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Abstract

Multi-agent reinforcement learning (MARL) lies
at the heart of a plethora of applications involving
the interaction of a group of agents in a shared
unknown environment. A prominent framework
for studying MARL is Markov games, with the
goal of finding various notions of equilibria in a
sample-efficient manner, such as the Nash equi-
librium (NE) and the coarse correlated equilib-
rium (CCE). However, existing sample-efficient
approaches either require tailored uncertainty es-
timation under function approximation, or careful
coordination of the players. In this paper, we pro-
pose a novel model-based algorithm, called VMG,
that incentivizes exploration via biasing the em-
pirical estimate of the model parameters towards
those with a higher collective best-response values
of all the players when fixing the other players’
policies, thus encouraging the policy to deviate
from its current equilibrium for more exploration.
VMG is oblivious to different forms of function
approximation, and permits simultaneous and un-
coupled policy updates of all players. Theoret-
ically, we also establish that VMG achieves a
near-optimal regret for finding both the NEs of
two-player zero-sum Markov games and CCEs of
multi-player general-sum Markov games under
linear function approximation in an online envi-
ronment, which nearly match their counterparts
with sophisticated uncertainty quantification.
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1. Introduction

Multi-agent reinforcement learning (MARL) is emerging
as a crucial paradigm for solving complex decision-making
problems in various domains, including robotics, game the-
ory, and machine learning (Busoniu et al., 2008). While
single-agent reinforcement learning (RL) has been exten-
sively studied and theoretically analyzed, MARL is still in
its infancy, and many fundamental questions remain unan-
swered. Due to the interplay of multiple agents in an un-
known environment, one of the key challenges is the design
of efficient strategies for exploration that can be seamlessly
implemented in the presence of a large number of agents'
without the need of complicated coordination among the
agents. In addition, due to the large dimensionality of the
state and action spaces, which grows exponentially with
respect to the number of agents in MARL, it necessitate
the adoption of function approximation to enable tractable
planning in modern RL regimes.

A de facto approach in exploration in RL is the principle
of optimism in the face of uncertainty (Lai, 1987), which
argues the importance of quantifying the uncertainty, known
as the bonus term, in the pertinent objects, e.g., the value
functions, and using their upper confidence bound (UCB) to
guide action selection. This principle has been embraced in
the MARL literature, leading a flurry of algorithmic devel-
opments (Liu et al., 2021; Bai et al., 2021; Song et al., 2021;
Jin et al., 2021; Li et al., 2022; Ni et al., 2022; Cui et al.,
2023; Wang et al., 2023; Dai et al., 2024) that claim prov-
able efficiency in solving Markov games (Littman, 1994),
a standard model for MARL. However, a major downside
of this approach is that constructing the uncertainty sets
quickly becomes intractable as the complexity of function
approximation increases, which often requiring a tailored
approach. For example, near-optimal techniques for con-
structing the bonus function in the tabular setting cannot
be applied for general function approximation using neural
networks.

Therefore, it is of great interest to explore alternative ex-
ploration strategies without resorting to explicit uncertainty

'In this paper, we use the term agent and player interchange-
ably.
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quantification, and can be adopted even for general func-
tion approximation. Our work is inspired by the pioneer-
ing work of Kumar & Becker (1982), which identified the
need to regularize the maximum-likelihood estimator of
the model parameters using its optimal value function to
incentivize exploration, and has been successfully applied
to bandits and single-agent RL problems (Liu et al., 2020;
Hung et al., 2021; Mete et al., 2021; Liu et al., 2024) with
matching performance of their UCB counterparts. However,
this strategy of value-incentivized exploration has not yet
been fully realized in the Markov game setting; a few re-
cent attempts (Liu et al., 2024; Xiong et al., 2024) made
progress in establishing its statistical efficiency but fell short
in designing computationally tractable algorithms. These
limitations motivate the development of computationally
efficient algorithms for the general MARL setting while
enabling symmetric and independent updates of the players.
We address the following question:

Can we develop provably efficient algorithms for online
multi-player general-sum Markov games with function
approximation using value-incentivized exploration?

1.1. Contribution

In this paper, we propose a provably-efficient model-based
framework, named VMG (Value-incentivized Markov Game
solver), for solving online multi-player general-sum Markov
games with function approximation. VMG incentivizes ex-
ploration via biasing the empirical estimate of the model
parameters towards those with a higher collective best-
response values of all the players when fixing the other
players’ policies, thus encouraging the policy to deviate
from the equilibrium of the current model estimate for more
exploration. This approach is oblivious to different forms
of function approximation, bypassing the need of design-
ing tailored bonus functions to quantity the uncertainty in
standard approaches. VMG also permits simultaneous and
uncoupled policy updates of all players, making it more
suitable when the number of players scales. Theoretically,
we also establish that VMG achieves a near-optimal regret
for a number of game-theoretic settings under linear func-
tion approximation, which are on par to their counterparts
requiring explicit uncertainty quantification. Specifically,
our main results are as follows.

* For two-player zero-sum matrix games, VMG achieves
a near-optimal regret on the order of O(d\/T ),2 where
d is the dimension of the feature space and 7 is the
number of iterations for model updates. This translates
to a sample complexity of O(d?/s?) for finding an
e-optimal NE in terms of the duality gap.

The notation 5( -) hides logarithmic factors in the standard
order-wise notation.

* For finite-horizon multi-player general-sum Markov
games, under the linear mixture model of the transi-
tion kernel, VMG achieves a near-optimal regret on
the order of O(dv H3T), where H is the horizon
length, and 7' is the number of iterations for model
updates. This translates to a near-optimal — up to a
factor of H — complexity of O(Nd?H* /%) samples
or O(Nd2H? /?) trajectories for finding an e-optimal
CCE in terms of the optimality gap, which is also appli-
cable to finding e-optimal NE for two-player zero-sum
Markov games. We also extend VMG to the infinite-
horizon setting, which achieves a sample complexity
of O(Nd?/((1 — ~)*e?)) to achieve e-optimality.

* The unified framework of VMG allows its reduction
to important special cases such as symmetric matrix
games, linear bandits and single-agent RL, which not
only recovers the existing reward-biased MLE frame-
work but also discovers new formulation that might be
of independent interest.

1.2. Related work

We discuss a few threads of related work, focusing on those
with theoretical guarantees.

Two-player matrix games. Finding the equilibrium of two-
player zero-sum matrix games has been studied extensively
in the literature, e.g., Mertikopoulos et al. (2018); Shapley
(1953); Daskalakis & Panageas (2018); Wei et al. (2020),
where faster last-iterate linear convergence is achieved in the
presence of KL regularization (Cen et al., 2021; Zhan et al.,
2023). Many of the proposed algorithms focus on the tabu-
lar setting with full information, where the expected returns
in each iteration can be computed exactly when the payoff
matrix is given. More pertinent to our work, O’Donoghue
et al. (2021) considered matrix games with bandit feedback
under the tabular setting, where only a noisy payoff from
the players’ actions is observed at each round, and proposed
to estimate the payoff matrix using the upper confidence
bounds (UCB) in an entry-wise manner (Lai, 1987; Boun-
effouf, 2016), as well as K-learning (O’Donoghue, 2021)
that is akin to Thompson sampling (Russo et al., 2018). Our
work goes beyond the tabular setting, and proposes an alter-
native to UCB-based exploration that work seamlessly with
different forms of function approximation.

Multi-player general-sum Markov games. General-sum
Markov games are an important class of multi-agent RL
(MARL) problems (Littman, 1994), and a line of recent
works (Liu et al., 2021; Bai et al., 2021; Mao & Basar,
2023; Song et al., 2021; Jin et al., 2021; Li et al., 2022; Sessa
et al., 2022) studied the non-asymptotic sample complex-
ity for learning various equilibria in general-sum Markov
games for the tabular setting under different data generation
mechanisms. These works again rely heavily on carefully
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constructing confidence bounds of the value estimates to
guide data collection and obtain tight sample complexity
bounds. In addition, policy optimization algorithms have
also been developed assuming full information of the under-
lying Markov games, e.g., Erez et al. (2023); Zhang et al.
(2022); Cen et al. (2023).

MARL with linear function approximation. Modern
MARL problems often involve large state and action spaces,
and thus require function approximation to generalize from
limited data. Most theoretical results focus on linear func-
tion approximation, where the transition kernel, reward or
value functions are assumed to be linear functions of some
known feature maps. The linear mixture model of the tran-
sition kernel considered herein follows a line of existing
works in both single-agent and multi-agent settings, e.g.,
Ayoub et al. (2020); Chen et al. (2022); Modi et al. (2020);
Jia et al. (2020); Chen et al. (2022); Liu et al. (2024), which
is subtly different from another popular linear model (Jin
et al., 2020; Wang et al., 2019; Yang & Wang, 2019; Xie
et al., 2020), and these two models are not mutually ex-
clusive in general (Chen et al., 2022). Moreover, Ni et al.
(2022); Huang et al. (2022) considered general function ap-
proximation and Cui et al. (2023); Wang et al. (2023); Dai
et al. (2024) considered independent function approxima-
tion to allow more expressive function classes that lead to
stronger statistical guarantees, which usually require solving
complicated constrained optimization problems to construct
the bonus functions.

Exploration in online RL. Uncertainty estimation is crucial
for efficient exploration in online RL. Common approaches
are constructing the confidence set of the model parameters
based on the observed data, which have been demonstrated
to be provably near-optimal in the tabular and linear func-
tion approximation settings (Jin et al., 2018; Agarwal et al.,
2023) but have limited success in the presence of func-
tion approximation in practice (Gawlikowski et al., 2023).
Thompson sampling provides an alternative approach to ex-
ploration by maintaining a posterior distribution over model
parameters and sampling from this distribution to make
decisions, which however becomes generally intractable un-
der complex function approximation schemes (Russo et al.,
2018). Zhang (2022) proposed feel-good Thompson sam-
pling that biases towards models with higher optimal values,
which is developed further for solving general RL problems
in Zhong et al. (2022); Agarwal & Zhang (2022), to name a
few.

Exploration via optimization. Our approach draws inspira-
tion from the reward-biased maximum likelihood estimation
framework, originally proposed by Kumar & Becker (1982),
which has been recently adopted in the context of bandits
(Liu et al., 2020; Hung et al., 2021; Cen et al., 2024) and
single-agent RL (Mete et al., 2021; Liu et al., 2024; Yang

et al., 2025). Liu et al. (2024) proposed an algorithm for
two-player zero-sum Markov games, however, it requires
asymmetric updates and solving bilevel optimization prob-
lems with the lower level problem being a Markov game
itself. Xiong et al. (2024) tackled the general-sum multi-
player Markov game setting, however, the proposed algo-
rithm therein is generally computationally intractable. Our
work, in contrast, highlights a computationally-efficient al-
gorithm for the general multi-player game-theoretic setting,
which not only recovers but leads to new formulations for
the single-agent setting. Last but not least, Foster et al.
(2023); Chen et al. (2025) extended the seminal framework
of decision-estimation coefficient (DEC) (Foster et al., 2021)
to MARL, however the algorithms proposed therein are com-
putationally expensive, due to the presence of minimax and
constrained optimization subroutines.

1.3. Paper organization and notation

The rest of this paper is organized as follows. Section 2 stud-
ies two-player zero-sum matrix games, Section 3 focuses on
episodic multi-player general-sum Markov games, and we
conclude in Section 4. The proofs as well as the extension
to the infinite-horizon setting are deferred to the appendix.

Notation. We let [n] denote the index set {1,...,n}. Let
I, denote the n x n identity matrix, and inner product
in Euclidean space R™ by (-,-). We let A™ denote the
n-dimensional simplex, i.e., A" = {& € R* : & >
0,> " ,x; = 1}. For any z € R™, we let ||z||, denote
the £, norm of z, Vp € [1, 0o]. We let B(R) denote the d-
dimensional #5 ball of radius R. The Kullback-Leibler (KL)
divergence between two distributions P and () is denoted

as KL (P||Q) = Y, P(x)log 5.

2. Two-Player Zero-Sum Matrix Games

In this section, we start with a simple setting of two-player
Zero-sum matrix games, to develop our algorithmic frame-
work.

2.1. Problem setting

Two-player zero-sum matrix game. We consider the (pos-
sibly KL-regularized) two-player zero-sum matrix games
with the following objective:

max min f
HEA™ pEAN

"r(A) ey
= g Av — BKL (4| ref) + BKL (v]|ref)
where A € R™*™ is the payoff matrix, 4 € A™ and

e € A™ (resp. v € A" and vef € A") are the pol-
icy and reference policy for the max (resp. min) player,
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and 3 > 0 is the regularization parameter.> Here, the refer-
ence policies can be used to incorporate prior knowledge or
preference of the game; when the reference policies are uni-
form distributions, the KL regularization becomes entropy
regularization, which are studied in, e.g., Cen et al. (2021).

Nash equilibrium. The policy pair (u*, v*) corresponding
to the solution to the saddle-point problem (1) represents
a desirable state of the game, where both players perform
their (regularized) best-response strategies against the other
player, so that no players will unitarily deviate from its
current policy. Specifically, the policy pair (u*, v*) satisfies

V(p,v) € A X A" :

and is called the Nash equilibrium (NE) of the matrix game
(Nash, 1950).*

Noisy bandit feedback. We are interested in learning the
NE when the payoff matrix A is unknown and can only be
accessed through a stochastic oracle. Specifically, for any
i € [m]and j € [n], we can query the entry A(%, j), and
receive a noisy feedback A(i, j) of A(i, ) from an oracle,
ie.,

o~

A(i, ) = A, §) + &, 2

where the noise £ is an i.i.d. zero-mean random variable
across different queries. Each of the collected data tuple is

~

thus in the form of (¢, j, A(7, §)).

Goal: regret minimization. Our goal is to design an easy-
to-implement framework that can find the approximate NE
of the matrix game (1) with as few queries as possible to
the stochastic oracle in a sequential manner. To begin, we
define the following

P = s (), () = min (),
and f*(A) = max min f*"(A) 3)

HEA™ pEAT

for any payoff matrix A. The duality gap of the matrix game
(1) at a policy pair (u, v) is defined as

DualGap (11, ) = f*(A) — f*(A), @

where it is evident that DualGap (u*,v*) = 0. A policy
pair (u, v) is called an e-approximate NE (abbreviated as
€-NE) of the matrix game (1) if DualGap (i, v) < e.

In an online setting, given a sequence of policy updates
{(1¢, v¢) }e=1,... 7 over T rounds, a common performance

3For simplicity, we set the same regularization parameter for
both players; our analysis continues to hold with different regular-
ization parameters 31 and (32 for each player.

“We note that under entropy regularization, the equilibrium is
also known as the quantal response equilibrium (QRE) (McKelvey
& Palfrey, 1995) when 8 > 0.

FRY(A) S F(A) < (A,

metric is the cumulative regret, defined as

T
Regret(T') := Z DualGap (i, vt)

t=1

T
(f27(A) = FHA)) + ) (1 (A) = e (A),

1 t=1

T

t

regret for min-player regret for max-player

&)

which encapsulates the regret from both players. Our goal is
to achieve a sublinear, and ideally near-optimal, regret with
respect to the number of rounds T, by carefully balancing
the trade-off between exploration and exploitation, even
under function approximation of the model class.

2.2. Algorithm development

We propose a model-based approach, called VMG, that
enables provably efficient exploration-exploitation trade-
off via resorting to a carefully-regularized model (i.e., the
payoff matrix) estimator without constructing uncertainty
intervals. To enable function approximation, we parameter-
ize the payoff matrix by A,, € R™*", where w € Q C RY
is some vector in the parameter space ).

The proposed approach, on a high level, alternates between
updating the payoff matrix based on all the samples col-
lected so far, and collecting new samples using the updated
policies. Let’s elaborate a bit further. At each round ¢, let
the current payoft matrix estimate be A, ,, and its corre-
sponding NE be (p¢, v).

e Value-incentivized model updates. Given all the col-
lected data tuples D;_; and the policy pair (p, v4),
VMG updates the model parameter w, via solving a
regularized least-squares estimation problem as (7), fa-
voring models that minimizes the squared loss between
the model and the noisy feedback stored in D;_1, and
maximizes the value of each player when the other
player’s strategy is fixed. In other words, the regulariza-
tion term aims to maximize the duality gap at (p, 1),
which tries to pull the model away from its current
estimate A;_1, whose duality gap is 0 at (z, ;). The
regularized estimator thus strikes a balance of exploita-
tion (via least-squares on D,_;) and exploration (via
regularization against the current model 4,,, ).

 Data collection from best-response policy updates. Us-
ing the updated payoff matrix A4,,, VMG updates the
best-response policy of each player while fixing the
policy of the other player via (8), resulting in policy
pairs (fit, v¢) and (p, 7). Finally, VMG collects one
new sample from each of the policy pairs respectively
following the oracle (2), and add them to the dataset
Dy _1 to form D;.
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The complete procedure of VMG is summarized in Algo-
rithm 1. VMG invokes the mechanism of regularization
as a means for incentivizing exploration, rendering it more
amenable to implement in the presence of function approx-
imation. In contrast, prior approach (O’Donoghue et al.,
2021) heavily relies on explicitly adding an exploration
bonus to the estimate of the payoff matrix using confidence
intervals, which is challenging to construct under general
function approximation. In addition, VMG allows parallel
and independent policy execution from both players.

Algorithm 1 Value-incentivized Online Matrix Game
(VMG)

1: Input: initial parameter wy, regularization coefficient
«a > 0, iteration number 7.
2: Initialization: dataset Dy := ().
3: fort=1,---,T do
4:  Compute the Nash equilibrium (1, ;) of the matrix
game with the current parameter w;_1:

o = ergmax min fA¥ (A, ),
LEA™ vEA™

vy = argmin max f*"(Ay,_,). (6)
vEA™ pEA™ )

5:  Model update: Update the parameter w; by minimiz-
ing the following objective:

w; = arg min E

weN I
(ivjrA(ivj))EDt—l
—af U (AL) +aftt*(AL) . (T)

value-incentivized reg.

(Autin) - Ai.))

6:  Compute j1; and 7; by solving the following opti-
mization problems:

ﬁt = argmax fﬂﬂjt (Awt)v
HEA™

D, = argmin [ (A,,). @®)
vEA™

7. Data collection: Sample (i, j:) ~ (i, v)
and (4;,77) ~ (w¢,7) and get the noisy feed-
back A(i,j;) and A(i},j]) following the ora-
cle (2). Update the dataset Dy, = D;_; U
{Geodes AGe, 300 (i, 30, Al 57)) |-

8: end for

The benefit of regularization. While VMG is agnostic to
the power of KL regularization in (1), the major benefit of
regularization comes in terms of computational efficiency.
When the KL regularization parameter 5 > 0, common first-
order game solvers such as mirror descent ascent (Sokota
et al., 2022) or policy extragradient (Cen et al., 2021; 2023)
methods achieve a last-iterate linear convergence rate when

solving the matrix game (6). Turning to the model update,
when S > 0, the regularization term in (7) can be computed
in closed form:

— [ (Aw) + 17 (Aw)

()
i=1
+ log (Z Vref,j €XP (—/JAZ(’J)) >

j=1

+C, )

where firer ; (T€Sp. Uref ;) is the i-th (resp. j-th) entry of
Lref (T€SP. Vief), Aw(i,:) (resp. Ay (3, 4)) is the i-th row
(resp. j-th column) of A, and C' is a constant that does
not depend on A,,. Leveraging the closed-form expression,
one can bypass solving a bi-level optimization problem
(7) on its surface, but resorts to more efficient first-order
methods. Last but not least, the policies i; and 7y in (8) can
be computed in closed form as well:

Ay, (i, :)yt>
/B b

Ut,j X Vref,j €XP (

[iti OX [href i €XP (

The case of symmetric payoff. One important special class
of matrix games is the symmetric matrix game (Cheng et al.,
2004), with A = —AT, firef = Ver, and m = n. Many
well-known games are symmetric, from classic games like
rock-paper-scissors to the recent example of LLM align-
ment (Munos et al., 2023; Swamy et al., 2024; Yang et al.,
2024b). For a symmetric matrix game, it admits a symmetric
Nash (u*, u*), and Algorithm 1 reduces to a single-player
algorithm by only tracking a single policy p, recognizing
Ut = UVt and ﬁt = f]t due to f“’V(A) = —f’/’“ (A) In
addition, VMG only needs to collect one sample from the
policy pair (fi¢, p1¢) in each iteration. This is particularly
desirable when the policy is expensive to store and update,
such as large-scale neural networks or LLMs.

Reduction to the bandit case. By setting the action
space of the min player to n = 1, VMG seamlessly re-
duces to the bandit setting, where the payoff matrix be-
comes a reward vector A € R™. Here, we let fF(A) =
' A — BKL (]| prer) and f*(A) = max,cam f*(A). In-
terestingly, to encourage exploration, the regularization
term favors a reward estimate that maximizes its regret
f*(Ay) — fH(Ay) on the current policy i, which is differ-
ent from the reward-biasing framework that only regularizes
against f*(A,) (Cen et al., 2024; Liu et al., 2020; Xie et al.,
2024).
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2.3. Theoretical guarantee

We demonstrate that VMG achieves near-optimal regret,
assuming linear function approximation of the payoff matrix.
Specifically, we have the following assumption.

Assumption 2.1 (Linear function approximation). The pay-
off matrix is parameterized as

Au(iyg) = (i, ) w,

where w € Q C R? is the parameter vector and ¢(i, j) € R?
is the feature vector for the (i, j)-th entry. Here, the feature
vectors are known and fixed, and satisfy ||¢(i, j)||, < 1

forall i € [m] and j € [n]. For all w € Q, we suppose
[wll, < Vdand || Ayl < B for some B; > 0.

Vi € [m],j € [n], Y

We also assume that the linear function class is expressive
enough to describe the true payoff matrix A.

Assumption 2.2 (realizability). There exists w* € 2 such
that Aw* = A.

Next, we impose the noise follows standard sub-Gaussian
distribution.

Assumption 2.3 (i.i.d. sub-Gaussian noise). The noise £ in
(2) are i.i.d. mean-zero sub-Gaussian random variables with
sub-Gaussian parameter o > 0.

Regret guarantee. The following theorem states the regret
bound of VMG under appropriate choice of the regulariza-
tion parameter.

Theorem 2.4. Suppose Assumptions 2.1, 2.2 and 2.3 hold.
Let § € (0, 1), setting the regularization coefficient « as

T
‘- \/dlog (1 + (T/d)*2) (log(4T/0) + dlog(dT)),
(12)

then for any > 0, with any initial parameter wy and
reference policies Lt and Vief, we have with probability at
least 1 — 0,

Regret(T) = O (Bz (Bz +04/2 10g(8T/6)) d\/T log(dT))
(13)

JorallT € N,.

The proof of Theorem 2.4 is deferred to Appendix B.2.
Theorem 2.4 establishes that by setting a on the order of
O(ﬁ ) with high probability, the regret of VMG is no
larger than an order of

O (avT),

assuming the payoff matrix and the noise o are well-
bounded. In particular, when reduced to the linear bandit

setting, this matches with the lower bound Q(dv/T) estab-
lished in Dani et al. (2008), suggesting the near-optimality of
our result. In addition, since min;¢ 7y DualGap (p, 1) <
Regret(T) /T, VMG is guaranteed to find an e-NE of the

matrix game (1) for any € > 0 within O (d?/2) samples.

3. Multi-player General-sum Markov Games

We now turn to the more challenging setting of online multi-
player general-sum Markov games, which includes the two-
player zero-sum Markov game as a special case.

3.1. Problem setting

Multi-player general-sum Markov game. We consider
an N-player general-sum episodic Markov game with a
finite horizon denoted as Mp = (S, A, P, r, H), where S
is the state space, A = A; X -+ X Ay = ngl A, is
the joint action space for all players, with 4,, the action
space of player n, and H € Ny is the horizon length. Let
A(S) and A(A) denote the set of probability distributions
over S and A, respectively. P = {Pp,}nepp) with Py, :
S x A — A(S) is the inhomogeneous transition kernel:
at step h, the probability of transitioning from state s to
state s’ by the action a = (al,--- ,a")is Py(s'|s,a). r =
{ri' }he[m),nen) stands for the reward function with 7 :
S x A — [0, 1] the reward of the n-th player at step h.

Markov policies. In this paper, we focus on the class of
Markov policies, where the policy of each player depends
only on the current state, without dependence on the history.
We let 7" : S x [H] — A(A) denote the policy of player n,
and 77} (-|s) € A(A,,) denotes the probability distribution
of the action of player n at step h given any state s. We
let # = (71,---, 7)) : S x [H] — A(A) denote the
joint Markov policy (we assume all policies appear in this
paper are Markovian, and we let joint policy stands for joint
Markov policy), where m,(+|s) = (7}, , 7 )(-]s) €
A(A) forall s € S and h € [H]. For any joint policy
, we let w~" denote the joint policy excluding player n.
With a slight abuse of notation, we write w = (7", 7w~ ").
In addition, a joint policy 7 is called a product policy if
mt, ..., 7N are executed independently, i.e., under policy
m, each player takes actions independently. We denote
m=m! x--- x 7 for a product policy.

KL-regularized value function and Q-function. Given
a joint policy 7, the KL-regularized state-value function
(value function) V;",, : & — R and the KL-regularized
state-action value function (Q-function) QF ,, : S x A — R
of the n-th player under m — with regularization parameter
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B > 0 — are respectively defined as

H

7" (a?[si)
Vi (s)=E ri(si,a;) — flog —————%|sp, = 5|,
& ; 7Tref<ai |Sl)

Qn a(s,a) =717 (s,a) + Eyrop, (1s,a) [Viliin(s)]
(14b)

forall (s,a) € S x A, h € [H] where s; and a; are the
state and action at step 4, respectively, and 7yef : S X [H] —
A(A) is the reference policy. When the reference pol-
icy is a uniform distribution over the joint action space,
the regularization becomes the entropy regularization. In
(14a), 7™ (-|s) (resp. /i (+|s)) should be understood as the
marginal distribution of player n under joint distribution
m(+|s) (resp. mref(+|s)), and we define V77, . (s) = 0 for
all s € S and 8 > 0. To simplify the notation, we define
Vo=V, and QT = QT,, forall n € [N]. We as-
sume p € A(S) is the initial state distribution, i.e., 57 ~ p.
Furthermore, we define V™ (p) == Eq,[V,7 (s)].

We let m# = ™ x 7w~ "™ denote the policy profile where all
players but the n-th player execute policy 7", and the n-th
player executes policy 7™ independent of the other players.
For all n € [N], we define the best-response value function

Vs (s),

n

Viom(s) = (15)

max
T :SX[H]—-A(Ay)

forall s € S, h € [H],n € [N], which is the optimal value
of player n when the policies of other agents are fixed by
7t~ ™. Importantly, there exists at least one policy 7"* (7w ~")
that achieves the maximum in (15) for all s € S, and this
policy is referred to the best-response policy of player n
under joint policy 7" (Shapley, 1953). We also define

n

Vi () =

n

VT (p).

max
" SX[H]—A(A)
One important thing to notice is that the best-response policy

7™* (7w ~"™) does not depend on the initial state distribution
p (Mei et al., 2020).

Equilibria of Markov games. In a multi-player general-
sum Markov game, each agent aims to maximize its own
value function, where the Nash equilibrium (NE) (Nash,
1950) and the coarse correlated equilibrium (CCE) (Au-
mann, 1987) are two widely studied solution concepts,
whose definitions are as follows.

1

* Nash equilibrium (NE): a product policy w = 7 X
.- x m is a Nash equilibrium of Mp if
VseS,ne[N]: Vo "(s)=Vro™ "(s).
(16)

* Coarse correlated equilibrium (CCE): a joint policy ™
is a CCE of Mp if
VseS,ne[N]:

n n

Viem(s) S VT (s).
(17)

It is obvious that every NE is a CCE, but the converse is not
true in general. In general, computing the NE in general-
sum Markov games is intractable (Daskalakis et al., 2009),
except for two-player zero-sum Markov games.

Goal: regret minimization. To measure the proximity of
a policy 7r to the equilibrium, we define the (average) sub-
optimality gap of policy 7 w.r.t. the initial distribution p
as

N

Gap(m) = 3 (V™" (0) = V7 (0))

n=1

(18)

A product policy 7 is said to be an e-approximate NE (ab-
breviated as e-NE) if Gap (7) < ¢, and a joint policy = is
said to be an e-approximate CCE (abbreviated as e-CCE) if
Gap (m) <e.

We aim to design a model-based framework that find the
approximate NE or CCE of the Markov game Mp in a prov-
ably efficient manner. Similar to the matrix game setting,
we consider the following regret measure:

T
Regret(T') := Z Gap ()

tT=1 o 3
=Y 2 (W -V ). 19
= n=1

t=1

where 7 is the policy profile at time ¢. Our goal is to achieve
a sublinear regret with respect to the number of rounds 7',
by carefully balancing the trade-off between exploration
and exploitation, even under function approximation of the
model class.

3.2. Algorithm development

For simplicity, we will focus on the function approximation
over the transition kernel of the Markov game assuming
the reward function is fixed and deterministic, while it is
straightforwardly to also incorporate the reward function
approximation. We let F denote the function class of the
estimators of the transition kernel of the Markov game, and
we denote the parameterized transition kernel as

Py = (Ps1, - ,Pru) € F=Fi x - Fu,

where F is the function class and f is its parameterization.
We define the value function V7, | under the transition
kernel Py as

Vse S, helH] V()= (20)
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E]P’fﬂ'r

ShZS],

Akin to the matrix game case, VMG alternates between
updating the model updates based on all the transitions
observed so far, and collecting new trajectories using the
updated policies. Suppose that at the ¢-th iteration, the
current estimate of the transition kernel is Py, _,, and its
corresponding NE or CCE is 7r;. VMG alternates between
the following two steps.

=l " (al|s;)
2 (e - s T )

i=h re

and the Q-function Q}’ h.n 18 defined likewise.

* Value-incentivized model updates. Given all the col-
lected transitions D;_; 5, at each step h and the equi-
librium policy 7, VMG updates the model parame-
ter f; via solving a regularized maximum likelihood
estimation (MLE) problem as (22), favoring models
that minimizes the negative log-likelihood L. ( f) of the
model, i.e.

Lo(f) =) >

h=1(sp,ap,sh4+1)€EDr_1,1

—log Py n(snt1lsn, an),
2n

and maximizes the sum of the best-response values of
each player when the other player’s strategy is fixed
at 7, . In words, the regularizer tries to encourage
models that incentive the players to deviate from their
current policy, resulting in better exploration.

e Trajectory collection from best-response policy up-
dates. Using the updated model P;,, VMG updates
the best-response policy 7;* of each player while fixing
the policy 7, " of the other player via (23). VMG then
collects new trajectories by following policy 7r; and
(73,7, ") for all n € [N], and update the dataset.

The complete procedure of VMG is summarized in Algo-
rithm 2, where the function Equilibrium(M ;) returns the
NE or CCE of the Markov game M by calling off-the-
shelf solvers, e.g., Cai et al. (2024); Zhang et al. (2022).
Note that we are primarily interested in finding the NE for
two-player zero-sum Markov games, and the CCE for multi-
player general-sum Markov games, due to computational
tractability.

Comparison with MEX. Liu et al. (2024, Algorithm 2)
proposed the MEX framework, which also considered using
value functions as a means to incentive exploration for two-
player zero-sum Markov games. Their algorithm requires
asymmetric updates — and two sets of model parameters
as a result — of the max and min players, where the model
update of the max player is regularized by the optimal value
V{ = max; ming2 V{7, (p) of the Markov game, which is
an expensive saddle-point optimization problem, and the

model update of the min player is regularized by the best-
response value function. In contrast, VMG only leverages
best-response value functions as a regularization, which is
much easier to solve. VMG also permits simultaneous up-
dates for all the players, making it amenable to multi-player
general-sum Markov games. In contrast, the extension of
MEX (Xiong et al., 2024) to this more general setting is sig-
nificantly more involved with a computational complexity
that scales exponentially with the number of agents.

Algorithm 2 Value-incentivized Online Markov Game
(VMG)

1: Input: reference policies ¢, initial transition kernel
estimate f, € F, regularization coefficient « > 0,
iteration number 7.

2: Initialization: dataset Dy 5, == 0, Vh € [H].

fort=1,---,T do

4:  my + Equilibrium(My, ). > Equilibrium (M)
returns a CCE or NE of game M y.

5:  Model update: Update the estimator f; by minimiz-
ing the following objective:

e

N
fe=argmin L:(f) — « Z V*”:t (p) (22)
n=1

feF

6:  Compute best-response policies {77 },e[n:

Vn€[N]: 7p = V]Z;T;"t (p).

(23)

arg max
m:SX[H]—=A(A)

7. Data collection: sample a trajectory with

transition  tuples  {(S.n, @i pySe.ni1) i, by
executing 7;, and sample a trajectory with
transition tuples {(s @t s sty iy

by executing (7},m,; ") for each n € [N].
Update the dataset Dy, = Di_qp UnN:1
{(St,hv Qi h, St,h+1)ﬂ (tha aZhv S?,h-i—l)}’
Vh € [H].

8: end for

Reduction to the single-agent MDP case. VMG can be
reduced to the Markov decision process (MDP) setting via
either setting the number of players N = 1 in the multi-
player general-sum Markov game, or setting the action space
of the min player to a singleton in the two-player zero-sum
Markov game. Interestingly, the former leads to the value
regularization V]Z‘(p) studied in MEX (Liu et al., 2024),
while the latter leads to a new form of regularizer V(p) —
Vf’” (p), adding friction from the current policy 7.
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3.3. Theoretical guarantee

We demonstrate that VMG achieves near-optimal regret
under the following linear mixture model of the transition
kernel for Markov games.

Assumption 3.1 (linear mixture model). The function class
F=F x---Fgis

Vh € [H] : Fn = {fh|fh($/‘$, a) = ¢}L(S, a, S/)Tah,

V(s,a,8) €S x Ax S, 0 € @h},

where ¢y, = (¢}, , ¢%) : Sx AxS — R? are the known
feature maps with ¢} : S x A — A(S) being transition
kernels for all i € [d]. ||¢n(s, a,s)||, < 1forall (s,a,s),
and ©), C B¢(v/d), Vh € [H]. For each f, € F, and
(s,a) € S x A, fn(-|s,a) € A(S), Vh € [H].

The linear mixture model is a common assumption in the RL
literature, see, for example, Ayoub et al. (2020); Modi et al.
(2020); Cai et al. (2020) for single-agent RL, and Chen et al.
(2022); Liu et al. (2024) for Markov games. We also assume
the function class F is expressive enough to describe the
true transition kernel of the Markov game.

Assumption 3.2 (realizability). There exists f* € F such
that Pf* = ]P

Regret guarantee. We now present our main result for the
regret of the online Markov game, whose proof is deferred
to Appendix B.3.

Theorem 3.3. Under Assumptions 3.1 and 3.2, if setting
the regularization coefficient a as

T

HN
a= - log (—) + dlog (d|S|T)>,
T3/2H2 ( 1
J Hdlog (1+ T)

then for any B > 0, with any initial state distribution p,
transition kernel estimator fy € F and reference policy
Tref, the regret of Algorithm 2 satisfies the following bound
with probability at least 1 — § for any 6 € (0, 1) and for all
T S N+ :

Regret(T) < O <d\/H3T~ \/(11 log (%) + log (dS|T)> .
(24)

Theorem 3.3 establishes that by setting a on the order of
O(\/T/H), with high probability, the regret of VMG is no
larger than an order of

0] (d\/ﬁ)

for general-sum Markov games, which improves the depen-
dency on the horizon length H compared with the regret

10) (dH 5 \/T) of (Xiong et al., 2024). When reducing to
two-player zero-sum Markov games, our regret bound —
established for both players — matches that of MEX (Liu
et al., 2024), which only covers the max player.

In addition, since min; ¢} Gap (m;) < Regret(7")/T" and
each iteration collects N + 1 trajectories, VMG is guaran-
teed to find an -NE (¢-CCE) of Mp for any € > 0 within

9} (%) trajectories or o (%) samples. Com-
pared to the minimax sample complexity (Chen et al., 2022),

our sample complexity is near-optimal up to a factor of H
when the number of players N is fixed.

4. Conclusion

In this paper, we introduced VMG, a provably-efficient
model-based algorithm for online MARL that balances ex-
ploration and exploitation without requiring explicit uncer-
tainty quantification. The key innovation lies in incentiviz-
ing the model estimation to maximize the best-response
value functions across all players to implicitly drive explo-
ration. In addition, VMG is readily compatible with modern
deep reinforcement learning architectures using function ap-
proximation, and is demonstrated to achieve a near-optimal
regret under linear function approximation of the model
class. We believe this work takes an important step toward
making MARL more practical and scalable for real-world
applications.

Several promising directions remain for future work. For
example, designing a model-free counterpart of VMG that
can be used in conjunction with function approximation
could be a valuable extension. Additionally, it will be in-
teresting to develop the performance guarantee of VMG
under alternative assumptions of function approximation,
such as general function approximation and independent
function approximation across the players to tame the curse
of dimensionality and multi-agency. Last but not least, it
will be of interest to study the performance of VMG under
adversarial environments.
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A. Special Cases

Symmetric matrix game. One important special class of matrix games is the symmetric matrix game (Cheng et al., 2004),
with A = —AT, Lref = Vref, and m = n. In this case, we assume the parameter space 2 preserves anti-symmetry of A4, i.e.,
A, = —A] forany w € €. For a symmetric matrix game, it admits a symmetric Nash (z*, %), and Algorithm 1 reduces to
a single-player algorithm by only tracking a single policy ¢, recognizing py = vy and iy = vy due to fH47(A) = — f¥H(A).
In addition, VMG only needs to collect one sample from the policy pair (f;, 11¢) in each iteration. Altogether, these lead to a
simplified algorithm summarized in Algorithm 3.

Algorithm 3 Value-incentivized Online Symmetric Matrix Game (VMG)
1: Input: initial parameter wy, regularization coefficient a > 0, iteration number 7.
2: Initialization: dataset Dy := ().
3: fort=1,---,T do
4:  Compute p; by solving the matrix game with the current parameter w;_1:

e = argmax min f*Y(Ay, ). (25)
HEA™ vEA™

5. Model update: Update the parameter w; by minimizing the following objective:
~ 2
wy = arg min Z (Aw(i,j) — A(i,j)) + afttr(Ay). (26)
Y (0, A)eDi
6:  Compute ji; by solving the following optimization problem:

fir = argmax U (A, ). 27
lLeA'm

7:  Data collection: Sample (i, j;) ~ (fit, p¢) and get the noisy feedback /Al(it, Jj¢) following the oracle (2). Update the

~

dataset Dy = Dy U {(it,jt, A(iujt))}-
8: end for

Bandit setting. By setting n = 1, we can reduce the matrix game to the bandit setting, where the payoff matrix becomes a
reward vector A € R™, leading to a simplified algorithm in Algorithm 4. Here, we let f*(A) = " A — BKL (|| ptrer) and
f*(A) == max,ecam f*(A). Interestingly, to encourage exploration, the regularization term favors a reward estimate that
maximizes its regret f*(A,) — f** (A, ) on the current policy p, which is different from the reward-biasing framework that
only regularizes against f*(A,,) (Cen et al., 2024; Liu et al., 2020; Xie et al., 2024).

MDP setting. VMG can be reduced to the single-agent setting via either setting the number of players N = 1 in the
multi-player general-sum Markov game, or setting the action space of the min player to a singleton, i.e., | A2| = 1, in the
two-player zero-sum Markov game. Interestingly, the former (option I) leads to the value regularization V7 (p) studied in
MEX (c.f., Algorithm 1 in Liu et al. (2024)), while the latter (option II) leads to a new form of regularizer V} (p) — V}ZT t(p),
adding friction from the current policy 7;. The latter regularizer is also the MDP counterpart of the bandit algorithm in
Algorithm 4. We summarize both variants in Algorithm 5.

B. Proofs of Main Theorems
B.1. Auxiliary lemmas

We provide some technical lemmas that will be used in our proofs.

Lemma B.1 (Freedman’s inequality, Lemma D.2 in Liu et al. (2024)). Let {X;},<r be a real-valued martingale difference
sequence adapted to filtration {Fy }i<7. If | Xi| < R almost surely, then for any n € (0,1/R) it holds that with probability
at least 1 — 6,

ET:Xt <0 <n§T:E[Xf|ft1] + log(;/(s)> .

t=1

13
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Algorithm 4 Value-incentivized Online Bandit (VMG)
1: Input: initial parameter wy, regularization coefficient « > 0, iteration number 7.
2: Initialization: dataset Dy := 0.
3: fort=1,---,7Tdo
4:  Policy update: Compute ¢ with the current parameter w;_1:

Ay
py = argmax f*(Ay, ) OC firef €XP (H) . (28)
HEA™ ﬁ

5. Data collection: Sample i; ~ pu; and get the noisy feedback X(zt) following the oracle (2). Update the dataset

~

Dy = Doy U { (i, Ali) }-
6:  Model update: Update the parameter w; by minimizing the following objective:

w = argmin Z (Aw(z') —E(z))2 —af*(A,) + aftt(A,). (29)
Y G Aaen,

7: end for

Algorithm 5 Value-incentivized Online Single-agent MDP (VMG)
1: Input: initial transition kernel estimate f, € F, regularization coefficient o > 0, iteration number 7.
2: Initialization: dataset Dy j, := () for all h € [H].
3: fort=1,---,T do
4:  Policy update: Compute 7, with the current transition kernel estimator f;_1:

m = argmax Vi (p). (30)
TEA(A1)

5:  Data collection: sample a trajectory with transition tuples { (s n, @t n, St, h+1)}f:1 following 7;. Update the dataset
Dt,h = thl,h U {(Styh, at’h, St,h+1)} fOI' all h S [H]
6:  Model update: update the estimator f; by minimizing the following objective

. H N .
b= {arg min ;. » D ohe Z(Shaah75h+l)ept,h —log Py (Sht1|sh,an) — aV} (p) (option I) 31)

3 H * Tt 1 :
ArgMin e 7 > 51 D (s, ansnis)eDen — 108 Prn(Sns1lsn, an) — aVi(p) + aVi(p) (optionII)

7: end for

Lemma B.2 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Let {xs}sem be a sequence of vectors with x5 € V for some
Hilbert space V. Let A be a positive definite matrix and define Ay = Ao + 22:1 x.x]. Then it holds that

T
. det(Ar)

1 < T A\ :
;:1 min {1, ||x5||AS,1} < 2log (det(Ao) )

Lemma B.3 (Lemma F.3 in Du et al. (2021)). Let X C R? and sup,,¢ y ||z||, < Bx. Then for any n € N, we have

1 n . nt(
YA >0: maxexlogdet (Id—&—)\;xixi > < dlog <1+d)\> .

T1,,Tn

Lemma B.4 (Martingale exponential concentration, Lemma D.1 in Liu et al. (2024)). Let § € (0,1). For a sequence of
real-valued random variables { X },c[r) adapted to filtration { Fi }+¢(r), the following holds with probability at least 1 — §:

Ve e [T : _ZXS < ZlogE[exp(—Xs)LFSfl] +log(1/6).

14
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Lemma B.5 (Covering number of /5 ball, Lemma D.5 in Jin et al. (2020)). For any € > 0 and d € N, the e-covering
number of the Uy ball of radius R in R? is bounded by (1 + 2R /€)%

B.2. Proof of Theorem 2.4
In the proof, for any sequence {x;};cz and any integers a, b € Z where a > b, we define Z?:a z; = 0.

We begin by decomposing the regret as

Regret(T) = » 5" (A) — f"7(4)

B

o~
Il

1

(f(A) = fror(A) = (f77 (Aw,) = 17 (Aw,)))
(590 = FPo () + 3 (7200 — ()

t=1

I
T M
- FU

~
I
—

(£ () = 0 (A )) + 3 (77 (A ) = £707(4))

1 t=1

(£7 (A ) = P27 (A ) (32)

I
B

~
Il

+
[M]=

~
Il
-

Recall that (i, ;) is the Nash equilibrium of the matrix game with the pay-off matrix A, , (see (6)), we have

Ve [T]:  frere(Au, ) < frov (A, ) < 7 (Ao, ). (33)

This implies the last term in the regret decomposition is non-positive, i.e.,

i( l"t,l’t (Au, ) — fut,ﬁt (Awt—l)) <0. (34)

t=1

Moreover, by the definition of ji; and 7 in (8), we have

f*,yt (Awt) = fﬁhyt (Awt) and fuh*(Awt) = fut,;t (Awt)' (35)

Combining (34), (35) with (32), we have

T
Regret(T Z fore(A) — frer(A) — (F" (Aw,) — " (Awy)))
=1

©)

(770 (40) - o)) + 32 (£ 107 (4,)

1 t=1
(i)
(7 = g w)+;<f”“” ) = P G0

(iii)

[M]=

—+
t

M=

+
t

We will upper bound the three terms in the right-hand side of (36) separately.
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Step 1: bounding term (i). Define the squared loss function L;(w) over the dataset D;_1 as
- 2
L= > (Aulid) - AG9) &)
(i, A(1,)) €Ds -1
Then by the optimality of w; for (7), we know that
Li(we) — af ™" (Aw,) + af " (Aw,) < Li(w") — af "7 (A) + af*7(A),

where we use Assumption 2.2, which implies A,» = A. Reorganizing the terms, we have

T

@ < é Z (Le(w™) = Le(wr)) - (38)

t=1

Thus, it is sufficient to bound the term Z;le (L¢(w*) — Li(wy)). For any t € [T], we denote

~

A(it>jt) = A(it,jt) +& and A\(Z;JQ = A(itvjt) +§£~

It follows that we can rewrite L;(w) as

Ly(w) = ;mw(z‘s,js) — Alis js) — &) + Z (%, 50) — AL, 32) = €)°,
from which we deduce |
Lo(w") = Li(w) = Z [(Aulis, o) — Alias o) — € = €] - (A, 12) = A4, 50 — €)% = (€)?]
= - Z (Aulissgs) = Alis, ) (Auliss3s) = Alis,ji) = 26)]
= ~
- Z (1%, 78) = A 3) (Au 4, 5) = Al 37) = 260)] (39)
=Yy

It is then sufficient to bound — Zt ! X? and — 22;11 Y, which is supplied by the following lemma.
Lemma B.6. When Assumption 2.1, 2.2, 2.3 hold, for any § € (0, 1), with probability at least 1 — ¢, it holds

t—1 t—1
1 . .
Ve Mlwe: — Y XS <13 By, [(Aulind) - AGLI)]
s=1 s=1
4T
+CB (Bl + U\/21og(8T/6)) (log <6> + dlog (1 + 2T\/g)> (40)
and
-1 =
Ve we: =Y V<=0 Y By o, [(Aulis) — A J)]
s=1 s=1

+CB (Bz +o 210g(8T/5)) (log (4T

: > +dlog (1 + 2T\/&)) 1)

where C' > 0 is some universal constant.
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Combining (39), (38) and Lemma B.6 leads to a bound of term (i):

1 T t—1 T t—1
W<t { S B, [(Aun(0:9) — AG3D] — 5 30D B o, [(Auir) — AG )]
t=1 s=1 t 1s=1

2T - CB, (Bl + o\/21og(8T/0) <log (?) +dlog (1 + 2Tx/E)) } (42)

Step 2: bounding terms (ii) and (iii). To bound (ii) and (iii), we first prove the following lemma.
Lemma B.7. For any {(fi¢, V¢) }repr) C A™ x A" and any {G e[ C €, we have

T T t—1
S|P ] < G 3 B e (46, 3) — A
—1 t=1 s=1
+(\/&+QBZ min{d(\), T} + VdX (43)

for any \,n > 0, where d(\) := 2dlog (1 + %)

By letting iy = fit, Ux = v; and &y = wy in Lemma B.7, we have

3 (fﬁ“"t (Ay,) — frove (A)) < déz) + g > iEiNﬁs,ng [(Aw, (3, 5) = A(3,5))%]
=1 t=1 s=1
+ (Vd + 2B;) min{d(\), T} + VdAT. (44)

By letting iy = ¢, Uy = V; and &y = wy in Lemma B.7, we have

S (7 ) - ) < BN TS SR (A (i) - AG )

t=1 t=1 s=
+ (\/& +2B)) min{d(\), T} + VdAT. (45)
Similarly, we have
dn 7 T t—2
Z (fﬂhyt fl“ Vt( Wt71)> < T + 5 Z EiNfLsJNVs [(Awt—l(ihj) - A(%]))Q}
t=1 t=1 s=1
+ (Vd + 2B) min{d(\), T} + VAT + 2BMT, (46)

which uses the fact
]Ei"’ﬁtflvj'\"/t—l [(Awt—l (iv ]) - A(Zvj))Q] < 4Bl2’
Notice that the second term in (46) can be further bounded by

t—

N
v
—
-
|
—

T
SO Eingi oAy (625) = A@ D)) = D0 By o [(Aw, (i) — A(i, 5))]
t=1 s=1 t=0 s=1
T t—1
<Y D Eiii o [(Aw, (0,5) — A, )]
t=0 s=1
T t—1
=D D Einii g [(Au, (6,9) = AGL )], (47)
t=1 s=1

where the first line shifts the index of ¢ by 1, and the last equality holds because the term is 0 when ¢ = 0. Plugging the
above inequality back to (46) leads to

T

v TRZ d()\) n d R . \\2
S (A = P (A ) = S 5D B s [(Au (1) — AG, )]

t=1 N t=1 s=1
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+ (Vd + 2B;) min{d(\), T} + VAT + 2B?nT. (48)

Analogously, we have

T T
Z ( e Vt (Aw, ) — f”t’gt (A)) = 2(7 + g Z Ewus,JM’ﬁ w, (4,5) — A(ivj))Q]

t=1 t=1
+ (Vd + 2B;) min{d(\), T} + VAT + 2B?nT. (49)

Combining (44), (45), (48), and (49), we have

T t—1 T t—1
(ii) + (i) < » {Z Y Eini o (A (,5) = AG DT+ YD Binpuajr [(Awe (055) — A, j))zl}
t=1 s=1 t=1 s=1

203)

+ 4(Vd + 2B;) min{d(\), T} + 4Vd T + 4B?nT.  (50)

Step 3: combining the bounds. Letting 7 = 5 in (50), the first line of (42) could cancel out the first line of (50), which
leads to

Regret(T') = (i) + (ii) + (iii)

= g .20 B, (Bl +g\/m) <log (?) + dlog (1 +2T\/a>)

2
+ 4ad(\) + 4(Vd 4 2B;) min{d(\), T} + 4Vd\T + 25,1 (51)
a
with probability at least 1 — 4.
By choosing
T (1og(4T/§) + dlog (1 + 2\/&T)) d
o = and )\ - p—)
dlog (1 + (T'/d)3/?) T
we have with probability at least 1 — 4,
Regret(T')
1 .
<2 (CBl (Bl NG log(8T/5)) + 1) dVT - \/<d log(4T/6) + log (1 + 2\/21T)> log (1 + (T/d)3/2)
dlog (14 (T/d)3/2
4 2B2VT og (1+ (T/d)"2) A(Vd +2B)dlog (1+ (T/d)*/?) + 4av/T (52)
log(4T/6) + dlog (1 + 2ﬁT>

for some absolute constant C' > 0, and thus the regret could be bounded by (13) by simplifying the logarithmic terms.

B.2.1. PROOF OF LEMMA B.6

To begin, by Assumption 2.3 together with the sub-Gaussian concentration inequality, we have that with probability at least
1— g,foranys €[T)andw € Q,

2 2

a a
P(|&] > a) < 2exp <M) and P(|€)| > a) <2exp (W) for all a > 0,

which implies that with probability at least 1 — g,
|§s| <oy 210g(8T/6)a |§;| <oy 210g(8T/6)’ Vs € [T] (53)

18
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We let € be the event that (53) holds for all s € [T, which satisfies P(€) > 1 — 3.
Next, we define filtrations F; := o (D;) for all ¢ € [T]. By Assumption 2.3, we have forall s € [T'] and w € Q,
E[X¢ 1] = Bing o, (A, ) = AGL5)Y?] (54)

B[V |Foo1] = Binp o, |(Aulis ) = AG,5)] (55)

We also have
Var [X¢|Foa] <E [(X2)?|Fs]
= E [(Aulis, o) = Alis: 1)) (Auliss ) = Aliss o) = 26)° 1o
< A(B} +0*)E [(Aulis,53) = Aliss 2))° 1o
= 4B} + 0" Eing, . |(Auli,) = AGL5))?] (56)

where we use Assumptions 2.1, 2.2 and 2.3 in the last inequality: Assumption 2.2 guarantees that A, = A, and
Assumption 2.1 indicates that [|A(i, j)|| . = maX;epm),jem) |AE,5)] < Brand [[Au(7, j)ll, < B forall w €
moreover, Assumption 2.3 implies E¢2 < 2. Conditioned on event £, we can bound | X — E[X%|F,_1]| using (39) and
(54) as follows:

X2~ E[XZ|Fo)
(Auliss3s) = Aliss o)) (Auliss Js) = Alis, i) = 26) = Bingi o, |(Auliv ) = ALY
|(Aulisr5) = Alss o)) = Bingro o, [(Auli,3) = AG )Y ]| + 2060 1Au s 52) = AGss i)

< 4B (Bl n U\/W) . (57)

IN

In what follows, we apply a standard covering argument together with the Freedman’s inequality to prove the desired bound,
conditioned on event €. First, for any X C RY, let N'(X, ¢, ||-||) be the e-covering number of X’ with respect to the norm
[|]|. By Assumption 2.1 we know that 2 C B¢ (+/d). Thus by Lemma B.5 we have

2\/&> 58)

log V(. ¢, ||-]l,) < log N'(BS(Vd), €, ||-]|,) < dlog <1 +—

for any € > 0. In other words, for any € > 0, there exists an e-net 2. C 2 such that log || < dlog (1 + %)
Applying Freedman’s inequality (c.f. Lemma B.1) to the martingale difference sequence {E[X¢|F, 1] — X¢} () and
making use of (54), (56) and (57) we have under event £, with probability at least 1 — %,

t

el we: Y (B m [(Aulid) - A5)?] - X2)

s=1

< iEiNﬁb,jws [(46.5) = AG,5))’]

N |

+4CB, (Bz - o\/m) <log (?) +dlog (1 + 2‘?)) :

where C' > 0 is an absolute constant.

In addition, conditioned on event &, for any w,w’ € €2,

w—w'||, <€, we have

1

(5B, [(AuG60) = 460 = X2 ) = (B, [(Awlid) - AGL0)] - 527
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1

S B s |(Aulis ) = AG9) = (Aur(i,5) = AL, )%| + XS = X

(6Bl + 20\/W> e.

Thus combining the above two expressions and set € = %

IN

IN

we have that under event £, with probability at least 1 — g,

t

Vie [T),weQ: Z (Eiwﬁs,jwus |:(Aw(i7j) - A(ivj))g} - X:)

;i Eing g, | (Aulis ) = A(3,9))°]
+40B, (Bl + a\/m) <log <4§> +dlog (1 + 2T\/&)> (59)

for sufficiently large constant C.

Rearanging terms, we have with probability at least 1 — g,
t—1 1 t—1 o o
VeMlweR: 3 X< 5Y Bopyen, [(Aui,9) — AG.5)?]
+4CB, (Bl n U\/W) <log (%T) +dlog (1 + 2T\/&)) . (60)

Similar to (40), conditioned on event £, we could upper bound — Zt ! Y as follows with probability at least 1 — %:
t—1 y 1 t—1 o o,
Vie[Tlwe: - gy <-= EENN [(Au(ig) = AG )]
+4CB, (Bl + a\/m) <log (f) + dlog (1 + 2T\/E)> . (6

Applying union bound completes the proof of Lemma B.6.

B.2.2. PROOF OF LEMMA B.7
For any p,v € A™ x A™ and any w € 2, notice that
fr(Ay) = Y (A) = (Binpjrn[0(0, )], w — w), (62)
——— ——
= (p,v)

where we denote E; ., j~. [#(i, j)] as z(u, v) for simplicity. By Assumption 2.1, it guarantees that ||z(u, v)||, < 1 for all
,v. Foreach t € [T, we define A; € R4*4 as

t—1
Ay = Mg+ a(fis, D)2 (fis, D) " (63)
s=1

for any A > 0. By Lemma B.2 and Lemma B.3, we have

S min {7,211} < 2d10g (1+5) = (64

s=1

which will be used repeatedly in the proof.
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We decompose Zt 1 |f”t Vi(Ag,) — froPi(A )| into two terms:

T
> [ (Az,) = (A ]

t=1

HMH

2, 7). — ) 1 { 2@ 7)o <1}

(@)

[M]=

+ 3 e, 1), @ — w1 {Jlo (i By > 1} (65)

t=1

(b)
To prove Lemma B.7, below we bound (a) and (b) separately.

Step 1: bounding term (a). To bound term (a), it follows that

(@)

M=

e, 20). @1 = w1 { (e 20 < 1

t=1

<

M=

@0 = wlla, N 2Ly 1 {2 2olly, o <1}

t

Il
-

M=

< e = wlly, min {la (e, 2)ll 5 1 (66)

t=1

where the first inequality uses the Cauchy-Schwarz inequality, and the second inequality uses the fact that
(e, 2)lla 0 L { o 20 < 1) < min (i, 7)1}

Also, by Assumption 2.1 and the definition of A, in (63), we have

-1 1/2
1@ — w*ly, < 2VAd+ (Z @, - w*,x<ﬁs,as>>2> , (67)
s=1

which gives

[M]=

@0 — @l min { 2, Do)lly, 01}

~
Il

1

T
<
t=

1

t—1 1/2
23 + (Z (@ w*,x(ﬁs,ﬁs)>2> min { a7l 1}
s=1

/2 , 1/2
< <Z4)\d> (Zmin{m(ﬁt,ﬁtﬂml 1})
t=1 t=1
T -1 /2 ;o 1/2
+ (ZZ @ - w*,x(ﬁsﬁs)>l2> (Zmin{nx@,ﬁouw J})
t=1 s=1 t=1

t=1 s=1

T -1 1/2
< 2¢/AdT min{d()\) T}+< ) > @ —w* ws,us)>|2> : (68)

where the first inequality uses (67) and the second inequality uses the Cauchy-Schwarz inequality and the fact that

2
min { (e, 7)1} < min {2, 7)1 1}
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and the last inequality uses (64).
Plugging (68) into (66), we have

T t—1 1/2
(a) < 2Vd - /AT min{d(\), T} + ( ) D 1@ —w*’x(ﬁs,@»?) , (69)

t=1 s=1

Step 2: bounding term (b). It follows that

[M]=

)= > e 2.8 = )1 {0 > 1)

o~
Il

1

[M]=

(@ (e, 72), @y — w*) min { (e, 7)o, 1} < 2B min{T, d(\)}, (70)

t=1

where the first inequality uses the fact that

1 {2, 20)ll; 0 > 1} < min {2 2 5001}

and the last inequality uses Assumption 2.1 and (64).
Step 3: combining (a) and (b). Plugging (69) and (70) into (65), we have

T
> |77 (Ag,) = [P ()|

T -1 1/2
< 2Vd - /AT min{d(\), T} + ( ZZ\ W —wr,x ,us,ys)>|2) + 2B, min{T,d(\)}
t=1 s=1
T t—1 1/2
< < nz (& — w™, 2(ls, Us))| ) + (Vd + 2B;) min{d(\), T} + VAT
t=1 s=1
() T -1
<5t g SN @ — ot 2(fis, 7)) 2 + (VA + 2B) min{d(N), T} + VAT (71)
t=1 s=1

for any 17 > 0, where the second and third inequalities both use the fact that vab < “erb for any a,b > 0. The proof is
completed by plugging in the following fact into the above relation: for any p, v € A™ x A™ and any w € (2, we have

[(a(p,v), 0 = ) = [Eivp o [Au i 5) — Al DI < Binpgon [(Au (i, 5) — AG5))%)- (72)

B.3. Proof of Theorem 3.3

For notation simplicity, we define

T = (7, w "), Vneé€lN]. (73)

Analogous to (32), here we decompose the regret as

[M]=
==
] =

Regret(T) — (™ ) = Vi)

~
Il
-
3
Il
-

Il

[M]=
==
] =

(Vn* T (o) VT (p)> + ET: % f: (VE’Z;n (p) — Vi ?’ﬁn“’))

~
Il
-
3
Il
-
~
Il
-
3
Il
-
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TN . I T N o
+ Xy (=L 0) + o 2 (VA ) Vi)

t=1 n=1 t= n=

T 1 N
+D W Z (Ve o) = Vi () - (74)

t

Il
-

By line 4 in Algorithm 2 we know that the second term in the third line of (74) is non-positive. Besides, (23) indicates

wne [N Vi (o) = Vi (p). (75)

Combining these two facts, we have

T N T N
1 —n —n 1 oo o
Regret(T) < "~ > (V™ () = Vi " (0) + 30+ 32 (VT (0 - VI ()
t=1 n=1
(i) (ii)

1 & I e TN
> (T ) v )+ Y (VL) V). ae)

=1 n=1 t=1 n=1

(iii) (iv)

In the following we upper bound each term in (76) separately.

Step 1: bounding term (i). By Assumption 3.2 we know that there exists f* € F such that f* := P = [P;.. By the model
update rule (22) in Algorithm 2 and the definition of the loss function (21), we have

L:(ft) —aZV*ﬂtH < L(f —aZV*mnp

from which we deduce
T
(i) < —— S (Lol ") — L) a7

Nao
t=1

It then boils down to bounding the right-hand side of (77).

We first define random variables X tf 5, and Y;f hon A8

P Py (s? st al
X/, =log ( ACNESILANRY ) and Y/, =log a tf“' Lh t;f) . VnelN. (18
’ Psn(st,ht1l5t,h, arn) o Prn(sipialsin, aty)
By the definition of the loss function (21), we have
t—1 H N . .
Lf) = L) == >SS (X + V) - (79)
i=1 h=1n=1
Let D (+||-) denote the Hellinger divergence defined as:
1 2
DE(PIQ) =3 [ (VP& - VaW) ds (50)
x
for any probability measures P and @) on X, and define
U(fn.5,a) = Diy (Brn(-]s, a)|[Br(-]s,a)). (81)

In the following lemma we provide a concentration result for the random variables X tf ,, and Yt hn I (79) (recall we define
T = (77, ;") in (73)), where the state-action visitation distribution df (p) € A(S x A) at step h under the policy 7
and the initial state distribution p is defined as

dy (s,a;p) = Eq, ~,P™ (s, = s,ap = alsy). (82)
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Lemma B.8. When Assumptions 3.1 and 3.2 hold, for any § € (0, 1), with probability at least 1 — 6, we have for all t € [T},
f e Fandn € [N]:

t—1 H t—1 H
_ZZXif,h < _QZZE(siﬁ,L,ai,h)Nd;i(p) (U(fh, Sins> @in)]
i=1 h=1 i=1 h=1
N+ 1HT
+2V2H +2Hlog ((+5)> +2dH log (1 n 2\/3|S|2T2> . (83)
t—1 H t—1 H
_ _9 1 nogn
N+ 1HT
+2v2H + 2H log <(+5)> +2dH log (1 n 2\/&|5|2T2) . (84)

Combining (77), (79), (83), (84), we have with probability at least 1 — 4:

N t—1 H
, 2
M <—5=> { D DD Eleanmmdri (o [EFens sins ain)]

n=1 \i=1i=1 h=1
T t-1 H
+ Z Z]E (ST el )med T (1) [(fensPn,ais)] }
t=1 i=1 h=1
| AHT N+ 1)HT
! <\f+1 <(+5)) +dlog (1 +2\/&|5|2T2)) . (85)

Step 2: bounding terms (ii), (iii) and (iv). To bound (ii), (iii) and (iv), we introduce the following lemma.

Lemma B.9. Under Assumptions 3.1 and 3.2, for any n € [N], f > 0, {7; : S x [H] = A(A) }1e[r) and {ﬁ}te[T] C F,
we have

T
Z\V;rz BHOIEE D)

H ~
— ZE(SQ ~d;:" (p)g(ft,h757a)

+H (MHA)H + (Vad+ 1) min{dy (3), T} + \/&AT) (86)

~~
—
~.
Il
—
>
Il
—_

Sforanyn > 0and A > 0, where dg (\) is defined as

H?*T
dp (M) == 2dlog <1—|— X )

Now we are ready to bound (ii), (iii) and (iv). To bound (ii), letting ft = fyand 7, = 7y, for each n € [N] in Lemma B.9
(recall we define 7y, := (7}, 7, ") in (73)), we have for any n > 0:

H N T t-1

(i) < % Z Z Z Z E(s,a)Ndf{i‘"@)g(ft’h’ 5,)

h=1n=1t=1 i=1

4dg (N H
+H (HU + (\/& + H) min{dy(\), T} + J&AT) . (87)
n
Letting f;h = fi—1 and 7, , = 7, for each n € [N] in Lemma B.9, we can bound (iii) as follows:

H N T
(i) < N Z Z Z , E(Sya)wd;’:"i,n (p)f(ft—l,h, s,a)
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+H (W + (\/& + H) min{d(\), T} + \/&AT> . (88)

To continue to bound the first term, note that

H T t—1 H T t-2
SN B U@ SN B ) HT
h=1t=1 i=1 h=1t=1 i=1

T—1t—-1

Il
M=
(]~ 1M

o ienss,a) + HT

i
&=

(s,a)wdhl o

>
Il
—

E

M=

Fim HT
(s,a)~dy " (p) (ft,n,s,a) + i

>
I
—
o~
Il
—_
-
I
—

where the first inequality uses the fact that
f(fh, S, a) = Da (Pf,h('|sv a)HPh("S’ a)) <1, (89)

the second line shifts the index of ¢ by 1, and the last line follows by noticing the first summand is 0 at ¢ = 0. Plugging the
above relation back to (88) leads to

" H N T t-—1
(111)§ﬁzzz ]E(sa) d 171( (ft,hasaa)
h=1n=1t=1 =1
4dp(NH
+H ( Hf} n (\/& + H) min{dg (A), T} + VAT + ZT) . (90)

Finally, similar to (90), letting ﬁyh = fi_1, 7, = m for each n € [N] and replace 1) by 27 in Lemma B.9, we can bound
(iv) as follows:

t—1

n H N T
W< H DD DD Buaparipilfons.a)

h=1n=1t=1 i=1
+H< Hd;’ N 4 (\/é+H) min{dH(/\),T}Jr\/&ATJrnT). 1)

Step 3: combining the bounds. Letting n = % in (87), (90) and (91), and adding (85), (87), (90) and (91) together, we
have with probability at least 1 — :

Regret(T) < % (\/5—1— log ((N—F;)HT> + dlog (1 + 2\/g|8|2T2)>

+H (5adH()\)H +3 (\/& + H) min{dz(\), T} + 3VAAT + 2T> .

By setting
d log (%) + dlog (1 + 2ﬁ|8|2T2)
A= T a= Py T, (92)
Hdlog (1 + 5 )

in the above expression, we have with probability at least 1 — 4:

dlog (1 n H"’jf“)

Regret(T) < 4(1 + V/2) :
log (W) + dlog (1 + 2\/&|S|2T2)
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a7 (e (O DT ) () ) s (14 2

) \ 3dHVT, (93)

23/2
Vd

which gives the desired result after simplifying the expression.

L 6H (\/&+H)dlog <1+H

B.3.1. PROOF OF LEMMA B.8

Same as in (58), for the parameter spaces ©p,, h € [H], by Assumption 3.1 and Lemma B.5 we have

2\/&>

Vhe [H]: logN(On,e€,|l|5) < dlog (1 + — (94)

for any € > 0. Thus for any ¢ > 0, there exists an e-net O}, . of ©, (0}, C Oy,) such that log |0}, | < dlog (1 + 2*6/3),
Vh € [H]. Define

fh,e = {fh S fh . fh(37a75h+1) = ¢}L(S7aa3h+1)T0h79h S @h,e} .

For any f € F, there exists 0, € O, such that f5(s, a, sp4+1) = ¢n(s,a,sp+1)" 0. In addition, there exists 0, € O
such that ||0;, — 01, ||, < €. Welet f(s,a,sn1) = On(s,a, 5h+1)T0h7£. Then f. € F, ¢, and we have

Py n(sni1ls, @) = Pr n(sni1ls, @)l = [pn(s,a,sn11) T (0n — Onc)| < e, (95)
from which we deduce
Vte [T),he[H]: -X/, < —log( Pr(sni1lsen, ain) > = —X/ (). (96)
’ Pt n(St,ht1]St,h, ae,n) + € ’

Let F; := o(D;) be the o-algebra generated by the dataset D;. By Lemma B.4 we have with probability at least 1 — % +1

= ; t—1 1,
Vit € [T],h € [H], frne € Fhe: -3 ;Xﬁb(e) < ;logE {exp (QXi,h(e)> ‘.7-",;_1}

+ log ((N—I—;)HT) + dlog <1 + 2;/&) . o7

Then we have forall t € [T], h € [H] and f € F:

1t—1 H 1t 1 H
D IDIR AR D PP PP i
i=1 h=1 i=1 h=1

4]

¢
1
< ZlogE [exp (—2X52(6)>
i=1

where the first line follows (96), and the second line follows from (97). The first term in the last line of (98) can be further
bounded as follows:

S (1350

=1

1} + H log <(N+1)HT) + dH log (1 + 2\6/ﬁ> , (98)

t—1 H
= ZZ]OgE ffyh(Si,}L+l|Si7h,,ai7h) + € ]:s_l
i=1 h=1 Ph(si,h+1‘8i,h,ai’h)
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t—1

H
_ Zl B Py n(8in+1]8i0, @in) + €
- og (54,1007, p)~dy, b (p),

h=1

=1 si ht1~PrClsg hoas ) P}L(Si,h+1|3i,h7 ai’h)
1

t—1 H
=YD 108E, , arymd (o) {/S \/(Pfe,h(si,h+1|5i,h’ai,h) +€) Pu(sinralsin, ai,h)dsi,hﬁ-l}
] h=1

1
1

i=

t—1 H

S ZIOgE (Si.n,as, h)Nd p) |:/ \/ IFJfh S; h+1‘51 haaz h) + 26) ]Ph(sl h+1‘51 h)a’l h)dS’L h+1:| B (99)
h=1

=1

where the last inequality uses (95). Furthermore, we have

E (s nain)~d™ (o) {/ \/(Pf,h(si,h+1|5i,ha ain)+2€) Pr(sinr1]Sin, ai,h)dsi,h+1:|
@i n)~dy s

< ]E(si,h,ai,h)Nd},'i (») {/5 \/Pf,h(si,h+1Si,haai,h)IPh(si,thﬂSi,haai,h)dsi,h+1:|

+ E(si,h7ai,h)~d;j'i (p) {/s \/2€]P’h(5i,h+1\5i,h’ ai,h)dsi,hﬂ]

2
1
<1-— i]E(si,h7a'iyh)Nd:i(p) l/S (\/Pf,h(si,h+15i,h, a;n) — \/]P’h(si,hﬂ\si,h, ai,h)) ds;pi1| + V2€S|
=1=E, . ain)~di (o) (DR Py (186,05 @i [IPh(:|86,n0 @in))] + V26l S, (100)

where in the first inequality we use the fact that va + b < \/a + Vb for any a, b > 0, and the last line uses the definition of
the Hellinger distance in (80).

Plugging (100) into (99), we have

t
ZlogE {exp (—lejl > ‘.7-"1 1}

1
t—1
<Y Y log (1 ~Es, v anmmd (o) [P0 Brn(lsin, ain) [Pallsin, ain)] + \/%|3|)
1=1 h=1
t—1 H
<=3 D i (o) [DR PrnClsin, @in)[Pa(-lsin, ain)] + V2¢lS]
1=1 h=1
t—1

H
=2 2 Epanmmal o) s sins ain)] + THV26S),
i=1 h=1

=1 h=
where the second inequality follows from log(z) < a — 1 for any = > 0, and the last line follows the definition (81).

Plugging the above inequality into (98), we have with probability at least 1 — NLH:

t—1 H t—1 H
Vee [T, feF: =Y > X1, <=2 S B, anymdr (o) Efnssins ain)]
=1 h=1 =1 h=1

N +1)HT 2
+ 2T H+/2€|S| + 2H log ((H> + 2dH log (1 + ﬂ) . (101)
€

0
Then analogous to (101), we can bound — Z Z he1 Y}, , forall n € [N] with probability at least 1 — N—_H as follows:
t—1 H t—1 H
vt € € F,ne] < -2 E L fr, sy, ar
[ } f n - 1}1221 i,h,n — ;}; (Sn} an})Nd in () [ (fh Sih az,h)]
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N+ 1)HT 2V/d
+ 2T H/2¢|S| + 2H log <(+5)> + 2dH log (1 + f) . (102)
€

Letting € = = in (101) and (102), we obtain (83) and (84) in Lemma B.8.

T2\S |
B.3.2. PROOF LEMMA B.9

To prove Lemma B.9, we first express the value difference sum Zt 1 ‘ o (p) — Ve (p)‘ on the left hand side of (86) as
sum of the expectation of the model estimation errors 5;' ( ft, hyShy @h)-

Step 1: reformulating the value difference sum. Forany f € Fand 7 = (7%,--- ,7"V) : S x [H] — A(A), we have
(recall we defined the state-action visitation distribution d7 (p) in (82)) for n € [N]:

T
Vi (p) = Evnetmiey, any~ar .
sh41~Pr(lsp.ap)

Z Vf h,n Sh V;T}L+1,n(3h+1))‘|
h=1

H
a;|s
= IEvhg[H]:(sh,amw:(m, [Z <thn Sh,ap) — ,Blogw(ﬂ - th+17n(sh+1))1 , (103)

Sh41~Er(lsp,ap) h=1 (ah|8h)

where in the second line we use the fact that

x 7" (a"[s")
V() = Earn(s) [th a(s,a) — plog ref(a"|5")] )
By the definition of VT we have
H n n|sn
" (aj|s})
Vn € [N]: V7 (p) = Evncimicopam~ap . D {Th sh,anp) — flog hh ] (104)
Sh+1~]ih(}| Sho a}}LL)P h=1 ’/Tref(ah|$h)

To simplify the notation, we define

Vg € F,h e [H]: nghvf‘fhﬁ-l,n(shvah) = ES;L+1NIP’g,h('\Sh,ah) [foh+1,n(sh+1)] : (105)
Combining (103) and (104), we have

H
Vit (p) = Vi (p) = Eviermcay, )~ lz QF n(sn.an) — i (sn,an) — th,+1,n(5h+1))]

Sh41~Pr(Clspsap)

E(on.am~dr (0)PraVinitn(snan) = PpViy o, (sh, an)l. (106)

uMm

=: &7 (fn,5n,an)

Therefore, we can express the value difference sum 23:1 Vfl:T fn(p) — VT (p)’ as sum of the expectation of the model
estimation errors EX* ( fi p, S, ap):
H
]V;jtn VIO = Y By [E7 s . (107)
t=1 h=1
Thus we only need to bound the right-hand side of (107).
Step 2: bounding the sum of model estimation errors.
By Assumption 3.1, there exist 67, and 67 in O such that fi,(spi1lsh,an) = ¢n(sh,an,sn1) 0rn and

Pr(sht1|sh, an) = én(sh, an, sh+1)T0,*L for all h € [H]. Thus we have

E(sh,ah)fwd;f(p) [Eg(fh, Sh, ah)] = (Gﬁh — QZ)T E(Sh’ah)Nd;’l"(p) |;/S ¢h(5h7 ap, 3h+1)vjzjh+1,n(5h+1)d5h+1 . (108)

=:xp, o (f,7)
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We let zj, ,,(f, ) denote the i-th component of zy, . (f, 7), i.e.,

xzn(f’ ) = E(Smah)’\‘d;{(l)) |:/S ¢;z(sh7 Qh, 3h+1)vfh+1’n(8h+1)d8h+1
Then we have
Vield: |a,(f.m)|<H (109)

(recall that by the definition of the linear mixture model (c.f. Assumption 3.1), ¢! (s,a,-) € A(S) for all i € [d] and
(s,a) € S x A), which gives

nn (f,m)ll, < HVA. (110)
For each t € [T, we define A, j, € R?*? as
t—1 N R
Ao = Ma+ Y wnn(fi Bz (fi, 7). (111)
=1

We can decompose the sum of model estimation errors as follows:

i\ 2 i [ 10| = X fonnm )= 0] 1{ om0

t=1

(a)

Zﬂazhn Jor 1), Bun — 03| 1 {Hxhnl(ﬁ,a)HMfl}. (112)

(b)

Below we bound (a) and (b) respectively.

Step 1: bounding term (a). By the Cauchy-Schwarz inequality, we have

T
a) < Z Hé\t,h — 05

5[

onnFud], 1] fonnFui], <1}
th th

t,h

HMH

. min{Hth(ft,?rt)’ - ,1}, (113)

t,h

where the last inequality uses the fact that

Hmh’”(ﬁ’%t) AT

t,h

1 {Hxh,n(ﬁ,m)

<1p < min HCL‘ 7 15,
oy <1 < min{fonatem] 1)

By the definition of A; j, (c.f. (111)) and Assumption 3.1 we have

0, — 03
H TRy,

-1 1/2
< 2v\d + (Z (0. — ez,xh,n(fi,%i»lQ) : (114)
h i=1

which gives

n *
Oun — 0|

T
Z min Hmh ft e 1}
t=1 ‘ Ath { o) Ak
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)
At,h

T t—1 1/2
<3 [2vad+ (Z B — 0%,z (F, %i)>2> .min{Hxh,n(ft,%t)
i=1

t=1

- 12 , 1/2
< () (o flaniinol, 1))
— =1 t,h

T t—1 2 ,p 1/2
+ (Z 10y —Og,xhyn(fi,%i)>|2> (Zmin{Hmh,n(ft,%t) o 1}) : (115)
t=1 t=1 t,h

=14=1
where the first inequality uses (67) and the second inequality uses the Cauchy-Schwarz inequality and the fact that

,1}.
A;}l

2
AL al} § min{Hxh,n(ftaﬁ-t)

t,h

min { H:ch,n(ft, )

By Lemma B.2, Lemma B.3 and (110), we have

t
Z min {Hxh,n(fiv 7?&)
i=1

holds for any A > 0 and ¢ € [T]. By (116), (115) and (113), we have

H2T
A1,1} < 2dlog (1+ : ):: dr(\) (116)

t=1 i=1

T t—1 1/2
a) < 2¢/AdT min{dy (\), T} + (dH()\)ZZ |Gy, — 9g,xh,n(ﬁ,a)>|2> . (117)

To continue, we have

2
|@u = O nn(F 7)) = ‘E(S,a)wd?(p) [ [ (B, Gl )~ Palsnals.a) v;;jhﬂ,n(shH)dshH]

2
S Bl apmdft (o) [(/S (Pﬁ.h(sﬂﬂsv @) - Ph(sh“'s’a)) Vi (3h+1)d5h+1> ]
™ 2
<a|[VE O] B ez P (PR, Clss @)l[PaC s @)
<SHE( i, Dh (B7,, (13 @)[Bu(]s.a))

= 8H]E(s,a)~dzri(p) (ft,h7s7a)7 (118)

where the second line uses the Cauchy-Schwarz inequality, the third line follows from Holder’s inequality, and Dty denote
the TV distance:

Drv(PIQ) = [ |P(e) — Qe (19)
The fourth line uses the following inequality:
D3y (P|lQ) < 2D} (PIIQ)

and the fact that HV”‘h';l N H < H (recall we assume 7 (s, a) € [0, 1]). The last line uses (81).

Plugging (118) into (117), we have

T t—1 1/2
(a) < 2Vd- /AT min{dg (\), T} + <8HdH()\) ZZE(Sﬁa)Ndii(p)E(ﬁ,h,s,a)) . (120)

t=1 i=1
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Step 2: bounding term (b). Now we bound (b) in (112). Note that

A > 1} <m1n{Hxhn ft,ﬂ't) Aot ,1},
t,h t,h

1 {Hxh’n(ﬁﬁt)

which gives

T
Z\ (@hn(fis 1), O —9;>\min{Hxh,n(ft,%t) - ,1}. (121)
=1 t,h
We also have
nn(For T B = 03] = By ey [B7, VIS, L (500) = BAVIS (s,0)]| < 1. (122)
Combining the (122),(116) with (121), we have
(b) < Hmin{T, dp(\)}. (123)

Step 3: combining everything together. Plugging (120) and (123) into (112), we have

T
Z’ sa~d"t |: ':Lrt(ft,hvsva’):”

T t—1

1/2
< 2Vd - /AT min{dg(\), T} + <8HdH(>\) ZZE(é aydi Fins s, a)) + Hmin{T,dg(\)}

t=1 i=1

t

N
n

Ts
==

Hdg (A - v
8 o~
< <H() E(, g™ (o (ft,h,s,a)> + (\/&+ H) min{dg (\), T} + VAT

_ ddn(NH
n

E
1

+

1+ 11~

N3

(ﬁ,h, s,a)+ (\/(3 + H) min{dg(\), T} + VAT

(s,)~d} (p)

~
Il
-

7

for any 1 > 0, where the second and third inequalities both use the fact that vab < “7“’ for any a,b > 0.

Finally, combining (107) with the above inequality, we have (86).

C. Extension to the Infinite-horizon Setting

In this section, we consider the N-player general-sum episodic Markov game with infinite horizon denoted as Mp =
(S, A, P, r,7) as a generalization of the finite-horizon case in the main paper, where v € [0, 1) is the discounted factor, and
P:S x A — A(S) is the homogeneous transition kernel: the probability of transitioning from state s to state s’ by the

action a = (a',--- ,a")is P(s'|s, a). For the infinite horizon case, the KL-regularized value function is defined as
.- 7" (an|sn)
VseS8S: Vr(s):= ( (sn,ap) — Blog hih ) =5
hz ref(ah|sh)
1 - m"(@"|s)
= ——FE(sa)~d~(s [r”(s, a)— Blog (124)
1—~ (5,@)~d™ (s) . (a]s) ]’

where s, and ay, are the state and action at timestep h, respectively, d™(s) € A(S x A) is the discounted state-action
visitation distribution under policy 7 starting from state s:

dT4(s) = (1=7) Y _y"P™(sp = 5,an = also = s). (125)
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We assume p € A(S) is the initial state distribution, i.e. so ~ p. We define d™ (p) := E ~,[d™ (s0)] as the discounted
state-action visitation distribution under policy 7 starting from the initial state distribution p. The KL-regularized Q-function
is defined as

V(s,a) e Sx A: QT (s,a) =1"(s,a) +YEy p(|s,a) [V (s)] . (126)

We let F denote the function class of the estimators of the transition kernel of the Markov game, and we denote f = Py € F.
Without otherwise specified, we assume the other notations and settings are the same as the finite-horizon case stated in
Section 3.

C.1. Algorithm development

The algorithm for solving the (KL-regularized) Markov game is shown in Algorithm 6, where in (128) we set the loss
function at each iteration ¢ as the negative log-likelihood of the transition kernel estimator f:

Li(f) = Z —logP(s']s, a). (127)

(s,a,5")€EDy—1

Except for the loss function, the main change in Algorithm 6 is that we need to sample the state-action pair (s, a) from the
discounted state-action visitation distribution d™ (p), and sample the next state s’ from the transition kernel P(|s, a), which
can be done by calling Algorithm 7. Algorithm 7 is adapted from Algorithm 3 in Yuan et al. (2023), see also Algorithm 5 in
Yang et al. (2024a). Algorithm 7 satisfies E[h + 1] = —, and P(s;, = s, @ = a) = d™(p) (Yuan et al., 2023).

Algorithm 6 Value-incentive Infinite-horizon Markov Game
1: Input: reference policies 7., KL coefficient 3, initial state distribution p, initial transition kernel estimator f, € F,
regularization coefficient o > 0, iteration number 7.
2: Initialization: dataset D} := (), Vn € [N]. Dy = UY_, Dy.
3: fort=1,---,T do
4., < Equilibrium(Myg, ). > Equilibrium(M #) returns a CCE or NE of game M .
5:  Model update: Update the estimator f; by minimizing the following objective:

fr=argmin Y —logPs(s']s,a) aZv*”f" (p). (128)
fer (s,a,s")EDy_1

6:  Compute best-response policies {7{' },e[n]

Foralln € [N]: 7@} = argmax foﬂ " (p). (129)
W"EA(A%) 7

7:  Data collection: sample (s;,a¢,s}) < Sampler(m,p). For all n € [N], sample (s?,al,s}) <

Sampler((72,w; ™), p), and update the dataset D' = D | U {(sy, ay,s,), (s?,al, s')}. D, = UN_ D >
Sampler(m, p) returns (s,a) ~ d™(p) and s’ ~ P(+|s, a), see Algorithm 7.
8: end for

C.2. Theoretical guarantee

We first state our assumptions on the function class for Markov game with infinite horizon.

Assumption C.1 (linear mixture model, infinite horizon). The function class F is
F={flf(s,a,8) =(s,a,5)"0,¥(s,a,5') e Sx AxS,0 €O},

where ¢ : S x A x S — R? is the known feature map, ||4(s, a, s)||, < 1 for all (s, a, s’), and © C BZ(v/d). Moreover,
foreach f € Fand (s,a) € S x A, f(|s,a) € A(S).

We also assume the function class F is expressive enough to describe the true transition kernel of the Markov game.

32



Incentivize without Bonus: Provably Efficient Model-based Online Multi-agent RL for Markov Games

Algorithm 7 Sampler for (s,a) ~ d™(p) and ' ~ P(-|s, a)
: Input: policy 7r, initial state distribution p, player index n.

[

2: Initialization: sy ~ p, ag ~ m(+|sp), time step h = 0, variable X ~ Bernoulli(7).
3. while X =1 do

4:  Sample sp41 ~ P(+|sn, an)

5:  Sample ajy1 ~ 7(-|Sp41)

6: h<h+1

7: X ~ Bernoulli(y)

8: end while

9:

Sample sp1 ~ P(:|sp, ap)
Return (sp, @p, Spt1)-

_.
=4

Assumption C.2 (realizability). There exists f* € F such that Py~ = P.

Theorem C.3 states our main result for the regret of the infinite-horizon online Markov game, whoes proof is deferred to
Appendix C.3.

Theorem C.3. Under Assumption C.1 and Assumption C.2, if setting the regularization coefficient o as

(1—7)32 |log (&) +dlog (d|S|T)T

~y T3/2 ) ’
dlog (1 + Teva

o =

then for any B > 0, with any initial state distribution p, transition kernel estimator fy € F and reference policy s, the
regret of Algorithm 2 satisfies the following bound with probability at least 1 — § for any § € (0, 1):

~( ~dJT 1 N
T : Regret(T) < —— /=1 — log (d|S|T) | - 1
VT € N4 egret( )_(9((1_7)3/2 7985 + log (d|S|T) (130)
Note that
. Regret(T")
G < —" 131
7512[1%1] ap () < T , (131)

similar to earlier arguments, Theorem C.3 also implies an order of O (%) sample complexity for Algorithm 2 to find
an -NE or e-CCE of Mp.

C.3. Proof of Theorem C.3

The proof of Theorem C.3 resembles that of Theorem 3.3. We repeat some of the proof for clarity and completeness. Here
we also have (76), and will upper bound each term in (76) separately.

Step 1: bounding (i). By Assumption C.2 we know that there exists f* € F such that f* := P = P«

(77) also holds here, and we define random variables X tf and th as

P(s}]s¢, ar) P(s?'|s?, al)
X/ =1lo <t and Y/ =log | —— L") vne[N] (132)
tE18 B (ssna) b =108 { B (ot ap) o

Then by the definition of the loss function (127), we have

t—1 N
L) = L) = =33 (x) +¥) (133)
=1 n=1
Same as in the proof of Theorem 3.3, we define
T = (7, w "), Vneé€lN]. (134)
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We also define

U(f,s,a) = D (Ps([s,a)|P(|s, a)). (135)

In the following lemma we provide a concentration result for the random variables th and thn in (133).
Lemma C.4. When Assumption C.1,C.2 hold, for any 6 € (0, 1), with probability at least 1 — 0, we have

t—1 t—1
Vee [T, feF: =Y X <=2 B, anmamio U(f 5, a:)]
i=1

=1
+2v2+ 2log <(N+51)T) +2dlog (1+2\/ET2\S|2)7 (136)
and
t—1 t—1
Vte [T, f € FoneNl: =Y Yl <23 E o pn) iy L 57 al)]
i=1 =1
+2V2 + 2log ((NJ;UT> + 2dlog (1+2\/8T2|5\2). (137)

The proof of Lemma C.4 is provided in Appendix C.3.1.
By (77), (133) and Lemma C.4, we have with probability at least 1 — §:

N T t—1 T t—1
. 2 n n
<352 {ZZE(&,M)NW@) (050, @0] + DD B apyamin ) [Efer 5T )]}

n=1 \t=1 i=1 t=1 i=1

4T N+ 1)T
+— (\/§+ log ((;)> + dlog (1 + \/E|$2T2)> . (138)
Step 2: bounding (ii), (iii) and (iv). To bound (ii), (iii) and (iv), we introduce the following lemma.

Lemma C.5. Under Assumption C.1 and Assumption C.2, for any n € [N], B > 0, {7; : S = A(A) }e[r) and
{ft}ierr) C F, we have

t—1
T o Y n o~
)?h"<p) - Vn (p)‘ < <2 Z ZE(S,a)r\ad*i (p)z(ftv S, a‘)

Tt Z\/& - 1_17> min{d(A), T} + J%T) (139)

foranyn > 0and X > 0, where d- () is defined as
T

The proof of Lemma C.5 is provided in Appendix C.3.2.

Now we are ready to bound (ii), (iii) and (iv). To bound (ii), letting ﬁ = fyand 7, = 7, ,, for each n in Lemma C.5 (recall

—-n

we define 7, ,, == (7}, 7w, ") in (73)), we have for any 1 > 0:

N T t—1
Y
(W) < 77— 57 D2 2D Eapearinpt(fi,0)
n=1t=1 i=1
v (Ady(N) LI
+1 - <(1 o + (Vd+ T min{d,(\), T} + Vd\T | . (140)
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Letting ﬁ = f;—1 and 7 = 71, for each n in Lemma C.5, we can bound (iii) as follows:

N T t—1
n _
(]11) < j ﬁ ; ; o ]E(s7a),\,d"i,w,(p)£(ft*17 S, a)
v 4dy (N ( 1 ) : )
+— (2 4 (Vd+ —— ) min{d,(\), T} + VdAT ) . (141)
1—7((1—7)77 1—~ iy (0. T3
To continue to bound the first term, note that
T t—1 T t—2
DD Blaadrin (plfim1:80) DN B g fie5,0) + T
t=1 i=1 t=1 i=1
T—1t—1
= Z E(“;’a),\,d*i,n(p)‘g(ft717S7a) +T
t=0 i=1
T t—1
<D Y Elaydrin ()l fim1,5.0) + T, (142)
t=11i=1
where the first inequality uses the fact that
U(f,s,a) = D§ (Ps(-|s, a)|[P(-|s,a)) <1, (143)

the second line shifts the index of ¢ by 1, and the last line follows by noticing the first summand is 0 at ¢ = 0.

Plugging the above relation back to (141) leads to

T
Z : E(S’a),\/d;"i,n(p)g(ft?s?a’)

5 4d., (A 1 . n
+ — <(177 + <\/g+ 1’Y> mln{d'y()‘),T} + \/&AT + 2T> . (144)

N T t-—1
(IV) S f : % Z Z ]E(s,a)wd"i (p)g(fh S, a)
v n=1t=1 =1
v 2dy(N) ( 1 ) , )
+— (222 4 (Vd+ —— ) min{d,(\), T} + VAT + T ) . (145)
17((17)77 11—~ {d (). T}

Step 3: combining the bounds. Letting n = w in (140), (144) and (145), we have with probability at least 1 — J:

Regret(T) < % <\/§+ log <(N+1)T) + dlog (1 + \/a|8|2T2>>

8
v (Bredy(A) ( 1 ) : 3(1-19) )
+ +3(vVd+ —— ) min{d,(\), T} 4+ 3Vd\T + =—LT) .
1—7<(1—7)2 1—v (0, T} Vo
By setting
d (1— )32 log (%) + dlog (1 + \/3|S\2T2)

= T’ o = 3/2 T (146)

v dlog (1 + 7(1_2)2\/&)
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in the above expression, we have with probability at least 1 — §:

T3/2
AL+ V2)y dlog (1+ 7257 73) .
(1—)3/2 log (M) + dlog (1 + \/E|S|2T2)

m 14 (Cli log <<N+61)T) +1og (1+ \/382T2)> log <1 + u—Ti/)Z\/&)

T3/2 3y
—~ )dlog (1 AT 147
1_ <f+ ) Og<+(1—7)2\/&>+1—w VT, (147)

Regret(T') < VT

which gives the desired result.

C.3.1. PROOF OF LEMMA C .4

Same as in (58), for the parameter space ©, by Assumption C.1 and Lemma B.5 we have

2\/E>

log N (0, ¢, ||-|l) < dlog (1 + — (148)

for any € > 0. Thus there exists an e-net O, of © (O, C ©) such that log |0.| < dlog (1 + 2—‘?) Define
Fe={f€F: [f(s,a,5) = o(s,a,s')"6,0 € O} .

For any f € F, there exists 6 € O such that f(s,a,s’) = ¢(s,a, s’) " 0. And there exists 0. € O, such that || — 0|, < e.
We let f.(s,a,s") = ¢(s,a,s’) " 0. Then f. € F., and we have

Ps(s'|s,a) — Py, (s'|s,a)| = |¢(s,a,¢") " (0 — 0)] <, (149)
from which we deduce
P(s}|s¢, at)
vie [T]: —-X/ < -1 _PLT ) X e (6. 150
[ ] t = Og (]P)f‘ (SHS]‘,,at) + € t (6) ( )

Let F; := o(D;) be the o-algebra generated by the data D;. By Lemma B.4 we have with probability at least 1 — NLH:

= f ) f
vt e [T], fe € Fe: _§;X¢ <ZlogE[exp<—2Xl )’]—"z 1}

i=1

T log <(N+61)T) T dlog <1+2*6/g>. (151)

Thus we have

t—1 t—1

. 1 ! (150) ff
el jer: 53X —*ZX
(151)
S ZlogE [exp <_;Xz'f5 (€)> ‘fi1:| +log ((N—gl)T> + dlog (1 + M) )
€

=1
(152)
We can further bound the first term in (152) as follows:

1
ZlogE [exp (—2Xf‘ ) ‘]-"Z 1]

1=1
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P, (s'|s;,a;) + €
,ZlogE(b [\/w

s ~P< lssai) P(5i|5i>ai)

t—1

P (si]si, a;) + €
=3 logE ||t A) T 7
Zog [\/ P(s}|ss, @;) st
t—1

- ZlogE(s, a;)~d™i( |:/ \/ Pfe |S’L7 az ) (S”Slv az)d32:|

95)
< ZlogE(shal i (o) U \/Pf (sh]si, @i) + 2¢) (sﬂsi,ai)ds;]. (153)

Moreover, we have

Bl | [ Bl 20 B ais]

< E(si,ai)~d‘"i(p) |:/ \/Pf |5“Clz |81,az)d :| +E(Si,ai)~d"i(p) |:/S 2€P(8;|Si,ai)d82:|

1 2
< 1= 5B a)~ami(p) [/5 (\/Pf(SHSi,ai) - \/]I”(sﬂsi,ai)) ds'| +V2€|S|
=1 = Es, a0~ (o) [Di (Pr(lsi, @) [IP(]si, @i)] + V26l S, (154)

where the first inequality we use the fact that v/a + b < \/a + v/ for any a,b > 0.
Then combining (152), (154) and (135), we have

t—1 t—1
1
vt € [T}v f € F: _5 ZX@f § - Z]E(si,ai)wd"i(p) [Z(fv Si, az)]
i=1 i=1

+ TV/2€|S| + log <(N+51)T) + dlog <1 + M) ,
€

where we use the fact that log(x) <  — 1 for any « > 0. Multiplying both sides by 2, we have with probability at least

5.
1= x5t
t=1 t—1
vie[T],feF: - ZXf < *QZE(si,ai)Nd"i(p) [0(f, si,a:)]
i=1 i=1
N+ 1)T 2vd
+ 2TV 2¢|S| + 2log ((J;)) + 2dlog (1 + f) . (155)
€
Analogously, we can buond — Zt ! Yf for all n € [IN] with probability at least 1 — Ni—s-l as follows:
t—1 t—1
. f _ n n
Vel feFne[Nl: =3 Vi <=23 By au amin(y Uf: 57, a7)]
i=1 i=1

+ 2TV/2¢|S| + 2log (W) + 2dlog (1 + 2‘?) . (156)

By letting € = ﬁ in the above two inequalities, we have the desired result.

C.3.2. PROOF OF LEMMA C.5

Similar as in the proof of Lemma B.9 in Appendix B.3.2, we first reformulate the value difference sequence

Y T (o) = Vi (p)|

37



Incentivize without Bonus: Provably Efficient Model-based Online Multi-agent RL for Markov Games

Step 1: reformulation of the value difference sequence. For any f € Fand 7 = (7!, ,7%) : & — A(A), we have

Vn € [N]: V{(p) =Esomsap~nc o0 [ZV Via(sn) — h+1VEn(sh+l)1

sh4+1~F(Clsp.ap)

sh+1~PClsp,ap) ref(ah|8 )

=Esompapn~rtisn), [ZW (an Shy@p) — ﬂlogw —vvf’fn(shﬂ))] , (157

where in the second line we use the fact that

V7A(5) = Barrtin | Q) ~ Blog T
And by the definition of V. we have
VYn € [N]: V™(p) = Eugmpap~nion). [i AP ( (sn,an) — Blog w)] . (158)
shp1~PClpsan) | =0 ref(ah‘sh)
To simplify the notation, we define
Vge F: PyVF.(s,a) =Eg p,(isa) V(5] (159)

Combining (157) and (104), we have

Sha1~P(lsp,ap)

fon(P) — Vi (p) = Esompapnncion), lZV an (sh,an) —r"(sn,an) — VVJZ,Tn(ShH))]

1
= T Earar(p) [QFa(s,a) =17(s,a) = 1PVT, (s, a)]
= ~Eiapin(p [PrVFu(s,a) = PVT, (5,a)], (160)
:g‘;’Lr (f7sla)
where the last relation follows from (126), and we define
ng:(f, 8,(1) = vajwn(saa) _]P)V;:-n(sva) (161)
Thus we have
Z ‘V -V )‘ 15 Z ‘E(s,a)wd*t(p) [g:t(ftvsva)} ‘ (162)
t=1
Therefore, to bound Zf 1 ’fo *n — V7 (p)|, it suffices to bound the sum of model estimation errors

Zt:l E(s,a)wd*t(p) [ n (ftasaa)]

Step 2: bounding the sum of model estimation errors. By Assumption 3.1, there exist 7 and 6* in © such that
f(s's,a) = ¢(s,a,s')T0; and P(s'|s,a) = ¢(s,a,s’) " 6*. Thus we have

]E(s,a)Nd'"(p) [g:(f7 S, a)] = (ef - 9*)T E(S,G.)Nd"'(p) l:/s ¢(Sa a, SI)V]Z,‘-n(S/)dslil . (163)

=z, (f,7)

We let ¢ (f, ) denote the i-th component of z,,(f, 7), i.e.,
) = Bpgaanir | [ 80V
S
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Then we have

vield: |o(fm)< ﬁ (164)

(recall that by the definition of linear mixture model (c.f. Assumption C.1), ¢*(s, a,-) € A(S) for each i € [d]), which gives

lz (f, )]l < 7f (165)
For each ¢ € [T, we define A; € R%*9 as
-1 ~
Ap = Mg+ Y an(fi, ®)an(fi7) " (166)

i=1

We write 02 as the parameter of ﬁ Then we have the following decomposition:

T
Z ‘E<s,a>~d*t(p) [ (fir5,a ”
t=1

uMﬂ

‘ T ft,ﬂ't -0 1

(a)

Z‘ on(For 70, 0y — 0%) ]1{‘

(®)

In(ﬁ,%f)

L > 1}. 167)
Ay

Below we bound (a) and (b) separately.
Bounding (a).

By the Cauchy-Schwarz inequality, we have

(a) < Het 6"

il 1|

<1}
S

1 71} , (168)
Ay

, mn(fta%t) A

*I|  min ‘
Ay

where the last inequality follows from the fact that
< 1} < min {‘
Al

By Lemma B.2, Lemma B.3 and (165), we have

< 9t - fn(ftﬂ?t)

EM% i M%

solFiio] 1]

o (fi )|

solFi] o1
t

T
Zmln{‘ Tn fl,ﬂ'l) o ,1} < 2dlog <1 + (1’7)2/\) =dy (). (169)
holds for any A > O and ¢ € [T].
Further, by the definition of A; (c.f. (166)) and Assumption C.1 we have
t—1 1/2
Het —07| <2vhd+ (Z 10, — 9*,xn(fi,?ri))|2> , (170)
¢ i=1
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which gives

xn(ftvﬂ't)HA;l 71}

T
ZHGt 0* mln{’
=1

t

T 1 1/2
Z 2W+<Z|9t o xn(f“ﬂ-z)>|> .min{‘

) ) 1/2
< (;4)@) (Z mln{‘ Tn f‘f’ﬂ-t)HA;1 ’1}>
o1 R v
I (Z (6, 9*,xn(fi,?n)>|2) (Z min{‘

t=1i=1
T
< 2\/MdT min{d,(\), T} + (dW(A) >

xﬂ(ﬁa %t)

1
At

xﬂ(ﬁv %t)

1/2
,1})
At

1/2
‘<0t—9 $N(f1a7r2)>| ) ) (171)

where the first inequality uses (170) and the second inequality uses the Cauchy-Schwarz inequality and the fact that

min{‘

and the last inequality uses (169).

2
I"(ft’?rt)HA—l 71} S mln{‘ In(ft’?rt)"j\*l 51}7

Furthermore, we have

2

(0 — 9*7xn(fi77?i)>|2 = ‘E(s,a)~d‘7"i (p) {/5 <]P>ft(sl‘57a) - P(s’\s,a)) gfn(sl)dsl}

2
S E( ay~ai(p) [(/S (PE(S'\S,G) P(s'[s, a)) JZ' (8')d8’) 1
f?n(.)HooE(S7G)Nd%t(p)D%V (]P’ﬁ(|s,a)||]P’(|s,a)>
8

< 1= Elaram Dk (B Cls, ) [BCls, @)
8

= ﬁE(s,a)Nd%i(p)é(ft’s7a)7 (172)

where the second line uses the Cauchy-Schwarz inequality, the third line follows from Hoder’s inequality, the fourth line
uses the inequality D2y (P||Q) < 2D (P||Q) and the fact that HV;’H()H < 125 The last line uses (135).

Plugging (172) into (171), we have

t—1

T 1/2
(a) <2Vd- \/ATmin{dv()\),T} + <81d”_m SO Bl ayeai(n) (ft,s,a)) . (173)

v t=1 i=1

Bounding (b).

n(fo 7o)

)

n(fo )

- ET: ‘(xn(ftﬁt)aat — 0|1 {‘
1

min{’

T

<3 |(@alfer 0.8 — %)
t=1

,1}, (174)
AT
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>1}§min{‘ ,1}‘
A7t AT?

o1 min L@l 1)

where the inequality follows from the fact that
1 {’

xn(ﬁ7 ?rt)

T (f1r 1) (i Re)

11{‘
AT

Note that

zn(ﬁ, %t)

Thus by (169) and (174), we have

1
(b) < T—5 min{7’, d(A)}. (175)
Plugging (173), (175) into (167), we have

T
Z ’E(S,a)fwd*t (») [5::” (ﬁ, s, a)} ‘
=1

T t—1
min{T, d,(\)}

1/2
. 8d., (A ~ 1
<2Vd- \/)\Tmm{dy()\),T} 4 ( : 1(7) ZZE(S)G)Ndﬂ(p)f(ft,s,ao + 1

t=1 i=1 a
t—1

- 1/2
8d., (A &l ~ 1 |
) <(1_<7))77 R Z Fearothes a)> i (ﬁ N 1_7) min{d, (), T} + Vd\T

t=1 i=1

4d,(N) | 1) = - 1 .
< 61(7;77 +5 S Epayedmip(fes,a) + (\/&Jr 1—7) min{d,(\), T} + VAT (176)

t=1 i=1

for any 1 > 0, where the second and third inequalities both use the fact that vab < “T*b for any a,b > 0.

Finally, combining (162) with the above inequality, we have (139).

41



