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Abstract
The pursuit of robustness has recently been a popular topic in reinforcement learning (RL) research,
yet the existing methods generally suffer from computation issues that obstruct their real-world
implementation. In this paper, we consider MDPs with low-rank structures, where the transition
kernel can be written as a linear product of feature map and factors. We introduce duple perturbation
robustness, i.e. perturbation on both the feature map and the factors, via a novel characterization
of (ω, ε)-ambiguity sets featuring computational efficiency. Our novel low-rank robust MDP
formulation is compatible with the low-rank function representation view, and therefore, is naturally
applicable to practical RL problems with large or even continuous state-action spaces. Meanwhile,
it also gives rise to a provably efficient and practical algorithm with theoretical convergence rate
guarantee. Lastly, the robustness of our proposed approach is justified by numerical experiments,
including classical control tasks with continuous state-action spaces.
Keywords: Reinforcement learning, duple perturbation robustness, low-rank MDPs.

1. Introduction
The recent years have witnessed the rapid development of reinforcement learning (RL), a discipline
that has shown its power in various areas, ranging from gaming (Mnih et al., 2015; Silver et al., 2017;
Vinyals et al., 2019), robotics (Dalal et al., 2021; Levine et al., 2016), to large language models
(Ouyang et al., 2022; Ziegler et al., 2019). These successes of RL are achieved with huge amounts
of data, yet for applications like robotics and autonomous driving, the real-world data collection is
expensive and dangerous. As a result, RL agents are usually trained (and even tested) in simulated
environments. However, simulators are typically not accurate for revealing the intrinsic uncertainty
and ambiguity in the real-world dynamics. Therefore, RL agents trained in simulated environments
generally suffer from a sim-to-real performance degradation (Peng et al., 2018; Salvato et al., 2021),
which is the cost for overlooking the distributional shift from simulation to real-world environments.

Robust MDPs are proposed to mitigate such performance degradation (Satia and Lave Jr, 1973;
Silver, 1963), in which the value of a policy is evaluated with respect to the worst possible realization
within a prescribed ambiguity set of dynamics. The modern formulation of robust MDPs shall be
attributed to Iyengar (2005) and El Ghaoui and Nilim (2005), with a whole series of theoretical
efforts aiming at solving the robust MDP (Blanchet et al., 2023; Goyal and Grand-Clement, 2023;
Ho et al., 2018, 2021; Yang et al., 2022; Zhou et al., 2021) and various empirical successes thereafter
(Pattanaik et al., 2017; Pinto et al., 2017; Rajeswaran et al., 2016; Zhang et al., 2020). Nevertheless,
most of these theoretical works consider tabular MDPs, and the computational complexity and/or
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sample complexity are, at best, polynomial in the size of state and action spaces. Therefore, these
algorithms are bound to suffer from the curse of dimensionality, which makes these algorithms
impossible to deploy in environments with large or even infinite state-action spaces, and thus restricts
their modeling ability of real-world environments.

Towards alleviation of computational burden, people have been working to identify structures
that reduce the intrinsic dimensionality of the problem. Among these attempts, MDPs with low-rank
structures (Jin et al., 2020; Yang and Wang, 2020) turn out to be a representative model family with
practical implications (Ren et al., 2022c, 2023). Specifically, in this paper we consider MDPs with
such low-rank structures that the transition probability kernels can be represented by an inner product
of the feature map ω(s, a) → Rd and the factor µ(s→) → Rd (i.e., P(s→|s, a) = ↑ω(s, a),µ(s→)↓), and
the reward functions can also be decomposed in a similar way. We will stick to the term “low-rank
MDPs”1 to highlight the fact that both the feature map and the factors may be unknown or subject to
uncertainty. Along this line of work, provably efficient algorithms have been developed such that the
sample complexity is polynomial in d, the dimension of the feature space (Agarwal et al., 2020; Jin
et al., 2020; Ren et al., 2022b; Uehara et al., 2021; Yang and Wang, 2020).

Despite these promising results for low-rank MDPs, this line of work in general only deals
with the non-robust case. Even though studies on misspecified low-rank MDPs do take modelling
errors into consideration, the focus of that line of work is to bound the regret of learning in terms
of the misspecification error, assuming online interaction with a fixed MDP. On the contrary, the
robust MDP formulation aims to handle the model discrepancy between the planning/learning phase
(using simulators or estimated models) and the deployment phase (where the uncertainty is intrinsic
and we should prepare for the worst-case scenario). Recently, there are some emerging efforts to
introduce function approximation into the realm of robust MDPs (Badrinath and Kalathil, 2021;
Tamar et al., 2014), yet they only treat function approximation of value functions as a computational
tool, largely ignoring its connection to the potentially beneficial restructuring of ambiguity sets.
Ma et al. (2023) and Goyal and Grand-Clement (2023) are the first to exploit such structures by
introducing d-rectangular ambiguity sets in terms of the factor µ(s→), yet the ambiguity is single-sided
in that they assume a known fixed feature map ω(s, a), and thus the transition kernels and value
functions always lie in a fixed function space induced by ω(s, a). Besides, they also require the
ambiguity sets to have specific soft state-aggregate and convexity structures. These restrict the
real-world application of their robust MDP formulation since there is no reason to believe that the
feature map is accurate and structured in simulators.

To the best of our knowledge, none of the existing methods handle the uncertainty of feature map
ω(s, a) and factor µ(s→) together. However, in real-world systems, feature maps may be truncated
(Ren et al., 2023), kernel-induced (Ren et al., 2022c) or generated by latent variables (Ren et al.,
2022a), and are thus subject to uncertainty as well, just like the factors. One major computational
challenge of handling duple perturbation robustness in low-rank MDPs is that the naive formulation
(see Section 3.1) would require finding the worst-case feature map ω(s, a) and factor µ(s→), leading to
|S||A| non-convex problems with at least d|S| decision variables, and therefore losing the advantage
brought by the low-rank representation. These observations motivate the following research question:

How to design a provably efficient algorithm for duple robustness in low-rank MDPs?

1. Different names are used to refer to such MDPs with low-rank structures in literature, including factorized linear
MDPs (Yao et al., 2014), factor matrix MDPs (Goyal and Grand-Clement, 2023), (soft) state-aggregate MDPs (Ma
et al., 2023; Singh et al., 1994), linear MDPs (Jin et al., 2020; Yang and Wang, 2020), etc., which all leverage the idea
to represent the transition kernel as an inner product in the feature space.

2



EFFICIENT DUPLE PERTURBATION ROBUSTNESS IN LOW-RANK MDPS

Here by “provably efficient” we mean the algorithm is computationally efficient with theoretical
guarantees, and by “duple” we refer to model uncertainty on both the feature map and the factors.

Contribution. In this paper, we provide an affirmative answer to this question. To handle the
aforementioned challenge of the large number of decision variables in the naive low-rank robustness
formulation, we propose a novel formulation of robust low-rank MDPs with (ω, ε)-rectangular
ambiguity sets. The new formulation features compatibility and scalability for low-rank MDPs, in the
sense that it performs duple perturbation around the nominal model using only !(d) variables. We
justify the proposed formulation by examples and numerical results, and also present key properties
that relate it to existing robustness concepts.

Then we design an algorithm, Representation Robust Policy Gradient (R2PG), to solve the
proposed robust low-rank MDPs with (ω, ε)-rectangularity. The algorithm is tractable as the optimiza-
tion involved can be reduced to a !(d)-dimensional semi-definite programming (SDP) problem, and
is thus potentially scalable to work with large state-action spaces. We then show the quasi-contraction
property and the extended performance difference lemma for our robust low-rank MDP formulation,
based on which we establish a theoretical guarantee for the proposed R2PG algorithm that ensures
provably efficient convergence to the optimal low-rank robust policy with bounded suboptimality.
In addition, we evaluate the numerical performance of our R2PG algorithm on multiple continu-
ous control benchmarks, where the robust algorithm leveraging the proposed low-rank robustness
significantly outperforms its non-robust counterpart.

Due to limited space, a detailed literature review is provided in Appendix A: Related Works. Ap-
pendices can be found attached to the full paper at https://arxiv.org/abs/2404.08089.

2. Preliminaries
In this section, we introduce some basic notations and definitions in RL.

Notations. Denote by ↔·↔ the Euclidean 2-norm, and by ↑·, ·↓ the standard vector inner product.
Write [n] for the set {1, 2, . . . , n}. For any set S, let ”(S) denote the probability simplex over S.

Markov Decision Processes (MDPs). We consider a finite-horizon MDP, which is described by
a tuple M = (H,S,A, {Ph}, {rh}, ϑ). Here H is the horizon or the length of each episode, S is
the state space, and A is the action space; at step h → [H], Ph : S ↗A ↘ ”(S) is the transition
probability kernel, and rh : S ↗ A ↘ [0, 1] is the reward function; ϑ → ”(S) denotes the initial
state distribution. A policy ϖ = (ϖ1, . . . ,ϖH) is composed of stage policies ϖh : S ↘ ”(A), which
determines a distribution over actions for each observed state at step h → [H].

For an MDP with transition probability kernel P, given policy ϖ, let Eω,P denote the expectation
over a trajectory with initial distribution ϑ and evolving by aε ≃ ϖε (·|sε ), sε+1 ≃ Pε (·|sε , aε ) (the
domain of time ϱ shall be inferred from context). Define Prω,P similarly for the probability.

For any policy ϖ, the standard V - and Q-functions starting from step h → [H] are defined as
V

ω

h
(s) := Eω,P

[∑
H

ε=h
rε (sε , aε )

∣∣∣ sh = s

]
, (1a)

Q
ω

h
(s, a) := Eω,P

[∑
H

ε=h
rε (sε , aε )

∣∣∣ sh = s, ah = a

]
. (1b)

For simplicity, we abuse the above notation a bit and write V
ω

1 (ϑ) := Es1↑ϑ[V ω

1 (s)]. The (recursive)
Bellman equation with respect to policy ϖ, as well as the Bellman update operator Bh, are defined by

Q
ω

h
(s, a) = rh(s, a) + Es→↑Ph+1(·|s,a)

[
V

ω

h+1(s
→)
]
=: [BhV

ω

h+1](s, a), (2)
where V ω

h
=

〈
Q

ω

h
(s, ·),ϖh(·|s)

〉
. Note that here the Bellman operator performs an update from Vh+1

to Qh, which agrees with the definition in Ma et al. (2023), but may be different from other literature.
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Given a policy ϖ, the state occupancy measure is defined by ϑ
ω

h
(s) := Prω,P[sh = s | s1 ≃ ϑ],

and the state-action occupancy measure is defined by d
ω

h
(s, a) := Prω,P[sh = s, ah = a | s1 ≃ ϑ] at

step h → [H]. Note that we always have dω
h
(s, a) = ϑ

ω

h
(s)ϖ(a|s) and ϑω

h
(s→) =

∑
s→ d

ω

h
(s, a)Ph(s→|s, a).

Low-rank MDPs. An MDP M is said to have a low-rank structure (i.e., being a low-rank MDP),
if there exists a feature map ωh : S ↗ A ↘ Rd and two factors µh : S ↘ Rd, εh → Rd for each
step h → [H], such that for any h → [H], s, s→ → S and a → A, we have

Ph(s
→|s, a) = ↑ωh(s, a),µh(s

→)↓, rh(s, a) = ↑ωh(s, a),εh↓. (3)
We point out that both the feature map and the factors are allowed to be different across steps. As
discussed in Section 1, different names are used in literature to refer to MDPs with such decomposition
structure. In this paper, though we mainly focus on the robust MDP planning problem with known
nominal feature map and factors, we adopt the term “low-rank MDPs” to highlight the fact that the
robustness we study will involve duple perturbations on both the feature ω and the factor µ.

It is well-known that, in low-rank MDPs, Qω

h
is also representable by the same feature map as

Q
ω

h
(s, a) = [rh(s, a) + PhV

ω

h+1](s, a) =
〈
ωh(s, a),εh +

∑
s→ V

ω

h+1(s
→)µh(s→)︸ ︷︷ ︸

ωω

h

〉
, (4)

where ϑω

h
is called the factor of Q-function that is irrelevant of s, a and s

→.
We make the following assumption that is standard (Jin et al., 2020; Uehara et al., 2021).

Assumption 2.1 (Bounded norms of feature maps and factors) ↔ωh(s, a)↔ ⇐ 1, ↔εh↔ ⇐
⇒
d,

↔
∑

s
V (s)µh(s)↔ ⇐

⇒
d for any s → S , a → A and V : S ↘ [0, H].

Low-rank structures of MDPs are favored in that it enables the design of efficient planning and
learning algorithms (Agarwal et al., 2020; Jin et al., 2020; Ren et al., 2022b; Uehara et al., 2021; Yang
and Wang, 2020) by leveraging the intrinsic low-rank structure, the sample/computational complexity
of which only depends on the intrinsic dimension d rather than |S| and |A|. We emphasize that
the low-rank structure should not be seen as a restrictive assumption in general. Low-rank MDPs
naturally arise from various latent structures, such as latent variable representations (Agarwal et al.,
2020; Ren et al., 2022a) and block MDPs (Dann et al., 2018; Du et al., 2019). Additionally, generic
transition kernels can be effectively approximated by low-rank kernels through techniques like
spectral decomposition (Duan et al., 2019; Ren et al., 2022b, 2023). However, approximation
or truncation of feature maps and factors is often necessary to obtain low-rank structures, which
introduces intrinsic modeling errors in both feature maps and factors. This necessitates the use of low-
rank robust MDPs. For instance, to fit the continuous control benchmarks discussed in Section 6.2
into the low-rank MDP framework, we follow the approach of Ren et al. (2023) to truncate the
infinite-dimensional Gaussian kernel representation, resulting in finite-dimensional approximate
representations that inherently induce modeling errors.

3. Robust Low-Rank MDP with Duple Perturbation
As discussed earlier, when formulating problems as low-rank MDPs, modeling errors often occur
in both feature maps and factors. These errors can be understood as perturbations centered around
a nominal model — this is a natural equivalent understanding of ambiguity sets in the standard
formulation of (s, a)-rectangular (tabular) robust MDPs (Dong et al., 2022; Panaganti et al., 2022).
However, existing work like Goyal and Grand-Clement (2023); Ma et al. (2023) only considers
single-sided perturbation, assuming that features are known or fixed; even though misspecified
low-rank MDPs take one step further to consider modeling errors, as discussed in Section 1, the
misspecified setting is fundamentally different from the robust setting in terms of the interaction
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pattern with the environment. Later in in this section, we will see that there exists some intrinsic
difficulty in developing computationally efficient algorithms for robust low-rank MDP with duple
perturbations by following the naive way of formulating the ambiguity sets. Therefore, in this section,
we propose a new robust low-rank MDP formulation that enables the design of efficient robust RL
algorithms for large state-action spaces with duple perturbation robustness (i.e., perturbations are
applied to both the feature map and the factors).
3.1. The Proposed Robust Low-Rank MDP
When formulating robust low-rank MDPs, in parallel to the tabular robust MDP with (s, a)-
rectangular ambiguity set, it is tempting to consider the following naive robust low-rank MDP
formulation with (ς, µ, φ)-rectangular ambiguity set M̃ =


h↓[H] M̃h, where M̃h is the stage

ambiguity set at step h → [H] centered around the nominal model (ω↔
h
,µ↔

h
,ε↔

h
), defined by2

M̃h :=




(ωh,µh,εh)

∣∣∣∣∣∣

↔ωh(s, a)⇑ ω↔
h
(s, a)↔ ⇐ Rϖ,h, ⇓(s, a) → S ↗A;

↔µh(s→)⇑ µ↔
h
(s→)↔ ⇐ Rµ,h, ↑ωh(s, a),µh(·)↓ → ”(A), ⇓s→ → S;

↔εh ⇑ ε↔
h
↔ ⇐ Rϱ,h.




. (5)

The objective of robust low-rank MDP is to find an optimal policy ϖ↗ to optimize the worst-case
performance under this ambiguity set. Similarly, given a policy ϖ, the robust value function V ω

h
is

defined as the worst-case performance under the set, and we can also define corresponding robust
Bellman operators Bh to perform robust policy evaluations. Detailed definitions of ϖ↗, V ω

h
, and Bh

in the naive robust MDP setting can be found in Appendix B.1.
Unfortunately, the naive approach faces a major computational challenge of handling duple

perturbation robustness in low-rank MDPs, since to apply planning algorithms like value iteration
and policy iteration, we still need to solve |S||A| independent optimizations, each involving d|S|
optimization variables, and even coming with additional simplex constraints (i.e., ↑ωh(s, a),µh(·)↓ →
”(S)) that makes the feasible region highly non-convex. As a result, the naive formulation fails to
exploit the advantage of introducing low-rank representations, but rather, only adds to the complexity
of optimization and magnifies the drawbacks of representations.

To consider an alternative formulation that could address the complexity issues discussed above,
we first note that, from a high-level perspective, the key to ensuring robustness is to introduce
perturbation in the nominal process. In standard tabular robust MDPs and naive low-rank robust
MDPs, the Bellman updates are component-wise independently perturbed across the entire ambiguity
set, resulting in prohibitively high computational complexity. On the contrary, our proposed low-rank
robustness formulation takes advantage of the structure in Bellman update operators to “merge” the
independent perturbations into “effective perturbations”, leading to reduced complexity.
Robust Low-rank MDP with (ϖ,ϱ)-rectangularity. As discussed above, in our proposed robust
low-rank MDP, robustness is achieved by perturbing the policy evaluation scheme. Note that in the
nominal MDP, the objective V

ω

1 (ϑ) can be expanded in terms of Qω

h
(·, ·) as

V
ω

1 (ϑ) =
∑

ε<h
E(sε ,aε )↑dωε

[rε (sε , aε )] + E(sh,ah)↑d
ω

h
[Qω

h
(sh, ah)].

Therefore, the way Q
ω

h
appears in V

ω

1 is only through the weighted average Q-function
E(sh,ah)↑d

ω

h
[Qω

h
(sh, ah)] = E(sh,ah)↑d

ω

h

[〈
ω↔
h
(sh, ah),ϑ

↔
h

〉]
=

〈
E(sh,ah)↑d

ω

h
[ω↔

h
(sh, ah)],ϑ

↔
h

〉
.

Now we may perturb the above “effective” appearance of Qω

h
for robust evaluation of a given policy

ϖ. Formally, given policy ϖ, we recursively define the following robust policy evaluation scheme:
for the boundary conditions, set V ω

H+1(·) ⇔ 0; for the recursive update at time step h → [H], given

2. Here we extend the concept of ambiguity sets to allow any proper parametrization of the model. Throughout the paper,
different types of ambiguity sets will be marked with different diacritics.
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V ω

h+1(s
→) for step h + 1, we first compute the nominal Q-factor ϑ↔

h
:= ε↔

h
+

∑
s→
V ω

h+1(s
→)µ↔

h
(s→)

using V ω

h+1(·), and then solve the optimization problem
min

(εh,ϑh)↓M̂h

〈
E(sh,ah)↑d

ω

h
[ω↔

h
(sh, ah)] + ϱh,ϑ

↔
h
+ ϖh

〉
, (6)

which can also be viewed as a certain type of perturbation around the nominal dynamics. Here dω
h

still
refers to the state-action occupancy measure in the nominal model. We say Mh is a (ω, ε)-rectangular
ambiguity set, if it is rectangular in terms of (ϖh,ϱh) as

Mh :=

(ϖh,ϱh)

∣∣ ↔ϖh↔ ⇐ Rς,h, ↔ϱh↔ ⇐ Rφ,h


, (7)

where (Rς,h, Rφ,h) are the radii of perturbation. Further, we define M :=


h↓[H]
Mh. Note that

compared to the (ς, µ, φ)-rectangular ambiguity set M̃h in the naive robust low-rank MDP (defined
in (5)), the (ω, ε)-rectangular ambiguity set Mh contains much fewer components, which contributes
to greatly reducing the computational complexity as we will see later.

With the solution (ϖ↗
h
,ϱ↗

h
), we proceed to calculate the robust Q-functions under the new

robustness concept. Although the optimization problem (6) does not produce individual perturbed
features, we may simply perturb each feature ω↔

h
(·, ·) by the same amount ϱ↗

h
so that the weighted

average Q-function is not affected. In this way, the new Bellman update can be written as
[ Bω

h
V ω

h+1](s, a) := ↑ω↔
h
(s, a) + ϱ↗

h
,ϑ↔

h
+ ϖ↗

h
↓, ⇓(s, a) → S ↗A. (8)

Note that here we explicitly mark the policy behind a Bellman update operator in its superscript,
since the policy is implicitly invoked when we solve (6). Finaly, to complete the Bellman update, the
low-rank robust Q- and V -functions can be recovered by

Qω

h
(s, a) := [ Bh

V ω

h+1](s, a), V ω

h
(s) =

〈
ϖh(·|s), Qω

h
(s, ·)

〉
. (9)

The objective of the robust planning problem is to find the optimal policy that maximizes the robust
value at the initial step, namely ϖ↗ := argmaxω V ω

1 (ϑ).
3.2. Rationale of the Proposed Low-rank Robustness
In this section, we provide some additional rationale for the proposed low-rank robustness concept.
We first show that the low-rank robust MDP can be interpreted as an implicit step-wise pseudo-MDP3

perturbation around the nominal MDP via 2H effectively equivalent perturbation vectors ϖ1:H and
ϱ1:H . We then proceed to present a few key properties and examples to promote the understanding
of the proposed robustness concept.
An Alternative Interpretation of the Proposed Low-rank Robust MDPs. We show that the
proposed low-rank robust MDPs can be viewed as a relaxed version of the naive low-rank robust
MDPs. For this purpose, define the perturbation vectors

ςϖ,h(s, a) := ωh(s, a)⇑ ω↔
h
(s, a), ⇓(s, a) → S ↗A;

ςµ,h(s
→) := µh(s

→)⇑ µ↔
h
(s→), ⇓s→ → S;

ςϱ,h := εh ⇑ ε↔
h
,

so that for any (s, a) → S ↗A, the naive robust Bellman update (20) can be equivalently rewritten as

min
ϖϑ,h,ϖµ,h,ϖϖ,h


ω↔
h
(s, a) + ςϖ,h(s, a),ε

↔
h
+ ςϱ,h +



s→

V ω

h+1(s
→)

µ↔
h
(s→) + ςµ,h(s

→)


. (10)

Comparing the forms of (6) and (10), we shall regard
ϖh := ςϱ,h +



s→

V ω

h+1(s
→)ςµ,h(s

→), ⇓h → [H] (11)

3. Pseudo-MDPs are MDP-like processes that allow transition probabilities to lie out of the probability simplex. See Yao
et al. (2014) for detailed definitions and properties.
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as a collection of all perturbation terms in the second component of the inner product. On the other
hand, following the above argument, to formulate an effectively equivalent perturbation of the feature
map, we shall focus on the weighted average of (10) over (s, a) ≃ d

ω

h
and define

ϱh := E(s,a)↑d
ω

h
[ςϖ,h(s, a)], ⇓h → [H]. (12)

Plugging ϖh and ϱh back, we have recovered the form of (6). This interpretation reveals the influence
of duple perturbations over feature maps and factors on the policy evaluation scheme, justifying the
idea to consider the “effective” perturbation over ϖh and ϱh for the sake of computational efficiency.
Remark 1 (pseudo-MDP perturbation) As equations (11) and (12) suggest, in theory we may
write out a set M that contains exactly the (ω, ε)-pairs corresponding to valid perturbed MDPs
around the nominal model, at the cost of additional constraints. However, for computational efficiency,
we choose to relax the ambiguity set by replacing the simplex constraints on ϖh with a simple ↼2-ball
constraint. In this way, we are also including perturbations corresponding to pseudo-MDPs.

Relationship with Nominal Updates and Naive Robust Updates. With the above interpretation,
one may wonder how to relate the proposed low-rank robust value V ω

h
to the naive low-rank robust

value V ω

h
(defined in (18)) and the standard nominal value V

ω

h
, assuming that Rς,h and Rφ,h are

selected such that the (ω, ε)-ambiguity set induced by M̃ is a subset of M (see Appendix B.2 for
details). It turns out that we can prove the following relationship.
Theorem 2 Suppose the (ω, ε)-ambiguity set induced by the (ς, µ, φ)-rectangular ambiguity set M̃
is a subset of the (ω, ε)-rectangular ambiguity set M. Then for any step h → [H] we have:
1. Ordinal relation: Qω

h
(s, a) ⇐ Qω

h
(s, a) ⇐ Q

ω

h
(s, a), and V ω

h
(s) ⇐ V ω

h
(s) ⇐ V

ω

h
(s);

2. Bounded gap: V ω

h
(s)⇑ V ω

h
(s) ⇐ V

ω

h
(s)⇑ V ω

h
(s) ⇐

∑
ε↘h


2Rφ,ε

⇒
d+ (1 +Rφ,ε )Rς,ε


.

The above theorem again justifies that the proposed robust policy evaluation scheme can be
viewed as a relaxation of the naive robust evaluation scheme (given appropriate radii). Indeed,
the proposed scheme evaluates the policy more pessimistically, and is thus expected to yield more
conservative policies. We would also like to mention that the above bound seems to be loose in that
the gap between V

ω

1 , V ω

1 and V ω

1 is in the order of !(H). However, examples can be constructed to
show that this is actually the best bound we can expect in the worst case.

Details of the proof and the example can be found in Appendix B.3.

4. R2PG: Representation Robust Policy Gradient
With the new robustness concept in hand, now we shall present our algorithm that iteratively solves
for the optimal robust policy ϖ↗ as defined in Section 3.1.

4.1. Algorithm Design
The proposed algorithm, Representation Robust Policy Gradient (R2PG), can be found in Algo-
rithm 1 below. Overall, it follows the iterative evaluation-improvement protocol of policy iteration
methods, except that it uses the proposed low-rank robust policy evaluation scheme defined in
Section 3.1. Specifically, R2PG consists of two main components for each step in each iteration:
1. Robust policy evaluation (line 6-8). The algorithm follows the effective robust policy evaluation

scheme formulated in Section 3.1. Prior to the recursion, we first recursively compute the state
occupancy measure d

ω
k

h
for the current policy ϖ

k (line 4). Then, at each time step h, it computes
the nominal Q-factor ϑ↔,k

h
and solves (13) to get the optimal (ϖ↗

h
,ϱ↗

h
) (line 6), and then updates

the robust Q- and V -functions according to (8) and (9) with identical perturbations ϱ↗
h

around
each nominal feature ω↔

h
(·, ·) (line 7-8).
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2. Policy improvement (line 9). To update the policy, we apply the Natural Policy Gradient (NPG)
algorithm that is widely-used in literature (Agarwal et al., 2021; Cen et al., 2022; Mei et al., 2021).
Given the robust Q-function Qω

k

h
of policy ϖ

k, the policy update rule is given by ϖ
k+1
h

(a|s) ↖
ϖ
k

h
(a|s) · exp


↽ Qω

k

h
(s, a)


for some step size ↽ > 0. Detailed explanations of the intuitions

behind NPG can be found in Appendix D.3.

Algorithm 1 R2PG: Representation Robust Policy Gradient
1 Initialize ϖ

1
h
(·|s) ↙ Unif(A)

2 for k = 1, 2, · · · ,K do
3 Initialize V k

H+1(s) ↙ 0.
4 Compute d

ω
k

1 (s, a) ↙ ϑ(s)ϖ(a|s), dωk

h+1(s
→
, a

→) ↙
∑

s,a
d
ω
k

h
(s, a)P↔

h
(s→|s, a)ϖ(a→|s→).

5 for h = H,H ⇑ 1, · · · , 1 do
6 Compute ϑ↔,k

h
↙ ε↔

h
+
∑

s→
V k

h+1(s
→)µ↔

h
(s→), and solve the optimization:

(ϖk
h
,ϱk

h
) ↙ argmin

≃εk
h
≃⇐Rϱ,h,

≃ϑk

h
≃⇐Rς,h

〈
E
(s,a)↑d

ωk

h

[ω↔
h
(s, a)] + ϱk

h
,ϑ↔,k

h
+ ϖk

h

〉
. (13)

7 Perform feature update: ωk

h
(s, a) ↙ ω↔

h
(s, a) + ϱk

h
, ϑk

h
↙ ϑ↔,k

h
+ ϖk

h
.

8 Update value functions: Qk

h
(s, a) ↙ ↑ωk

h
(s, a),ϑk

h
↓, V k

h
(s) ↙

∑
a
ϖ
k

h
(a|s) Qk

h
(s, a).

9 Update policy by Natural Policy Gradient: ϖk+1
h

(a|s) ↖ ϖ
k

h
(a|s) · exp


↽ Qω

h
(s, a)


.

10 return ϖ
out ≃ Unif(ϖ1:K)

Remark 3 (computational considerations) For efficient implementation, a few computational chal-
lenges in Algorithm 1 need to be settled, including solving the non-convex optimization problem (13)
(which can be reduced to a constrained semi-definite program (SDP)) and estimating parameters
including d

ω
k

h
and ϑ↔,k

h
, details of which can be found in Appendix C.

5. Theoretical Analysis
In this section, we present the convergence guarantee for our R2PG algorithm. Specifically, we
would like to show that the robust value of the output policy ϖ

out is close to that of the optimal robust
policy ϖ↗ defined in Section 3.1. To this end, we have the following bound.
Theorem 4 (Convergence) Under Assumption 2.1, by running R2PG (Algorithm 1) with step size
↽ =


2 logA/(KH2), the low-rank robust V -function of ϖout satisfies

Eωout

[
V ↗
1 (ϑ)⇑ V ω

out

1 (ϑ)
]
⇐


2H4 logA

K
+ 2

H

h=1

Rφ,h

⇒
d. (14)

Proof sketch. The proof is similar to that in Liu et al. (2023), which consists of three main steps.
Step 1: Quasi-contraction property. The first key observation is that the new robust Bellman

operator satisfies a quasi-contraction property, which is similar to the contraction of nominal and
naive robust Bellman operators (Iyengar, 2005), but also different in that it only holds in expectation
over dω

h
and comes with an additional constant bias term due to the misspecification of pseudo-MDPs.

Lemma 5 For any V -functions V, V → : S ↘ R and any policy ϖ, we have
E(s,a)↑d

ω

h

[
[ Bω

h
V ](s, a)⇑ [ Bω

h
V

→](s, a)
]
⇐ Es→↑ϑ

ω

h+1

[
V (s→)⇑ V

→(s→)
]
+ 2Rφ,h

⇒
d. (15)

Step 2: Extended performance difference lemma. We proceed to prove an extended performance
difference lemma that is similar to its counterpart in Efroni et al. (2020).
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Lemma 6 For any policies ϖ and ϖ
→, we have

V ω

1 (ϑ)⇑ V ω
→

1 (ϑ) ⇐
H

h=1

Eω,P↑

[〈
Qω

→
h
(sh, ·),ϖh(·|sh)⇑ ϖ

→
h
(·|sh)

〉
(16)

+
〈
[ Bω

h
V ω

→
h+1](sh, ·)⇑ Qω

→
h
(sh, ·),ϖh(·|sh)

〉]
+ 2

H

h=1

Rφ,h

⇒
d.

Step 3: Plugging in the upper bounds. To complete the proof, we average (16) over the K policies
obtained in K episodes. To bound the first term in the expectation in (16), we plug in the regret
bound for NPG (Corollary 16); the second term can be bounded by a technical lemma (Lemma 17)
that characterizes the difference between robust Bellman updates with respect to different policies.

Details of the proof can be found in Appendix D.4

Remark 7 (Eliminating the constant bias) We point out that the constant bias term 2
∑

H

h=1Rφ,h

⇒
d

scaling in the order of !(H) in the worst case is accounted for by the intrinsic misspecification
error of pseudo-MDPs from MDPs, as mentioned in Theorem 1, which is common in psuedo-MDP
literature (Yao et al., 2014). A potential way to eliminate this constant bias is to add more structure
to the (ω, ε)-ambiguity set such that each perturbation corresponds to at least one valid MDP around
the nominal model. Appendix E provides some preliminary insights that consider latent-variable-style
low-rank structures, though suffering from additional assumptions and computational challenges.

6. Numerical Simulation

Figure 1: Robust evaluation
of policies in a toy model.

In this section, we study the robust behavior of policies induced by
solving the proposed duple perturbation low-rank robustness concept
via numerical simulations. We first show a direct implementation of
the R2PG algorithm in a toy model, and then move on to a modified
implementation to handle a series of classical control tasks with
continuous state-action spaces.

6.1. A Toy Model
We first show the numerical performance of our R2PG algorithm via simulations in a 4-state toy
model, where the states are manually designed to represent different “uncertainty levels”. Details of
the setup are deferred to Appendix F.1.

The proposed R2PG algorithm is run with different perturbation radii Rφ,h = 0.01 and Rς,h →
{0.05, 0.2, 0.4, 0.8, 1.2}, and the policies obtained in all the episodes are evaluated by the minimum
cumulative reward in several perturbed MDPs, the results of which are plotted in Figure 1. It can be
observed that policies converge in all executions, and a larger perturbation radius generally leads
to more conservative behavior. This phenomenon is largely expected in that, as perturbation radius
increases, the misspecification error induced by the worst-case pseudo-MDP also increases, which
leads to an intrinsically pessimistic estimation of policy values. Nevertheless, we point out the
output policies still perform better than the nominal optimal policy when the MDP is appropriately
perturbed, again highlighting the need for robustness in environments with uncertainty.

Analyzing the output policies in details, we shall further find that, as time elapses, all output
policies gradually lean towards the safe state by increasing the transition probabilities to it. However,

4. Proofs and additional theoretical results can be found at https://arxiv.org/abs/2404.08089.
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since the algorithm is designed to optimize over the average performance for policy evaluation, it is
also reasonable that it does not fully converge to a policy that yields optimal worst-case performance.

6.2. Continuous Control Tasks
In this section, we show the numerical performance of our robust policy evaluation scheme in a series
of classical continuous control tasks, including Pendulum (Brockman et al., 2016), CartPendulum
(Brockman et al., 2016), Pendubot (Fantoni et al., 2000), and Quadrotor drone control (Hoffmann
et al., 2007). To handle planning in MDPs with continuous state-action spaces, we adapt the Spectral
Dynamics Embedding Control (SDEC) algorithm (Ren et al., 2023) to incorporate our robust policy
evaluation scheme. We also use the truncated Gaussian kernel representation proposed in (Ren et al.,
2023) as the nominal model, avoiding the complication of representation learning. Details of the
setup and the implementation are deferred to Appendix F.2.

We compare the performance of Robust-SDEC-R (which incorporates the robust policy evalu-
ation scheme with perturbation radius Rφ,h = Rς,h = R) against the SDEC baseline (the vanilla
algorithm without robust policy evaluation). The output policies are evaluated with respect to per-
turbed physical parameters, as shown in Figure 2. It can be observed that, in presence of perturbed
physical parameters, the performance of Robust-SDEC suffers much less degradation as compared
to the baseline SDEC, and the advantage is more significant with larger perturbations. These
numerical results justify the effectiveness of the duple perturbation low-rank robustness concept.

Figure 2: Evaluation results against different perturbation ratios of the physical parameters.
(curve: average cumulative reward; shade: 95% confidence region; both over 200 evaluation episodes)

7. Conclusion
In this paper, we propose a novel low-rank robust MDP with duple perturbations, which efficiently
and effectively achieves robust behavior in low-rank MDPs. The new robustness concept features
computational efficiency, scalability and compatability with low-rank representation structure. Based
on the new robustness concept, we design an algorithm (R2PG) to solve the proposed robust low-rank
MDP that provably converges to the optimal robust policy with bounded suboptimality gap.

Despite the theoretical results and empirical success, algorithms solving the proposed low-
rank robust MDPs generally suffer from constant performance gaps induced by the pseudo-MDP
relaxation and the nominal occupancy measure approximation, while the initial attempts to resolve
these issues result in new computational challenges. In addition, sample-based learning methods
remain challenging for robust low-rank MDP. Therefore, future work along this line includes
designing algorithms that solve for the robust policy in an asymptotically accurate and/or more
computationally efficient way, incorporating sample-based methods to estimate the nominal MDP
and use the estimated MDP to generate robust policies, and further, discovering other robustness
concepts that are compatible with different low-rankness concepts for more scalable robust RL.
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