 [62.85 [81.71 [82.43 |14.87 |14.45
Support |74.17 |72.17 |55.83 [70.40 |69.28 |70.69 |14.05 |13.83

6 Conclusion

In this paper, we introduce two novel fairness notions, specifically devised for
generalized censored contexts, to quantify individual unfairness as well as dis-
parities in individual fairness across subgroups. Alongside this, armed with our
proposed fairness notions, we present a unified debiasing algorithm designed
to mitigate discrimination in scenarios involving censorship to achieve individ-
ual fairness with group awareness. Experimental results on on four real-world
datasets explicitly include survival information and with socially sensitive con-
cerns validate the effectiveness of our framework with respect to both prediction
performance and fairness. Overall, this work not only establishes a new paradigm
for achieving individual fairness with group awareness under uncertainty but also
paves the way for future research in ML fairness, guiding it toward more appli-
cable and comprehensive approaches.
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