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Abstract. We construct pseudorandom error-correcting codes (or sim-
ply pseudorandom codes), which are error-correcting codes with the prop-
erty that any polynomial number of codewords are pseudorandom to
any computationally-bounded adversary. Efficient decoding of corrupted
codewords is possible with the help of a decoding key.

We build pseudorandom codes that are robust to substitution and
deletion errors, where pseudorandomness rests on standard crypto-
graphic assumptions. Specifically, pseudorandomness is based on either
2O(

√

n)-hardness of LPN, or polynomial hardness of LPN and the planted
XOR problem at low density.

As our primary application of pseudorandom codes, we present an
undetectable watermarking scheme for outputs of language models that
is robust to cropping and a constant rate of random substitutions and
deletions. The watermark is undetectable in the sense that any number
of samples of watermarked text are computationally indistinguishable
from text output by the original model. This is the first undetectable
watermarking scheme that can tolerate a constant rate of errors.

Our second application is to steganography, where a secret message is
hidden in innocent-looking content. We present a constant-rate stateless
steganography scheme with robustness to a constant rate of substitu-
tions. Ours is the first stateless steganography scheme with provable
steganographic security and any robustness to errors.

1 Introduction

The proliferation of AI-generated content is one of the biggest issues facing
the internet today. Recent breakthroughs in large language models have made
it increasingly difficult to distinguish this influx of AI-generated content from
human-generated content.

A promising solution for detecting AI-generated content is watermarking,
where a hidden signal is embedded in the content. Several major companies,
including OpenAI and Google, have pledged to embed watermarks in content
output by their models [7]. Despite this explosion of interest in watermark-
ing, there are very few techniques for building watermarking schemes that do
not noticeably alter the generated content. Existing schemes incur trade-offs
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between the quality of generated content, the robustness of the watermark, and
the computational complexity of detection.

In this work, we take a new cryptographic approach to this problem that
allows us to avoid some of these trade-offs. Our approach is based on a new
cryptographic primitive that we call a pseudorandom error-correcting code, or
simply a pseudorandom code (PRC). A PRC is an error-correcting code that is
parameterized by a decoding key. The pseudorandomness property states that,
without this decoding key, any polynomial number of codewords are pseudoran-
dom.

We find that the problem of building robust, quality-preserving watermarks
reduces to the problem of building PRCs. Essentially, the watermarking strategy
is to replace some of the randomness used by the generative algorithm with
outputs from a PRC.

Building PRCs is challenging: Error-correcting codes are typically highly
structured, while pseudorandomness implies a lack of discernible structure.
Indeed, a priori it is not clear that such objects should exist. Nonetheless, we con-
struct PRCs from standard (subexponential) cryptographic assumptions. Our
constructions are related to low-density parity-check codes, and we base pseudo-
randomness on the Learning Parity with Noise assumption. We construct PRCs
with strong robustness properties, including robustness to any constant rate of
substitution and deletion errors.

Applying these PRCs to watermarking for language models, we obtain the
first quality-preserving language model watermarking schemes that are robust
to cropping and any constant rate of substitution and deletion errors. That is,
the watermark detector will work as long as it is provided any sufficiently-long
sequence of text, even if that text is subjected to any constant (less than 1/2)
rate of random substitutions and any constant (less than 1) rate of random
deletions.

1.1 An Approach to Watermarking

In this subsection we present a simple, general template for watermarking AI-
generated content. The template described here can in principle be used to water-
mark arbitrary media, but we only present concrete instantiations in certain
contexts.

In all generative AI settings there is a generative algorithm, Generate, that
defines the behavior of the AI. A user provides a prompt, and Generate outputs
some randomly-generated content. A watermarking scheme modifies Generate so
that the generated content contains a hidden pattern, called a watermark. There
are two essential requirements that any watermarking scheme should satisfy:

– Quality : embedding the watermark should not reduce the quality of generative
algorithm; and

– Robustness : the watermark should be detectable in generated content, even
if this content is corrupted.
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Achieving both of these properties simultaneously is the central challenge of
watermarking. Quality means that the watermark should not significantly alter
the generated content, while robustness seems to require the watermark to
change the content a great deal.

In this work, we propose a new strategy for watermarking: replacing the ran-
domness used by Generate with codewords from a pseudorandom error-correcting
code. A pseudorandom error-correcting code, or simply pseudorandom code
(PRC), is a new cryptographic primitive that we introduce in this work. A PRC
is defined by algorithms Encode,Decode satisfying two properties:

– Pseudorandomness: Any efficient adversary, without knowledge of the decod-
ing key, cannot distinguish between oracle access to Encode and an oracle
that always outputs a fresh random string; and

– Error correction or robustness: For any message m, if x ← Encode(m) and
x′ is a “corrupted” version of x where the amount of corruption is bounded,
then Decode(x′) = m.

For watermarking the message can be simply m = 1, indicating the presence of
a watermark.1

In order to make detection possible, we specify Generate in such a way that the
detector can approximate the randomness used to produce any given content. To
test for the presence of a watermark, the detector computes this approximation
and then applies Decode to the result. If the content is watermarked and the
approximation is close enough to the true randomness, then robustness of the
PRC ensures that Decode returns 1. This indicates to the detector that the
watermark is present. Stronger robustness of the PRC translates to stronger
robustness of the watermark.

Pseudorandomness of the PRC guarantees that, without the decoding key,
watermarked content is indistinguishable from content produced by the original
generative algorithm—even if one is allowed to see many outputs. In particular,
the quality of the generative algorithm is not deteriorated by the watermark. In
[8], such a watermark is referred to as undetectable.

Therefore, the problem of building robust, quality-preserving watermarks
reduces to building PRCs (and appropriately specifying Generate). Below, we
describe the application of this template to watermarking for language models.

Watermarks for Language Models. A generative language model is a randomized
algorithm that takes as input a prompt, and samples text constituting a response.
This text consists of tokens. For simplicity, we assume here that tokens are binary
and that the full response is of a fixed length n. Neither of these assumptions is
important for our results, as discussed in the full version.

Given any generative language model, it is not difficult to define an algorithm
Generate that takes a prompt and a random seed x ∈ {0, 1}n, and samples a
response t ∈ {0, 1}n such that

1 By instead encoding a longer message in the PRC, this technique extends to
steganography—where messages are secretly communicated in innocent-looking
content—as well.
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– if x is uniformly random, then t is distributed identically to the original model,
and

– each bit of t is correlated with the corresponding bit of x.

See Sect. 2.5 for an example of such an algorithm. Now it is easy to recover an
approximation of the randomness x that was used to produce a given text: just
use the text t itself.

One natural watermarking strategy is to use the same random seed x ∈
{0, 1}n for every call to Generate, storing x itself as the watermarking key. This
is essentially the strategy used by [13], and it yields a highly robust watermark
because the detector can compute the edit distance between the given text and x.
The resulting quality guarantee is that a single response from the watermarked
model is distributed identically to a single response from the original model.

However, this strategy results in redundancy of responses because the ith

token of every response is biased towards the ith bit of x. This is problematic as
it limits the variability of text that the language model generates. For instance, it
should not be the case that certain words are preferred as the first word of every
response. One can mitigate this issue by storing a family of seeds x1, . . . , x� ∈
{0, 1}n and randomly choosing one such seed for each response. Increasing �
improves the variability, but comes at the cost of a corresponding increase in both
watermark key length and detector runtime. Now, the detector must compute
the edit distance for each seed, resulting in a runtime of O(n2�). In particular,
for any polynomial-time watermarking scheme using this approach, there exists
a polynomial-time adversary that can distinguish watermarked content from un-
watermarked content without needing the watermark detection key.

A PRC is exactly the object needed to avoid this tradeoff between response
variability and efficiency. Our watermark detection key will be the decoding
key for a PRC, and we will embed the watermark by sampling a fresh pseu-
dorandom seed x ← Encode(1) for each query to Generate. This results in no
observable correlations between responses, regardless of the number of queries—
i.e., the watermark is undetectable. Since the same hidden structure is present in
every sample from Encode(1), our detector can simply apply Decode to check for
this structure. Now, the detector’s runtime has no dependence on the response
variability. Using PRCs that we construct, we also find that our watermarking
scheme can be made robust to a constant fraction of random substitution and
deletion errors.

A Note on Undetectability. Undetectability is a strong quality guarantee for
watermarking. Outputs of the watermarked model must be computationally
indistinguishable from outputs of the original model, even to a user who is
allowed to make many queries. While this is imperative for steganography, its
necessity in watermarking is less clear, as some noticeable changes to the model
may be permissible as long as the outputs remain “high-quality.”

However, measuring the quality of watermarked content is often challenging
or impossible—especially when the content is used in a wide range of appli-
cations. Computational indistinguishability is a strong quality guarantee that
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applies uniformly to every application: it implies that the watermark causes
no observable loss in any efficiently-computable quality metric. Without such a
guarantee, it is impossible to verify that a watermark is quality-preserving across
all applications. We therefore focus on undetectability in this work.

1.2 Our Contributions

Pseudorandom Codes. Our first contribution is to identify PRCs as an interesting
cryptographic primitive, with applications to robustly hiding messages in AI-
generated content. Very roughly, the definition is as follows—for more details,
see the technical overview (Sect. 2.1).

Definition. A pseudorandom code (PRC) is an error-correcting code where
codewords are pseudorandom to any computationally-bounded adversary who
doesn’t hold the decoding key.

We consider both public- and secret-key variants of PRCs. For a public-key
PRC, the encoding algorithm can be made public without sacrificing pseudo-
randomness. When the message space consists of only a single message, we call
it a zero-bit PRC. Zero-bit PRCs can also be viewed as robust backdoored (or
trapdoor) pseudorandom generators [9,17], and they are sufficient for our appli-
cations to watermarking.

We show how to build zero-bit public-key PRCs related to low-density parity-
check (LDPC) codes, where pseudorandomness rests on standard (subexpo-
nential) cryptographic assumptions. All of the PRCs we construct are over a
binary alphabet. Depending on the parameter choices, the pseudorandomness of
these LDPC-related codes is based on either of two assumptions, which we state
together as Assumption 1.

Assumption 1. Either

– LPN is hard for any 2O(
√

n)-time adversary, or
– LPN and planted XOR are both hard for any polynomial-time adversary.

For descriptions of the LPN and planted XOR assumptions, see Sect. 2.2.
Under Assumption 1, we prove that there exist PRCs with robustness to channels
that introduce a bounded number of substitution errors. We say that any channel
that introduces at most a p fraction of substitution errors (and no other types
of errors) is p-bounded.

Theorem 1. Let p ∈ (0, 1/2) be any constant. Under Assumption 1, there exists
a zero-bit public-key PRC that is robust to every p-bounded channel.

For some applications it will be useful to have multi-bit PRCs. Any such
construction should ideally have a high rate, which is the ratio of the number of
message bits to the number of codeword bits. We prove that any zero-bit PRC
can be combined with any error correcting code to give a multi-bit PRC.
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Theorem 2. Suppose that there exists a zero-bit (public-key) PRC and a rate-R
error-correcting code, that are both robust to every p-bounded channel. Then there
exists a (public-key) PRC of rate R−o(1) that is robust to every (p−ε)-bounded
channel, for every constant ε > 0.

Applying this theorem with our zero-bit LDPC-based PRCs and the binary
error-correcting codes of [5,14,16], we have the following corollary.

Corollary. Let p ∈ (0, 1/2) be any constant. Under Assumption 1, there exists
a constant-rate PRC that is robust to every p-bounded channel.

None of the PRCs mentioned so far can handle deletions. Deletions are a
particularly important type of edit for text watermarks, because an adversary
may try to remove the watermark by simply deleting some of the words.

Deletions are notoriously difficult to handle in error correction, and stan-
dard techniques involve significant structure—thus violating pseudorandomness.
Nonetheless, we show that if a PRC has sufficiently strong robustness to substi-
tutions, then it can be converted to a PRC with robustness to deletions (at the
cost of a decreased rate).

Let BSCp be the binary symmetric channel with error rate p, and BDCq

be the binary deletion channel with deletion rate q. That is, BSCp randomly
flips each bit with probability p and BDCq randomly deletes each bit with
probability q.

Theorem 3. For any constants p ∈ (0, 1/2) and q ∈ (0, 1), there exists p′ ∈
(0, 1/2) such that the following holds. If there exists a zero-bit (public-key) PRC
with robustness to every p′-bounded channel, then there exists a zero-bit (public-
key) PRC that is robust to the channel BSCp ◦ BDCq.

Together with our LDPC-based PRCs, we obtain the following result.

Corollary. Let p ∈ (0, 1/2) and q ∈ (0, 1) be any constants. Under Assumption
1, there exists a zero-bit public-key PRC that is robust to the channel BSCp ◦
BDCq.

Watermarking and Steganography for Language Models. We apply our zero-bit
PRCs to build the first undetectable watermarking scheme for language models
with robustness to a constant rate of random substitutions and deletions. In
this section, we assume that text output by the language model is represented
as a bitstring. Arbitrary text can be mapped to a bitstring by either randomly
assigning a single bit to each token, or by expanding the tokens into a binary
representation.

Theorem 4. Let p ∈ (0, 1/2) be any constant. Under Assumption 1, there exists
an undetectable watermarking scheme W such that the watermark appears in any
sufficiently high-entropy text, even if the text is subjected to the channel BSCp.
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Under an extra assumption about the generated text, which roughly corre-
sponds to the text having few repeated words, we can strengthen this to handle
deletions as well.

Theorem 5. Let p ∈ (0, 1/2) and q ∈ (0, 1) be any constants. Under Assump-
tion 1, there exists an undetectable watermarking scheme W such that the water-
mark appears in any sufficiently high-entropy and “variable” text, even if the text
is subjected to the channel BSCp ◦ BDCq.

In all of our theorems the text can be cropped, as long as the remaining text
is sufficiently high-entropy.

We also construct undetectable watermarking schemes with unforgeable pub-
lic attribution and the same robustness as W. Public attribution means that
there is a public algorithm to identify which portion of a given text was output
by the model. Unforgeability means that no efficient user can produce text that
the attribution algorithm identifies as model-generated, but that was not output
by the model. Interestingly, our schemes retain the standard robust secret-key
detector in addition to this public attribution algorithm.

Theorem 6. Under Assumption 1, there exists a watermarking scheme Watt

that retains all properties of W from Theorem 4 or Theorem 5, and additionally
satisfies unforgeable public attribution.

Finally, using PRCs with constant rate (Theorem 2), we also obtain the first
robust language model steganography scheme.2

Theorem 7. Let p ∈ (0, 1/2) be any constant. Under Assumption 1, there exists
a language model steganography scheme with constant information rate, such that
the message can be recovered from any sufficiently high-entropy text, even if the
text is subjected to the channel BSCp.

Universal Steganography. We show that PRCs can be used to solve a long-
standing open question in steganography: A simple application of PRCs yields
the first robust, stateless universal steganography scheme. Universal steganog-
raphy can be used for language model steganography, but it is more general [3].
We take the rate of the steganography scheme to be the ratio of the number of
stegotext symbols to the number of bits in the message being encoded.

Theorem 8. Suppose there is a hash function that is unbiased over the covertext
channel. If PRC is any PRC, then there exists a stateless, public-key universal
steganography scheme with the same rate and robustness as PRC.

Finally, we show that this result can be extended to the setting where an
unbiased hash function on the covertext channel is not known, with some loss
in robustness.

2 Since this scheme doesn’t rely on the decoder having access to the prompt, it can
also be seen as an undetectable “multi-bit watermarking scheme”.
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Theorem 9. Suppose there is a hash function that has constant min-entropy
over the covertext channel. Then under Assumption 1, for any p ∈ (0, 1/2), there
exists a constant-rate public-key stateless steganography scheme that is robust to
a p rate of random substitutions.

1.3 Related Work: Short Summary

We briefly outline some of the related work here. See the full version for a more
complete discussion.

– Code-based cryptography: Our work bears some similarity to the field of code-
based cryptography. However, code-based cryptography is generally focused
on building existing primitives from new assumptions—whereas PRCs are a
new primitive that we base on existing assumptions.

– Trapdoor pseudorandom generators: Our zero-bit PRCs can be equivalently
viewed as robust trapdoor (or equivalently, backdoored) pseudorandom gen-
erators [9,17]. That is, we require the additional property that the trapdoor
(or secret key) can be used to detect even corrupted pseudorandom strings.

– Watermarking for language models: We build watermarking schemes for
language models satisfying the strongest quality guarantee, undetectability.
Undetectability was defined by [8], where undetectable watermarks for lan-
guage models were also constructed. In that work and in [1,12], it is essential
for watermark detection that many sufficiently-long contiguous substrings
of the response remain unchanged. Therefore, these watermarks are easily
removable by simple attacks (see the “robustness of our watermark” para-
graph of Sect. 2.5). The watermarks of [13] are more robust—their robustness
is more comparable to ours—but they sacrifice undetectability. Instead, their
watermarks satisfy the weaker property of distortion-freeness, which is the
single-query version of undetectability. [19] obtain even stronger robustness,
at the cost of even further reduced quality.

– Impossibility of strong watermarks: [18] explore the possibility of watermark-
ing for language models in the presence of motivated adversaries. They argue
that sampling a random response is easier when one is provided any response.
Since a random response cannot be watermarked (or else there would be a high
false-positive rate), they use this to argue that any watermarked language
model necessarily provides some assistance in generating un-watermarked
text.

– Steganography: Steganography is the study of concealing secret messages
in innocent-looking content. Whereas encryption is about hiding the mes-
sage, steganography is about hiding the existence of the message. Ever since
steganography was formalized by [11], robust steganography schemes (that
don’t require a shared state) have remained elusive. We resolve this problem
using PRCs.
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2 Technical Overview

2.1 Pseudorandom Code Basics

Pseudorandom codes (PRCs) can be viewed as a combination of two related
primitives:

– Pseudorandom encryption, where ciphertexts are indistinguishable from ran-
dom under a chosen plaintext attack [15]. Secret-key pseudorandom encryp-
tion is easy to build using a pseudorandom function F1—just encrypt m by
sampling a random r and outputting (r,m ⊕ F1(r)). Public-key pseudoran-
dom encryption is also known from standard assumptions [3]. However, none
of these constructions have any nontrivial robustness.

– Robust encryption, where encryptions of messages are robust to errors.
Robust encryption is easy to build by applying an error-correcting code to
ciphertexts from any standard encryption scheme. Even if that encryption
scheme is pseudorandom, the use of the error-correcting code will in general
render the robust encryption scheme not pseudorandom.

A PRC is required to simultaneously satisfy both pseudorandomness and
robustness—properties that are in direct tension with each other. Using the
secret key, one should be able to discern the redundancy and structure that give
ciphertexts their robustness. Without the secret key, ciphertexts must appear
completely unstructured.

We define secret-key PRCs below. For public-key PRCs, we further require
that the encoding algorithm can be made public without sacrificing pseudoran-
domness.

Definition. Let Σ be an alphabet and E : Σ∗ → Σ∗ be a channel. A secret-
key PRC with robustness to E is described by algorithms Encode1 : Σk → Σn

and Decode1 : Σ∗ → Σk ∪ {⊥}, parameterized by a secret key 1, satisfying the
following criteria for every security parameter λ:

– (Error correction, or robustness) For any message m ∈ Σk,

Pr
1

[Decode1(E(x)) = m : x ← Encode1(m)] ≥ 1 − negl(λ).

– (Soundness) For any fixed c ∈ Σ∗,

Pr
1

[Decode1(c) = ⊥] ≥ 1 − negl(λ).

– (Pseudorandomness) For any polynomial-time adversary A,

|Pr
1

[AEncode1(1λ) = 1] − Pr
U

[AU (1λ) = 1]| ≤ negl(λ),

where AU means that the adversary has access to an oracle that, on any (even
previously queried) input, responds with a freshly drawn uniform value in Σn.
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If the scheme can only encode a singular message (i.e. k = 0), then we call
it a zero-bit PRC. Soundness is a technical condition that we include only to
ensure that zero-bit PRCs are non-trivial.

For a sufficiently weak channel E , it is not hard to construct a secret-key PRC
with robustness to E where pseudorandomness rests on very mild assumptions.
For instance, if F1 : {0, 1}� → {0, 1} is a pseudorandom function, we can build a
zero-bit secret-key PRC with the following encoding algorithm:

Encode1(1):

1. Randomly sample x1, . . . , x� ← {0, 1}.
2. For i = � + 1, . . . , n, let xi = F1(xi−�, . . . , xi−1).
3. Output x1, . . . , xn.

The decoding algorithm Decode1 simply checks whether much more than a 1/2
fraction of conditions xi = F1(xi−�, . . . , xi−1) are satisfied. Pseudorandomness
follows by taking � to be the security parameter. It is immediate that this PRC
is robust to any length-preserving channel that introduces at most a p fraction
of errors, for p << 1/�. We call any such channel p-bounded.

This secret-key PRC construction can be seen as implicit in prior hash-based
watermarking schemes [1,8,12], where essentially the same level of robustness to
a 1/� error rate is obtained. Unfortunately, it has an inherent trade-off between
pseudorandomness and robustness: After roughly 2�/2 samples from Encode1(1),
there will be repeated prefixes and therefore correlations between the samples.
In particular, if we want this PRC to be robust to a constant rate of errors,
we have to set � = O(1), in which case even a constant number of queries are
enough to observe correlations. We therefore turn to alternative constructions.

2.2 Pseudorandom LDPC Codes

Fortunately, one of the most prominent assumptions in theoretical cryptogra-
phy is a statement about codes: Learning Parity with Noise (LPN). The LPN
assumption states that noisy samples from the codespace of a random linear
code are pseudorandom, even to an adversary who knows a generator matrix
for the code. In more detail, let n, g be integers and G ← F

n×g
2 be a random

matrix. The LPN assumption (with noise rate η and secrets of size g) states that
(G, Gs ⊕ e) ≈ (G, u),3 where s ← F

g
2, e ← Ber(n, η), and u ← F

n
2 .

The LPN assumption suggests using noisy codewords from a random linear
code as a PRC. That is, let G ← F

n×g
2 be the secret key and EncodeG be the

following zero-bit secret-key PRC encoder:

– EncodeG(1): Sample s ← F
g
2 and e ← Ber(n, η). Output Gs ⊕ e.

The LPN assumption immediately implies that an arbitrary polynomial num-
ber of samples from EncodeG(1) are pseudorandom. However, recall that the

3 Throughout this work we use ≈ to refer to computational indistinguishability.
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LPN assumption states that these samples are pseudorandom even given G—
which means precisely that there does not exist an efficient zero-bit decoder
DecodeG(x)!

While this random linear code construction does not work, it naturally sug-
gests a strategy that does. If we find a sampling procedure that produces a ran-
dom (or even pseudorandom) generator matrix G together with a trapdoor for
efficient decoding, then we have a public-key PRC where the generator matrix is
the public encoding key and the trapdoor is the secret decoding key. By the LPN
assumption, EncodeG(1) produces pseudorandom vectors even to an adversary
who knows G, so the construction will satisfy pseudorandomness.

It turns out that low-weight parity checks can serve as such a trapdoor. That
is, instead of sampling G uniformly at random, we first sample a “parity-check
matrix” P ∈ F

r×n
2 with sparse rows (i.e., “low density”), and then sample G ∈

F
n×g
2 subject to PG = 0. For appropriate choice of n, g, t, r, we will show that

the resulting marginal distribution on G is random or pseudorandom. The low-
density parity-check matrix P will allow for efficient detection of near-codewords.

Codes defined by Low-Density Parity-Check matrices are called LDPC codes.
For n, g, t, r ∈ N, we define an (n, g, t, r) random LDPC code by the following
distribution over parity-check and generator matrices:

LDPC[n, g, t, r]:

1. Sample a random matrix P ∈ F
r×n
2 subject to every row of P being t-sparse.

2. Sample a random matrix G ∈ F
n×g
2 subject to PG = 0.

3. Output (P, G).

Zero-bit decoding works by counting the number of satisfied parity checks. For
any fixed x ∈ F

n
2 , with high probability over P ∈ F

r×n
2 we expect that the

number of unsatisfied parity checks, wt(Px), is roughly r/2. But if x is close to
Im G ⊆ ker P in Hamming distance, then as long as the error and the sparsity
t of the parity checks are not too high, we expect wt(Px) to be significantly
smaller than r/2.

Therefore our zero-bit pseudorandom LDPC code uses the following zero-bit
decoding algorithm:

– DecodeP (x): If wt(Px) < (1/2 − r−1/4) · r, output 1; otherwise output ⊥.4

Encoding is exactly the same EncodeG algorithm as above—but now that G is
sampled together with the trapdoor P , we have an efficient decoding algorithm.
Observe that this is a zero-bit scheme, because the decoder only determines
whether the input is related to the keys or not. Using belief propagation, it is
possible to push this construction beyond a zero-bit PRC, although this results
in lower robustness. We ultimately construct a constant-rate multi-bit PRC by
other means, which we discuss in Sect. 2.4.

Let LDPC-PRC0 be the zero-bit public-key PRC defined by (EncodeG,
DecodeP ) for (P, G) ← LDPC[n, g, t, r]. In a moment we will outline our proofs

4 Throughout this work, wt will refer to Hamming weight.
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that LDPC-PRC0 is a public-key PRC with very strong robustness. First, let us
see some restrictions on the sparsity parameter t that provide important context
for these proofs.

If random noise of rate 1/2 − ε is applied to x ∈ Im G, then the probability
of each parity check being satisfied for the noisy codeword is 1/2− (2ε)t/2. So in
order for DecodeP (x) to output 1 with high probability, we need (2ε)t/2 > r−1/4,
i.e., t < 1 + log r/4 log(1/2ε) = O(log r). We will always have r = nΩ(1), so this
restriction says that t = O(log n) for appropriate choice of constant.

On the other hand, if we set t = O(1) then EncodeG(1) cannot be pseudo-
random. This is because it is possible to brute-force search over all

(

n
t

)

possi-
ble parity checks of weight t, and one can test whether EncodeG is consistent
with a given parity check s ∈ F

n
2 by simply computing s · x for many samples

x ← EncodeG(1).
Therefore, we will choose t = Θ(log n) in order to rely on the weakest possible

cryptographic assumption for pseudorandomness, without sacrificing robustness
to a constant noise rate.

Remark. The LDPC codes considered in this work differ from the traditional
Gallager’s LDPC ensemble in two important ways. First, our LDPC codes will
have t = Θ(log n) sparsity as opposed to constant sparsity. Unfortunately, the
usual belief propagation decoder does not work for noise rates beyond O(log t/t);
this is the reason why we only perform the simple zero-bit decoding. The second
difference is that we use independent parity checks, which results in an irregular
Tanner graph.

Remark. There is a well-known public-key encryption scheme, due to
Alekhnovich [4, Cryptosystem 1], based on a low-noise variant of LPN. This
scheme is similar to ours, but the decoder cannot tolerate any constant rate of
errors.

Pseudorandom Generator Matrix. For appropriate choices of parameters, it turns
out that the generator matrix of LDPC[n, g, t, r] is pseudorandom under the
planted t-XOR assumption. The planted t-XOR problem (and its generalization,
the planted t-SUM problem) is a natural and well-studied problem—see e.g. [2]
for a more detailed discussion. Formally, the (n,m, t) planted XOR problem states
that it is computationally hard to distinguish between

Dm
0 : a random m-dimensional linear subspace V ⊆ F

n
2 , and

Dm
1 : a random m-dimensional linear subspace Vs ⊆ F

n
2 satisfying a random

planted t-XOR relation s (i.e., s is a random t-sparse vector and s · v = 0 for
all v ∈ Vs).

Throughout this overview, we consider linear subspaces to be described by a
random basis. Recalling the definition of (P, G) ← LDPC[n, g, t, r], if r = 1 the
(n, g, t) planted XOR assumption immediately implies that G is pseudorandom
(by identifying V with ImG). But for the more interesting case that r > 1, we
require a stronger version of the planted XOR assumption with many planted
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relations. That is, we need to assume that the following distribution is indistin-
guishable from Dm

0 :

Dm
r : a random m-dimensional linear subspace Vs1,...,sr

⊆ F
n
2 satisfying r random

planted t-XOR relations s1, . . . , sr (i.e., s1, . . . , sr are random t-sparse vectors
and s1 · v = · · · = sr · v = 0 for all v ∈ Vs1,...,sr

).

We are not aware of any prior work on this assumption that Dm
0 ≈ Dm

r , so
it is not immediately clear how reliable it is. Fortunately, it is implied by the
(n, m + r, t) planted XOR assumption.

We prove this with a hybrid argument. Suppose that an efficient adversary
A distinguishes between Dm

0 and Dm
r with advantage ε > 0. By a telescoping

argument, A must distinguish between Dm
i and Dm

i+1 with advantage ε/r, for
some i ∈ {0, . . . , r−1}. For each i, the following efficient reduction Redi satisfies
Redi(Dm+r

0 ) ≡ Dm
i and Redi(Dm+r

1 ) ≡ Dm
i+1, which implies that ε/r (and there-

fore ε) is negligible under the (n, m + r, t) planted XOR assumption.
Redi(W ):

1. Sample i random t-sparse vectors s1, . . . , si ∈ F
n
2 and let S = {v ∈ F

n
2 :

v · sj = 0 ∀j ∈ [i]}.
2. Let U = W ∩ S. Notice that dimU ≥ dim W − i. Since dimW = m + r and

i < r, this is at least m.
3. Output a random m-dimensional subspace of U .

It remains to see why Redi(Dm+r
0 ) ≡ Dm

i and Redi(Dm+r
1 ) ≡ Dm

i+1. In fact both
of these statements are true even for fixed planted relations.

– Redi(Dm+r
0 ) ≡ Dm

i . Fix s1, . . . , si sampled in Redi and let S = {v ∈ F
n
2 :

v · sj = 0 ∀j ∈ [i]}. Since W is a random subspace of F
n
2 , conditioned on

any d = dim(W ∩ S), U = W ∩ S is a random d-dimensional subspace of S.
Therefore the output of Redi(Dm+r

0 ) is a random m-dimensional subspace of
S.

– Redi(Dm+r
1 ) ≡ Dm

i+1. Fix s1, . . . , si sampled in Redi and let S = {v ∈ F
n
2 :

v · sj = 0 ∀j ∈ [i]}, as above. Suppose that W ← Dm+r
1 is sampled with

the planted relation s. Fix s and let S′ = {v ∈ S : v · s = 0}. Again,
conditioned on any d = dim(W ∩ S), U = W ∩ S = W ∩ S′ is a random d-
dimensional subspace of S′. Therefore the output of Redi(Dm+r

1 ) is a random
m-dimensional subspace of S′.

Narrow, Statistically Random Generator Matrix. Since the planted XOR
assumption is not a standard cryptographic assumption, we show that the gen-
erator matrix of LDPC[n, c log2 n, log n, 0.99n] is statistically random for some
c > 0. This removes the need for the planted XOR assumption, but it comes at
the cost of requiring a stronger version of the LPN assumption: When we invoke
LPN to see that samples (G, Gs ⊕ e) are pseudorandom, the secrets s are now
only of size c log2 n. Therefore, for this PRC we will rely on a subexponential
version of the LPN assumption which states that LPN is 2O(

√
n)-hard.
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For the purposes of this technical overview, we will show that the generator
matrix of a closely related code is random. The proof for this version is signifi-
cantly simpler, but the distribution is less natural and has worse error-correcting
properties. The modified distribution on (P, G) is defined as follows:

1. Sample a uniformly random G0 ← F
0.01n×g
2 .

2. For i ∈ [0.99n]:
(a) Sample a random (t − 1)-sparse si ∈ F

0.01n
2 .

(b) Let Gi be the matrix Gi−1 with the extra row sT
i G0 appended to the

bottom,

Gi =

[

Gi−1

sT
i G0

]

.

(c) Let s′
i = [sT

i , 0i−1, 1, 00.99n−i].
3. Let P be the matrix whose rows are s′

1, . . . , s
′
0.99n and G = G0.99n. Output

(P, G).

First observe that PG = 0, because s′
iG = [sT

i , 0i−1, 1, 00.99n−i]G = sT
i G0 ⊕

(sT
i G0) = 0 for every i ∈ [0.99n].
The leftover hash lemma immediately implies that G is statistically random.

Recall that the leftover hash lemma states that if A ← F
g×�
2 is a uniformly

random matrix and s ∈ F
�
2 has min-entropy μ, then (A, As) is 2−(μ−g)/2-close

to uniform in statistical distance. In our case, we use A = GT
0 and s = si to see

that sT
i G0 is 2−(log (0.01n

t
)−g)/2-close to uniform in statistical distance for each

i ∈ [n − g]. If t = Ω(log n), then there is a choice of g = Ω(log2 n) such that

2−(log (0.01n

t
)−g)/2 = 2−Ω(log2 n) = negl(λ)[n], completing the proof.

LDPC-PRC0 is robust to any p-bounded channel. Recall that we say that any
length-preserving channel that introduces at most a p fraction of bit-flip errors
is p-bounded. To prove robustness, we need to show two things:

1. any fixed x ∈ F
n
2 decodes to ⊥ with high probability, and

2. for any p-bounded channel E , samples from E(EncodeG(1)) decode to 1 with
high probability.

Unfortunately, (1) does not quite hold for the scheme presented above. The issue
is that, while most fixed strings will decode to ⊥, a small fraction of strings will
decode to 1 regardless of P . For instance, 0 will always decode to 1 because
wt(P ·0) = 0 for any P . Therefore we modify our scheme slightly by using a one-
time pad z ∈ F

n
2 , included in the public key. The modified EncodeG(1) outputs

Gs ⊕ e ⊕ z, and DecodeP (x) computes wt(Px ⊕ Pz) instead of wt(Px); this is
the actual scheme we describe in the full version.

Now, for any fixed x ∈ F
n
2 , wt(Px ⊕ Pz) is distributed identically to wt(Pz)

because z is uniform. In the full version we show that P is full rank with
high probability, so Pz is uniformly random. By a Chernoff bound, wt(Pz) ≥
(1/2−r−1/4) ·r with high probability and therefore DecodeP (x) outputs ⊥. This
concludes the proof of (1), so we turn to (2).
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Suppose that we sample Gs⊕e⊕z ← EncodeG(1) and apply some p-bounded
channel E . The one-time pad effectively converts E to a fixed error channel,
independent of P, G, s, e: Suppose that E(x) = x ⊕ e(x), where e(x) is a random
variable depending on x. Since E is p-bounded, wt(e(x)) ≤ p · n. Letting y =
Gs ⊕ e ⊕ z, we have

E(Gs ⊕ e ⊕ z) ⊕ z = (Gs ⊕ e ⊕ z) ⊕ e(Gs ⊕ e ⊕ z) ⊕ z

= Gs ⊕ e ⊕ e(y)

where y is uniformly random in F
n
2 , independent of P, G, s, e because of z. Now it

only remains to see that wt(P (Gs⊕e⊕e(y))) = wt(P (e⊕e(y))) < (1/2−r−1/4)·r
with high probability. Since e and e(y) are independent errors, each of weight
(1/2 − Ω(1)) · n, the combined error e ⊕ e(y) also has weight (1/2 − Ω(1)) · n.
Therefore, if the row sparsity t of P is c log n for sufficiently small constant c,
then we will have wt(P (e ⊕ e(y))) < (1/2 − r−1/4) · r with high probability,
completing the proof of (2).

2.3 Pseudorandom Codes for the Deletion Channel

So far, we have only considered PRCs for substitution channels. For our applica-
tions to watermarking and steganography, it will be useful to have PRCs for the
noisy deletion channel as well. The noisy deletion channel randomly introduces
both deletions and substitutions.

Unfortunately, existing error-correcting codes for the deletion channel intro-
duce a large amount of structure into codewords that precludes pseudorandom-
ness. For instance, the popular techniques of synchronization symbols or concate-
nation with constant-sized inner codes are immediately seen to be incompatible
with pseudorandomness. Even further limiting the techniques available to us, we
want our PRCs for the noisy deletion channel to have a binary alphabet in order
to be useful for watermarking.

We therefore turn to alternative techniques. Surprisingly, we find that the rep-
etition code—perhaps the simplest and most-structured error-correcting code—
is a useful starting point.

For odd integer T , the rate-(1/T ) repetition code works by repeating each bit
of the message T times. That is, for any message m = (m1|| · · · ||mk) ∈ {0, 1}k,
the encoder RepEncT is defined by RepEncT (m) = (m1)

T || · · · ||(mk)T , where
(mi)

T denotes bit mi repeated T times. For example, the rate-(1/3) repetition
code encodes 010 as RepEncT (010) = 000111000.

Now suppose that the encoding (m1)
T || · · · ||(mk)T is subjected to the noisy

deletion channel, resulting in a string z. A natural algorithm for decoding z is
to partition z into k equal-length blocks z1, . . . , zk, and compute the majority of
each block:

MajDeck(z):

1. Partition z into k equal-length blocks z = (z1|| · · · ||zk).
2. Output (Maj(z1)|| · · · ||Maj(zk)).



340 M. Christ and S. Gunn

As long as the deletions are sufficiently balanced across the different blocks,
the zi will align well with the original blocks (mi)

T . Provided further that there
are not too many substitutions in any block, we should have MajDeck(z) = m.
The issue is that RepEncT (m) is not pseudorandom even for random m, because
a random string is (extremely) unlikely to consist of T repeated bits.

On the other hand, a random string typically does have Θ(
√

T ) bias towards
0 or 1.5 So if we change or delete a small O(

√
T ) number of bits of a random

string, we expect the majority to stay the same. This observation brings us to the
following encoder MajEncT , which encodes each bit in the majority of a random
string. We refer to the code defined by (MajEncT ,MajDeck) as the majority code.

MajEncT (m):

1. For i ∈ [k], let zi be a random sample from {0, 1}T conditioned on Maj(zi) =
mi.

2. Output (z1|| · · · ||zk).

Now if m is random, then z = MajEncT (m) is random as well. Furthermore,
if we subject z to the noisy deletion channel to obtain z′, then the bits of m′ =
MajDeck(z′) are positively correlated with the bits of m. This is because the
deletions are at random locations, and are therefore (roughly) evenly-distributed
across the different blocks zi—meaning that MajDeck will mostly use the correct
locations to decode each bit. Since the bit-flip errors are random, they merely
dilute the Θ(

√
T ) biases. If T >> k and the rates of deletions and bit-flip errors

are constants below 1 and 1/2 respectively, then we show in the full version
that Pr[mi = m′

i] is a constant greater than 1/2. Therefore, the majority code
has the effect of converting the constant-rate noisy deletion channel into some
p-bounded channel.

Of course, the majority code is not itself a PRC. The first problem is that
codewords for the majority code are only random if the message is random,
whereas a PRC needs to allow encoding of any particular message. The second
problem is that, even if the message is random, the majority code recovers a
string that is only correlated with it.

But these are exactly the problems solved by PRCs for bounded-weight error
channels! That is, if PRC is any PRC with robustness to every p-bounded
channel (e.g. the PRCs from Sect. 2.2), then the combined code PRCdel =
(MajEnc◦PRC.Encode,PRC.Decode◦MajDec) is a PRC with robustness to some
constant-rate noisy deletion channel.6 Pseudorandomness follows from the pseu-
dorandomness of PRC.Encode: Since PRC.Encode(m) is pseudorandom for any
message m, MajEnc(PRC.Encode(m)) is as well. Robustness follows from the fact
that the majority code has the effect of converting the constant-rate noisy dele-
tion channel into some p-bounded channel, which is handled by PRC.Decode.

5 That is, a random string has Θ(
√

T ) more 0’s than 1’s, or 1’s than 0’s. This can
be seen as a consequence of the fact that a one-dimensional simple random walk of
length T will usually terminate Θ(

√
T ) away from the origin.

6 As p approaches 1/2, the combined PRC tolerates a noisy deletion channel with
rates of deletions and bit-flip errors approaching 1 and 1/2.



Pseudorandom Error-Correcting Codes 341

2.4 Constant-Rate Pseudorandom Codes

So far we have only considered zero-bit PRCs, but for many applications it will
be useful to have PRCs that can encode longer messages. There is a simple
construction of a multi-bit PRC directly from any zero-bit PRC: Encode each
bit of the message with either a zero-bit PRC codeword, or a uniformly random
string. That is, if PRC is a zero-bit PRC, we encode a message m ∈ {0, 1}k

as (x1|| · · · ||xk) where for each i ∈ [k], xi ← {0, 1}n if mi = 0 and xi ←
PRC.Encode(1) if mi = 1.

Unfortunately this scheme has a very low rate. If the zero-bit PRC has block
length n, then the resulting multi-bit PRC has rate 1/n. However, we show in the
full version that one can use any such low-rate PRC to make any error-correcting
code pseudorandom, with no asymptotic loss in rate.

The idea is to encode a seed for a one-time pad in the simple low-rate
PRC just described, and then use the one-time pad to hide an error-correcting
encoding of the message. More formally, let (Enc,Dec) be any (standard) error-
correcting code and PRC be a low-rate PRC. We do not require (Enc,Dec) to
have any cryptographic properties. We encode a message m as7

PRC.Encode(r),Enc(m) ⊕ PRG(r),

where PRG is any pseudorandom generator and r ← {0, 1}k is a fresh uniformly
random string.

By pseudorandomness of PRC, PRC.Encode(r) is indistinguishable from a
uniformly random string—even for a fixed choice of r. By security of PRG, the
encoding is therefore indistinguishable from a totally random string.

Decoding works as long as PRC.Encode(r) is not too corrupted for PRC to
recover r, and Enc(m) ⊕ PRG(r) is not too corrupted for Dec to recover m.

2.5 Watermarks for Language Models

In this work, a generative language model is formally described by an algorithm
Model that takes as input a prompt prompt and a sequence of tokens output
thus far t1, . . . , ti−1, and produces a distribution over the next token. A full
response is generated by iteratively sampling from these distributions, at each
step providing Model with the partial response, and terminating once a special
“done” token is sampled. For simplicity, we assume here that tokens are binary,
which allows us to specify the distribution pi over the next token as a Bernoulli
distribution Ber(p̂i) where p̂i := E[pi] ∈ [0, 1]. We also assume for the purposes
of this technical overview that the model always generates a response of length
n. In the full version we explain why neither of these assumptions is important
for our results.

7 In order to obtain stronger robustness guarantee, we actually randomly permute the
symbols of this encoding. For the purposes of this technical overview we omit this
detail.
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As defined in [8], a watermarking scheme for a language model consists of
algorithms Wat and Detect, where Wat is the watermarked model and Detect

is an algorithm used to detect the presence of the watermark. In this work we
are interested in watermarks that are undetectable, sound, and robust, loosely
defined as follows.

– Undetectability : Any polynomial number of responses from the watermarked
model are computationally indistinguishable from those of the original model.

– Soundness : Text generated independently of the watermarked model is not
falsely detected.

– Robustness : Sufficiently high-entropy text output by the model is detected as
watermarked, even if it is altered.

We show that the watermarking strategy from Sect. 1, which replaces some
of the model’s randomness with PRC codewords, yields a scheme that satisfies
all of the above properties.

Defining Generate for language models. Recall that the approach from Sect. 1
requires an algorithm Generate that takes as input a prompt and a random seed
x ∈ {0, 1}n, and samples a response t ∈ {0, 1}n such that

(1) if x is uniformly random, then t is distributed identically to a response from
Model, and

(2) each bit of t is correlated with the corresponding bit of x.

We define Generate(prompt, x) to sample the ith bit ti of the response as follows.
It first computes pi by querying Model with prompt and the response output
thus far, then:

– If p̂i ≤ 1/2, sample ti ← Ber(2xip̂i).
– If p̂i > 1/2, sample ti ← Ber(1 − 2(1 − xi)(1 − p̂i)).

For any p̂i ∈ [0, 1], one can easily see that ti is distributed as Ber(p̂i) since xi is
a uniformly random bit. This means that Generate satisfies Condition (1) above.

For Condition (2), the bias toward the seed is stronger the closer p̂i is to 1/2.
It is strongest when p̂i = 1/2 exactly, in which case ti is sampled from Ber(xi)
and is therefore equal to xi. At the other extreme, if p̂i = 0 or 1, there is no
bias. In general the response is a noisy version of the seed, where the amount of
noise on the ith token decays as the binary entropy of Ber(p̂i) grows.

Replacing Seeds with PRC Codewords. We use PRC samples x ← PRC.
Encode(1), instead of random samples x ← {0, 1}n, as the seeds in Generate.
That is, if PRC is a zero-bit PRC, we let our watermarking scheme W[PRC] be
defined by

Wat(prompt): Sample x ← PRC.Encode(1) and output a sample from
Generate(prompt, x).

Detect(t): Compute PRC.Decode(t) and output the result.



Pseudorandom Error-Correcting Codes 343

By Condition (1) and the pseudorandomness property of PRC, the responses
from Wat are computationally indistinguishable from those of the original model.
By Condition (2) and the robustness property of PRC, the watermark will be
detectable as long as the PRC is sufficiently powerful.

Remark. Depending on the kind of robustness of the PRC, substituting the
entire seed with a single PRC sample results in a watermark that may or may
not be detectable from just a subsequence. This is easily fixed by using x =
(x1|| · · · ||xm), where xi ← PRC.Encode(1) are independent PRC samples that
are much shorter than the generated content. As long as the text contains at
least one subsequence corresponding to a PRC sample xi, the watermark will be
detected.

PRC Error Correction and Watermark Robustness. To understand how error
correction of PRC translates to robustness of W[PRC], it is helpful to think of
Generate’s sampling process as a noisy embedding channel applied to the seed.
That is, for a seed x ∈ {0, 1}n, let EEmb(x) = Generate(prompt, x) be the
“embedding channel” describing the noise in x �→ t. For detection, it is sufficient
for PRC to correct against the channel EEmb, since watermarked responses are
exactly samples from EEmb(x) for x ← PRC.Encode(1).

Robustness of W[PRC] is determined by PRC’s ability to correct from addi-
tional errors on top of EEmb. Let Eadv be a channel modeling the changes an
adversary introduces to a watermarked response, so the overall error applied to
t follows Eadv ◦ EEmb. If PRC is robust to Eadv ◦ EEmb, the watermark is robust to
this adversary’s modifications.

In the full version, we show that as long as the text has non-zero entropy,
EEmb introduces errors at a rate of less than 1/2. Therefore, using any PRC with
robustness to every p-bounded channel, we immediately obtain watermarks that
are robust to a constant rate of random substitutions.

Robustness of Our Watermark. Hashing-based watermarking schemes—
including all existing undetectable schemes—are removable by the simple “emoji
attack” [1,12]. In this attack, an adversary asks the model to respond to its
prompt and insert an emoji between every word of its response. The adversary
then deletes the emojis from the response. This attack removes any watermark
that relies on the detector seeing contiguous sequences of watermarked text.

It turns out that hashing-based schemes [1,8,12] can easily be made robust
to this particular attack.8 However, if the adversary instead instructs the model
to insert the emojis randomly, then we do not know how to make any hashing-
based scheme robust. By constructing PRCs with robustness to random deletion
channels, we give the first undetectable watermarking scheme that can resist this
kind of attack.

In order to show this, we require a stronger assumption on the response: That
EEmb behaves as the binary symmetric channel BSCq for some q ∈ (0, 1/2). The

8 For instance, we could choose to only hash tokens whose index has the same parity
as the token being sampled.
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binary symmetric channel BSCq is the channel that flips each bit of its input
independently with probability q, so BSCq(x) = x⊕Ber(q) for x ∈ {0, 1}. Essen-
tially, this is equivalent to the assumption that the response has high entropy
and does not repeat words too often.

Under this assumption, if Eadv = BDCp is the binary deletion channel for
some p ∈ (0, 1), then we just need a PRC with robustness to Eadv ◦ EEmb =
BDCp◦BSCq. The binary deletion channel BDCp is the channel that deletes each
bit of its input independently with probability p. Indeed, we saw in Sect. 2.3 that
there exist PRCs with robustness to BDCp ◦BSCq for any p ∈ (0, 1), q ∈ (0, 1/2).

2.6 Watermarks with Public Attribution

For the “standard” notions of watermarks considered so far, the goal is to deter-
mine whether a given text is a possibly-corrupted version of an output generated
by a model. Standard watermarks are well-suited for applications such as detect-
ing plagiarism, where one wishes to know if a model was used at all to produce
a text, even if that text has been altered by the user.

A different use of watermarks is in attributing content to an LLM that gen-
erated it. For example, if harmful content generated by an LLM is found on
social media, it would be useful to trace this content back to the model using
the watermark. Ideally, anyone holding a public detection key should be able to
trace the content. On the other hand, it should only be possible to embed the
watermark by using a secret embedding key, in order to avoid falsely attributing
text to any model.9 In other words, to an attacker who does not know the secret
key, the watermark should be unforgeable.

In addition to unforgeability, watermarks with public attribution have subtly
different detection properties than standard watermarks. Robustness of stan-
dard watermarks means that an LLM-generated text will be detected even if
small modifications are made. If robust watermarks were used for attribution,
an attacker could use a model to generate a benign watermark text, then change
a few words to make it offensive. By robustness, the watermark would still be
present in this now-offensive content. So whereas robustness is a useful feature
for standard watermarking, in the context of attribution it is actually an issue.

We therefore define a watermark with public attribution to have a separate
detection algorithm called AttrText, which is intentionally designed to not be
robust. AttrText, given a text x and a public detection key, indicates whether
the model output verbatim a significant part of that text, and outputs that
portion of the text if so.

In order to preserve the benefits of robust watermarking for applications like
detecting plagiarism, our publicly attributable watermarks also retain a Detect

algorithm (in addition to the AttrText algorithm) with the robustness of our

9 Note that the roles of the public and secret keys are reversed here. For PRCs, a
secret key is necessary for decoding, but anyone can encode with knowledge of a
public key. Public-key PRCs are useful for public-key steganography.
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standard watermarking schemes. One can choose at detection time whether one
wants to use Detect for standard detection, or AttrText for attribution.

Our watermarking scheme with public attribution, Watt[PRC], is a natural
extension of our regular watermarking scheme W[PRC]. Recall that W[PRC]
embeds a codeword of a zero-bit PRC into the model’s response; the detector
checks whether the given text is close to a codeword. Of course, if we use a PRC
that encodes an arbitrary message (rather than only ‘1’ as in a zero-bit PRC),
then W[PRC] will embed arbitrary messages in the text. Watt[PRC] does exactly
this, where the message that it encodes is a signature on the response output thus
far. AttrText decodes the given text to obtain this signature, and checks using
the public detection key that it is a valid signature of a portion of the response.
If so, this signed portion must have been generated by the model.

Concurrent work [10] also constructs a watermark with public detection,
although this scheme is designed to have mild robustness (comparable to that
of [8]) and therefore is not appropriate for attribution as-is. Their scheme can
easily be modified to satisfy our definition of unforgeable public attribution,
but it would then lose all robustness guarantees for standard watermarking.
Our scheme simultaneously functions as a highly robust standard watermark
via Detect, while also satisfying unforgeable public attribution via AttrText.

2.7 Robust Steganography

In steganography, the goal is to send a hidden message such that an observer can-
not tell that a message is being sent at all. In the classic presentation, a prisoner
wishes to secretly communicate with an outside party even though the warden is
filtering their letters. If the warden detects any unusual language then the com-
munication channel will be shut down, so the prisoner cannot simply encrypt
the message: The warden should not only be unable to learn anything about
the message, but should be unable to even detect that secret communication is
occurring at all.

Steganography was formalized in [11]. In this presentation, there is some
underlying steganographic channel,10 a distribution with which the sender wishes
to conceal a message. The sender is given sample access to this steganographic
channel and sends a stegotext to the receiver. Steganographic secrecy requires
that the distribution of stegotexts is indistinguishable from the steganographic
channel, except to the receiver who can recover the message with a secret key.

[11] proves the security of a steganography scheme of [6] that can be con-
structed using any encryption scheme (Encode,Decode) with pseudorandom
ciphertexts. The key idea behind this scheme is to embed each bit xi of a pseu-
dorandom encryption of the message by drawing a sample di from the stegano-
graphic channel such that f(di) = xi for some hash function f :
Steg.Encode(1,m) [6,11]:

10 In the steganography literature this is usually just called a “channel”; we call it a
“steganographic channel” to differentiate it from the coding-theoretic channels we
use in the context of robustness.



346 M. Christ and S. Gunn

1. Let x = x1|| . . . ||xn ← Encode(1,m)
2. For i ∈ [n], sample a random di from the channel conditioned on f(di) = xi

3. Output d = d1|| . . . ||dn

The decoder Steg.Decode simply outputs Decode(1, f(d1)|| . . . ||f(dn)) =
Decode(1, x) = m.

If xi is uniform over {0, 1}, and f is perfectly unbiased for the channel, then di

is sampled exactly from the channel distribution. Therefore, by pseudorandom-
ness of the ciphertext, an observer cannot distinguish stegotexts from samples
from the steganographic channel. The receiver, which knows the decoding key for
the encryption scheme, can evaluate f on each block of the stegotext to obtain
the ciphertext, then decrypt to recover the message.

However, this scheme is very brittle. If the stegotext is corrupted with any
errors at all—even ones resulting from any small bias in the hash function f—
the message cannot be recovered. A natural attempt at achieving robustness
is for the sender to apply an error-correcting code (Enc,Dec) to the ciphertext
before embedding it. But this loses pseudorandomness and therefore stegano-
graphic secrecy! Consequently, the robust steganography schemes of prior work
rely on stronger assumptions like the ability of the sender and receiver to share
state. A shared state allows the sender to generate a fresh one-time pad r
for each message it sends, making the task much easier: The sender embeds
x = Enc(m) ⊕ r by choosing d such that f(di) = xi, and the receiver computes
Dec(x̃⊕ r), where (Enc,Dec) is any error-correcting code. However, if the sender
and receiver become unsynchronized (as is likely in practice), the receiver can
no longer decode the message.

We observe that PRCs are exactly the primitive needed for robust stateless
steganography: Using a PRC as the pseudorandom encryption scheme in the
above (Steg.Encode,Steg.Decode) construction immediately gives us a steganog-
raphy scheme with the same robustness as the PRC. If we use a public-key PRC,
the resulting steganography scheme is also public-key. Furthermore, the robust-
ness of the PRC allows us to relax the assumption that f is perfectly unbiased
on the steganographic channel.

Our main result about steganography is the first stateless steganography
scheme with nontrivial robustness to errors. In particular, using our LDPC-
based PRCs, we construct stateless steganography schemes that are robust to
p-bounded channels for any constant p, or any constant-rate random deletion
channel.
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