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Abstract. Graph neural networks (GNNs) have shown remarkable suc-
cess in various domains. Nonetheless, studies have shown that GNNs may
inherit and amplify societal bias, which critically hinders their appli-
cation in high-stakes scenarios. Although efforts have been exerted to
enhance the fairness of GNNs, most of them rely on the statistical fairness
notion, which assumes that biases arise solely from sensitive attributes,
neglecting the pervasive issue of labeling bias prevalent in real-world sce-
narios. To this end, recent works extend counterfactual fairness in graph
data to address label bias, but they neglect the graph structure bias,
where nodes sharing sensitive attributes tend to connect more closely.
To bridge these gaps, we propose a novel GNN framework, Fair Disen-
tangled GNN (FDGNN), designed to mitigate multi-sources biases to
enhance the fairness of GNNs while preserving task-related information
via fair node representation learning. Specifically, FDGNN initiates by
mitigating graph structure bias by ensuring consistent representation of
different subgroups. Subsequently, to achieve fair node representation,
identified counterfactual instances are utilized as guides for disentan-
gling a node’s representation and eliminating sensitive attribute-related
information via a de-identifiable sensitive attribute mechanism. Exten-
sive experiments on multiple real-world graph datasets demonstrate the
superiority of FDGNN in graph fairness compared to other state-of-the-
art methods while achieving comparable utility performance.
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1 Introduction

Graph neural networks (GNNs) have emerged as a powerful tool for learning
node representation from graph-structured data, which are employed in various
domains such as recommendation systems [10], social network analysis [13], and
online advertisement [34]. Generally, GNNs adopt a message-passing mechanism
(MP) [32], aggregating local neighborhood information for every node in each
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layer. This aggregation process effectively renders the distinction between sim-
ilar and dissimilar nodes while preserving node attributes and graph structure
information, thereby enhancing the performance of downstream graph tasks [1].
Despite these successes, GNNs may make discriminatory predictions for sub-
groups defined by sensitive attributes (e.g., gender or race) due to biases inher-
ited from training data and further amplified by their message-passing mecha-
nism. Such biased predictions give rise to ethical and societal concerns, which
severely limits the adoption of GNNs in high-stake decision-making scenarios,
such as job screening [22], healthcare [40] and criminal prediction [16]. For
instance, a bank’s loan decision-making process is influenced by the race infor-
mation of the applicant and their close contacts, constituting a serious ethical
problem [21,42,43|.

To this end, many efforts have been taken towards fair GNNs [28]. Among
them, most existing fairness work utilizes statistical fairness notions to evaluate
and address bias in node representation learning on graphs, which highlights
algorithmic decisions should equally treat subgroups or individuals, with these
methods primarily focusing on sensitive attributes (e.g., race or gender) as the
only source of bias [22|. However, these strategies cannot quantify and miti-
gate labeling bias which arises when societal biases, prejudices, or discrimina-
tory practices skew the data collection process [23|. This distortion introduces
systemic biases into the training dataset, which GNNs may then learn and per-
petuate, exacerbating the bias against the deprived subgroups (e.g., female) |21].

To this end, recent research has incorporated counterfactual fairness into
graph learning, aiming to address the model’s bias from a causal perspective [27].
Typically, these approaches fall into two categories: generation of counterfac-
tual instances based on real sample distributions or identification of potential
counterfactual instances within the dataset. For example, GEAR [21] employs
GraphVAE |[24] to generate counterfactuals aimed at minimizing the disparity
between original and counterfactual node representation to eliminate the impact
of sensitive attributes. On the other hand, RFCGNN [27] aims to identify cor-
responding counterfactual instances directly from the representation space and
learn disentangled representations, thereby removing sensitive attribute-related
information to enhance fairness. A significant limitation of these approaches is
neglecting the intricate interplay between sensitive attribute-related information
and task-related information. Specifically, they aim to eliminate the sensitive
attribute information to force GNNs to make decisions independent of the sen-
sitive attribute, which inadvertently leads to the unintentional removal of the
task-related information due to its correlations with the sensitive attribute.

Furthermore, these methods often overlook the graph structure bias present
in the graph data, where nodes sharing the same sensitive attributes are likely
to be connected [30]. Specifically, GNNs aggregate each node’s neighboring node
information and its own features to obtain a final node representation. However,
the disparity in the distribution of neighboring nodes of the target node can
lead to an over-association of node representation with sensitive attributes. This
results in the obtained counterfactual instances being too tightly connected to
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neighboring nodes with the same sensitive attributes, resulting in inaccurate
counterfactual scenarios.

In this paper, we investigate counterfactual fairness to mitigate the root
causes of bias, focusing on the potential causal interactions between each node
and its neighboring nodes. While great progress has been made in the field, the
application of counterfactual fairness to graphs faces distinctive challenges due to
fundamental obstacles as follows. 1) Complexity of Counterfactual Graph
Data Structures: Unlike tabular data, graph-structured data contains node
features and graph structure information. Thus, given the complexity of these
relationships, in counterfactual scenarios, it is imperative to consider the implica-
tions of sensitive attribute flipping not only on the target node features but also
on its connectivity with neighboring nodes. 2) Mitigating Bias in Node Rep-
resentations: To achieve fairness in GNNs, it is essential to mitigate bias while
preserving model performance, which requires reasonably handling task-related
information that is also associated with the sensitive attribute. This involves
disentangling node representations to isolate sensitive attributes related infor-
mation effectively, thereby ensuring the retention of valuable task-related infor-
mation. 3) Obtaining Accurate Counterfactual Scenarios: The essence
of counterfactual fairness hinges on accurate counterfactual scenarios. Existing
fairness works often overlook the graph structure bias, leading to the derivation
of inaccurate counterfactual instances. An effective strategy is thus required to
mitigate the association of learned representations with sensitive attributes while
maintaining important information.

In order to address all the above-mentioned challenges, this paper proposes
a novel framework named Fair Disentangled Graph neural networks (FDGNN),
which aims to learn fair node representation while preserving task-related infor-
mation. To the best of our knowledge, this is the first work that utilizes authen-
tic counterfactual samples to learn disentangled node representation to mitigate
the multi-source biases from sensitive attributes, graph structure, and the label-
1ng process collectively. Specifically, we conduct a comprehensive causal analysis
of both original and counterfactual instances, establishing a set of constraints
that foster the learning of disentangled representations. This strategy effectively
diminishes the associations between sensitive attributes and unrelated represen-
tation dimensions. Moreover, by imposing fairness constraints on components
associated with sensitive attributes, FDGNN minimizes the influence of the
sensitive attribute-related information on other representation channels. This
approach prevents unnecessary task-related information loss, leading to a more
balanced and effective model. The main contributions are as follows:

— A novel graph causal model. We introduce a novel causal formulation that
paves the way for understanding the generation process of graph structures
and the fair learning task of node representation.

— A novel framework for mitigating graph-structured data bias via
counterfactual instance. We propose FDGNN;, a fair graph representation
learning framework that utilizes accurate counterfactual instances to miti-
gate multi-source biases, including sensitive attributes, graph structure, and
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the labeling process. In addition, FDGNN preserves task-relevant informa-
tion associated with sensitive attributes by effectively disentangling sensitive
attributes. This approach enables our model to enhance fairness without com-
promising performance.

— Extensive experiments are conducted to evaluate our proposed app-
roach. We conduct extensive experiments on three real-world datasets and
five evaluative metrics, the results show that FDGNN acquires superior per-
formance and significantly enhances fairness compared with baselines.

The organization of this paper is as follows: An overview of the relevant
literature is provided in Sect. 2. Notations are presented in Sect. 3. Our proposed
method is detailed in Sect. 4. Section 5 describes the experimental framework and
discusses the experiment results. Lastly, Sect. 6 concludes the paper.

2 Related Work

2.1 Graph Neural Networks

Graph Neural Networks have shown great ability in representation learning on
graph-structured data and have been used in a variety of tasks such as node clas-
sification [18], graph classification [25], and link prediction [32]. Their notable
success across these diverse tasks has propelled GNNs into the forefront of
research and application, extending their utility into critical decision-making
systems [27]. For instance, financial institutions increasingly rely on GNNs to
evaluate credit card applications or make loan approval decisions [29]. How-
ever, the application in critical decision-making systems places higher demand
for GNNs to not only be effective but also fair and interpretable [38]|. In this
context, there is a trend for the research community to design fairer GNNs to
mitigate biases and ensure fair outcomes in graph-based tasks [28].

2.2 Fairness in Graph

Fairness in the graph has received intensive attention [4,5,8,31,37,39]. Most
existing fair graph learning works are based on statistical fairness notation,
including individual fairness [17,26,41] and group fairness [6,7,40], aiming to
ensure fair GNN predictions. While these approaches have achieved notable suc-
cess, their focus on correlation metrics often renders them ineffective at address-
ing biases introduced by statistical anomalies. To address this limitation, coun-
terfactual fairness [19] leverages the causal perspective to measure and elimi-
nate the root bias. For example, NIFTY [1] generates counterfactual instances
by directly flipping the sensitive attributes of nodes to enhance the consis-
tency between original and counterfactual representations. Similarly, GEAR [21]
employs GraphVAE [24] to generate counterfactuals, focusing on minimizing the
difference between representations derived from the original and counterfactu-
als. Furthermore, RFCGNN [27] identifies counterfactuals within the existing
representation space to learn fair representation.
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Our work is distinct from existing works in that it: i) employs disentangled
representation learning to preserve essential task-relevant information, minimiz-
ing performance loss; and ii) pays attention to fundamental yet neglected graph
structural bias.

3 Notations

Let G = {V,&,X} denote an undirected attributed graph, comprised of a set of
V = {v1,v,...,v,} nodes and a set of £ C VxV edges. X € R"*? represents the
node feature matrix with the i-th row of X, ¢.e., X; . as node feature of v; with
d being the dimension of node features. The adjacency matrix A € {0,1}"*"
encapsulates the graph structure information, where A;; = 1 indicates that
there exists edge e;; € £ between the node v; and v;, and A; ; = 0 otherwise.
Meanwhile, in this work, we focus on binary sensitive attributes and binary node
classification tasks. Each node v; has a sensitive attribute s; € {0,1}, where s; =
0 indicates that node v; belongs to the deprived group Sy = {V v; : v; € VAs; =
0}; if s; = 1, v; belongs to the favored group S1 = {V v; : v; € V As; = 1}.
It is important to note that the sensitive attribute s; is incorporated within the
feature vector X . of each node. In addition, we let £ denote the set of labeled
vertices, and let Y denote the corresponding set of ground-truth labels.

4 Methodology
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Fig.1. The causal model of FDGNN with the red color denoting sensitive related
information and white color representing non-sensitive related information, while green
color is task-related information that is also related to the sensitive attribute.
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4.1 Causal Model

This section introduces the proposed causal model, which is pivotal for examin-
ing counterfactual scenarios, i.e., querying outcomes in a counterfactual world
under certain conditions were altered. To address multi-source biases, a scenario
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that exposes the limitations of the fairness notions solely based on statistics,
a Structural Causal Model (SCM) is constructed from the observed graph, as
depicted in Fig. 1. Specifically, SCM encapsulates causal relationships among five
key variables: sensitive attribute (5), ground-truth label (Y'), the graph struc-
ture (A), ego-graph (G), and information-related (Rg) or unrelated (Rg) to
sensitive attribute (S). In SCM, every connection denotes a deterministic causal
link between variables, with the reasoning and explanations outlined as follows:

— S — Rg: This link denotes that the node representation learned by the GNNs
is influenced by sensitive attribute (.5), thereby introducing bias into the
final node representation. To enhance model fairness, we need to accurately
identify Rg in the node representation, thus paving the way for mitigating

bias in subsequent processes.

— Rs +— A — Rg: Aimpacts Rg and Rg. For example, the connection between
two nodes might stem from sensitive attribute-influenced interactions (e.g.,
two individuals sharing the same neighborhood) or from non-sensitive factors
(e.g., common interests in activities such as soccer).

— Rgs 1L Rg: To effectively address biases while minimizing the impact on per-
formance, it’s imperative to disentangle and isolate R from Rg. This separa-
tion ensures that only Rg is adjusted to ensure fairness without unnecessarily
compromising the information crucial for predicting Y.

— Rs — Y « Rg: This model structure guarantees that both Rg and Rg influ-
ence the prediction of Y. The objective is to carefully modulate the impact
of Rg to mitigate bias, ¢.e., minimizing the sensitive information represented
by red in Rg, while concurrently maintaining task-related information encap-
sulated within both Rg (e.g., represented by ) and Rg.

— Rg — G < Rg: Same as the above substructure, but from a graph structure
perspective, both Rg and Rg have direct causal effects on G, ensuring that
it an accurate reconstruction of the ego-graph.

4.2 Framework Overview

Building upon the proposed causal model, a novel framework is designed to
enhance the fairness of GNNs. This framework initially identifies accurate coun-
terfactual instances from the existing samples. Subsequently, it utilizes de-
identifiable sensitive attribute mechanisms to preserve task-relevant information
while eliminating biased information from node representation. Figure 2 presents
the overview of FDGNN, which incorporates three major phases. First, the Fair
Ego-graph Generation Module aims to generate a subgraph for each node that
contains important neighboring nodes while ensuring a fair and consistent repre-
sentation of different subgroups. Second, the Counterfactual Data Augmentation
Module finds accurate counterfactual instances to facilitate subsequent disentan-
glement learning. Last, the Fair Disentangled Representation Learning Module
aims to perform sensitive information decomposition in node representation to
keep task-relevant information while removing biased information through de-
identifiable sensitive attributes. Each of these components will be introduced in
the following sections.
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Fig. 2. Overview of the proposed FDGNN framework.

4.3 Fair Ego-Graph Generation Module

The inherent complexity of graph data poses a computational challenge to
directly constructing causal models, especially for large-scale networks such as
social networks. To this end, most existing methods aim to extract an ego graph
for each node. This strategy is based on the local dependency assumption, i.e., a
node is primarily influenced by its nearest neighbors [15]. Despite the efficiency,
it overlooks the critical aspect of local fairness within each node’s ego graph.
Specifically, the existing work may result in a biased ego graph, where an ego
graph disproportionately consists of nodes sharing the same sensitive attribute.
Such disparity in neighbor node distribution can result in over-association of the
learned representation with sensitive attributes. In response, a Fair Ego-graph
Generation Module is introduced to foster equitable representation across differ-
ent subgroups within each ego-graph (G,,) while avoiding limiting the distance
of neighboring nodes, which can lead to the loss of important neighboring nodes.
To achieve this, the concept of a Related Score (RS) for each node pair is intro-
duced, inspired by PageRank [14], to quantify the relevance of node v; to node
v;. Mathematically, it is represented as:

RS =¢(I—(1-¢§A) (1)
where £ € [0, 1] represents a parameter that controls the probability of a random
walk restarting at the central node, while I is the identity matrix, and A=AD!
represents the transfer probability with D being the diagonal matrix where D; ;
=5 j A; ;. Bach entry of this matrix, denoted as IS; j, measures the relevance
of node v; to node v;. Moreover, IS;. denotes the vector of importance scores
for node v;.

However, PageRank, designed to assign uniform transfer probabilities to each
neighboring node, can lead to biases, particularly in networks where nodes shar-
ing the same sensitive attribute tend to form stronger connections, thereby skew-
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ing transitions toward these neighbors. To address this, a fairness constraint
is introduced to adjust these probabilities, promoting equitable representation
among nodes from different subgroups. This fairness constraint categorizes neigh-
bors based on their sensitive attributes and then adjusts the selection probabil-
ities to balance the representation of each group during node transitions. As
illustrated in Fig. 2, this adjustment grants male and female nodes probabilities
of NLSO and Nle’ respectively, ensuring an even representation of both subgroups

in the sampling outcome. Mathematically, it is represented as:

> (P[4 =1,5;€81) = (Py,|Ai; =1,54 € So) (2)

where P, and P, represent the transition probabilities to neighboring nodes
belonging to the deprived and favored groups, respectively.

4.4 Counterfactual Data Augmentation Module

With the learned fair ego-graph, central to the proposed causal framework SCM
(c.f., Sect.4.1) is the distinction between sensitive attribute-related node repre-
sentation (Rg, illustrated as red or blue squares within the red box in this module
in Fig. 2) and sensitive information irrelevant node representation (Rg, depicted
as green or yellow squares within the gray box in this module in Fig. 2). To ensure
accurate dissociation of these representations, identifying accurate counterfac-
tual instances is essential. Specifically, consider a node v; characterized by a
factual sensitive attribute s; and a corresponding label y;. When flipping its sen-
sitive attribute to 1 — s;, the representation independent of sensitive attributes,
Ry, should remain consistent, while the representation associated with sensitive
attributes, Rg, should adapt to reflect this change. This forms the counterfactual
subgraph gg , expressed mathematically as:

¢ — min Z (Ao, G = 3,55 # 55) 3)

where G = {G,,|v; € V}, v; denotes the corresponding counterfactuals of v;, and
d(-) measures the distance between pairs of ego-graphs.

Existing methods for generating graph counterfactual samples, as discussed in
Sect. 1, may obtain inaccurate counterfactual samples. Therefore, we aim to find
potential candidate counterfactual instances with the observed factual graphs.
This strategy avoids making assumptions about how graphs that include sensi-
tive attributes are generated while obviating the necessity for additional super-
vised signals to select counterfactuals. However, computing pairwise distances
between ego-graphs becomes highly inefficient and impractical Given the com-
plexity of graph structures and the vast search space of graph data. To address
this issue, we aim to measure distances in the representation space, leveraging
the captured graph structure and node attribute information to enhance com-
putational efficiency. The task in Eq. 3 in thus reformulated as:
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M
G5, = min 37 (s = by l3lys = ;.51 # 5,) @)
J m=1

where H = {h;|v; € V} is learned representation matrix and the L2 distance is
employed to calculate the distance between h; and h;. Note that for each v;, a
set of counterfactual samples is obtained instead of one sample. Consequently,
the counterfactual Gi¢ can naturally extend to a set of counterfactuals consisting
of M samples {gf;} i=1,..., M}, where M is a constant number.

4.5 Fair Disentangled Representation Learning Module

FDGNN is now prepared to disentangle Rg and Rg within the node representa-
tion space, guided by the identified counterfactual instances. Besides, given that
both Rg and Rg contain critical information for downstream tasks, our strategy
aims to obtain informative yet sensitive-irrelevant node representation. To this
end, we aim to segregate sensitive related information into a distinct component
of the node representation and subsequently dissociate the sensitive related infor-
mation within that component. This methodology prevents unnecessary perfor-
mance degradation linked to enforcing fairness constraints on sensitive-relevant
components, thereby minimizing performance loss while enhancing fairness. To
effectively implement this disentanglement, the following four specific constraints
are introduced:

1) Disentangled Constraint (£p). This constraint ensures the independence
of Rz and Rg, preventing information leakage between them. To achieve this,
we disentanglement the node representation into ¢ distinct channels, with each
channel influenced by a unique latent factor K, ensuring that they operate inde-
pendently. Notably, only one of these factors, K, is associated with the sensi-
tive attributes S, thus effectively segregating sensitive attribute-related infor-
mation from the overall node representation. To assess the impact of different
node neighbors on these partitioned representations, we employ an adaptive
encoder configured as a multilayer perceptron (MLP). Specifically, for any pair
of nodes v; and vj, their attributes z; and x; are input into the adaptive encoder
(Pu;w; = Fp ([2i,75])) to evaluate the relevance of connection e;; across c latent
factors, where P, v, is the vector of score indicates importance for e;;, with
P5,.v; € Pu, v, Tepresenting scores for each latent factor ¢, and F),(-) denoting the
adaptive encoder operation. This score is normalized via a Softmax function to

derive connection weights wy, , , as follows:

wy, v, = Softmax(py, ) (5)

Vi,V

where wy, . represents the weight from node v; to node v; for channel ¢, indi-
cating the likelihood that the connection is influenced by a latent factor ¢, with
N, reflecting the total number of channels.

Building on this, we further employ disentangled layers for graph convolu-

tion across multiple channels. Each disentangled layer comprises ¢ channels of
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graph convolution, all sharing the same network architecture, with each channel
dedicated to a specific latent factor. Initially, we reduce the dimensionality of
the original node attributes by projecting these attributes into different sub-
spaces, each corresponding to a latent factor. For any given node representation
R,,, a linear layer is employed for dimensionality reduction, transforming the
representation from R,,-dimensional to N.-dimensional space. This reduction
operation Fr(-) is independently applied V. times to generate N, reduced node
attributes, corresponding to the different latent factors K;. Consequently, the
disentangled node representation of a node v; at the I*" layer, denoted by h!
is formed by concatenatlng the reduced representations across all channels: hl
= [Tii,h Tf;i,2> ey Ty, N, |. Extending this to all nodes, R® represents the disen-
tangled representations of all nodes within the ¢** channel. Thus, h! symbol-
izes the aggregated disentangled representations across all channels at layer [:
ht =R}, ng,...,Rﬁvc].

However, the above process primarily addresses disentanglement at the sam-
ple level, neglecting the independence among latent factors, especially mutual
independence across different channels. As depicted in Fig.2, the goal is to
achieve zero correlation between distinct channel representations, such as the
blue, green, and yellow squares, to truly enhance the disentanglement process.
To achieve this, we propose the Independence Constraint, mathematically for-
mulated as:

-3y P ®
== Norm(K.,,K.,)
where D(-) denotes the distance covariance, and Norm(-) represents the nor-
malization function.

With fully disentangled channels, the next step is to pinpoint the latent fac-
tors that correlate with sensitive information. Counterfactual instances serve as
a pivotal guide in this process. Specifically, for a given counterfactual (CI;),
its non-sensitive representation (Rgl ?) is similar to the target sample, while its

sensitive representation (jo) is distinct. By leveraging counterfactuals, facili-
tates a strategy aimed at minimizing the similarity between channels unrelated
to sensitive attributes and maximizing it between channels that are related to
sensitive attributes. Consequently, the Sensitive Identification Constraints are
proposed:

Lo = S S Z[ (Ry, RS"™) — d(RY, RS"™)| (7)

v, EY m=1

where d(+) is a distance metric, with M indicating the size of the counterfactual
sample set. By amalgamating £; and Lg, the Disentangled Constraint is formally
defined as:

Lp=Lr+ Lc (8)
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2) Fairness Constraint (£j/). The objective of this constraint is to disassoci-
ate the component associated with sensitive attributes. As demonstrated in this
module in Fig.2, it ensures that the gender information of the node from the
purple square cannot be inferred, thereby preventing bias from impacting down-
stream tasks. To achieve this, we employ a de-identifiable sensitive attribute
technique, which utilizes a learnable vector (W) to remove the identifiability of
sensitive attributes from node representations. This process transforms Rg into
an unbiased representation, denoted as ﬁ/ = Rg ® W, making it indiscernible
whether a node belongs to any specific subgroup. This unbiased representation
% and Rg are subsequently used for predicting instance labels. Further, we use
covariance as a constraint to ensure the effective removal of sensitive informa-
tion, aiming to minimize the absolute covariance between the sensitive attribute
and the label predictions. Mathematically, this is expressed as:

dr,,

Lr = Abs(E (S, — E(S.,)) (R, —~ E(Ry)))). (9)

where R, denotes the unbiased node representation for node v;. In addition,
we let E(-) indicate the expectation operation, and Abs(-) is the absolute value
function. This constraint ensures that the predictions are unbiased by sensitive
attributes, thereby enhancing model fairness.

3) Performance Constraint (£p). Ensuring that the representations Rg and
% for each node v; incorporate vital node attributes and neighborhood infor-
mation is essential to uphold their utility for downstream tasks, thereby aiding
accurate label predictions. Thus, the Performance Constraint is established to
enforce alignment between the prediction g; and the ground truth y;:

1

Lp=—
"

> —(yilog(si) + (1 —y;) log(1 — 4i) (10)
v; €EVL

where classifier takes Rg and % as input and y; is prediction results for node
V;.

4) Reconstruction Constraint (Lg). For each node v;, the learned rep-
resentations Rg and % should be sufficient to reconstruct the observed ego-
graph G,,, transforming into an adjacency matrix reconstruction task. The effec-
tiveness of node representation is thus evaluated by the discrepancies between
the reconstructed adjacency matrices and the original graph structure. In addi-
tion, considering the sparsity of positive edges, FDGNN also incorporates neg-
ative sampling to address the distribution disparity between existent (pos-
itive) and non-existent (negative) edges. Specifically, for each positive edge
{A(v;,vj) =1V 14,j}, we counterpart this with a randomly selected non-existent
edge {A(v;,vr) = 0V i,k}, thereby forming a set of negative samples, M.
Lastly, the Reconstruction Constraint, Lg, is defined mathematically as:

Lr= > 1A (03, v5) = A(vi, 0) I3 + | A(vi, vr) — Alvi, o) |7
A(vs,v5)EMY A(v;, v )EM—
(11)
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where A and A are the predicted and observed adjacency matrices of input graph

g.

4.6 Final Optimization Objectives

The final objective function of FDGNN; as presented in Eq. 12, brings together
the above three modules. Specifically, this function consists of four parts and
is governed by the tunable hyperparameters «, 3, and v to balance the con-
tributions of various elements: i) £p aims to minimize the prediction loss, ii)
L encourages the decomposition of learned representations into different inde-
pendent channels and distinguishes between sensitive relevant and irrelevant
representations, iii) Lp aims to mitigate sensitive-related information in node
representation thereby improving the fairness of the model, and iv) £ works to
minimize the reconstruction loss for the node representations.

min Liotar = Lp +aLlp + BLr +7LR (12)

5 Experiment

5.1 Datasets

Experiments are conducted on three real-world graph datasets: i) The German
dataset |2] contains credit information from clients at a German bank. Each node
in this dataset represents a client, with edges reflecting the similarity between
clients’ credit profiles. The sensitive attribute is the clients’ gender, and the clas-
sification task focuses on distinguishing clients into good versus bad credit risks.
ii) The Credit dataset [36] consists of default payment records for individuals,
where each node denotes an individual and edges indicate similarities in their
expenditure and payment behaviors. The age of the individuals serves as the
sensitive attribute, and the predictive task aims to determine whether an indi-
vidual is likely to default on their credit card payments. iii) The Bail dataset [1]
presents data related to defendants granted bail in U.S. state courts. Nodes
represent defendants, and edges between nodes denote similarities in criminal
records and demographic information. The sensitive attribute in this dataset
is the race of the defendants, with the classification objective being to identify
defendants as either suitable or unsuitable for bail (Table 1).

5.2 Evaluation Metrics

To effectively evaluate our proposed model, we measured our model performance
from two perspectives: classification performance and fairness. For classification
performance, we adopt Accuracy, F1-Score, and AUROC to evaluate the per-
formance on node classification tasks. All three performance metrics close to 1
indicate better classification performance. To evaluate fairness, we use two com-
monly used fairness metrics, i.e., Statistical Parity Difference (SPD) [20] and
Equal Opportunity Differences (EOD) [12|. For both fairness metrics, values
closer to 0 are indicative of greater model fairness.
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Table 1. Summary of the datasets used in the experiments.

Dataset German|Credit (Bail
Vertices 1,000 (30,000 18,876
Edges 21,742 |137,377/311,870
Feature dimension |27 13 18
Sensitive Attribute/Gender Age Race

5.3 Baselines

The proposed FDGNN is compared against seven state-of-the-art methods across
three categories to evaluate its effectiveness. These include vanilla models like
GCN [18], which leverages spatial graph convolutions for neighbor representation
aggregation; GraphSAGE [11], which addresses GCN’s scalability by training on
node mini-batches; and GIN [33]| enhancing node representation learning through
MLP. Additionally, the fair node classification method FairGNN [7], which
employs adversarial training to achieve group fairness by obscuring deprived
group identities from discriminators, is also considered, in addition to graph
counterfactual fairness methods like NIFTY [1], GEAR [21], and RFCGNN |[27],
detailed in Sect. 2.

5.4 Experiment Results
For thorough evaluation, the following research questions are addressed:

RQ1: How well does FDGNN performance compared to the state-
of-the-art bias mitigation algorithms?

To answer RQ1, we experiment on three datasets with the comparison to the
baselines on the node classification task. Each experiment is conducted 10 times,
the results are shown in Table 2. As we can see, FDGNN outperforms all base-
line methods across all evaluation metrics in most cases. Specifically, FDGNN
demonstrates superior fairness performance, as evidenced by the significant mar-
gin overall baseline methods across all datasets. The enhancement of fairness is
attributed to FDGNN accurately identifying sensitive attribute-related infor-
mation via counterfactual instances and disentangling it into an independent
component. It then mitigates its influence on prediction outcomes via a de-
identifiable sensitive attribute mechanism. Simultaneously, FDGNN showcases
commendable utility performance, surpassing other methods in most cases, which
is indicative of FDGNN'’s capability to maintain important task-relevant infor-
mation. This is because FDGNN avoids directly enforcing the fairness constraints
by disentangling node representation, which facilitates the retention of task infor-
mation related to sensitive attributes. Overall, the experimental results demon-
strate the effectiveness of FDGNN in improving fairness while achieving compa-
rable performance.
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Table 2. Results on performance and fairness for FDGNN and baselines. The darkest
cells indicate the top rank, while lighter cells represent the second rank.

Dataset, Methods |SPD (|)EOD (|)Accuracy (1)F1-Score (1) AUROC (1)
Metrics

German GCN 0.364 | 0.312 0.684 0.786 0.654
GraphSAGE| 0.231 | 0.157 0.746 0.817 0.781
GIN 0.148 | 0.091 0.720 0.812 0.734
FairGNN | 0.086 | 0.054 0.653 0.817 0.671
NIFTY 0.077 | 0.049 0.674 0.792 0.736
GEAR 0.085 | 0.046 0.681 0.780 0.722
RFCGNN | 0.067 | 0.041 0.721 0.823 0.747
FDGNN | 0.058 @ 0.024 0.727 0.837 0.781
Credit GCN 0.108 | 0.096 0.689 0.835 0.707
GraphSAGE| 0.113 | 0.124 0.739 0.859 0.767
GIN 0.132 0.127 0.724 0.823 0.729
FairGNN | 0.126 | 0.104 0.674 0.812 0.711
NIFTY 0.094 | 0.113 0.703 0.806 0.727
GEAR 0.097 | 0.084 0.734 0.817 0.738
RFCGNN | 0.074 | 0.064 0.735 0.849 0.743
FDGNN | 0.056  0.047 0.736 0.861 0.747
Bail GCN 0.093 | 0.044 0.828 0.784 0.871
GraphSAGE| 0.086 | 0.041 0.847 0.793 0.894
GIN 0.072 | 0.043 0.728 0.658 0.768
FairGNN | 0.067 | 0.044 0.815 0.776 0.872
NIFTY 0.035 | 0.028 0.753 0.671 0.796
GEAR 0.047 | 0.024 0.823 0.783 0.786
RFCGNN | 0.031 | 0.024 0.861 0.802 0.747
FDGNN | 0.025 @ 0.020 0.854 0.785 0.896

RQ2: What is the impact on FDGNN’s performance when indi-
vidual components are ablated?

To answer RQ2, we conduct ablation studies to gain insights into the effect
of each module of FDGNN on improving fairness. Initially, our first analysis
examined the significance of the fair ego-graph generation module. By substi-
tuting this module with the FDGNN-NFG variant, which employs an extrac-
tor to capture 2-hop neighboring nodes as ego-graphs for each node. Figure 3
presents ablation results on German, Credit, and Bail datasets. We observe that
the fairness of FDGNN-NFG noticeably decreases. This reduction in fairness is
ascribed to the FDGNN-NFG variant’s inability to equitably represent diverse
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Fig. 3. Ablation study results for FDGNN, FDGNN-NFG, FDGNN-ND, and FDGNN-
NM.

subgroups within subgraphs, leading to oversight of information from neighbor-
ing nodes with different sensitive attributes and, consequently, introducing graph
structural bias. Next, we assessed the impact of the disentangled constraint by
introducing the FDGNN-ND variant, which eschews this constraint by setting
N, =1 and excluding Lp. The results, depicted in Fig. 3, revealed a decline in
both fairness and overall performance. This downturn can be attributed to the
direct application of fairness constraints across the entire representation space in
the absence of disentanglement, inevitably removing some task-related informa-
tion. Lastly, we evaluate the effectiveness of our fairness constraint by creating
the FDGNN-NF variant, removing L. Compared to the FDGNN, there is a
marked degradation in fairness, demonstrating the critical role of the fairness
constraint in removing sensitive attribute information from node representation.
To sum up, experimental results demonstrate the indispensability and efficacy
of each component within the FDGNN framework.

RQ3: What the effect of Different N. Values on Fairness and Pre-
dictive Performance?

To answer RQ3, we conducted experiments with a variety of values for N, as
{1,2,4, 8,16}, keeping all other training factors the same. We compare FDGNN’s
predictive performance and fairness under different settings. We observe that
(Fig.4): i) As N, increases, the FDGNN achieves better fairness, demonstrating
better disentanglement of information related to sensitive attributes. ii) When
N, is a modest value, the model fairness is hardly affected or even increases. The
FDGNN mostly strikes the right balance between maintaining model utility and
fostering fairness with proper choices of N, in here. iii) When N, is significant,
, a noticeable decline in fairness is observed. This is attributed to the model’s
inability to isolate sensitive attribute information within a singular channel,
resulting in cross-channel correlations that retain sensitive attribute data within
node representation. In essence, increasing N, allows for finer disentanglement
and recognition of sensitive attribute-related information up to a point. Beyond
this threshold, however, the decomposition into an excessive number of chan-
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Fig. 4. Study the choice of N.-value on German, Credit and Bail datasets.

nels introduces interference among them. This complexity hampers the model’s
ability to ensure channel independence, resulting in a decrease in model fairness.
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Fig. 5. Exploring hyperparameters study results in the German dataset.

RQ4: How do hyperparameters affect the performance and fairness
of FDGNN?

To answer RQ4, we delve into the effects of three critical hyperparameters,
i.e., a, 3, and v, which respectively modulate the influence of disentanglement,
decorrelation, and the model’s reconstruction performance within FDGNN. For
this analysis, we individually varied each hyperparameter through a range from
0.001 to 10, keeping all other training factors the same. Figure 5 presents the rel-
evant findings from the German dataset. Specifically, an increase in « and (§ will
increase model fairness but at the cost of some predictive performance degrada-
tion. This phenomenon occurs as the increased weightage of these parameters
strengthens the model’s ability to disentangle node representation and mitigate
the correlation with sensitive attributes. Consequently, this diminishes the influ-
ence of sensitive attribute information on node representation, thereby advancing
model fairness. As for ~, its increment initially bolsters fairness up to a certain
point, beyond which fairness begins to decrease, though without significantly
affecting performance. This is because a higher v value improves the model’s
fidelity in reconstructing the graph structure, thereby avoiding the introduc-
tion of noise into the node representation and improving the model’s ability to
capture the underlying factors behind the data.
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6 Conclusion

In this work, we study the problem of learning fair graph representation within
GNNs. Inspired by causal theory, we introduce the Fair Disentangled Graph Neu-
ral Network (FDGNN) framework, which aims to achieve counterfactual fairness
in graph-based representations while preserving important task-related informa-
tion. FDGNN conducts a causal analysis of both original and counterfactual
samples, effectively disentangling sensitive attributes into distinct components
and subsequently mitigating their undue influence on the learned representa-
tions. This strategy allows FDGNN to enhance fairness without compromising
the utility of the node representation for downstream tasks. Empirical evalu-
ations on three real-world datasets validate the effectiveness of our framework
with respect to both prediction performance and fairness.
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dation (NSF) under Grant No. 2245895.
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