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Abstract. Graph Neural Networks (GNNs) have demonstrated re-
markable capabilities across various domains. Despite the successes
of GNN deployment, their utilization often reflects societal biases,
which critically hinder their adoption in high-stake decision-making
scenarios such as online clinical diagnosis, financial crediting, etc.
Numerous efforts have been made to develop fair GNNs but they typi-
cally concentrate on either individual or group fairness, overlooking
the intricate interplay between the two, resulting in the enhancement
of one, usually at the cost of the other. In addition, existing individ-
ual fairness approaches using a ranking perspective fail to identify
discrimination in the ranking. This paper introduces two innovative
notions dealing with individual graph fairness and group-aware indi-
vidual graph fairness, aiming to more accurately measure individual
and group biases. Our Group Equality Individual Fairness (GEIF)
framework is designed to achieve individual fairness while equalizing
the level of individual fairness among subgroups. Preliminary exper-
iments on several real-world graph datasets demonstrate that GEIF
outperforms state-of-the-art methods by a significant margin in terms
of individual fairness, group fairness, and utility performance.

1 Introduction

Graph data is widely available in real-world scenarios, such as the
financial markets [54], biological networks [49], and social net-
works [37]. Given that graph data contain not only node feature infor-
mation but also structural details about the nodes and their neighbors,
numerous graph mining algorithms have been developed over the past
few decades to gain deep insights from graph data [29, 60, 62, 26].
Among these, GNNs stand out as a fundamental and widely adopted
approach, demonstrating remarkable efficacy across a multitude of
tasks and applications [12, 34, 9], which has led to GNNs playing
an increasingly important role in a variety of high-stakes decision-
making scenarios, such as credit scoring [31], recommendation [28],
and healthcare [25]. However, the increased adoption of GNNs in
high-risk decision-making scenarios is intensifying concerns about
their fairness. For instance, serious ethical issues arise when a credit
agency’s scoring is influenced by racial information in a customer’s so-
cial network, including the racial identities of their close contacts [48].

To address fairness in algorithmic decision-making, researchers
have introduced various fairness concepts, generally categorized into
two types: group fairness and individual fairness [21]. Group fair-
ness [57, 58, 61] focuses on ensuring that models equitable treatment
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of different subgroups defined by sensitive attributes such as gender
or race, i.e., aiming to achieve statistical parity across these subgroups,
ensuring that no group is disadvantaged by the model’s outcomes.
On the other hand, individual fairness [10, 27, 64] is able to enforce
fairness at a finer granularity at the individual level compared to group
fairness. Its objective is to ensure that similar individuals (based on
their input features) receive similar predictions. To achieve individual
fairness, existing works [41, 55, 56] on individual fairness employ a
Lipschitz condition, which is parametrized by a Lipschitz constant.
Specifically, it ensures that the output distance between any pair of
individuals is proportionally less than or equal to their input distance
multiplied by this scalar. Essentially, it guarantees that small differ-
ences in inputs do not lead to disproportionately large differences in
outcomes. However, specifying a suitable Lipschitz constant to com-
pare these distances accurately can be difficult due to the variation in
distance metrics between the input and output spaces.

While existing fairness works [6, 8, 38, 45] in machine learning
have shown effectiveness, they often treat individual and group fair-
ness as separate goals. The drawback is that this can result in models
that enhance individual fairness at the expense of group fairness [39].
For instance, consider a loan application scenario illustrated in Fig-
ure 1, where d; already has his loan approved and d2, d3, and d4’s
loan decisions are to be decided by the Al algorithm. In the input
space, the similarity ranking of applicants to di is d2 > (dz = da).
The Lipschitz condition for dy is Dis(d1,d;) < 35, where d; denotes
all the comparable neighbors and Dis(+) is a function that measure
the distance of instances in the output space. Here, d2, d3, and d4
satisfy the Lipschitz condition (Dis < 35). However, when the model
concentrates exclusively on individual fairness, the optimization of
the constraining scalar may be susceptible to the influence of sensitive
attributes associated with the individuals involved. As a result, d4
is further away from the reference individual d; in the output space
compared to dz (30 v.s. 20). Although this result satisfies individual
fairness, a larger outcome distance disparity could potentially put the
applicant d4 on the unfavorable side of the loan approval decision
boundary, giving her a different outcome for her loan application,
thereby introducing the group bias. We believe it is crucial to consider
group fairness alongside individual fairness. By balancing the model’s
performance in terms of individual fairness across different subgroups,
our model can effectively avoid favoring any particular subgroup.

Despite its fundamental importance, achieving individual fairness
with group awareness in GNNs remains a largely unexplored area,
presenting three distinct challenges: i) Simultaneous Achievement
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Figure 1: A toy example of the disparity of individual fairness between different subgroups in a loan approval system.

of Individual and Group Fairness. Achieving individual fairness
can inadvertently result in disparate treatment of individuals from
different subgroups. This introduces additional biases, thereby po-
tentially undermining group fairness, which necessitates a nuanced
approach that can mitigate biases at both individual and group levels.
ii) Identifying individuals who are truly discriminated against.
Individual fairness requires a careful examination of each individ-
ual, taking into account the interconnected nature of graph data. The
non-independent and Identically Distributed nature of graph data fur-
ther complicates the process of identifying similar individuals and
accurately quantifying individual unfairness. iii) Unbounding the
Lipschitz Condition. Most existing individual fairness works rely
on the Lipschitz condition to align differences in input and output
space metrics. However, this condition often limits their applicability
in real-world scenarios. Moreover, the absolute distance comparison
in the Lipschitz condition fails to calibrate the differences between
different instances.

In response to these challenges, this paper introduces two novel
fairness metrics: Individual Rearranged Graph Fairness (IRGF)
and Individual-Group Graph Fairness (IG?F). Building on this,
we proposed the Group Equality Individual Fairness (GEIF), a
novel framework for fair Al decision-making in graph-based models.
To the best of our knowledge, GEIF represents the first work that
Sfundamentally analyzes individual unfairness and its variation across
subgroups in graphs. Specifically, we propose IRGF identifies indi-
vidual unfairness by measuring the difference between individuals
in the input and output spaces through a ranking perspective. This
approach enables a direct measurement of individual unfairness while
simultaneously unbounding the constraints of the traditional Lipschitz
condition. We propose IG®F derived from the IRGF, which measures
the individual unfairness of each person. IG?F allows us to quantify
the disparity in fairness between subgroups, offering a comprehensive
view of group unfairness. The GEIF framework incorporates these
two innovative metrics to achieve a dual objective: ensuring overall
individual fairness and establishing comparable levels of fairness be-
tween groups, all while maintaining the model’s predictive utility. The
key contributions of this paper can be summarized as follows:

e Notions. We propose innovative individual and group fairness met-
rics. Our individual fairness metric, IRGF, evaluates bias through a
novel ranking perspective, enabling more precise individual bias
assessment and quantification of associated group-level bias. This
approach eliminates the dependence on the Lipschitz condition.
Additionally, the IG*F metric, derived from IRGF, measures dis-
parities in individual fairness across different subgroups.

e Method. We present a novel GEIF framework, GEIF, to mitigate
individual biases while avoiding group unfairness. Utilizing our
newly proposed fairness metrics, we develop specific loss functions
for both individual and group fairness. Moreover, the framework
allows for adjustable hyperparameters, enabling a balanced control

between the model’s utility and fairness.

e Experiments. We conduct extensive experiments on three real-
world benchmark datasets. The results demonstrate the efficacy of
our GEIF model which not only outperforms existing baselines in
fairness but also achieves comparable prediction performance in
downstream tasks.

2 Related Work
2.1 Graph Neural Networks

Graph neural networks (GNNs) have found widespread utility in
various tasks involving graph-structured data, such as node classi-
fication [35, 18, 3], graph classification [33, 24], and link predic-
tion [66, 50]. Their exceptional performance in these domains has
broadened their applicability [13]. For example, financial institutions
can employ GNNs to analyze customer transaction networks, helping
to make informed credit decisions. However, using GNNSs in such
high-risk decision-making scenarios necessitates additional aspects
to be addressed, one of them being fairness [52, 63, 59]. In the con-
text of the financial scenario, decisions guided by GNNs need to be
both accurate and fair, considering their far-reaching implications
on an individual’s financial status and future opportunities. As such,
there’s a growing emphasis in the research community on devising
GNN models that factor in fairness when dealing with graph-related
tasks [15, 7].

2.2 Fairness in Graph Learning

Recent years have seen growing attention in fairness within machine
learning [32, 40, 42, 43, 47]. Typical notions of fairness in graphs are
generally categorized into two types: group fairness and individual
fairness [44]. Group fairness works [5, 14, 53] seeks statistical equal-
ity among subgroups defined by sensitive attribute(s). On the other
hand, individual fairness works [30, 46, 65] aim to ensure that similar
individuals receive similar treatment, promoting equitable treatment
irrespective of sensitive attributes like race or gender. Nevertheless,
considering that individual fairness is able to enforce fairness at a
finer granularity at the individual level compared to group fairness,
it relies on the Lipschitz condition. To this end, recent works [64]
have attempted to measure individual fairness through a ranking per-
spective. However, these methods often inaccurately assess individual
fairness loss. They quantify individual bias directly on the focused
individual used to form the ranking, rather than individuals within the
ranking. This approach overlooks those who experience a shift in their
ranking position, which is a root cause of individual bias. In addition,
a common limitation of these approaches is their failure to address the
intrinsic connection between individual and group fairness. Enhanc-
ing one often comes at the cost of the other, thus failing to eliminate
systematic bias at its root. Furthermore, traditional group fairness
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metrics in graphs are unable to measure individual fairness disparities
across different subgroups. Some recent work, such as GUIDE [32],
has attempted to address both individual and group equity by minimiz-
ing losses associated with each. However, these approaches are often
constrained by the Lipschitz condition and lack versatility across dif-
ferent datasets. Maxmin-Fair [11] employs a Min-Max algorithm [36],
and aims to equalize the total group fairness loss experienced by each
individual across multiple runs of the algorithm. Yet, in scenarios
requiring only a single query, such as healthcare resource allocation,
achieving both individual and group fairness simultaneously remains
elusive.

In response to these challenges, our work differs from these cited
works in that we not only optimize overall individual fairness but
also explicitly equalize the levels of fairness across subgroups. We
aim to ensure that sensitive attributes do not disproportionately af-
fect an individual’s fairness level compared to the similar individual.
Additionally, our approach overcomes the limitations imposed by
the Lipschitz condition, enhancing its applicability in a variety of
real-world scenarios.

3 Preliminary
3.1 Notation

Consider an undirected graph denoted as G = (V, &, X), where
V = {v1,v2,. .., vy} represents the set of NV nodes, & C {{v;,v;} |
vi,v; € V} denotes the set of undirected edges with each edge
represented as an unordered pair {v;,v;}, and X isan x D (n =
|V]) node feature matrix with the i-th row, z; € R”, containing
the D-dimensional feature vector of node v;. To encapsulate the
graph structural information, we define the adjacency matrix A cor-
responding to G, where the matrix element A, ; is set to 1 if an edge
exists between nodes v; and v; (i.e., {vi,v;} € &), and is set to 0
otherwise. Meanwhile, following previous works, we focus on bi-
nary sensitive attributes and binary node classification tasks. Each
node v; has a sensitive attribute, we utilize s; € {0, 1} to represent
the sensitive attribute, where s; indicates the group membership of
the individual v;: if s; = 0, v; belongs to the deprived group Sy =
{Vv;:v; € VAs;, =0};if s; =1, v; belongs to the favored group
S1={V v :v; €V As; =1} Note that s; € X. Ng, and Ng, are
the number of nodes in Sy and S;. In addition, we let £ denote the set
of labeled vertices {v1, v2,...,vn, } in the graph, where Ny, is the
number of labeled vertices, and let Y = {y1,y2,...,yn, } denote
the corresponding set of ground-truth labels, with y; representing the
ground-truth label for vertex v;. Additionally, let I/ represent the set
of unlabeled vertices {vn, +1, VN, +2, .., VN, +Ny }» Where Ny is
the number of unlabeled vertices. For any unlabeled vertex v;, the
predicted label is denoted as ¢;. It is important to note that the union
of the labeled and unlabeled vertex sets equals the entire set of vertices
in the graph, i.e., LJU = V.

3.2 Problem Definition

Given G with the sensitive attribute information .S, node features X,
graph topology A, and node labels Y, our goal is to learn a node
classifier, denoted as fy, which is parameterized by 6, trained based
on G that can balance both individual fairness and group fairness.

4 Methodology

Existing fairness works often treat individual and group fairness as
separate optimization goals, leading to enhanced individual fairness

Input Space

Figure 2: A toy example of quantifying and mitigating individual
unfairness from a ranking perspective. The number of star(s) next
to each individual represents the corresponding pairwise level of
similarity to the reference individual.

at the cost of group fairness. Instead, our proposed model aims to
measure individual fairness by pinpointing the origins of individual
bias, which in turn enables the quantification of associated group-level
bias as a unified goal. Section 4.1 proposes a new metric, IRGF@E, to
identify the origins of individual bias from a ranking perspective. The
intuition is that similar individuals should hold similar positions in the
corresponding ranking lists within the input space and output space,
and these lists are formed through different reference individuals.
This criterion allows for a direct evaluation of individuals who face
unfair treatment and serves as a basis for assessing group-level bias.
Then Section 4.2 introduces a unified metric, IG?F, to measure the
disparity in individual unfairness between subgroups, facilitating the
quantification of group-aware individual fairness. Finally, Section 4.3
delves into the loss functions for each optimization objective and
presents the objective function for optimizing our framework.

4.1 Quantifying Individual Graph Unfairness

This section introduces a novel individual fairness metric, Individ-
ual Rearranged Graph Fairness (IRGF), which measures individual
fairness through a ranking perspective, offering a refined approach to
evaluating bias by examining changes in individuals’ positions within
ranking lists, as opposed to focusing on the reference individual who
forms the list. This strategy identifies individuals who face genuine
discrimination while avoiding the limitations of the Lipschitz condi-
tion. Specifically, IRGF assesses the fairness of an individual d; by
evaluating his/her positional changes in the ranking lists established
based on the reference individual d,.. To illustrate the overarching
concept, take the example shown in Figure 2 with d; as the reference
individual, the input space ranking list (dz, ds, d4) and output space
ranking list (ds, d2, d4) are both arranged in descending order of
similarity to d;. To quantify the bias on d2 from a ranking standpoint,
we evaluate the ranking shift of dz in relation to the reference indi-
vidual (i.e., d1), as well as the changes in relative positions between
ds and their neighbors. Finally, the overall individual unfairness of
ds is determined by calculating the average value of ds’s individual
unfairness across all his/her associated ranking lists. Mathematically,
the IRGF is defined as follows:

1AL 1 QL ONFE, ()
IRGFOk = ; Vi ; ONEL, (@) )
where N represents the total number of individuals, M is the number
of times d; appears as one of the top-k neighbors of d,., and Sim.)
denotes the similarity matrix in the input space D (output space
D’). Note that the focus on top-k neighbors aligns with the principle
of individual fairness, which stipulates that only similar individuals
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should be treated similarly. In addition, the Cumulative Node Fairness
CNFgfm( ) (d), motivated by learning to rank [4], is calculated for
each focused individual d;, with d,. as the reference individual, as

follows:

Simp (dz)
log, (pos(di) +1)
" Simp(diy,,dy)
— 1 Z log,(pos + 1)

pos=1
dzpm #d;

CNF§},  (di) = + )

where pos is the position of each individual in the ranking list, and the
sequence {lp(>s}§os:1 represents the ordered list of individual indices
from the similarity matrix Sim(-) for the reference individual d,.
Thus, the first tern in the Equation 2 assesses the bias related to the in-
dividual’s positional change, while the second term evaluates the bias
impact due to the positional changes of the individual’s neighbors (i.e.,
di,,, 7 d;). Note that both CNFin, 1, (a;) and CNFsim ,, (a;) are com-
puted using the similarity values from Simp (i.e., input space), with
the corresponding similarity being used only for deriving the ordering
list lpos, Which directly quantifies individual bias while eliminating
the necessity of specifying a Lipschitz constant. In addition, the input
space oracle similarity matrix Simp is often problem-specific and
given a priori [20, 19]; For the output space similarity matrix Simp-,
the Gaussian Kernel function is applied to measure the output space
similarity of each pair node as follows:

DUCLIGEY

Simps(vi,v;) = exp (— 507

where o here is a scalar, and D(-) is a chosen distance metric, and
f () represents a GNNs model.

Overall, our proposed IRGF@£ values lie within the interval [0, 1],
which aligns with existing notions of individual fairness. Higher
IRGF @k scores indicate greater consistency between the ranking
lists encoded from the input and output spaces, which suggests a
fairer model. In other words, if two individuals are ranked closely in
the input space (e.g., their personal circumstances), then they should
also be ranked closely in the output space (e.g., their application
results). By scrutinizing the two ranking lists obtained in the input
and output spaces, our approach can pinpoint the origins of individ-
ual bias while also becoming feasible to quantify associated unified
group-level bias further.

4.2 Quantifying Individual-Group Graph Unfairness

A critical limitation in existing individual fairness works is their in-
sufficient consideration of group fairness implications. Specifically,
individual fairness constraints might differ across subgroups, and
such disparities may result in individuals in poor groups being treated
differently in terms of meeting individual fairness, thereby leading to
increased biases against deprived groups. To address this, we intro-
duce a novel unified metric that quantitatively measures this disparity,
thereby bridging the gap between individual and group fairness. This
metric leverages our previously introduced individual fairness metric
IRGF@E to evaluate if subgroups are treated fairly by the model.
Specifically, we evaluate the ranking consistency ratio of each indi-
vidual d; within a subgroup, thereby evaluating the model’s disparity
across each subgroup. This strategy enables us to scrutinize the fair-
ness of treatment across subgroups, thereby offering a more refined
and comprehensive fairness assessment. In other words, we consider

group-aware individual fairness to be satisfied if every individual in a
group is not significantly better than an individual in another group.
Formally, Group Graph Fairness (G*F') is defined as follows:

‘DS
~ 1
G2
Dsi |D | Z Md —~

where | - | represent the number of samples in the subgroup D, . Uti-
lizing GQFDSi , Individual-Group Graph Fairness (IG*F), designed
to identify and quantify disparities in individual fairness performance
between distinct subgroups D, and Dy, is introduced in Equation 5:

4 CNFSlmD/ (d;)
CNFSlmD (dj)

(C))

IG%F =

Min(G?Fp, ,G?Fp, )
max J z
¥ D,, D, €D,D,, #D,, Max(G2FDSi , GQFDSj)
(5

The IG?F value, ranging from 0 to 1, provides a quantitative mea-
sure of fairness across subgroups. A value of 1 indicates equivalent
levels of individual fairness among all subgroups, representing un-
biased treatment. Conversely, a value of 0 suggests a significant dis-
parity in treatment between subgroups, indicating biased outcomes.
Thus, IG?F effectively quantifies the maximal disparity in individ-
ual fairness performance among different subgroups, calculated by
considering all possible subgroup combinations.

4.3 Mitigating Individual and Group-level Unfairness

This section proposes a novel GNN framework Group Equality Indi-
vidual Fairness (GEIF) to mitigate individual- and group-level unfair-
ness collectively, consisting of three distinct modules: 1) the utility
module, ii) the individual fairness module, and iii) the group-level
fairness module. Specifically, the utility module aims to maximize the
performance of the backbone GNN model in advancing downstream
learning tasks. To achieve this, we adopt the cross-entropy loss to
enforce the predictions g; to be closer to the ground truth y;, defined
as:

—(yilog(yi) + (1 — yi) log(1 —4i))  (6)

Second, we introduce an individual fairness module designed to
mitigate individual unfairness. As we introduced in Section 4.1, we
treat individual fairness as a ranking problem, thereby alleviating the
dependence on non-trivial Lipschitz condition. As observed in Fig-
ure 2, while d4 maintains consistent positions across input and output
spaces, d2 and dsz swap their respective orderings, indicating inconsis-
tency. We want a loss function to promote the first relative ordering
while penalizing the latter. However, defining a loss function minimiz-
ing the difference between Simp and Simps with gradient-based
optimization techniques has the problem that is non-differentiable due
to ranking operations. To address this, we formulate the loss function
as a probability function, enabling the application of gradient-based
optimization techniques. To formulate it as a probability score be-
tween 0 and 1, we make use of the Sigmoid function, as shown as
follows:

1

Py a, = : : 7
disde 14+ e—(Simp(dr,d;)—Simp (dr,de)) )

Furthermore, for Py, 4., representing the known probability, we
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use a priori information to determine if d; is more similar to d, than
d. when d, as reference individual in the input space, defined as:

1, if Simp(dy,d) > Simp(dy, de)
Pi;a, = { 0.5, if Simp(dy,d;) = Simp(dy,de)  (8)
0, if Simp(dy,d;) < Simp(dy,de)

Building on this, to promote individual fairness via ranking op-
timization, it is necessary to quantify and minimize the difference
between the predicted probability distribution and the known one.
With this, the loss function L4, () is defined as the cross-entropy
loss that quantifies the difference between the predicted and actual
probability distributions of order consistency:

M
_ 1 5
£ TOP(d) _ _ (p o los Py
d; M ;:1 di,de 108 Fd;,de ©

+ (1 - Pdi,de) lOg(l - sz‘ﬁde))

where TOP(-) operation selects all individuals d, for whom d; and
d. are among the top ranked & similar individuals in the input space.
Finally, the total individual fair loss L is defined as follows:

N
L£r =YL d;,d.) (10)
i=1

Overall, this similarity-based relative ranking difference in the
input and output space represents the ranking inconsistency loss and
is quantified as leTiOP(d‘). The overall individual loss function, L7,
aggregates this inconsistency loss across all individuals.

Finally, based on the foundation laid by our individual fairness
metric, we introduce a group-level fairness module designed to pro-
mote group equality of individual fairness. Specifically, we cast group
fairness guarantee as the difference between the mean individual fair-
ness loss of the different subgroups. In other words, this approach
is to prevent any single group from disproportionately bearing the
brunt of individual fairness loss. The loss function should thus pro-
mote consistency in the mean individual fairness loss of different
groups. Motivated by this, we define a differentiable loss function
with pairwise D, and D, for minimizing disparities in fairness
across subgroups. The group fairness loss (L) is defined as follows:

GFp,, \° (GFp, \’

La= <G2FDS]. 1) * (GQFD% 1) (an
where G2FDSi and G?Fp, are individual unfairness for subgroup
Ds, and Ds;. Each group’s] individual unfairness is computed with
our proposed individual metrics according to Equation 1. Notably, this
loss function is symmetric, ensuring that its application is consistent
and fair regardless of the subgroup pairing order. By adopting this
broader approach, our method effectively evaluates and addresses
potential fairness issues within machine learning models, ensuring
that individual fairness outcomes are more equitable across diverse
subgroups.

In summary, there are three objectives in total for the optimization
of GEIF, as depicted in Equation 12. The first term, Ly, focuses on
maintaining the utility of the GNNs model (i.e., minimizing the predic-
tion loss). For this purpose, we adopt the cross-entropy loss, which is
widely utilized in node classification tasks. The next term, L, targets
minimizing the individual fairness loss. As discussed in section 4.1,
this term enhances individual fairness by promoting consistent or-

dering in the input and output spaces, thereby reducing reliance on
the Lipschitz condition. The final term, Lg, aims to equalize levels
of individual unfairness for all subgroups, thereby addressing group
fairness.

argmin Liotar = Lu + L1 + BLa (12)

where a and 3 are tunable hyperparameters that control the strength
of the individual and group fairness constraints, respectively. These
parameters allow for the flexible balancing of fairness objectives with
the model’s predictive accuracy. For training our proposed framework,
gradient-based optimization techniques can be directly applied to min-
imize L¢ota1, ensuring an effective and efficient approach to achieving
both utility and fairness in the model’s outcomes.

5 Experiments
5.1 Datasets

Four real-world datasets are utilized to evaluate the effectiveness of
our framework: i) Facebook Dataset [22]: This dataset represents the
Ego Network within Facebook, where nodes are Facebook users, and
edges denote friendships. The classification task involves predicting
whether users belong to the same social circle based on their network
connections. ii) German Dataset [2]: Comprising credit information
from a German bank, this dataset represents clients as nodes and
their credit account similarities as edges. The sensitive attribute is
gender, with the classification objective being to differentiate between
good and bad credit risks. iii) Credit Dataset [S1]: This dataset
contains individuals’ default payment information. Nodes represent
individuals, and edges reflect similarities in expenditure and payment
patterns. The sensitive attribute here is age, with the goal to predict
whether individuals prefer credit card payments as their default mode.
iv) Bail Dataset [1]: This dataset presents data related to defendants
who were granted bail in U.S. state courts. In this context, each node
corresponds to a defendant, while an edge connecting two nodes
signifies similarities in their criminal records and demographic details.
The sensitive attribute is the race of the defendants, and the objective is
to classify them into suitable or unsuitable categories for bail. Table 1
summarizes detailed statistics of these datasets.

Table 1: Summary of the datasets used in the experiments.

Dataset Facebook German Credit Bail
Vertices 1,034 1,000 30,000 18,876
Edges 26,749 21,742 137,377 311,870
Feature 224 27 13 18
Dimension

Average 517 445 10 34
Degree

Sensitive

Attribute Gender Gender Age Race

5.2 Evaluation Protocol

Our evaluation encompasses a range of fairness and performance met-
rics to provide a thorough assessment. To gauge fairness, the proposed
graph fairness metrics IRGF@ 10 and IG*F are employed. Note that
existing, commonly used fairness metrics are not applicable, as they
typically do not account for the inherent implications between individ-
ual and group fairness. In evaluating performance, we align with prior
works [64, 7, 23] and consider two widely-used node classification
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performance metrics: i.e., accuracy and F1-Score. For all of them,
higher values correspond to better performance. To demonstrate the
generalization of GEIF, we build Simp, by calculating the cosine
similarity between node representations.

5.3 Baselines

To benchmark the performance, GEIF is compared against six state-
of-the-art methods: GCN [18], FairGNN [7], PFR [20], InFoRM [16],
REDRESS [9], and GUIDE [32]. Specifically, GCN serves as a
performance-driven vanilla baseline, which leverages spatial graph
convolutions for neighbor representation aggregation. The remaining
methods focus on various aspects of fairness: FairGNN employs ad-
versarial learning to enforce group fairness in node classifications;
PFR focuses on learning fair node embeddings as a preprocessing step,
thereby satisfying individual fairness in downstream tasks; InFoRM
applies a Lipschitz condition to formulate an individual fairness loss in
graphs; REDRESS aims to achieve individual fairness from a ranking
perspective; and GUIDE targets both individual and group fairness,
also based on the Lipschitz condition.

5.4 Implementation Details

Our proposed model is designed to be flexible and not constrained to
a specific GNNs architecture. For the purposes of our experiments,
we employ the GCN as the GNN backbone. The number of GCN
layers is 2, and we set the hidden size as 16. The activation function
is ReLU. We use the Adam optimizer [17] to train the classification
model with 1 x 10™* learning rate and 1 x 10™* weight decay. We
conducted all experiments 10 times and reported average results. For
fairness and to achieve optimal performance across all models tested,
we tune the hyperparameters based on each method’s performance on
the validation set.

5.5 Experiment results

Benchmark Performance. The effectiveness of the GEIF frame-
work is evaluated and summarized in Table 2. From the perspective
of model utility, GEIF demonstrates competitive performance and
achieves the highest accuracy on the Credit dataset. In terms of F1-
score, GEIF ranks highest on the Bail dataset and second highest on
the Credit dataset. This notable improvement, particularly in deprived
subgroups, is attributed to GEIF’s comprehensive integration of fair-
ness considerations into the model. From the perspective of fairness,
GEIF outperforms all the baseline methods. It efficiently identifies and
mitigates individual unfairness by analyzing ranked lists from both
input and output spaces. Furthermore, GEIF effectively reduces the
performance disparities across different subgroups, leading to a signif-
icant enhancement in group fairness compared to existing individual
fairness baselines. From the perspective of balancing the model utility
and fairness, across four datasets and four metrics, it achieves top
rankings in most categories, illustrating its superiority in managing
the trade-off between accuracy and fairness. Overall, the integration
of both individual and group fairness considerations allows GEIF to
outperform models focused on only one aspect of fairness, illustrating
its comprehensive advantage in fostering fairness.

Parameter Studies. The proposed GEIF framework has two critical
hyperparameters: « is key in optimizing individual fairness, while
focuses on balancing individual-group fairness objectives. To explore
their impacts on performance and fairness, hyperparameter sensitivity
experiments are conducted. These experiments varied « and 3 within

Table 2: Performance and fairness results for GEIF and baselines. The
darkest cells indicate the top rank, while lighter cells represent the
second rank.

Dataset Methods Accuracy | Fl-score | IRGF@10 | IG°F
GCN 0.78 0.77 0.36 0.33

PFR 0.73 0.73 0.43 0.29

InFORM 0.74 0.75 0.64 0.26

Facebook | REDRESS 0.77 0.80 0.51 0.31
FairGNN 0.82 0.78 0.38 0.35

GUIDE 0.79 0.79 0.61 0.47

GEIF 0.79 0.78 0.71 0.67

GCN 0.66 0.76 0.42 0.37

PFR 0.66 0.74 0.47 0.26

InFoRM 0.62 0.71 0.65 0.28

German REDRESS 0.68 0.78 0.56 0.28
FairGNN 0.63 0.69 0.39 0.47

GUIDE 0.67 0.77 0.63 0.53

GEIF 0.66 0.76 0.69 0.61

GCN 0.61 0.72 0.37 0.32

PFR 0.64 0.76 0.51 0.25

InFoORM 0.68 0.77 0.67 0.27

Credit REDRESS 0.65 0.74 0.5T1 0.28
FairGNN 0.63 0.78 0.42 0.44

GUIDE 0.68 0.81 0.65 0.49

GEIF 0.69 0.78 0.71 0.63

GCN 0.82 0.78 0.34 0.37

PFR 0.77 0.71 0.47 0.27

InFORM 0.80 0.80 0.57 0.20

Bail REDRESS 0.78 0.71 0.53 0.24
FairGNN 0.81 0.77 0.36 0.52

GUIDE 0.79 0.73 0.61 0.57

GEIF 0.81 0.81 0.68 0.65

the set {1e™®,1e7%,1e7 ", 1%, le', 1e?, 1e®}. Taking the Facebook
dataset as an example, Figure 3 illustrates the outcomes of these ex-
periments. As one can see, increments in « and J tend to be inversely
proportional to GEIF’s performance. Specifically, increasing o en-
hances the model’s individual fairness but can lead to a noticeable
decline in overall performance. Conversely, elevating 3 has a positive
effect on equalizing the variances in individual fairness performance
between different subgroups. This is because a higher 5 value allows
the model to more effectively balance fairness across these subgroups,
addressing disparities more holistically.

Effect of Different Number of Neighbors £ Values. In the GEIF
framework, the number of neighbors k plays a crucial role in de-
termining both model fairness and predictive performance. To ex-
plore this, we conducted experiments with various & values in the set
{4,7,10, 15,20, 30, 50}, keeping other training factors constant. As
illustrated in Figure 4, our findings reveal that as k increases, there is
an enhancement in the model’s performance on IRGF@F and IG*F
metrics, indicating more effective optimization for both individual
and group fairness. However, the model’s predictive accuracy remains
largely unaltered when £ is modest indicating an optimal balance be-
tween fairness and performance within this range. Conversely, when
k values are significantly increased, there is a trend towards reduced
precision due to the introduction of more noise from a larger number
of samples per comparison, which can diminish the weights assigned
to accurate labels and lead to ambiguous categorizations. Overall, a k
value of 10 achieves the best measure of fairness and performance.
Ablation Studies. To further assess the design of GEIF, ablation
studies are conducted by varying the loss function components of
the model. Specifically, the GEIF variant, GEIF-, created by setting
[ to zero, eliminates the group fairness loss (Lg) impact, enabling
assessment when solely focusing on individual fairness. The ablation
study results, shown in Table 3, indicate that while the GEIF- variant
slightly improves individual fairness metrics over the complete GEIF
model, it leads to a noticeable decrease in both individual-group fair-
ness and overall predictive performance. This decline is attributable
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Figure 3: Exploring hyperparameters study results in the Facebook dataset
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Figure 4: Exploring the choice of k-value effect model performance
and fairness.

to GEIF- not accounting for the variations in individual fairness con-
straints across different subgroups, leading to diminished fairness and
effectiveness, particularly for deprived groups. This ablation study
confirms the efficacy of GEIF’s design, which incorporates individ-
ual fairness with group awareness, and highlights the significance of
considering group disparities in individual fairness.

Table 3: Ablation study results for GEIF and GEIF-.

Dataset IRGF@10 IG?F
GEIF- GEIF GEIF- GEIF
Facebook 073 071 026  0.67
German 0.71 0.69 0.33 0.61
Credit 073 071 027 063
Bail 070 068 028  0.65
Accuracy Fl-score
Da@set  GEE GEIF  GEIF- GEIF
Facebook  0.80 079 076  0.78
German ~ 0.65 066 073  0.76
Credit 069 069 075 078
Bail 080 081 077 081

6 Conclusion

This paper takes the first major step towards exploring the intricate in-
teraction between individual fairness and group fairness in the graphs.
Specifically, two novel fairness concepts designed to quantify in-
dividual unfairness and associated disparities across subgroups are
introduced. Utilizing these concepts, a unified debiasing algorithm
is developed to mitigate individual unfairness and associated group
biases collectively. Experimental findings demonstrate the proposed

method’s superiority in achieving graph fairness compared to current
state-of-the-art approaches. Future directions include expanding the
proposed methodology to various other graph mining models.
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