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ABSTRACT

Differentially private diffusion models (DPDMs) harness the remarkable gener-
ative capabilities of diffusion models while enforcing differential privacy (DP)
for sensitive data. However, existing DPDM training approaches often suffer
from significant utility loss, large memory footprint, and expensive inference
cost, impeding their practical uses. To overcome such limitations, we present
RAPID!, a novel approach that integrates retrieval augmented generation (RAG)
into DPDM training. Specifically, RAPID leverages available public data to build
a knowledge base of sample trajectories; when training the diffusion model on
private data, RAPID computes the early sampling steps as queries, retrieves sim-
ilar trajectories from the knowledge base as surrogates, and focuses on training
the later sampling steps in a differentially private manner. Extensive evaluation
using benchmark datasets and models demonstrates that, with the same privacy
guarantee, RAPID significantly outperforms state-of-the-art approaches by large
margins in generative quality, memory footprint, and inference cost, suggest-
ing that retrieval-augmented DP training represents a promising direction for de-
veloping future privacy-preserving generative models. The code is available at:
https://github.com/Tangiudiang/RAPID.

1 INTRODUCTION

The recent advances in diffusion models have led to unprecedented capabilities of generating high-
quality, multi-modal data (Ho et al., 2020; Kong et al., 2020; Bar-Tal et al., 2024). However, training
performant diffusion models often requires massive amounts of training data, raising severe privacy
concerns in domains wherein data is sensitive. For instance, Carlini et al. (2023) show that compared
with other generative models, diffusion models are especially vulnerable to membership inference
attacks, due to their remarkable modeling capabilities; meanwhile, Wen et al. (2023) show that text-
conditional diffusion models trained with text-image pairs can produce images almost identical to
certain training samples with proper prompting.

This pressing need has spurred intensive research on enforcing privacy protection in diffusion model
training. Notably, Dockhorn et al. (2023) proposed the concept of differentially private diffusion
models (DPDMs), which incorporate DP-SGD (Abadi et al., 2016) into diffusion model training,
providing guaranteed privacy; Ghalebikesabi et al. (2023) further applied DP during diffusion model
fine-tuning, first pre-training a denoising diffusion probabilistic model (Ho et al., 2020) on public
data and then fine-tuning the model on private data under DP constraints. Similarly, Lyu et al. (2023)
employed the same strategy but extended it to latent diffusion models (Rombach et al., 2022). How-
ever, existing methods suffer from major limitations. (i) Significant utility loss — The quality of gen-
erated samples often drops sharply under tightened privacy budgets. For instance, DPDM (Dockhorn
et al., 2023) fails to synthesize recognizable images on CIFAR10 under a DP budget of € = 1. (ii)
Large memory footprint — To reduce the noise magnitude applied at each iteration, most approaches
adopt excessive batch sizes (e.g., B = 8,192 samples per batch). As common DP frameworks (e.g.,
OPACUS (Yousefpour et al., 2021)) have peak memory requirements of O(B?), this severely limits
the size of usable diffusion models. (iii) Expensive inference cost — Similar to non-private diffusion
models, existing methods require expensive, iterative sampling at inference, impeding them from
synthesizing massive amounts of data.

'"RAPID: Retrieval-Augmented Prlvate Diffusion model.
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To address such challenges, we present RAPID, a novel approach that integrates retrieval augmented
generation (RAG) (Lewis et al., 2020; Blattmann et al., 2022) into DPDM training. Our approach
is based on the key observation that small perturbations to the early sampling steps of diffusion
models have a limited impact on the overall sampling trajectory (Khalil, 2008). This allows us to
reuse previously generated trajectories, if similar to the current one, as effective surrogates to reduce
both training and inference costs (Zhang et al., 2023). Leveraging this idea, RAPID utilizes available
public data to pre-train a diffusion model and build a knowledge base of sampling trajectories.
It further refines the model using private data: it first computes the early sampling steps, retrieves
similar trajectories from the knowledge base as surrogates, and focuses on training the later sampling
steps under DP constraints. Compared to prior work, RAPID offers several major advantages:

* It achieves a more favorable privacy-utility trade-off by fully utilizing public data and only train-
ing the later sampling steps on private data;

* It significantly reduces batch-size requirements by leveraging the retrieved sample trajectories,
making the use of large diffusion models feasible;

* It greatly improves inference efficiency by skipping intermediate sampling steps via RAG.

Extensive evaluation using benchmark datasets and models demonstrates that RAPID outperforms
state-of-the-art methods by large margins in there key areas: (i) generative quality (e.g., improving
FID score to 63.2 on CIFAR10 under a DP budget ¢ = 1), (if) memory footprint (e.g., reducing the
required batch size to just 64 samples per batch), and (iii) inference efficiency (e.g., saving up to
50% of the inference cost). Our findings suggest that integrating RAG into DP training represents a
promising direction for developing future privacy-preserving generative models.

2 RELATED WORK

Differentially private data generation. As an important yet challenging problem, enforcing DP
into training a variety of advanced generative models has attracted intensive research effort (Hu
et al., 2023), including generative adversarial networks (Goodfellow et al., 2014; Chen et al., 2020a;
Yoon et al., 2019), variational autoencoders (Jiang et al., 2022), and customized architectures (Liew
et al., 2022; Vinaroz et al., 2022; Harder et al., 2021). For instance, Harder et al. (2023) pre-train
perceptual features using public data and fine-tune only data-dependent terms using maximum mean
discrepancy under the DP constraint.

Differentially private diffusion models. In contrast, the work on privatizing diffusion models is
relatively limited. Notably, DPDM (Dockhorn et al., 2023) integrate DP-SGD (Abadi et al., 2016)
with a score-based diffusion model (Song et al., 2021); Ghalebikesabi et al. (2023) propose to pre-
train a diffusion model with public data and then fine-tune the model using DP-SGD on private data;
Dp-LDM (Lyu et al., 2023) apply a similar fine-tuning strategy to a latent diffusion model (Rombach
et al., 2022); Privimage (Li et al., 2024) queries the private data distribution to select semantically
similar public samples for pretraining, followed by DP-SGD fine-tuning on the private data. How-
ever, all these methods share the drawbacks of significant utility loss, excessive batch sizes, or
expensive inference costs. Beyond the pre-training/fine-tuning paradigm, recent work also explores
synthesizing DP datasets by querying commercial image generation APIs (e.g., Stable Diffusion and
DALL-E2) to approximate the distributions of private data (Wang et al., 2024; Lin et al., 2024).

Retrieval augmented generation. Initially proposed to enhance the generative quality of NLP
models by retrieving related information from external sources Khandelwal et al. (2019); Lewis
et al. (2020); Guu et al. (2020), RAG has been extended to utilize local cohorts in the training data
to facilitate image synthesis. For instance, rather than directly outputting the synthesized sample,
Casanova et al. (2021) compute the average of the sample’s nearest neighbors in the training data.
Blattmann et al. (2022) use an external image dataset to provide enhanced conditional guidance,
augmenting the text prompt during the text-to-image generation. Zhang et al. (2023) explore RAG
to accelerate the inference process of a diffusion model by reusing pre-computed sample trajectories
as surrogates for skipping intermediate sampling steps. However, existing work primarily focuses
on employing RAG in the inference stage to improve generative quality or efficiency.
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Figure 1: Overall framework of RAPID.

To our best knowledge, this presents the first work on integrating RAG in the DP training of diffusion
models, aiming to improve the generative quality, memory footprint, and inference efficiency over
the existing DPDM approaches.

3 RAPID

Next, we present RAPID, a novel approach for training differentially private diffusion models by
leveraging retrieval-augmented generation.

3.1 PRELIMINARIES

A diffusion model consists of a forward diffusion process that converts original data x to its latent
x; (where t denotes the timestep) via progressive noise addition and a reverse sampling process that
starts from latent x; and generates data x( via sequential denoising steps.

Take the denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) as an example. Given X
sampled from the real data distribution gqata, the diffusion process is formulated as a Markov chain:

q(x¢|xe—1) = N (x5 1 — Bixy—1, Be) (D

where {3; € (0,1)}]_, specifies the variance schedule. For sufficiently large 7', the latent x7
approaches an isotropic Gaussian distribution. Starting from p(x7) = N (xr;0,1), the sampling
process maps latent x to data X in gqata as @ Markov chain with a learned Gaussian transition:

Po(xe—1]xt) = N (x¢—1; prg(Xe, 1), Bg(x, 1)) 2

To train the diffusion model €y (x¢,t) that predicts the cumulative noise up to timestep ¢ for given
latent x;, DDPM aligns the mean of the transition pg(x;—_1|x;) with the posterior ¢(x;—_1|x¢,X0):

t
N By g, tntt(1,7) e~ (0,1) | € = €0(VAX0 + V1 — G, O[> where a =[-8

T=1
Once trained, starting from x7 ~ A(0, I), the sampling process iteratively invokes €g:
Xt—1 = €9 (Xta t)7 (3)

which generates the following trajectory {xr,xr_1,...,Xo}.

3.2 DESIGN OF RAPID

Prior work on training DPDMs (Dockhorn et al., 2023; Ghalebikesabi et al., 2023; Lyu et al., 2023)
often applies DP-SGD (Abadi et al., 2016) to fine-tune the entire sampling process using private
data, resulting in significant utility loss and inference cost. However, it is known that, within a given
sampling trajectory {X7,Xr_1,...,X0}, the early steps only determine the high-level image layout
shared by many latents, while the later steps determine the details (Khalil, 2008; Meng et al., 2021).
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Algorithm 1: Training latent feature extractor.

Input: reference data D, pre-trained diffusion model €y, timestep k
Qutput: latent feature extractor h

while not converged yet do

foreach x € D do

// generate positive and negative pairs

generate X, %t and N with random augmentations;
// generate latents at timestep k

sample X, X, and %; for X~ € N7 following Eq. 3;
// compute contrastive loss

compute /¢, (x) following Eq. 4;

// update feature extractor

update & to minimize ¢cr, (x);

return h;

Thus, instead of privatizing the end-to-end sampling process, by fully utilizing the public data, we
may skip intermediate steps and focus on fine-tuning the later steps using private data.

Motivated by this idea, as illustrated in Figure 1, RAPID first pre-trains a diffusion model €y using
the public data DP"P. Further, RAPID builds a knowledge base 3 by calculating the diffusion tra-
jectories of DPUP. RAPID then fine-tunes €4 using the private data DP*" as follows. Corresponding to
each input x € DP™, it generates its initial steps x7.; in the sampling process, uses X, (at timestep
k) as a query to retrieve a similar trajectory Xp.o from KB, and resumes DP training the sampling
process, starting from X, (at timestep v) of the retrieved trajectory, to reconstruct x. Intuitively, this
RAG strategy skips the sampling process from timestep k to v, thereby improving privacy saving,
generative quality, and inference efficiency. Next, we elaborate on the implementation of RAPID’s
key components.

3.3 BUILDING TRAJECTORY KNOWLEDGE BASE

We divide the public data DP" into two parts Dgﬁeb and Dfeufb to avoid overfitting, with Dg}‘(}) to

PUb 1 construct the trajectory knowledge base KB.

pre-train the diffusion model €y and D ;

For each x € Df;b, we construct its sampling trajectory by iteratively applying Eq. 1 to generate

a sequence of latents {x1,...,xr}, and store (X, X,,) as a key-value pair (k > v) in B. During
RAG, we may sample a random latent x at timestep 7" and generate its early trajectory by iteratively
invoking €y (Eq.3) until timestep k: {xp,x7r_1,...,X} and use x; as a query to search for its
nearest neighbors (in terms of £o-norm) in C5. For simple datasets (e.g., MNIST), due to their
distributional sparsity, this straightforward approach is effective as it is possible to enforce all the
trajectories to share a fixed initial latent x7 (Zhang et al., 2023). However, for more complex
datasets (e.g., CIFAR10), their distributional density necessitates allowing different trajectories to
have distinct initial latents, making this approach much less effective. More importantly, enforcing
the same initial latent severely limits the model’s generative quality and diversity.

Thus, instead of applying the similarity search on the latents {xy }
directly, we first extract their features (by applying a feature extrac-
tor h) and perform the search in their feature space. To this end,
we first project x;, to the input space by applying one-step denois-
ing on x;, using the pre-trained diffusion model €y, and then apply
the feature extractor i on the denoised x; to extract its feature: ; ;
zi, = h(€p(xx, k)). For simplicity, we omit the one-step denoising Noise Augmented Sampling

in the following notations: zy = h(xy).

& 2

We employ contrastive learning (Chen et al., 2020b;c) to train the Random Augmentation

feature extractor h. Intuitively, contrastive learning learns represen-

tations by aligning the features of the same input under various aug- ] )
mentations (e.g., random cropping) while separating the features Figure 2: Contrastive learning of

of different inputs. In our current implementation, we extend the noise-augmented latents {xi}.

SimCLR (Chen et al., 2020b) framework, as illustrated in Figure 2.

Specifically, for each input x € DY ;b, a pair of its augmented views (X, X") forms a “positive” pair,
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Algorithm 2: RAPID.

Input: private data D", pre-trained denoiser €g, feature extractor h, trajectory knowledge base KCB,
batch size B, timestep k, number of iterations /, gradient norm bound C, noise scale o

Output: fine-tuned diffusion model €p

for i € [I] do

sample a batch B of size B from D"V via Poisson sampling;

foreach x € B do

// find nearest neighbor

sample xy, following Eq. 3;

find key 2y, closest to h(xy) in KB;

// skip intermediate steps

fetch value %, corresponding to Z;

compute gradient g(x) < Volpwm (X, Xy) following Eq. 5;

// clip gradient

L 800 ¢ g(x)/ max(1, L),

// apply DP noise

B(B) — £ Xep 8(%) + GN(0,0°D):
L 0« Adam(0, &(B));

return €g;

while a set of augmented views of other inputs N_ forms the “negative” samples. The contrastive
loss is defined by the InfoNCE loss (Oord et al., 2018), which aims to maximize the similarity of
positive pairs relative to that of negative pairs:

exp(sim(h(Xg), h(i;))/r)
> s en exp(sim(h(Xe), h(X;,))/7) + exp(sim(h(xx), h(X]))/T)
where X, denotes the sampled latent at timestep k corresponding to x (similar for i; and x, ),

sim is the similarity function (e.g., cosine similarity), and 7 is the hyper-parameter of temperature.
Algorithm 1 sketches the training of the latent feature extractor.

lon(x) = —log )

After training the latent feature extractor h, we build the trajectory knowledge base 5. For each

b . . .
x € DP°, we sample its trajectory as (X1,Xs, ..., Xr); we consider x;’s feature, zj, = h(xy), as

the key and x,, as the value, and store the key-value pair (z, x,,) into K.

3.4 TRAINING DIFFERENTIALLY PRIVATE DIFFUSION MODEL

Leveraging the trajectory knowledge base '3, we further train the denoiser €y on private data DP*".
Notably, we focus on training €y from timestep v to 0, leading to the advantages of fully utilizing
limited private data and reducing overall privacy costs.

As outlined in Algorithm 2, at each iteration, we sample batch I3 from DP™ using Poisson sampling
for privacy amplification (Mironov et al., 2019). For each input x € B, we (i) sample its early
trajectory xy, up to timestep k, (ii) use its feature z,, = h(xy) as a query to find z’s nearest neighbor
z1, in B3, (iii) reuse the value X,, corresponding to Zj, in KB as the starting point at timestep v, and
(iv) train €gy to reconstruct x. In other words, €y is fine-tuned to predict the random noise (x — X,)
at timestep v. To make the training differentially private, we extend DP-SGD (Abadi et al., 2016)
during updating €4. For each input x in a batch 5, we compute its diffusion loss as:
. Xy — A/ QpX _ V1=
gDM<X;X1}) ZEv/~u(1,v)|\/1_L; —69(\/07;'X+ m
where the random noise (x — X,) is scaled with a randomly sampled timestep v'. We compute
the gradient g(x) = Voflpm(X,X,). To bound g(x)’s influence on €y, we clip g(x) using its ¢o
norm. We then sanitized the per-batch gradient as g(B3) by applying random Gaussian noise before
updating € using the Adam optimizer (Kingma & Ba, 2014).

(%0 — Vaux), V)| (5)

We prove the privacy guarantee of Algorithm 2 under Rényi differential privacy (RDP) (Mironov,
2017), which can be converted to (e, §)-DP. The following theorem formulates the guarantee pro-
vided by RAPID (proof deferred to §A).

Theorem 1. Using the sanitized per-batch gradient g(B) to update €gy satisfies (c, i—‘;‘)-RDP.
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The overall privacy cost of RAPID is computed via RDP composition (Mironov, 2017), which can
be further improved using more advanced privacy accounting (Gopi et al., 2021).

The inference of RAPID runs as follows. By sampling random Gaussian noise X at timestep ', we
generate its early trajectory xj up to timestep k; using the feature z;, of x;, as the query, we search
for z;’s nearest neighbor z;, in JCB; we then use the corresponding value X, as the starting point at
timestep v to resume the sampling. Compared with prior work (Lyu et al., 2023; Dockhorn et al.,
2023), this RAG-based inference also significantly improves inference efficiency.

4 EVALUATION

4.1 EXPERIMENTAL SETTING

Datasets. We focus on the image synthesis task. In each task, we use the public dataset DP"P to
pre-train the diffusion model and build the trajectory knowledge base for the retrieval-augmented
generation, and use the private dataset DP"P to further fine-tune/train the diffusion model in a dif-
ferentially private manner. Specifically, we consider the following 4 settings: i) EMNIST (Co-
hen et al., 2017) (public) and MNIST (Deng, 2012) (private), ii) ImageNet32 Deng et al. (2009)
(public) and CIFAR10 (Krizhevsky et al., 2009) (private), iii) FFHQ32 (Karras et al., 2019) (pub-
lic) and CelebA32 (Liu et al., 2015) (private), and iv) FFHQ64 (Karras et al., 2019) (public) and
CelebA64 (Liu et al., 2015) (private). More details of these datasets are deferred to Table 5.

Diffusion models. We primarily use the latent diffusion model (Rombach et al., 2022) as the under-
lying diffusion model and DDIM (Song et al., 2020) as the default sampler.

Baselines. We mainly consider two state-of-the-art DPDM methods as baselines: differential private
diffusion model (DPDM) (Dockhorn et al., 2023) and differential private latent diffusion model (DP-
LDM) Lyu et al. (2023).

Metrics. Following prior work (Dockhorn et al., 2023; Lyu et al., 2023), we use the Frechet Incep-
tion Distance (FID) score to measure the generative quality of different methods. In addition, we
adopt the coverage metric (Naeem et al., 2020) to measure the generative diversity. Intuitively, given
a reference real dataset D™, the coverage is measured by the proportion of samples from D ! that
have at least one sample from the synthesized data D% in their neighborhood (with neighborhood
size fixed as 5 (Lebensold et al., 2024)). Formally,

Coverage = Z 13y eDsyn Axr Ny (©)

1
‘Dreal|
xefDreal
where 1 is the indicator function and N, denotes x’s neighborhood.

Privacy. We use OPACUS Yousefpour et al. (2021), a DP-SGD library, for DP training and privacy
accounting. Following prior work (Dockhorn et al., 2023), we fix the setting of § as 107> for the
CIFAR10 and MNIST datasets and 10~ for CelebA dataset so that § is smaller than the reciprocal
of the number of training samples. Similar to existing work, we also do not account for the (small)
privacy cost of hyper-parameter tuning.

To simulate settings with modest compute resources, all the experiments are performed on a work-
station running one Nvidia RTX 6000 GPU.

4.2 MAIN RESULTS

We empirically evaluate RAPID and baselines. To make a fair comparison, we fix the default batch
size as 64 for RAPID and DP-LDM; we do not modify the batch size (i.e., 8,192) for DPDM because
the impact of batch size on its performance is so significant that it stops generating any recognizable
images with smaller batch sizes. By default, we fix the sampling timesteps as 100 across all the
methods. For MNIST, we train the diffusion model under three privacy settings e = {0.2, 1,10},
corresponding to the low, medium, and high privacy budgets; for the other datasets, we vary the
privacy budget as e = {1, 10}.

Class-conditional generation. We evaluate the quality of class-conditional generation by different
methods, in which, besides the input image x, a guidance signal y (e.g., x’s class label) is also pro-
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Setting Privacy (¢) | DpDM | DP-LDM | RAPID
0.2 125.7 50.8 24.0
EMNIST—MNIST 1 50.5 349 18.5
10 12.9 27.2 14.1
ImageNet32—CIFAR10 ! \ 71 63.2
10 109.9 333 25.4

Table 1. FID scores of class-conditional generation by different methods.

vided for training (and inference). We consider the EMNIST—MNIST and ImageNet32—CIFAR10
settings. Table 1 compares the generative quality of different methods. Observe that, under the same
privacy budget, RAPID considerably outperforms the baselines across most cases. For instance, un-
der the ImageNet32—CIFAR10 setting, with e = 1, RAPID attains an FID score of 63.2, while
DpPDM fails to produce any sensible outputs, highlighting the effectiveness of RAG in facilitating
the DP training of diffusion models.

Setting Privacy (¢) | DpDM | Dp-LDM | RAPID

0.2 85.77% 11.35% | 96.43%

EMNIST—MNIST (CNN) 1 95.18% | 74.62% | 98.11%

10 98.06% | 95.54% | 99.04%

ImageNet32—CIFAR10 (ResNet) ! \ 50.39% | 63.61%
10 30.41% | 66.02% | 67.37%

Table 2. Downstream accuracy of classifiers trained on synthesized data.

We further evaluate the utility of the data synthesized by different methods to train downstream
classifiers. For a fair comparison, we use the same classifier architecture to measure the down-
stream accuracy. For the synthesized MNIST data, we train a Convolutional Neural Network
(CNN) (Krizhevsky et al., 2012) and test its performance on the MNIST testing set. For the
synthesized CIFAR10 data, we train a ResNet-9 (He et al., 2016) and evaluate its accuracy on
the CIFARI1O0 testing set, with results summarized in Table 2. Observe that the classifier trained
on RAPID’s synthesized data largely outperforms the other methods. For instance, under the
ImageNet32—CIFAR10 setting with € = 1, RAPID attains 63.6% downstream accuracy with 10%
higher than the baselines, indicating the high utility of the data synthesized by RAPID.

Dp-LbmMm

DprDM

af

Airplane  Automobile  Bird Cat Deer Dog Frog Horse Ship Truck
Figure 3: Random samples synthesized by RAPID and baselines trained under the ImageNet32—CIFAR10
setting with e = 10.
We also qualitatively compare the class-conditional samples generated by DPDM, DP-LDM, and
RAPID trained under the ImageNet32—CIFAR10 setting (with ¢ = 10), as shown in Figure 3. It
is observed that across different classes, RAPID tends to produce samples of higher visual quality,
compared with the baselines.

Unconditional generation. We further evaluate the unconditional generation by different methods
under the FFHQ32—CelebA32 and FFHQ64—CelebA64 settings. Table 3 summarizes the FID
and coverage scores of different methods. Observe that RAPID outperforms the baselines by large
margins in terms of generative quality (measured by the FID score). For instance, in the case of
FFHQ32—CelebA32 under ¢ = 10, RAPID achieves an FID score of 37.3, which is 19.1% and
51.8% lower than DP-LDM and DPDM, respectively, highlighting its superior generative quality.
Meanwhile, across all the cases, RAPID attains the highest (or the second highest) generative di-
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Setting Privacy (¢) DrDM Dp-LDM RAPID
FFHQ32—CelebA32 1 1359 —0.087 | 653 —0.74 | 52.8—0.96
10 29.8 —0.55 38.0—0.98 | 28.0—0.98
FFHQG64—CelebA64 1 \ 72.2—0.59 | 60.5—0.90
10 80.8—0.094 | 452 —094 | 37.3—0.93

Table 3. FID (left) and coverage (right) scores of unconditional generation by different methods.

versity (measured by the coverage score). Overall, RAPID strikes the optimal balance between
generative quality and diversity among all three methods.

Figure 4: Random samples synthesized by RAPID and baselines trained under the setting of
FFHQ64—CelebA64 (with € = 10).

We also qualitatively compare the unconditional samples generated by different methods trained
on the CelebA64 dataset (with e = 10). Figure3 shows random samples synthesized by DPDM,
Dpr-LDM, and RAPID (more samples in §C). Observe that in general RAPID tends to produce un-
conditional samples of higher visual quality, compared with the baselines.

4.3 ABLATION STUDIES

Next, we conduct ablation studies to understand the impact of various key factors, such as batch size
and knowledge base size, on RAPID’s performance. We use the FFHQ32—CelebA32 (with e = 10)
as the default setting.

Retrieval accuracy. Recall RAPID relies on retrieving the most similar trajectory from the knowl-
edge base. A crucial question is thus whether RAPID indeed retrieves semantically relevant neigh-
bors. To answer this question, under the class-conditional generation, we evaluate the accuracy of
RAPID in retrieving the neighbors from the class corresponding to the given label (e.g., “automo-
bile”). We calculate the top-k (k = 1, 5) accuracy based on the true labels of the retrieved neighbors.
Under the setting of ImageNet32—CIFAR10, RAPID attains 81.2% top-1 accuracy and 94.4% top-5
accuracy, respectively, indicating its effectiveness.

Batch size. In contrast to existing methods
(e.g., DPDM and DP-LDM) that typically re- 251
quire excessively large batch sizes (e.g., 8,192
samples per batch), by fully utilizing the pub-
lic data using its RAG design, RAPID can gen-
erate high-quality samples under small batch

w
~
n

FID Score

sizes. Here, we evaluate the impact of batch- 325 - ‘;E‘PLIBM

size setting on the performance of RAPID and 1

Dp-LDM, with results illustrated in Figure 5. It s —

can be noticed that RAPID attains an FID score — - - .
of 29.5 under a batch size of 16 while its score 1032 o Bateh Size 26
steadily improves to 26.67 as the batch size in- Figure 5: Impact of batch size.

creases from 16 to 256, highlighting its superior
performance under small batch sizes.

Sampler. By default, we use DDIM (Song et al., 2020) as the underlying sampler. Here, we evaluate
the influence of the sampler on RAPID. Specifically, we consider the state-of-the-art PNDM sam-
pler (Liu et al., 2022) and evaluate the performance of different methods in unconditional generation
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Setting Privacy (¢) | DpDM | Dp-LDM | RAPID
FFHQ32—CelebA32 ! 153.1 722 50
10 33.0 2.6 303
1 \ 787 68.9

FFHQ64—CelebAG4
Q64— CelebA6 10 86.2 50.3 411

Table 4. FID scores of unconditional generation with the PNDM sampler.

tasks. By comparing Table 3 and Table 4, it is observed that RAPID achieves similar FID scores in
both cases, indicating its insensitivity to the underlying sampler.

Knowledge base size. One key component

of RAPID is its trajectory knowledge base that e o
supports RAG. We now evaluate the impact of 0 -
the knowledge base size. As shown in Fig- ) o
ure 6, we evaluate how RAPID’s performance %b 0()4%
varies as the knowledge-base size grows from 5 — Coverage ) 0?00
100 to 50,000. As expected, both RAPID’S — FID

. . 30 0.90
FID and coverage scores improve greatly with
the knowledge-base size. Meanwhile, even un- ’s

der a small knowledge base (e.g., of size 100), 100 500 2000 10000 50000 ¢
R ttai tisfact £ ( Knowledge Base Size

APID attains safistactory performance (e.g., Figure 6: Impact of knowledge-base size.
with an FID score of about 40 and a coverage ., o
of about 0.9).

w
e}

Fraction of privatized steps. Recall that, over [ 098

the sample trajectory, RAPID samples the initial
(T — k) steps, skips the intermediate (k — v)
steps, and privatizes the later v steps. By de-
fault, we set k/T = 0.8 and v/T = 0.2. We
now evaluate the influence of the fraction of pri-
vatized steps v/T on RAPID. Figure 7 shows 26— 07 o " o7 002
how RAPID’s FID score varies as v/T increases Fraction of Privatized Steps

from 0.3 to 0.7 (with k/T fixed as 0.8) under Figure 7: Impact of the fraction of privatized steps.
the FFHQ32—CelebA32 setting (with e = 10). Notably, as more steps are privatized, RAPID’s FID
score deteriorates while its coverage score improves marginally, suggesting an interesting trade-off
between the generative quality and diversity. Intuitively, a larger fraction of v/T indicates less re-
liance on the retrieved trajectory, encouraging more diverse generations but negatively impacting the
generative quality.
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5 CONCLUSION AND FUTURE WORK

The work represents a pilot study of integrating retrieval-augmented generation (RAG) into the pri-
vate training of generative models. We present RAPID, a novel approach for training differentially
private (DP) diffusion models. Through extensive evaluation using benchmark datasets and mod-
els, we demonstrate that RAPID largely outperforms state-of-the-art methods in terms of generative
quality, memory footprint, and inference efficiency. The findings suggest that integrating RAG with
DP training represents a promising direction for designing privacy-preserving generative models.

This work also opens up several avenues for future research. (i) Like other approaches for training
DP diffusion models and the broader pre-training/fine-tuning paradigm, RAPID relies on access to
a diverse public dataset that captures a range of patterns and shares similar high-level layouts with
the private data. It is worth exploring scenarios with highly dissimilar public/private data (Liu et al.,
2021a;b; Fuentes et al., 2024). (i) In its current implementation, RAPID retrieves only the top-1
nearest trajectory in RAG. Exploring ways to effectively aggregate multiple neighboring trajectories
could improve generative quality and diversity. (iii) While RAPID’s privacy accounting focuses on
privatizing the fine-tuning stage, it is worth accounting for random noise introduced by the diffusion
process to further improve its privacy guarantee (Wang et al., 2024). (iv) Although this work pri-
marily focuses on image synthesis tasks, given the increasingly widespread use of diffusion models,
extending RAPID to other tasks (e.g., text-to-video generation) presents an intriguing opportunity.
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A PROOFS

Definition 1. (Rényi differential privacy (Mironov, 2017)) A randomized mechanism M : D —
R over domain D and range R satisfies («,¢)-RDP if for any two adjacent d,d’ € D:
Do (M(d)|M(d")) < €, where D,, denotes the Rényi divergence of order a.

RDP can be converted to DP. If an mechanism satisfies («, €)-RDP, it also satisfies (e + lofj{‘s ,0)-
DP (Mironov, 2017).

Notably, Gaussian mechanism can provide RDP. Specifically, for function f with sensitivity A f =
maxg ¢ || f(d) — f(d')||2, releasing f(d) +N (0, 0?) satisfies (v, 22£ )-RDP (Mironov et al., 2019).

202

Now, we prove Theorem 1. Recall that Algorithm 2 computes the per-sample gradient g(x) and clips
it to bound its influence g(x) « g(x)/max(1, w) It then computes the per-batch gradient
g(B) < £ > e &(x) and applies Gaussian noise: g(B) «+ g(B) + EN(0,0%).

Proof. Consider two adjacent mini-batches B and B’ that differ by one sample x~ /xT: B’ = B\
{x~} U {x"}. We bound the difference of their batch-level gradients as follows:
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where we use the fact that §(x~) and §(x*) are bounded by C and the Cauchy-Schwarz inequality.

Thus, the sensitivity of g(B) is %. Following the RDP Gaussian mechanism, releasing the sanitized
batch-level gradient g(13) provides (v, 23)-RDP, corresponding to (2% + g1/ 5)-DP. O

a—1 7
B EXPERIMENTAL SETTING

Table 5 summarizes the setting of public and private datasets in our experiments.

Public dataset DP1P . prv
— -5 - 56 Private dataset D
Pre-training (D Trajectory knowledge base D¢
EMNIST (50K) EMNIST (10K) MNIST
ImageNet32 (1.2M) | ImageNet32 (70K) (Darlow et al., 2018) | CIFAR10
FFHQ32 (60K) FFHQ32 (10K) CelebA32
FFHQ64 (60K) FFHQ64 (10K) CelebA64

Table 5. Setting of public/private datasets in experiments.

Table 6 lists the default parameter setting for training the autoencoder in the latent diffusion model
under different settings, while Table 7 summarizes the default parameter setting for training the
diffusion model.

C ADDITIONAL RESULTS

C.1 QUALITATIVE COMPARISON

Figure 8 illustrates random samples synthesized by RAPID and baselines under the setting of
FFHQ32—CelebA32 (with € = 10).
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EMNIST—MNIST|ImageNet—CIFAR10|FFHQ32—CelebA32|FFHQ64—CelebA64
Input size 32x32x%3 32x32x%3 32x32x3 64x64x3
z-shape 4x4x3 16 x 16 x 3 16 x 16 x 3 64 x 64 x 3

Channels 128 128 128 192

Channel multiplier [1,2,3,5] [1,2] [1,2] [1,2]

Attention resolutions (32,16, 8] [16, 8] [16, 8] [16, 8]

# ResBlocks 2 2 2 2

Batch size 64 64 64 64

Table 6. Hyper-parameters for training autoencoders under different settings.

EMNIST—MNIST|ImageNet—CIFAR10|FFHQ32—CelebA32|FFHQ64—CelebA64
Input size 32x32x3 32x32x3 32x32x3 64x64x3
z-shape 4x4x%x3 16 x 16 x 3 16 x 16 x 3 32x32x3
# Channels 64 128 192 192
Channel multiplier [1,2] [1,2,2,4] [1,2,4] [1,2,4]
Attention resolutions [1,2] [1,2,4] [1,2,4] [1,2,4]
# ResBlocks 1 2 2 2
# Heads 2 8 8 8
Batch size 64 64 64 32
Spatial transformer True True False False
Cond_stage_key class_label class_label class_label class_label
Conditioning_key crossattn crossattn crossattn crossattn
# Classes 26 1000 1000 1000
Embedding dimensions 5 512 512 512
Transformer depth 1 2 2 2

Table 7. Hyper-parameters for diffusion models under different settings.

RapPID

Dp-LpM

DrDM

Figure 8: Random samples synthesized by RAPID and baselines trained under the FFHQ32—CelebA32 setting

(with € = 10).
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C.2 DISSIMILAR PUBLIC/PRIVATE DATA

To evaluate RAPID’s robustness to the distributional shift between public and private data, we con-
duct additional experiments to evaluate RAPID’s performance when using dissimilar public/private
datasets. Specifically, we use ImageNet32 as the public dataset with added Gaussian noise (0, 0.1)
to degrade its quality. For the private dataset, we use VOC2005 (Everingham, 2005) (resized to
32x32), a dataset used for object detection challenges in 2005, which significantly differs from Im-
ageNet32 and contains only about 1K images. We apply RAPID in this challenging setting, with
results shown in Table 8. Notably, RAPID outperforms baselines (e.g., DP-LDM) in terms of FID
scores across varying e, indicating its robustness to dissimilar public/private datasets.
Privacy (€) | Dp-LDM | DPsDA | PRIVIMAGE | RAPID
1 164.85 | 142.20 139.07 93.17

10 147.86 130.42 123.89 82.56
Table 8. Performance of RAPID and baselines (measured by FID scores) in the ImageNet32—VOC2005 case.

Moreover, we compare RAPID’s performance (without DP) to direct training on the VOC2005
dataset. RAPID improves the FID score from 77.83 to 54.60, highlighting its ability to effectively
leverage the public data even when it differs substantially from the private data.

C.3 ADDITIONAL BASELINES

We further compare RAPID with more recent work on DP diffusion models. DPSDA (Lin et al.,
2024) synthesizes a dataset similar to the private data by iteratively querying commercial image
generation APIs (e.g., DALL-E 2) in a DP manner. For fair comparison with RAPID, instead of
using commercial APIs trained on vast datasets (hundreds of millions of images), following the
setting of Li et al. (2024) that replicates DPSDA’s results, we use ImageNet32 for pre-training the
public model (also as the query API for DPSDA) and CIFAR1O0 as the private dataset.

. Model Size = 90M | Model Size = 337M
Privacy (¢)
DPSDA RAPID DPSDA RAPID
1 113.6 63.2 89.1 66.5
10 60.9 25.4 43.8 29.0

Table 9. Performance of DPSDA and RAPID (measured by FID scores) in the ImageNet32—CIFAR10 case.

Note RAPID and DPSDA represent two distinct approaches to training DP diffusion models, with the
pre-trained model size affecting their performance differently.

For DPSDA, which uses DP evolution rather than DP training to synthesize data, larger pre-trained
models tend to lead to better performance. This is demonstrated in DPSDA’s ablation study (Lin
et al., 2024), where increasing the model size from 100M to 270M parameters improves results by
enhancing the quality of selected data. In contrast, methods involving DP training (such as DPDM,
Dpr-LDM, PRIVIMAGE, and RAPID) may not benefit from heavily over-parameterized models, as
shown in (Dockhorn et al., 2023). This is because the ¢2-norm noise added in DP-SGD typically
grows linearly with the number of parameters.

To empirically evaluate how model complexity affects different approaches, we conduct experiments
varying the size of the pre-trained model from 90M to 337M parameters (by increasing the latent
diffusion model’s architecture from 128 to 192 channels and expanding its residual blocks from 2 to
4). Table 9 compares the performance (measured by FID scores) of DPSDA and RAPID across dif-
ferent pre-trained model sizes. As model complexity increases, DPSDA achieves better FID scores,
while RAPID shows only marginal performance degradation. Notably, when using the same public
dataset and pre-trained model, RAPID consistently outperforms DPSDA, suggesting that it is more
effective at leveraging public data under DP constraints.

PRIVIMAGE (Li et al., 2024) uses the fine-tuning approach, querying the private data distribution to
select semantically similar public samples for pretraining, followed by DP-SGD fine-tuning on the
private data. The table below compares RAPID and PRIVIMAGE’s performance across different e
values on CIFAR10 and CelebA64.

Notably, RAPID outperforms PRIVIMAGE in most scenarios, with one exception: CIFAR10 under
e = 1. This likely occurs because PRIVIMAGE selects public data similar to the private data for pre-
training. With clearly structured private data (for instance, CIFAR10 contains 10 distinct classes),
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. CIFAR10 CelebA64
Privacy (e)
PRIVIMAGE | RAPID | PRIVIMAGE | RAPID
1 29.8 63.2 71.4 60.5
10 27.6 254 49.3 37.3

Table 10. Performance comparison of PRIVIMAGE and RAPID (measured by FID scores).

using a targeted subset rather than all the public data tends to improve DP fine-tuning, especially
under strict privacy budgets. However, this advantage may diminish with less structured private
data (e.g., CelebA64). We consider leveraging the PRIVIMAGE’s selective data approach to enhance
RAPID as our ongoing research.

C.4 IMPACT OF RETRIEVAL-AUGMENTED TRAINING

RAPID can integrate with existing methods for training DP diffusion models since it is agnostic to
model training, though its neighbor retrieval operates on latents, making it compatible only with la-
tent diffusion models. To measure the impact of RAPID, we use a latent diffusion model as the back-
bone model for both DP-LDM and DPDM, evaluating their performance with and without RAPID.
Table 11 shows results on MNIST and CIFAR10 at € = 10. The substantial FID score improvement
demonstrates the effectiveness of retrieval-augmented training.
DrDM Dp-LDM
w/o w/ w/o w/
MNIST | 429 | 254 | 272 | 14.1

CIFARIO | 822 | 54.1 | 333 | 254

Table 11. Impact of retrieval-augmented training on existing methods (e = 10).

Dataset

C.5 KNOWLEDGE BASE GENERATION

While prior work on retrieval augmented generation (e.g., REDI Zhang et al. (2023)) requires all the
trajectories to share the same latent, building the knowledge base needs to iteratively sample tens of
thousands of trajectories from a pre-trained diffusion model (e.g., Stable Diffusion), which is highly
expensive. For instance, on a workstation running one Nvidia RTX 6000 GPU, REDI requires over
8 hours to build a 10K-sample knowledge base.
Knowledge Base Size | 10K | 20K | 30K | 40K | 50K | 60K | 70K
RAPID | 2.10s | 4.17s | 6.12s | 8.23s | 10.33s | 12.19s | 14.48s
Table 12. Runtime of RAPID for knowledge base construction.

In comparison, RAPID eliminates this constraint, which allows it to directly compute the trajectory
for each sample in the public dataset in a forward pass. Table 12 shows RAPID’s runtime efficiency
for various knowledge base sizes, achieving orders of magnitude faster performance than prior work.

C.6 PERFORMANCE WITH VARYING €

FID Scores for Different DP Diffusion Methods Downstream Classification Accuracies for Different DP Diffusion Methods
—e— DPDM 100
120 DP-LDM
DPSDA
Privimage
100 RAPID (ours)

FID Score
Downstream Accuracy (%)

—e— DPDM

40 \\
DP-LDM

20 DPSDA
20 Privimage
- RAPID (ours)
10 02 10

0.2

1 1
Privacy Budget (€) Privacy Budget ()

Figure 9: Performance of RAPID and baselines with varying ¢ on EMNIST—MNIST: (a) FID scores and (b)
downstream classification accuracy

Figure 9 compares the performance (measured by FID scores and downstream classification ac-
curacy) of RAPID and baselines (DPDM, DP-LDM, DPSDA, and PRIVIMAGE) in the case of
EMNIST—MNIST under varying e settings. Observe that, under the same privacy budget, RAPID
considerably outperforms the baselines across most cases.
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D DISCUSSION

D.1 COMPARISON OF RAPID AND REDI

REDI Zhang et al. (2023) also employs some strategies similar to RAPID such as constructing tra-
jectory knowledge bases at early stages to bypass intermediate steps in the generation process. How-
ever, the two methods differ in several fundamental aspects.

First, REDI employs RAG in the inference stage to improve generative efficiency, while RAPID inte-
grates RAD into the DP training of diffusion models. Second, unlike REDI that builds its knowledge
base by iteratively sampling tens of thousands of diffusion trajectories from a pre-trained latent dif-
fusion model (e.g., Stable Diffusion), RAPID constructs the knowledge base by directly computing
the diffusion trajectories via adding a scaled version of the initial latent to each sample in the pub-
lic dataset, which greatly reduces the computational cost. Last, all the trajectories in REDI share
the same initial latent. In contrast, the initial latents in RAPID are randomly sampled, significantly
improving the diversity of generated samples.

D.2 IMPACT OF PUBLIC/PRIVATE DATA SIMILARITY

Like other DP diffusion model approaches (e.g., DPDM, DP-LDM, PRIVIMAGE) and the broader
pre-training/fine-tuning paradigm, RAPID assumes access to a diverse public dataset that captures a
range of patterns. However, RAPID is more flexible: the public and private datasets need not closely
match in distribution, as long as the public dataset contains similar high-level layouts. Here, we
explore the possible explanations.
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Figure 10: Disentanglement effects of diffusion models.

Existing studies (Meng et al., 2021; Zhang et al., 2023) establish that in diffusion models, early
stages determine image layouts that can be shared across many generation trajectories, while later
steps define specific details. Wu et al. (2022) further discover diffusion models’ disentanglement
capability, allowing generation of images with different styles and attributes from the same inter-
mediate sampling stage, as shown in Figure 10. This disentanglement property enables RAPID to
maintain robust performance even when public and private dataset distributions differ significantly,
provided their high-level layouts remain similar.
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