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Abstract—Humanoid robots hold great potential to perform
various human-level skills, involving unified locomotion and ma-
nipulation in real-world settings. Driven by advances in machine
learning and the strength of existing model-based approaches,
these capabilities have progressed rapidly, but often separately.
This survey offers a comprehensive overview of the state-of-
the-art in humanoid locomotion and manipulation (HLM), with
a focus on control, planning, and learning methods. We first
review the model-based methods that have been the backbone
of humanoid robotics for the past three decades. We discuss
contact planning, motion planning, and whole-body control, high-
lighting the trade-offs between model fidelity and computational
efficiency. Then the focus is shifted to examine emerging learning-
based methods, with an emphasis on reinforcement and imitation
learning that enhance the robustness and versatility of loco-
manipulation skills. Furthermore, we assess the potential of inte-
grating foundation models with humanoid embodiments to enable
the development of generalist humanoid agents. This survey
also highlights the emerging role of tactile sensing, particularly
whole-body tactile feedback, as a crucial modality for handling
contact-rich interactions. Finally, we compare the strengths
and limitations of model-based and learning-based paradigms
from multiple perspectives, such as robustness, computational
efficiency, versatility, and generalizability, and suggest potential
solutions to existing challenges.

Index Terms—Humanoid robotics, Loco-manipulation, Model
predictive control, Whole-body control, Imitation learning, Foun-
dation models, and Whole-body tactile sensing.

I. INTRODUCTION

A humanoid robot refers to any anthropomorphic robot that

resembles the form of a human [7]. Typically, a humanoid

robot possesses a torso, two arms, and two legs, though the

degree of anthropomorphism may vary. For instance, some

humanoid robots feature simple hands or wheeled legs [8].

The primary focus of this review is on humanoid robots that

replicate human morphologies and functionalities, rather than

those that closely mimic human-like visual appearance and

external aesthetics. Specifically, this survey examines bipedal

humanoid robots, with an emphasis on the whole-body motion

of humanoid robots instead of on the dexterous manipulation

of multi-finger hands.

*co-corresponding authors
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Fig. 1. Humanoids executing locomotion and manipulation tasks: (a) HRP-4
wipes a wood board while adapting to terrain [1]; (b-g) Object pick and place
by Digit, Hector [2], Atlas, H1, TORO [3], and Apollo; (h) iCub pushes a
cart [4]; (i) Nadia opens a door [5]; (j-k) Object manipulation by Figure 02
and Optimus; (l) MIT humanoid whole-body push recovery [6].

Humanoid robots are well suited for executing human-level

tasks, as they are built to (ideally) replicate human motions

and achieve various whole-body loco-manipulation tasks, e.g.,

applications ranging from manufacturing to services, as shown

in Fig. 1. Their anthropomorphism makes them stand out

from other robot forms in performing human-like tasks, such

as payload carrying over stairs, especially in environments

designed for humans. Furthermore, humanoid robots can in-

teract with humans for physical collaboration tasks, such as

collaboratively moving a large table upstairs with human
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assistance. However, simultaneously achieving these intricate

tasks while addressing highly complex robot dynamics is still

challenging, let alone safe physical collaborations with humans

and/or operations in unstructured environments. As a promis-

ing direction to solve this problem, humanoids can exploit the

abundance of data collected from humans to quickly acquire

motor and cognitive skills due to their human-like morphology.

Therefore, scaling human data and computational resources for

humanoid embodiment is potentially a fast route to embodied

intelligence.

Embodied intelligence at large is thriving at an unprece-

dented pace. Perception algorithms can detect, classify, and

segment a wide variety of objects in real time. Model-

based methods that leverage both predictive and reactive

control have enabled agile and reliable locomotion and ma-

nipulation. Meanwhile, deep learning policies have demon-

strated convincing control results on robot hardware through

exploration and imitation. Large foundation models trained

on massive, internet-scale datasets are beginning to show

cognitive capabilities of open-world reasoning. Consequently,

the building of autonomous humanoid robots for real-world

applications has become possible, leading to the emergence

of many humanoid robot companies and concrete deployment

applications. Especially, companies with powerful GPU-based

parallelization capabilities, such as NVIDIA, and companies

building physical humanoid robots, such as Boston Dynamics,

Tesla, and Figure, have begun collaboration on the embodied

intelligence of humanoid robots.

Acknowledging the rapid advancements in humanoid

robotics, this article reviews recent developments in Humanoid

Locomotion and Manipulation (HLM). As laid out in Fig. 2,

humanoid robotics is a multidisciplinary field that spans do-

mains in design, actuation, sensing, control, planning, and

decision-making. In this survey, we mainly examine task plan-

ning, motion planning, policy learning, and control from the

perspective of model-based and learning-based methods. We

first synthesize traditional model-based methods for planning

and control. Then, we shift our focus to more recent learning-

based approaches, especially those leveraging reinforcement

learning, imitation learning, and foundation models.

Model-based methods serve as the cornerstone for enabling

HLM capabilities. These methods depend critically on physical

models, which can significantly influence the quality, speed,

and guarantees of motion generation and control. Over the

past decade, planning and control techniques have shown a

trend of converging to the predictive-reactive control hierarchy,

employing a whole-body model predictive controller (MPC)

or simplified model (centroidal dynamics) MPC coupled with

local task-space Whole-Body Controllers (WBC) [9]. These

planning and control techniques are usually formulated as

Optimal Control Problems (OCPs) that are solved by off-

the-shelf or customized numerical solvers. Although these

numerical optimization methods are well-established, research

continues to focus on enhancing their computational effi-

ciency, numerical stability, robustness, and scalability for high-

dimensional systems.

Learning-based approaches have witnessed a rapid surge in

humanoid robotics and achieved impressive results that attract

an increasing number of researchers to the field. Among the

diverse learning approaches, Reinforcement Learning (RL) has

proven its ability to achieve robust motor skills. However,

despite its ability to discover novel behaviors via trial and

error, pure RL without demonstration data is often pro-

hibitively inefficient for HLM tasks, which are characterized

by high degrees-of-freedom robots and sparse reward set-

tings. Therefore, sim-to-real RL, where training is conducted

in simulation before transferring to the physical robot, has

become a prevalent method, though it faces the challenge

of bridging sim-to-real gaps. From the existing literature, we

observe that sim-to-real RL has gained significant traction for

achieving humanoid whole-body motion. There is an ongoing

debate between model-based and learning-based control, and

therefore we highlight two key points: (1) sim-to-real RL that

relies on the accurate dynamics models in a simulator can also

be viewed as a “model-based,” method, even though the RL

algorithm itself does not explicitly model the dynamics; and

(2) model-based control and sim-to-real RL do not conflict;

on the contrary, they often complement each other and can be

combined to achieve a better performance than either method

alone.

Imitation learning (IL) from expert demonstrations has

proven to be an efficient method of acquiring motor skills.

IL techniques, such as behavior cloning [10], have shown

impressive abilities to mimic a wide range of skills. In

pursuit of versatile and generalizable policies through IL,

many researchers and companies have focused on scaling data.

While robot experience data can be diverse and high-quality,

its acquisition is both expensive and time-consuming. Thus,

learning from human data, which is abundant and readily avail-

able from Internet videos and public datasets, emerges as a

pivotal strategy for humanoid robotics. Learning from humans

is a unique advantage exclusive to humanoid robots. However,

even though humanoid robots may attain human-level motor

skills, a deeper question of embodied intelligence persists: how

to learn the intentions (source) behind human actions rather

than merely replicating the observed motions (outcome). It is

hypothesized that understanding human intention is achieved

via Foundation Models (FMs) that are capable of semantic

interpretation of the environment and the task. This hypothesis

motivates us to include FMs as a part of our survey.

The remarkable success of FMs has sparked a surge in

general robotics research, as highlighted by several compre-

hensive surveys [11, 12]. This paper surveys the application

of FMs specifically for humanoid robots. FMs offer a promis-

ing solution to the persistent challenge of generalizability

in robotics by efficiently harnessing internet-scale datasets

to acquire extensive knowledge. A pre-trained FM exhibits

capabilities for open-world reasoning and multimodal semantic

understanding. These capabilities are invaluable for robots en-

gaged in complex environments requiring long-term, logically

coherent task planning. Within the realm of humanoid robots,

FMs have been successfully implemented as task planning

modules in hierarchical planning and control frameworks.

Training end-to-end FMs for humanoid applications is an

emerging area, poised for significant future advancements.
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Fig. 2. This survey begins by defining relevant concepts of humanoid robots and their locomotion and manipulation capabilities. Centered around achieving
humanoid loco-manipulation tasks, the core of this survey delves into two main categories of methods: the traditional planning and control approaches, such
as contact planning, motion planning, and control, as well as the emerging learning-based approaches, including skill learning and foundation models. In
addition, this survey highlights whole-body tactile sensing as a crucial modality to achieve contact-rich loco-manipulation.

A. Survey Roadmap

For the selection criteria of papers cited in this survey, we

prioritize topics most relevant to humanoid loco-manipulation

capabilities, including tactile sensing [13], model-based plan-

ning [14] and control [9], as well as learning-based methods

such as RL [15, 16], IL [17, 18], and FMs [11, 12]. Distinct

from survey papers on these topics, our paper aims to present a

broad overview with a focus on humanoid loco-manipulation.

Each of these topics has extensive studies. For each topic,

we aim to spotlight three categories of papers: (i) foundational

studies that established key principles in these areas, (ii) recent

works representing the state of the art, and (iii) survey papers

for further reading. Our survey spans 30 years of research.

Specifically, model-based planning and control papers have

been collected since 1990, and learning-based methods pre-

dominantly span the past 20 years.

Compared with existing survey reviews on humanoid

robotics [7, 19], this survey collects up-to-date papers and

introduces in detail the new paradigm of learning-based meth-

ods.

As shown in Fig. 2, this survey is organized in the following

order. We first establish the background, defining humanoid

robots and the key capability of locomotion and manipulation

in Sec. II. We detail whole-body tactile sensing in Sec. III.

We then present traditional approaches that achieve loco-

manipulation, including contact planning (Sec. IV), motion

planning (Sec. V), and control (Sec. VI).

We then examine the state-of-the-art learning-based al-

gorithms. In Sec. VII, we explore approaches using rein-

forcement learning and imitation learning to acquire loco-

manipulation skills. In Sec. VIII, we discuss how foundation

models have become the backbone of semantic understanding

and decision-making for effective humanoid task planning.

Finally, we highlight significant challenges in this field and

present our perspectives on potential future research directions

and emerging opportunities in Sec. IX.

B. Survey Contributions

We summarize our core contributions as follows:

• The survey serves as an effective resource for graduate

students and researchers new to the field, offering a

comprehensive review of humanoid technical methods,

while also providing perspectives for humanoid experts

in academia and industry with the latest advancements.

• We advance the understanding of loco-manipulation in

bipedal humanoid robots by clearly defining the prob-
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lem, surveying state-of-the-art methods and capabilities,

and outlining remaining challenges along with promising

solutions.

• We provide a clear comparison between model-based and

learning-based methods, and their corresponding loco-

manipulation skills achieved on humanoid robots. This

comparison offers valuable insights for researchers de-

ciding their methods.

II. BACKGROUND

In this section, we focus on the humanoid robot’s main ca-

pabilities: bipedal locomotion and whole-body manipulation.

Finally, we detail the combined loco-manipulation skills with

the state-of-the-art methods and current challenges.

A. Bipedal Locomotion

Bipedal locomotion is a significant characteristic of hu-

manoid robots. Therefore, in the past three decades, bipedal

locomotion has been a prolific field of humanoid research.

Interested readers can refer to the excellent reviews (most of

which are recent) [20, 21, 22], and the monographs [23, 24].

In summary, model-based bipedal locomotion has evolved sig-

nificantly, progressing from passive walking [25, 26] to quasi-

static walking [27], and then to dynamic walking [23]. Bipedal

walking on flat surfaces has been well explored and mastered

through periodic motions with model-based methods [23, 28].

These approaches have also expanded to more agile motions

such as jumping [29, 30] and back-flipping [31].

Bipedal locomotion under external perturbations and force

loads has been extensively studied. Such capabilities lay the

foundation for simultaneous locomotion and manipulation, the

focus of this survey. Model-based methods are among the

early works that demonstrate these capabilities. For example,

[32] introduced a passivity-based controller with task space

dynamics that treats external forces as part of the robot’s

generalized forces. [2] incorporated a payload into a simplified

rigid body model to enable dynamic walking while carrying

a load, and [33] integrated external forces into a simplified

linear inverted pendulum model.

In addition to model-based methods, bipedal locomotion

has also been successfully addressed by learning-based meth-

ods [34, 35, 36], particularly in the context of periodic motions

on flat surfaces. Furthermore, learning-based approaches have

also demonstrated capabilities in more complex settings, such

as running [37], jumping [38], and handling non-periodic

motions such as stair climbing [39] and parkour [40]. Similar

to the trend in model-based methods, learning-based methods

have further extended their capabilities to handle external

forces and payloads [41, 42].

Researchers have explored energy efficiency in bipedal

locomotion by examining the Cost of Transport (COT), which

designates energy expenditure per unit distance traveled, nor-

malized by body weight. Early work in passive dynamic walk-

ing [25, 26] achieved higher efficiency than humans but of-

fered limited versatility. Meanwhile, today’s humanoid robots

(COT > 0.7) are significantly less efficient than humans

(COT = 0.2) [43]. Therefore, efficient walking continues to

motivate hardware designs that incorporate passive-compliant

components for energy storage [44, 45] and control algorithms

that exploit the system’s natural dynamics [46, 47].

B. Bipedal Navigation

Proficiency in bipedal locomotion has naturally progressed

to humanoid robots’ ability to effectively navigate complex

environments, including indoor and outdoor areas with uneven

terrain and dynamic obstacles. A navigation stack often incor-

porates a hierarchical structure: a global path planner and a

local step planner. The global path planner [48, 49, 50, 51, 52]

is typically responsible for understanding the overall navi-

gation task and generating a path that avoids obstacles and

reaches the target location. On the other hand, local step

planners, e.g., [53, 54, 55] focus on determining the precise

foot placements that adhere to the bipedal dynamics within

the immediate surroundings of the robot while also tracking

the global path.

From the aforementioned navigation stack, bipedal naviga-

tion capabilities have progressed from static obstacle avoid-

ance on flat terrain [56] to more challenging scenarios,

including locomotion through height-constrained space [51,

57], avoiding dynamic obstacles in a constrained environ-

ment [58], navigating dynamic social environments using

reachable sets [59], or deep RL that incorporates the per-

ceived pedestrian emotions into the navigation plan [60], and

traversing rough terrains [48, 49, 50, 61, 62, 63]. A persistent

challenge for these methods is that they are tailored to specific

use case scenarios and lack the versatility to handle a wide

range of different situations.

While bipedal locomotion and navigation have been widely

studied, real-world deployment remains a significant challenge

due to inherent uncertainties. Uncertainty can arise from the

environment and the robot model. Real-world environments

have uneven, varying terrain, dynamic obstacles, and occlu-

sion, making it difficult to ensure the safety and robustness

of bipedal navigation. On the other hand, model uncertainty

arises from discrepancies in the mathematical representation

of the robot model and the physical system. Model un-

certainty also exists in most current navigation frameworks

that employ reduced-ordered models at the high level for

collision avoidance and goal-reaching tasks and a full-order

model at the low level for tracking high-level commands. A

coupled framework that considers both the navigation task and

whole-body control stability and accuracy is under-explored.

Although previous works have addressed various aspects of

environment uncertainties [64] and model uncertainties [65],

a comprehensive navigation stack capable of handling the full

spectrum of real-world uncertainties is still essential.

C. Whole-body Manipulation

Anthropomorphic manipulation has been the inspiration for

bimanual manipulation [66], loco-manipulation, and dexterous

manipulation [67]. The ultimate form of anthropomorphic

manipulation is whole-body manipulation, referring to the

ability to manipulate objects using any part of one’s body.

For example, humans use their elbows or hips to hold a
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door open for convenience; humans use their palms or fists

instead of fingertips to provide large forces; humans curl their

little fingers to hold a small object while still using other

fingers for manipulation. In comparison, most robots often

have predefined end-effectors, such as foot soles or fingertips,

as the only parts allowed to physically interact with the world.

Whole-body manipulation is a grand problem that shares

challenges in bimanual manipulation, loco-manipulation, and

dexterous manipulation. This general ability has yet to be

developed, but its emergence will indicate a breakthrough for

robotic manipulation.

The idea of whole-body manipulation was originally studied

in the whole-arm manipulation community [68]. Whole arm

manipulators were designed and built to explore the benefit

of manipulating objects with all surfaces of a robot manipula-

tor [69]. This brings a unique challenge that manifests itself in

all the system levels in perception, estimation, planning, and

control. Since there are an infinite number of such contacts, the

planning complexity suffers from the combinatorial explosion

of contact modes [70] and exponential computational costs

from the high degree of freedom of the system [66].

Numerous breakthroughs in mechanical design, control, and

planning have been achieved in the endeavor to address the

challenges of whole-body manipulation. On the mechanical

design side, robots made with soft materials and full-body

sensing, such as Punyo [71], provide whole-body manipulation

capability in a built-in manner.

For control, the coordinative and contact-rich nature requires

forceful and compliant control. Traditionally, robot arms were

hard-coded to switch across different control strategies ac-

cording to task requirements [66]. Different task requirements,

such as reaching a point or wiping a table, require different

control strategies, such as pure position control or hybrid

force position control. However, it is still unclear how to

define and enumerate the control strategies for whole-body

manipulation. In addition, a general control framework that can

take in the sensor data, perform state estimation, and reactively

control each body contact has yet to exist [72]. Such general

frameworks require innovations in advanced hardware and

algorithm architecture, including whole-body sensing [73] and

robot designs with compliance and force control capabilities

for reactive manipulation [74].

From the planning perspective, the challenge of whole-body

manipulation can be potentially alleviated via human behavior

imitation algorithms [75, 76, 77]. Most of these works focus on

simple manipulation strategies such as whole-body grasping

and pushing. To enable the robot to mimic more complex

human whole-body manipulation behaviors, it is important

to address the cross-morphology gap between humans and

humanoids.

To achieve humanoid whole-body manipulation, full-stack

system integration at all system levels is crucial. In the future,

we expect to see hardware advances in whole-body sensing,

compliant materials, and force-transparent mechanism design.

Significant improvements on the algorithm side will also

be needed. While classical planning and control approaches

suffer from huge complexity issues, pure learning methods

lack the flexibility to react to contacts and adapt to different

TABLE I
TAXONOMY OF WHOLE-BODY LOCOMOTION AND MANIPULATION

(a) Whole-body
Manipulation

(b) Whole-body
Loco-manipulation

(c) Loco-
manipulation

Object movement
(Manipulation)

6 6 6

Robot self mobility
(Locomotion)

: 6 6

All surface interaction
(Whole-body)

6 6 :

(a) Whole-body Manipulation (c) Loco-manipulation(b) Whole-body 
Loco-manipulation

Fig. 3. (a) Whole-body manipulation exemplified by human and humanoid
Justin [78] interacting with objects using all surfaces. (c) Loco-manipulation
involves simultaneous locomotion and manipulation, as shown in the col-
laborative tasks performed by humans and a humanoid [33]. (b) Whole-body
loco-manipulation is an intersection of (a) and (c), as exemplified by a human
and a humanoid HRP-4 [79] pushing heavy objects using their legs and arms.

tasks. We foresee that the solution will be an integrated

approach, which combines the strength of both. Ultimately,

this could lead to more complex, human-like capabilities in

humanoid robots, merging improved control, adaptive learn-

ing, and comprehensive sensing. Furthermore, addressing the

core issues in loco-manipulation will also shed light on whole-

body manipulation, as both areas involve handling complex,

contact-rich interactions on different body parts.

D. Loco-manipulation

One of the key features of humanoid robots is their ability

to simultaneously perform locomotion and manipulation (ab-

breviated as loco-manipulation hereafter) tasks. As suggested

by its name, loco-manipulation involves both the movement

of objects through manipulation and the mobility of the robot

itself through locomotion. In a more general case of whole-

body loco-manipulation, the whole-body refers to the use of all

body surfaces to interact with the environment. We summarize

the relationship between loco-manipulation, and whole-body

manipulation in Table I. Both whole-body manipulation and

loco-manipulation highlight the importance of utilizing phys-

ical contact. As shown in Fig. 3, loco-manipulation considers

the movement of the robot itself while it manipulates an object,

whereas whole-body manipulation emphasizes leveraging all

accessible robot contact surfaces, such as using the chest as

extra support to move large objects.

Loco-manipulation capability has been widely demon-

strated on quadruped robots, specifically those achieving loco-

manipulation capability by using their limbs as manipula-
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tors [80, 81, 82]. For quadrupeds with upper-body manip-

ulators, whole-body control is widely adopted for pick and

place tasks from the model-based [83, 84] and learning-based

community [85, 86].

Loco-manipulation for humanoid robots is particularly chal-

lenging, compared with quadrupeds. Humanoid robots have a

smaller support region on the ground and a higher center of

mass, which is challenging for dynamic balance. Therefore,

early humanoid frameworks focus on separate control for lo-

comotion and manipulation. For example, in locomotion tasks,

most studies constrain the upper body to remain upright, which

simplifies the whole-body problem to a bipedal locomotion

problem that considers only the lower limbs. Conversely, in

most table-top manipulation tasks, the lower body of the

humanoid remains stationary [87, 88]. In such cases, any

external force exerted on the upper body is treated as a

disturbance to the legs, whose goal is to solely maintain

balance. On the contrary, in [1], there is no such categorization

of contacts: all contacts contribute simultaneously to achieve

the task and balance.

Humanoid loco-manipulation requires a holistic and strate-

gic use of the entire body to explore the humanoid’s full

behavioral capability space. Additionally, whole-body loco-

manipulation needs to schedule contact for all limbs to simul-

taneously achieve robust movement and safe object interaction.

Acquiring this technique unlocks a broad range of useful tasks

such as opening doors [89, 90], pushing trolleys [91, 92],

rolling large bobbins [93], or climbing ladders [94, 95].

III. TACTILE SENSING

Humanoid locomotion and manipulation involve extensive

physical interactions with the environment and objects, re-

quiring multimodal sensing for understanding the environ-

ment, tracking manipulated objects, and evaluating how con-

tact impacts the balance of both the robot and the objects.

Visual sensors have shown effectiveness in object tracking

and simultaneous localization and mapping (SLAM) [93],

while proprioceptive sensors are usually combined to estimate

contact information in contact-rich tasks [89]. These sensory

modalities have been widely adopted in existing systems and

have been thoroughly reviewed in the literature [19].

In contrast, tactile sensing, despite being uniquely suited

for capturing detailed contact information critical for both

locomotion and manipulation, has received relatively limited

attention in existing humanoid literature. This survey specif-

ically highlights tactile sensing to address this gap and to

underscore its complementary role alongside other sensing

modalities in humanoid systems.

Mimicking the human sense of touch, tactile sensing pro-

vides more accurate and comprehensive contact information

over large areas of robot skin compared to proprioceptive

sensors [96], and allows the robot to perceive complex envi-

ronments and assess object properties through physical inter-

actions, especially in scenarios where vision is occluded [97].

Additionally, tactile sensing can be used to estimate contact-

based object properties such as roughness, texture, and weight,

complementing traditional visual information such as location,

Tactile Sensing on Hands (Sec. III-A)

(b) (c)

Tactile Sensing on Feet (Sec. III-B)

(f)

Whole-body Tactile Sensing (Sec. III-C)

(g)

(h)

(i)

(a)

(d)

(e)

Fig. 4. Tactile sensing on humanoid robots, exemplified by (a) REEM-C
fully covered with artificial skin [73] (image copyright: A. Eckert), which
cover three body regions: hand, feet, and the whole body. (i) Hand tactile
sensors demonstrated by (b) Shadow-Dexterous-Hand equipped with tactile
sensors on palm and fingertips [111], (c) Allegro Hand equipped with DIGIT
sensors [109], and (d) BioTac [123] tactile sensors for dexterous manipulation;
(ii) Tactile sensors on foot soles for (e) obstacle recognition [120] and (f)
terrain classification [121]; (iii) Whole-body tactile sensors for (g) whole-
body manipulation by Punyo-1 [71] and whole-body human-robot interaction
by (h) iCub [124] and (i) REEM-C [125, 126]

shape, and color [98]. A combination of tactile with other sen-

sory modalities can significantly enhance humanoid perception

capabilities in solving complex loco-manipulation tasks.

Numerous studies have developed tactile sensors based

on various transduction principles that can sense normal

and tangential forces, vibration, temperature, and pre-contact

proximity information. Comparative studies of various sensor

designs can be found in [13, 99, 100]. This survey instead

focuses on their application in humanoid loco-manipulation,

categorized into three areas: (i) tactile sensing on hands,

(ii) tactile sensing on foot soles, and (iii) whole-body tactile

sensing. The following sections review recent advancements

in each domain, emphasizing their roles in balancing control,

scheduling contacts, and enhancing interaction capabilities, as

illustrated in Fig. 4 and Table II.

A. Tactile Sensing on Hands

Tactile sensors on dexterous hands provide contact informa-

tion, addressing the challenges in object manipulation such as

grasped object controllability and object property estimation.

In this subsection, we survey studies that integrate tactile

perception into the control, planning, and learning of complex

manipulation tasks. Due to the similar nature of contact-

rich interactions, the tactile sensing techniques on hands also

offer valuable insights for whole-body tactile sensing and

manipulation, which is discussed in Sec. III-C.
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TABLE II
ROLES AND CHALLENGES OF TACTILE SENSING IN LOCOMOTION AND MANIPULATION APPLICATIONS

Application Roles of Tactile Sensing Body Region Involved Challenges Solutions

Manipulation

• Grasping force and stability regulation
[101, 102, 103, 104]

• Object property and state estimation
[105, 106, 107]

• Contact dynamics estimation
[108, 109]

• Input modality for RL/IL/FM training
[110, 111, 112, 113, 114]

• Hand (in IHM∗)
• Whole-body (in WHM∗)

• High-dimensional
contact space
• Tactile physics simulation
• Sim-to-real transfer

• Dimensionality reduction
[111, 115, 116]

• Tactile simulators
[117, 118, 119]

Locomotion

• GRF and support region estimation
[120]

• Terrain property recognition
[121, 122]

• Feet

• Sensor durability against
heavy weight and various
terrains

• Durable materials
and mechanical design
[120, 121, 122]

Loco-manipulation

• All of above
• Unified locomotion and manipulation
planning

• Whole-body

• All of Above
• Real-time contact
reasoning and adaptation

• To be explored

∗ IHM - In-hand Manipulation; WBM - Whole-body Manipulation.

To achieve the grasping objectives, sensed contact forces

serve as real-time feedback in force or impedance control

loops to regulate the desired object behavior [101]. Moreover,

slip detection and prediction based on tactile sensor data

are used to adapt grasping forces, thereby enhancing grasp

stability [102, 103, 127].

More complex in-hand manipulation tasks demand interac-

tive perception beyond static object models. Dynamic contact

information, including real-time tracking of object states,

monitoring contact stability [106], and predicting interaction

outcomes [108, 109], i.e., how contact forces affect the balance

of both objects and the robot, are crucial to achieving complex

interactive behaviors. However, due to the inherent complexity

of multi-contact dynamics and increased dimensionality of

the contact state space, model-based methods still struggle

to match human-level dexterity and versatility in multi-finger

manipulation.

Alternatively, model-free Reinforcement Learning (RL) has

shown the ability to address complex contact interactions.

These approaches integrate tactile measurements directly into

the state space to train end-to-end policies [110, 111]. Other

learning methods besides task-specific RL have been sought

for more generalizable policies. [112] employs diffusion policy

to achieve complex and long-horizon bi-manual manipulation

tasks, while recent work has integrated tactile sensing into

foundation models alongside vision and language [113, 114].

Though limited to simple control tasks, these models may

eventually enable more natural and versatile physical inter-

actions in humanoid robots.

Advancing robot hands with tactile sensing for humanoid

tasks requires addressing the dual demands of high dexter-

ity for delicate manipulation and high payload capacity for

heavy object lifting. While human hands naturally achieve this

balance, most robotic hands prioritize dexterity but support

limited payloads. In the short term, swappable modular hands

tailored to specific tasks are practical, but the long-term

goal should be a unified hand combining both capabilities.

A promising approach involves multimodal sensing modules,

integrating sensors optimized for different force ranges and

resolutions. Progress in sensor design, material science, sensor

fusion, and high-fidelity simulation is critical to this effort.

B. Tactile Sensing on Feet

Other than manipulation, tactile sensing has started to gain

traction for locomotion problems. For legged locomotion,

estimation of Ground Reaction Forces (GRFs) and terrain

properties is critical for maintaining whole-body stability on

diverse, uneven surfaces. While vision and proprioception

sensors can provide an indirect estimation of the terrain, these

sensing modules lack the capability of accurately estimating

GRFs and various terrain properties. Tactile sensing on foot

soles has the potential to provide direct, unobstructed, and

accurate contact measurements, but remains largely underex-

plored.

To measure GRFs, existing works use Force/Torque sensors

mounted on ankles [128, 129] or load-cell sensors for point-

wise measurement [130]. However, such methods inform

only the zero moment point and lack accurate information

on contact patch location, force distribution, and detailed

terrain properties. To obtain such information, contact sensing

arrays [122] and multimodal sensing suites [121, 131, 132]

have been integrated into legged robotic systems for diverse

contact information.

To date, tactile sensors for legged systems have been pri-

marily developed for monopods, quadrupeds, and hexapods.

Only a few studies have built tactile feet sensors for humanoid

robots, with applications such as terrain classification [121]

and ground slope recognition [122]. The sensed tactile infor-

mation should aid the humanoid control and enhance the lo-

comotion performance. A notable work in this direction [120]

reconstructs the pressure shape of the foothold, enabling the

recognition of uneven terrain and footstep replanning in real

time.

Building tactile sensors for humanoid feet is more challeng-

ing due to larger impulse and shear force during intermittent

ground contact caused by fewer legs and heavier robot weight.

Another challenge lies in developing robust and reliable sen-

sors capable of withstanding various terrains, prompting re-

searchers to seek durable materials and dependable mechanical

designs. In addition, humanoids have stricter requirements for

system integration. For example, the computing and power

units of an adult-size humanoid robot are potentially more
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distal from the foot.

To enable robust humanoid locomotion in the wild, future

directions for tactile sensing of feet need to address the

following challenges: (i) how to accurately estimate more

terrain properties such as stiffness, damping, plasticity, het-

erogeneity, and porosity; (ii) what are the appropriate metrics

to measure the level of terrain complexity such as density,

height, slickness, and roughness (e.g., size and wavelength

of rocks in terrain), and the effect induced by weather and

lighting conditions (e.g., rainy, snowy, sunny, night); and (iii)

how to fuse terrain tactile sensing with other conventional

sensing modules such as proprioception and visual perception

to jointly inform postures, speeds, and gaits for intelligent,

terrain-aware locomotion.

C. Whole-body Tactile Sensing

Whole-body tactile sensing extends the aforementioned

single-body sensing to all parts of the body, enabling humanoid

robots to interact with unknown environments not only by the

fingertips or foot soles but also by the arms, legs, and torso.

With explicit tactile feedback, humanoid robots such as iCub

and REEM-C have achieved whole-body compliance [125,

133], controlling the contact force from whole-body regions.

This level of contact awareness facilitates safe and intuitive

physical human-robot interactions including dancing with hu-

man [126]. Contact awareness is also useful for improving

balance and collision avoidance in unstructured environments.

Large-area tactile sensing significantly enhances a robot’s

ability to handle large objects, including object identification

through tactile exploration and whole-body manipulation. For

example, [107] enables a humanoid robot NAO, covered

with artificial skin over its entire upper body, to classify

large, heavy objects with different weights and textures. [97]

demonstrates whole-arm tactile sensing by reaching objects

in cluttered spaces while regulating contact forces across

its arms. Close-proximity whole-body capacitive sensing is

implemented in [134], enabling a cobotic humanoid with

workers close-presence awareness. The same technology is

used to draw semantics in human-humanoid physical inter-

action in [135]. Moving away from traditional methods [136]

that prioritize collision-avoiding trajectories, [137] uses tactile

feedback to detect and clear movable obstacles, thereby solv-

ing the problem of navigation among movable objects. Addi-

tionally, with tactile sensors covering their arms and chest,

humanoid robots HRP-2 and Punyo-1 can use their entire

upper body to grasp and lift large, heavy boxes [104, 138]

or various household items [71].

D. Challenges in Tactile Sensing

Current works of tactile-based manipulation, whether in-

hand or whole-body, are still largely limited to grasping or sim-

ple motions like rolling, pushing, or pick-and-place. Although

tactile sensing holds great promise, its integration into more

dexterous manipulation or loco-manipulation tasks that involve

more dynamic interactions and contact shifting over the full

body continues to pose substantial challenges. These include

understanding the complex multi-contact dynamics, handling

the high dimensionality of the sensor data, and addressing the

sim-to-real gap.

Several approaches have been explored to address these

difficulties. For instance, dimensionality reduction techniques

such as spectral clustering, principal component analy-

sis [115], and autoencoders [116] have been employed to man-

age the high-dimensional input space. Others have proposed

simplifying sensor outputs by using boolean contact states (i.e.,

contact or no-contact) instead of continuous force values in

RL training [111]. Furthermore, advances in tactile simula-

tion [117, 118] are making simulated tactile data more acces-

sible, thereby supporting zero-shot sim-to-real transfer [119].

One of the remaining fundamental challenges is to dynami-

cally reason about contacts. This involves not only estimating

contact states and static object models but, more crucially,

understanding how these contacts and changes of contacts

impact the system in real time, including the balance of

both the robot and the object. Such information is vital for

a planner to make informed decisions and, in a learning

framework, can enhance sample efficiency. Addressing this

challenge calls for deeper collaboration between the sensing

and control communities to determine what tactile information

should be abstracted and how to tightly integrate real-time

tactile perception into control and planning for humanoid

tasks.

Key Takeaways: Tactile sensing is yet an underexplored

modality for advancing humanoid loco-manipulation, provid-

ing direct contact information necessary for tasks involving

complex interactions with environments and objects. While it

has improved task performance, achieving human-level dex-

terity and versatility requires advances in dynamic perception,

and multi-modal sensing integration to enable systematic, real-

time decision-making during interactions. Future directions

include optimizing whole-body contact scheduling based on

object properties and understanding how contact dynamics

affect robot and object balance during loco-manipulation.

Moreover, the design of whole-body tactile systems should

account for varying sensor resolutions and load requirements,

i.e. hands need higher resolution for delicate tasks, while

body skin can operate at lower resolution but withstand higher

payloads. For further reading, we recommend a survey paper

on humanoid tactile sensing [13], and a book chapter on

tactile sensing technologies with an emphasis on deployment

on humanoid robot [139].

IV. MULTI-CONTACT PLANNING FOR HUMANOIDS

Multi-contact planning remains one of the most challeng-

ing tasks in robotics. Specifically, in the context of hu-

manoid whole-body loco-manipulation, a planner ought to

solve trajectories that handle rich and intricate interactions

with environments or objects. Particularly, beyond robot state

trajectories, the planner is also expected to decide contact

position (or contact location), contact mode, and contact force

in a loco-manipulation task. Given the underactuated nature of

humanoid robots and the addition of manipulation interaction

dynamics, maintaining balance and manipulating objects rely

solely on these contact interactions. This already makes multi-

contact planning a challenging problem. Moreover, the diverse
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Multi-contact Loco-manipulation Task Illustration

Multi-contact 
Trajectory Planning Static Pose Planning 

Contact: mode, position, force
State: CoM, joints, object
Long prediction, heavy computation

Contact: position, force
State: CoM, joints,
Current time step, light computation

Object-carrying and
Locomotion

Object-placing and 
Balancing

Cart-pushing and 
Locomotion 

Sampling         Optimization          Learning 
Pros:

Cons:

Heuristic-based models
& gradient-free
Large exploration space
& high variance

Constraint-satisfication 

Tedious tuning &
possible infeasibility

Flexibility on interpreting
complex and nonlinear models
Lack of safety constraints,
sample efficiency 

Fig. 5. An illustration of a task sequence for loco-manipulation planning in
humanoid robots, involving carrying and placing a box and pushing a cart. The
planning techniques explored include (a) multi-contact trajectory planning and
(b) whole-body pose planning, highlighting their contact and state planning
strategies. Additionally, the pros and cons of categorized approaches in (i)
sampling-based, (ii) optimization-based, and (iii) learning-based methods are
summarized.

physical properties of environments and objects (e.g., rigid or

soft, fixed or movable) complicate the problem even further.

Over the past decade, the field has produced fruitful results

in multi-contact humanoid planning, demonstrating promis-

ing potential across various locomotion and manipulation

tasks [3, 140, 141, 142]. However, these works require pre-

planned contact mode sequences before planning robot whole-

body motion trajectories [143]. This raises an open problem:

how to solve the locomotion and manipulation contact plan-

ning problem simultaneously with the whole-body trajectory

planning in a unified fashion, a.k.a, Contact-Implicit Planning

(CIP) [144, 145]. The primary challenge of this CIP lies in

its high computational burden and combinatorial complexity

of identifying potential contact mode sequences. Therefore,

selecting suitable approaches depends on the specific problem

requirements, including factors such as solving time, numeri-

cal robustness of the solution, resolution of the solution, and

dependency on numerical models.

State-of-the-art procedures select planning algorithms for

the underactuated system with three main categories: (i)

searching, (ii) optimization, and (iii) learning, as illustrated

in Fig. 5.

A. Search-based Contact Planning

Search-based approaches employ state expansion that allows

exploring configurations to make and break contacts; collisions

and kinematic feasibility are often checked during each search

step. Heuristics can be applied in search-based methods for ef-

ficient exploration. The search result is an optimal sequence of

Contact-Implicit Trajectory Optimization (CITO)

Whole-body Motion

Contact Mode and Contact Force

Sticking Contact Sliding ContactNo Contact

Contact PositionContact Position

Fig. 6. An illustration of Contact-Implicit Trajectory Optimization (CITO)
that simultaneously plans contact mode, contact position, contact force, and
whole-body motion. However, solving CITO problems online for humanoid
loco-manipulation tasks still poses a challenge.

contact modes that ensure stability and task efficiency. Whole-

body motions can be optimized during the search to verify

the dynamic feasibility of candidate contact sequences [146]

or after the search in a contact-before-motion style [147].

Search-based methods are commonly used for gait planning in

legged robot locomotion [148, 149, 150, 151]. Expanding their

capabilities in more intricate multi-contact loco-manipulation

planning, [152] seeks to implement a graph search method for

humanoid grasp contact planning and replanning, and [153]

introduces a contact-before-motion planner for multi-contact

behaviors.

However, search-based methods usually struggle to cover

the entire exploration space in a limited time budget for online

planning and may result in solutions with high variance. To

tackle this, [154] incorporates control variate and importance

sampling as statistical variance-reduction techniques for faster

solution convergence. [155] avoids the time-consuming re-

planning by incorporating only forward path expansion with

informed possible paths to achieve reliable online kinodynamic

motion planning.

Furthermore, the feasibility guarantee of the results via

search-based methods can be made through Pose Optimization

(PO), a subset of multi-contact planning in humanoid loco-

manipulation. This holds true when the contact locations, tim-

ings, and manner of interaction are predetermined—such as in

scenarios where a humanoid safely assists a person [142] with

feasible contact locations through point cloud processing. PO

focuses on leveraging optimization-based techniques to plan

whole-body poses and kinematic configurations at specific

time steps, given a predefined contact mode. While PO is

limited to handling discrete keyframes and does not account

for continuous dynamics, this makes it highly suitable as

a subsequent pose generator for gradient-free multi-contact

planners, reducing the kinematic computation load during the

search process. Furthermore, task-oriented objectives can be

incorporated during PO, such as to maximize the interaction

force [156, 157] and to efficiently retarget the operator’s

motion into safe and feasible robot poses [158]. Given a

nominal pushing pose, Farnioli et al. [159] optimizes the
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distribution of reaction forces among all contacts to guarantee

the friction constraints in heavy object pushing. Kinematics-

and-mass-model-based posture generator is employed on HRP-

4 humanoid to leverage leaning pose and body contacts to

improve force in a heavy object pushing task [79]. A kino-

dynamics-based PO approach is used in generating optimal

humanoid pushing poses for dynamic non-prehensile loco-

manipulation [160]. Search-based multi-contact planning and

PO are often paired with online whole-body control that

effectively tracks the optimal pose while adaptively interacting

with the environment and objects. We detail the whole-body

control strategies in Sec. VI.

B. Optimization-based Contact Planning

Unlike search-based contact planning, which primarily

checks kinematic feasibility for expansion and often requires

additional lower-level planning to generate dynamically feasi-

ble motion, optimization-based contact planning [144] offers

the possibility of simultaneous planning of whole-body motion

and contact interactions, as illustrated in Fig. 6. This approach

integrates dynamics directly into the contact planning process,

eliminating the need for a hierarchical structure. A Contact-

Implicit Trajectory Optimization (CITO) is formed by incor-

porating contact dynamics into the trajectory optimization for-

mulation, allowing the solver to determine the contact modes,

contact forces, contact positions, and whole-body motions all

at once [161, 162, 163].

Due to the inherently large problem size, CITOs often rely

on speed-up strategies, such as warm-starting with reasonable

initial guesses for fast convergence [164] and separating into

contact planning and whole-body motion planning subprob-

lems in a hierarchical fashion [165]. With the increasing

demand for computation efficiency, CITOs have witnessed a

rise in computation speed via sequential quadratic program-

ming (SQP) (e.g., [144]), differential dynamic programming

(DDP)(e.g., [166]), and iterative linear quadratic regulator

(e.g., [167]). These improvements have even enabled the use

of CITO in a Model Predictive Control (a.k.a. CI-MPC) frame-

work for real-time planning on quadruped robots [168, 169]

and robotic arms [170, 171]. However, for the humanoid

robots, applying CITO to loco-manipulation has yet to be

achieved.

Migrating such CITO as real-time CI-MPC to humanoid

loco-manipulation presents its own set of challenges, includ-

ing high-dimensional space of optimization variables, com-

plex/undifferentiable contact dynamics models, proper mod-

eling of interaction dynamics, resolution of initial guess, and

tedious tuning. Esteban et al. [172] has made an initial effort

to provide reasonable reference trajectories with the Hybrid

Linear Inverted Pendulum (HLIP) model to allow natural

contact behaviors at both hand and foot locations.

C. Learning-based Contact Planning

Learning-based approaches have demonstrated promising

potential in planning multi-contact tasks, such as using re-

inforcement learning to generate velocity commands and con-

tact sequences for quadruped locomotion [173, 174]. These

learning-based planners are mostly modular, making it pos-

sible to form a hierarchical architecture with model-based

planners and controllers at the low level. Compared with

traditional optimization-based or heuristics-based approaches,

learning-based elements enhance the computation efficiency in

multi-contact planning. For example, [175] learns to predict

the evolution of centroidal dynamics and contact sequence for

dynamic humanoid loco-manipulation in under 0.1 s, achiev-

ing a computation speed boost 300 times faster compared to

traditional optimization-based methods.

In addition, learning-based approaches can assist contact

prediction, which allows additional information for contact

(re)planning in real time. Precise contacts are often hard

to obtain from motion capture data, making it challenging

to learn directly from data. To synthesize plausible motion,

a naive supervised learning approach often leads to objects

moving without any contact or significant penetration between

the predicted human body and the objects. [176] introduces

contact correction and predicts motions relative to the contacts

predicted in human-object interaction tasks. [177] separates the

contact prediction and whole-body motion prediction by first

predicting the contact positions with a large, dynamic object,

which are then used as constraints to synthesize whole-body

human motion. These models have the potential to serve as a

loco-manipulation planner for humanoid robots. [178] learns

to find from the video scenes the affordance, i.e., potential

contact points, for household object manipulation tasks. These

contacts can be used as heuristics for subsequent motion

planning.

D. Challenges in Multi-contact Planning

Despite the advancements in multi-contact planning, sev-

eral key challenges remain. First, computational efficiency

remains a fundamental bottleneck. Contact planning inherently

involves a combinatorial explosion in possible contact mode

sequences, which poses major scalability issues. Optimization-

based methods, such as CITO, often suffer from local min-

ima and sensitivity to initialization. Search-based methods,

though capable of global exploration, are computationally

expensive and unsuitable for online replanning. Learning-

based approaches, though computationally efficient, struggle

with adaptivity and precision in dynamic contact-rich control.

A promising direction lies in combining these paradigms to

balance global reasoning, dynamic feasibility, and real-time

performance. Second, current approaches rely on simplified

point contact models, which fail to capture the complexity

of real-world loco-manipulation. In practice, especially with

full-body contact and manipulation, robots frequently engage

in patch contacts that are complex to model with model-

based control and planning frameworks. Extending contact

modeling beyond point approximations is essential to better

align with real physical interactions. Third, most existing

methods work around fixed contact mode sequences, which

diverge from the unpredictable and rapidly changing nature

of real-world contact interactions. Unexpected contact events,

which are often hard to observe due to visual occlusion and

lack of whole-body tactile sensing, pose serious challenges for
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accurate contact estimation, control, and online planning. This

raises a fundamental question: is precise contact planning al-

ways necessary? To enable more adaptable loco-manipulation

behaviors in uncertain environments, future research could

explore planning, control, and learning strategies that are

robust or even agnostic to small, transient changes in contact.

Key Takeaways: While significant progress has been made

in humanoid multi-contact planning, future work should focus

on developing more integrated approaches that combine the

strengths of search-based, optimization-based, and learning-

based methods. Specifically, addressing the computational

complexity of CIP and improving real-time performance will

be key. Future directions could explore hybrid approaches

that incorporate efficient contact sequence generation/contact

dynamics, apply contact-implicit constraints in real-time, and

achieve learning-based contact prediction to enhance robust-

ness and adaptability in complex loco-manipulation tasks.

The readers are recommended to further read the survey on

humanoid multi-contact planning [143].

V. MODEL PREDICTIVE CONTROL FOR

LOCO-MANIPULATION

Optimization-based Model Predictive Control (MPC) has

advanced significantly in robotics. The advantages of its flexi-

bility to define versatile motion objectives, rigorous mathemat-

ical formulations, and widely available solvers establish MPC

as one of the most popular approaches to trajectory planning

for locomotion and manipulation.

A uniform optimization formulation of the loco-

manipulation planning problem seeks an optimal state

trajectory and control input over a finite horizon in the future.

MPC is often formulated as an Optimal Control Problem

(OCP):

min
x(·),u(·),λ(·)

L(x(·),u(·),λ(·)) (1)

s.t. ẋk = f(xk,uk,λk) (2)

htask(xk,λk,uk) = 0 (3)

gtask(xk,λk,uk) ≥ 0 (4)

where x(·),u(·),λ(·) are the trajectories of the states, control

inputs, and constraint forces, respectively. L(·) is the cost

function. The dynamics is represented in (2). htask and gtask
are other tasks represented as equality and inequality con-

straints. htask are holonomic constraint tasks to be enforced

strictly (e.g., a contact-explicit formulation [179]), and gtask
are unilateral constraints to encode set-valued tasks (e.g., joint

limits, non-sliding contact with fiction cones, etc.).

Depending on the choice of dynamics models (2), costs, and

constraints, the OCP formulation is commonly transformed as

a linear convex MPC (e.g., [2, 179]) or a Nonlinear MPC

(NMPC) (e.g., [180, 181]). Table III summarizes recent MPC-

based works on humanoid robots in loco-manipulation tasks.

A. Simplified Models

In pursuit of high-frequency online planning with

lightweight computation for motion control, simplified dy-

namics models, or reduced-order models (ROMs) are often

Interactive Dynamics

Model Predictive Control

Loco-manipulation Dynamics Models

Simplified Models Whole-body Models Mixed-fidelity Models

  Object modeling    External force Interaction with
environment

CD+WBK WBDSRBMLIPM

Speeding up nonlinear MPC

Light computation load
Low model accuracy

High model accuracy
High computation load

Balanced computation load
Trajectory discrepency

    Structure Exploitation              Initialization

       Linearization      Sampling

    Fast & numerically robust Fewer iterations 
to convergence

Linearizing at each time
step as QP problem

Suitable for discontinuous
dynamics & gradient-free 

Near: WBD
Distant: Reduced-order

Fig. 7. An illustration of model predictive control in humanoid robotics, show-
casing three primary categories of dynamics modeling in loco-manipulation:
(i) simplified dynamics, (ii) nonlinear dynamics, and (iii) Mixed-fidelity
dynamics. The figure also highlights the consideration of interactive dynamics
modeling with environments and/or objects for loco-manipulation tasks.
Additionally, four common approaches to speeding up/simplifying NMPC are
summarized.

employed in MPC. For example, the Single Rigid Body Model

(SRBM) can be linearized by providing explicit foot position

sequence reference and be formulated in a linear convex

MPC [182]. Using SRBM, [179] realizes dynamic aerobatic

behaviors on the MIT humanoid. Extending to humanoid loco-

manipulation, [2] achieves object-carrying and rough terrain

locomotion by simplifying the interaction dynamics as external

gravitational forces applied to robot CoM.

On the other hand, the Linear Inverted Pendulum Model

(LIPM) has been a popular choice as a linearized dynam-

ics model for humanoid locomotion [27] and in multi-

contact [189]. Extending LIPM to loco-manipulation tasks is

achieved through teleoperation [185]. However, such a model

inherently lacks the ability to address contact interactions

and loco-manipulation dynamics, necessitating a lower-level

whole-body control for balancing and manipulation tasks.

B. Whole-body Models

While simplified dynamics models offer computation effi-

ciency, the simplification assumptions cause a detriment to

the model’s accuracy and limit the capability of whole-body

motion planning. Conversely, whole-body models are more

accurate representations of the robot dynamics and are better

suited for planning versatile motions and interactions with

objects and the environment. NMPC comes into play when

constraints or cost functions become nonlinear, for example,

dynamics constraints formed by kinodynamics and Whole-

Body Dynamics (WBD).
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TABLE III
RECENT MPC APPROACHES ON HUMANOID LOCO-MANIPULATION

Paper Year
Robot

Model∗
Interaction Modeling Method Locomotion (L) and Manipulation (M) Planning

MPC

Frequency

Solving

Method

[183] 2014 SRBM Optimizing external wrench(es) at contact(s) Unified 20 Hz QP

[2] 2023 SRBM Predefined external force Unified 300 Hz QP

[184] 2024 SRBM Negligible object dynamics Separated: L: MPC; M: Keyframe interpolation − QP

[185] 2019 LIPM Negligible object dynamics Separated: L: MPC; M: Teleoperation and retargeting − QP

[130] 2016 CD Optimizing external wrench(es) at contact(s) Unified offline SQP

[33] 2019 CD Predefined external wrench Unified − QP

[186] 2014 CD Optimizing external wrench(es) at contact(s) Unified 5 Hz/offline SQP

[187] 2020 CD Optimizing external wrench(es) at contact(s) Unified 10 Hz Interior-point

[181] 2023 CD Estimated as external wrench through sensors Unified 5 Hz Interior-point

[188] 2021 WBD Optimizing external wrench(es) at contact(s) Unified 100 Hz DDP

∗ SRBM - Single rigid-body model; LIPM - Linear inverted pendulum model; CD - Centroidal dynamics; WBD - Whole-body dynamics.

In the context of humanoid motion planning, kinodynamic

constraints are often referred to as the combination of Cen-

troidal Dynamics (CD) and whole-body kinematics (WBK)

constraints [186], where CD is derived from the total momenta

of the system, and captures the effect of full-body inertia of

a multi-linkage dynamics system [190]. For example, achiev-

ing consensus between CD and full-body kinematics in one

Trajectory Optimization (TO) generates versatile humanoid

motions [186].

Leveraging joint-space WBD (eqn. (5)) in MPC has gained

popularity, particularly for free-floating articulated robots like

humanoids. While WBD allows flexible contact modeling,

its high nonlinearity and nonconvexity impose significant

computational burdens on WBD-based Nonlinear Programs

(NLP) or NMPC, making real-time planning challenging. This

issue is especially critical for high-DOF humanoids in loco-

manipulation tasks, such as payload transport, which require

additional modeling of object dynamics and safety constraints.

Thus, this section surveys methods to accelerate NMPC while

preserving solution accuracy.

C. Mixed-fidelity Models

Instead of using full joint-space dynamics across the entire

horizon of an MPC, mixing multiple models of varying

abstraction levels demonstrates improved performance and

efficiency.

Cascaded-fidelity models (a.k.a. hierarchical dynamics) use

different models to govern segments of the horizon [191, 192,

193]. These methods typically employ high-fidelity (e.g., full-

order) models in near horizons and low-fidelity (e.g., simple)

models for distant horizons, thus maintaining the solution

accuracy in near horizons while solving the myopic issue by

allowing a longer horizon using simple models. This approach

could be suitable in loco-manipulation tasks as it would either

simplify interaction dynamics as simple external forces or

impose the object dynamics as part of CD in the far horizons

to allow improved real-time computation compared to full

dynamics models.

Another method is to overlap different dynamics models

across their horizons. In such cases, achieving a consensus be-

tween these overlapped models is necessary. To solve problems

with such mixed-fidelity models, [194] decomposes a single

TO that incorporates both dynamics into two subproblems and

TABLE IV
NMPC SPEED-UP STRATEGIES:

ACCURACY, EFFICIENCY, AND LIMITATIONS

Method Accuracy Efficiency Limitation and Challenge

i. Dynamics Modeling

Simplified model

(Sec. V-A)
low high

Possible infeasible motion

trajectory due to simplification

Whole-body model

(Sec. V-B)
very high very low

Requires very accurate dynamics

modeling of robot and object

Mixed-fidelity model

(Sec. V-C)
medium medium

Motion trajectory discrepancy

due to model mismatch

ii. NLP Structure Exploitation

Backward recursion:

DDP [196] medium high

iLQR [197] low very high
Poor constraint-handling

Derivative calculation:

Auto-Diff [198] very high low

Hypergraph [199] high medium
May lead to high memory usage

Exploring sparsity:

FATROP [200] very high high Requires specific problem structure

AdaptiveNLP [201] high high Less effective in small-scale NLPs

iii. Linearization

SQP [202] high medium Scalability to high-order

Successive

Linearization [203]
medium high Requires good initial guess

QP Speed-up:

Condensed [204] very high medium No state trajectory output

ReLU-QP [205] high very high Only time-invariant states matrices

iv. Warm Start

Gait Library [206] high very high Constrained by onboard storage

Memory of

Motion [188]
high low Requires large dataset coverage

Performance scale (low to high): very low→ low→ medium→ high → very high.

then alternates between the two to achieve consensus. Simi-

larly, [195] alternates between the CD and WBK subproblems.

Overall, model simplification over MPC horizons will remain

an effective approach [9]. On the other hand, mixed-fidelity

models demonstrate superior capability but require careful

consideration of combined models.

D. NMPC Speed-up

In addition to tailoring dynamics modeling strategies for

specific loco-manipulation setups, solving NMPC can be ac-

celerated using several key methods. Below, we summarize

these methods and provide Table IV to compare their solution

accuracy, real-time efficiency, and application limitations.

NMPC Speed-up via Structure Exploitation: NMPC prob-

lems often involve complex dynamics and constraints that

can be computationally intensive to solve. Exploiting the

structure within these problems can significantly enhance their
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solvability and efficiency, such as extracting variables that

directly interact with each other, identifying repetitive and

symmetric structures, and arranging block-diagonal structures.

One of the most common approaches to solving NMPC is

direct methods, which transform the NMPC into a NLP with

the complexity of O(N3), where N is the problem size

[207]. Some direct methods, such as direct multiple shooting

and direct collocation, result in sparse NLPs, whose compu-

tation complexity can be reduced to O(N) [208]. Another

approach to solve NMPC is single-shooting methods, such

as DDP [196] and its variant, Iterative Linear Quadratic

Regulator (iLQR) [197], which only retains the first-order

derivative approximation of dynamics and exhibits a linear

increase in computation over the horizon [209]. With proper

exploitation of the sparsity structure through the hypergraph

approach, [199] shows improvement of the nonlinear solver in

computation efficiency. Furthermore, AdaptiveNLP leverages

the previous NLP structure to significantly reduce the overhead

and update time for constructing the current NLP [201], which

is particularly suitable for humanoid robot NMPCs with static

kinematics and actuation constraints.

NMPC Speed-up via Linearization: Another way to tackle

the computational burdens of NMPC is through successive

linearization, which involves linearization at every timestep

around the nominal system state and control input. The

linearized dynamics become piece-wise affine, which can be

formulated in a large, sparse Quadratic Program (QP) and can

be solved online [203, 210]. SQP solves NLP problems by

iteratively linearizing them into QPs and computing search

directions at each step. While breaking down an NLP into QPs

is viable, it requires efficient and scalable QP solvers. Aiming

for high efficiency, ReLU-QP [205], a GPU-accelerated QP

solver, has improved linear convex MPC real-time control

frequency in high dimensional space balancing tasks from the

original 206 Hz to up to 2600 Hz. While providing reasonably

efficient real-time deployment, linearization techniques highly

rely on linearization assumptions, which compromise model

fidelity (accuracy), leading to motion errors compared to full

nonlinear models. However, trading accuracy for speed is

often preferred in humanoid robot control, as controllers may

struggle to precisely track full-order trajectories by NMPC,

making highly accurate solutions not practically beneficial.

NMPC Speed-up via Warm Start: The real-time require-

ment motivates many researchers to seek a more effective

initialization. One simple yet effective approach is to warm

start with the solution from the previous iteration. Another

common approach is to offload the computation burden from

online to offline, e.g., the gait library [206]. It can be regarded

as a specific type of warm-start technique and requires only

a cheap online interpolation among the gaits to obtain an

approximately optimal full-body trajectory. Similarly, [188]

uses memory of motions to warm-start an MPC and overcome

the sensitivity of initial conditions. However, the key challenge

lies in the management of massive trajectories with limited

storage. In Sec. VII-E, we discuss a solution from the learning

community: learning compact models to distill from large-

scale offline trajectories.

NMPC Speed-up via Sampling: Real-time sampling-based

(c)(a) (b) (d)

(e) (f) (g)

Fig. 8. Loco-manipulation skills from model-based methods. (a) Getting up
from a chair [140]. (b) Multi-contact balancing [3]. (c) Door traversal [5]. (d)
Transporting a bulky beam [130]. (e) Collaborative carrying [33]. (f) Rolling
a bobbin [91]. (g) Box loco-manipulation [217].

planning, such as Model Predictive Path Integral (MPPI)

control [211], is a simple and effective scheme. How-

ever, extending MPPI to high-dimensional loco-manipulation

tasks presents significant computational challenges, especially

within contact-implicit settings. Two primary techniques have

enabled the recent success of MPPI: reducing the search space

and leveraging parallelization in modern simulators. To limit

the search space, researchers use suboptimal planners to guide

the search, apply constraints, and employ spline control points

to reduce the number of planning knot points [212]. Further-

more, advancements in sampling speed also facilitate real-time

planning. For instance, MuJuCo MPC (MJPC) [213] leverages

the established parallelization capabilities of MuJuCo [214]

on multi-core CPUs. Additionally, modern simulators such as

IssacLab [215] and MuJuCo can roll out thousands of samples

on GPUs, which allows additional randomization for robust

control [216].

E. Environment and Object Interaction Models for Loco-

manipulation

In this subsection, we survey motion planning algorithms

for loco-manipulation tasks that involve interactions with the

environment and/or objects with large weights and sizes,

specifically in the context of loco-manipulation MPC. Assum-

ing the sequence of contact modes is defined through contact

planning methods outlined in Sec. IV, the loco-manipulation

MPC algorithms find a feasible trajectory that leads to a

viable state over a horizon, while satisfying the dynamics

constraint and contact stability constraints. The existing loco-

manipulation MPC algorithms differentiate the interaction with

a fixed environment and a manipulated object.

1) Interaction with a static environment: An environment,

including static surfaces such as the ground and walls, provides

contact forces that contribute to the robot’s stability and enable

interactive tasks such as walking and pushing. An example

of a static environment is in Fig. 8 (a) and (b). Since the

environment is static, the robot does not need to consider the

environment’s state or stability during planning. Instead, the

robot is often required to deal with acyclic contact patterns
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and non-coplanar contacts given specific environment geome-

tries. This challenging problem is referred to as multi-contact

planning (MCP) [95, 143, 218]. MCP is a widely studied

area that involves both contact planning and motion planning.

Since contact planning has been discussed in Sec. IV, in this

subsection, we focus on the motion planning aspect of MCP,

specifically in terms of real-time multi-contact MPC. Given a

sequence of contact modes, MCP aims to find feasible motion

and contact wrenches of all contacts.

Multi-contact MPC for humanoid robots can be solved by

optimization-based methods [186, 187]. Among these meth-

ods, CD is the most common model due to its accurate

representation of contact forces and the system’s centroidal

momentum. Despite the model’s accuracy, CD contains a

nonlinear term derived from the cross-product between the

state (CoM position) and control (contact wrench), posing a

challenge to trajectory optimization. Using multi-contact MPC

as a motion planning technique also has limited dynamic loco-

motion capabilities because it treats arms and legs uniformly as

general contacts, rendering it less efficient at handling frequent

contact switches compared to pure locomotion models such as

the LIPM. Although MPC has the ability to plan contact with

any surface of the robot, the regularization of the planned

contact forces usually requires accurate joint torque sensing

or whole-body tactile sensing (Sec. III-C), which still has

significant space to explore and presents great potential for

rich and safe environment interaction.

2) Modeling interaction with a manipulated object: In the

context of loco-manipulation MPC for humanoid robotics,

modeling strategies for manipulated objects represent a crucial

aspect and an area of ongoing research, alongside contact

planning. An object can be a free-floating body (e.g. a box),

a fixed-base articulated mechanism (e.g. a door or drawer), or

actuated joints (e.g. another robot) [219], as shown in Fig. 8

(c-g). Unlike interactions with a static environment, the contact

force exerted by an object depends not only on the robot’s joint

torque but also on the object’s mass and inertia. As a result,

interacting with objects in loco-manipulation tasks introduces

significant complexity. Planning such tasks typically requires

accurate knowledge of the object’s state and physical proper-

ties, especially when handling heavy, irregular, or dynamically

moving objects. As a result, loco-manipulation tasks become

significantly more complex, often requiring precise knowledge

of an object’s state and physical properties—especially when

dealing with heavy, irregular, or dynamic objects.

To address unknown object states and properties, adaptive

control and online estimation techniques have been proposed

to enhance robustness against dynamic effects and external

loads. For example, [220] compensates for residual dynamics

without requiring predefined object parameters, while [221]

estimates reflected inertia to handle changing loads. Nozawa

et al. [222] estimates object mass to optimize manipulation

strategies for bulky items. Chappellet et al. [93] leverages

wide-angle camera tracking to aid in large object handling.

However, integrating these methods with MPC-based ap-

proaches introduces challenges, such as predicting object dy-

namics over preview horizons and managing increased compu-

tational load. Bang et al. [223] takes a step toward simplifying

centroidal momentum evolution through supervised learning,

preserving a convex CD-based MPC formulation for humanoid

locomotion.

Given the diversity of tasks, creating a unified model for the

robot-object system is essential. We introduce two common

approaches to incorporate object dynamics into the MPC-

based planning process [189].

The first approach models the manipulated object as external

wrenches and plans the control input to compensate for

them [2, 79, 187]. This approach offers a flexible solution,

as it integrates well with the MPC regardless of the linearity

of the model, which treats all contacts as external wrenches.

However, the contact wrench needs to be predefined, for

example, to compensate for the gravity of the object or to exert

a user-specified pushing force. Obtaining accurate contact

wrenches for dynamic tasks like swinging a baseball bat is

already inherently challenging, especially when considering

their evolution over the entire prediction horizon in MPC.

Static/quasi-static assumptions are usually made to neglect

the dynamics of the object, resulting in less dynamic loco-

manipulation motions. Another aspect to note is that contact

wrenches can be applied at the contact location [91] or at

the robot’s CoM [2, 33]. In the former setting, the object

affects the contact wrenches for both self-balance and object

manipulation. In the latter setting, the object affects only the

contact wrenches that are responsible for balance, and contact

wrenches for object manipulation require additional regulation.

For example, the loco-manipulation MPC approach in [2]

adjusts the foot contact wrenches to the weight of an object

applied to the robot CoM and additionally regulates the object

position via hand contact wrenches with a separate controller.

Unlike MCP, such loco-manipulation MPC prioritizes mobility

over manipulation and typically employs specialized locomo-

tion models, such as a linear inverted pendulum model (LIPM).

These models introduce additional assumptions for bipedal

locomotion, such as assigning foot contact for locomotion and

hand contact for manipulation, maintaining body height, and

conserving angular momentum, making them computationally

efficient in an online MPC setting albeit being less general.

The second planning approach incorporates the object’s

dynamics directly into the robot’s dynamic equation of motion,

creating a unified robot-object dynamic system [160, 189].

This approach eliminates the static/quasi-static assumption

from the first approach and leverages the time-varying robot-

object dynamics in MPC to achieve more dynamic and

adaptive loco-manipulation behaviors. In such planning prob-

lems, the interaction wrenches are usually treated as control

variables, and contact stability constraint on the interaction

wrenches is enforced to securely attach the object to the robot.

The planner generates the combined motions for both the robot

and the object, leading to their desired states. Compared to

modeling objects as external wrenches, this method requires

a perfect knowledge of the object’s state, which is more

challenging from the sensing perspective.

3) Interaction with a dynamic environment or deformable

objects: Dynamically changing environments, such as those

with a moving surface [224] or with physical human in-

teractions [33], introduce additional challenges to loco-
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manipulation planning and control. Similar to a dynamic object

manipulation problem, the interaction model between the robot

and the dynamic environment is also time-varying. Although

one can infuse the dynamics of the object with the robot

model to form unified dynamics, it is impractical to model

the dynamics of the environment numerically in most cases.

Therefore, in an MPC setting, the planner may require sensor

feedback to predict the movement of the environment and

replan the loco-manipulation motion adaptively [224]. For

example, interacting with an environment that involves humans

requires the anticipation of human intentions for collabora-

tive manipulation such as lifting payload [33]; see a more

challenging recent achievement in direct human-humanoid

physical interaction [225]. For such tasks, the interaction

force is an important way of communicating intentions, which

can be measured as force feedback signals to trigger robot

movements. However, the evolution of such sensed forces can

not be well-predicted beyond the current timestep for MPC

to leverage, suggesting further static/quasi-static assumptions

are required. Otherwise, the robot can only treat the dynamic

environment as a disturbance and counteract it through reactive

control (e.g., whole-body control). Given the challenge of

dealing with the changing environment, loco-manipulation in

a dynamic environment is largely unexplored.

In addition to rigid objects with regular geometries, de-

formable objects are ubiquitous in our real world, such as

those in caregiving or housekeeping scenarios. Modeling the

dynamics of these objects requires a deep understanding of

their physical properties and behaviors, such as flexibility,

elasticity, and deformation under force. Consequently, simplifi-

cations tailored to specific problems and applications are often

necessary [226, 227]. For example, to plan the manipulation

of a deformable belt, [228] simplifies the motion of the

belt by representing only its tail movement in a 2D plane.

However, to fully exploit the object’s deforming property for

effective loco-manipulation, integrating accurate deformable

objects [229] into robot models is essential. Although this area

is relatively underexplored for humanoid loco-manipulation,

such integration opens up significant opportunities beyond

basic pick-and-place operations, enabling robots to tackle more

intricate and delicate tasks.

Key Takeaways for Model Predictive Control: With the ad-

vanced capabilities of gradient-based numerical optimization

in motion planning, MPC is gaining popularity in humanoid

loco-manipulation, showcasing numerous variations in recent

years of literature. The essence of this method lies in mak-

ing reasonable choices regarding the dynamics model, con-

straint, task definitions, and computation requirements. These

choices often require expert design and tuning to trade-offs

among task versatility, solution feasibility, and optimality. By

identifying the computation intensities and proper dynamics

representation of the loco-manipulation tasks, one can offset

the computation load by introducing simplified models and

relaxed constraints in MPC. In addition, the MPC efficiency

can greatly benefit from proper solver choices, an evolving

area presenting opportunities for research on both solver-

level and problem-formulation-level innovations. For further

reading, we recommend the survey on MPC for legged and

humanoid robots [14]. Additionally, loco-manipulation tasks

present further challenges due to the complexity of dynamic

interactions with both the environment and objects, which

leaves open questions on how to choose and formulate the

interactive dynamics effectively based on the specific task

requirements in an MPC setting.

VI. WHOLE-BODY CONTROL

Whole-Body Control (WBC) represents a body of con-

trollers that generate joint torques, constraint forces, and

generalized accelerations to achieve a given set of desired

dynamic tasks [7]. Three common cases necessitate a computa-

tionally efficient whole-body controller that can track desired

trajectories and send torque commands to a physical robot.

(i) The desired trajectory is computed based on a reduced-

order model. Such a trajectory encodes only an important

subset of the robot’s full-body motion (e.g., desired CoM and

end-effector trajectories in operational space [230]) and does

not contain information for all joints. (ii) The trajectories are

planned with a full-order model but are too computationally

heavy [206] to be used in real-time, particularly for humanoids

in loco-manipulation scenarios. (iii) Environmental uncertain-

ties and planning inaccuracies induce disturbances that require

robust WBCs to compensate [231]. Therefore, the WBC has

been widely used in the humanoid community.

A WBC is different from an MPC in two aspects. (i) The

MPC often solves a receding horizon problem, whereas the

WBC solves an instantaneous control problem (i.e., only for

the current timestep). (ii) The model adopted by MPC may

vary based on the user choice, as discussed in Sec. V, but

WBC usually employs full-order Euler-Lagrangian dynamics

that express equation (2) as

M q̈ − JTλ− ST τ = −Cq̇ −G, (5)

where the decision variables X = [q̈,λ, τ ]T are generalized

accelerations, external forces, and joint torques, respectively.

M,C,G are the spatial inertia matrix, bias terms (i.e., centrifu-

gal and Coriolis forces), and the gravity term, respectively.

J is the Jacobian, and S is the selection matrix. Given the

selection of decision variables X above, (5) becomes linear,

which enables the WBC to be computed in real time.

In a humanoid robot with a floating base, the rank of S

is smaller than the dimension of the generalized position q,

meaning the system is underactuated. This requires physical

contact with the environment to achieve balance, mobility, and

manipulation. The contact constraint is described using contact

Jacobian Jc:

Jcq̇ = 0 ⇒ Jcq̈ + J̇cq̇ = 0. (6)

These underactuated and contact-constrained dynamics (5),

(6) represent the main components for solving the WBC for

humanoid robots.
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A. WBC Dynamic Tasks

A dynamic task vector ei can be expressed as a linear

equation with respect to decision variables:

ei = Ai(q, q̇, t)





q̈

λ

τ



− bi(q, q̇, t), (7)

where t is the time. Dynamic tasks can be equality constraints

(ei = 0), inequality constraints (ei ≤ 0), or cost terms

(|ei|
2). The main idea of WBC is that the linear equation

(7) is sufficient to describe a universal set of locomotion and

manipulation tasks.

Although the appropriate set of WBC tasks depends on

factors ranging from robot morphology to available hardware

sensing, we highlight some of the common tasks for loco-

manipulation. A task for tracking reference joint-space ac-

celerations q̈
d can be formed by setting Ai to a selection

matrix and setting bi = q̈
d. Similarly, a task for tracking a

desired operational-space acceleration is derived through the

end-effector’s Jacobian [232]. A task for tracking a desired

centroidal momentum rate ḣd can be formed by differentiating

the centroidal momentum h [233]. Other potential WBC tasks

include capture point [234], reference reaction forces [179]

and collision avoidance [235]. The source of these dynamic

tasks varies and may be predefined, computed online (e.g.,

from an MPC), or commanded through teleoperation.

MPC is commonly used to provide WBC with dynamic

tasks in operational space. For example, an SRBM-based

MPC [230, 236] outputs the centroidal trajectories and end-

effector trajectories as dynamic tasks in operational space.

These operational-space tasks can also be converted to joint

accelerations and thus become joint-space tasks. For instance,

whole-body inverse kinematics [237] is a common approach

for this conversion. Additionally, Riemannian motion pol-

icy [235] and kino-dynamics fabric [217] can construct diverse

joint acceleration from a hierarchy of primitive motions.

Teleoperation provides an interactive way to generate dy-

namic tasks such as the robot’s posture, walking direction,

and grasp targets [238]. WBC setpoints are often mapped to

a visual interface, enabling an operator to modify controller

setpoints on the fly. This mapping may be direct [239]

or retargeted in order to account for the robot’s morphol-

ogy [240] or to ensure the feasibility of the commanded

motion [158, 241]. Virtual-Reality (VR) interfaces enable

spatially mapping handheld controllers to WBC poses. This

approach has been deployed in various loco-manipulation

scenarios, including doorway traversal, object grasping, and

pushing tasks [242, 243]. Haptic feedback can inform an

operator of the WBC state through various modalities, such

as force feedback indicating CoM stability margin [244] and

vibrating gloves indicating contact during manipulation [129].

Mapping to dynamic WBC setpoints, such as the capture point,

has also been demonstrated and can account for variation in the

natural walking frequency of the operator and robot [245, 246].

As shown in Fig. 9, WBC approaches can be categorized based

on closed-form or optimization-based approaches to achieve a

desired list of dynamic tasks.
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Fig. 9. Whole-body control is categorized into closed-form approaches and
optimization-based approaches. Both approaches can incorporate multiple
dynamic tasks and resolve task conflicts.

B. WBC in Closed Form

An inverse dynamics controller is among the early works

that address the WBC problem in closed form. In particular,

it solves a single dynamic task: achieving the desired gen-

eralized acceleration q̈ = q̈
d. The closed-form torque τ can

be solved from (5) if we can measure all constraint forces

λ. However, λ is usually unattainable due to the lack of

sensing and estimation capability. To derive torque analyt-

ically, several methods [247, 248, 249] project the system

dynamics (5) into a constraint-free manifold, establishing an

equation between only q̈ and τ . [247] projects (5) into the

actuated joint space, resulting in an equation of constrained

dynamics independent of the constraint forces λ. [248] uses

orthogonal decomposition of the constraint Jacobian J to

project (5) into the nullspace of the constraints. Although

different projection techniques are used, [249] shows that

these projections produce equivalent torque results. However,

from the perspective of solving speed and numerical stability,

orthogonal decomposition [248] is favored as it is faster and

does not require the inversion of the inertia matrix.

Other than the task of tracking generalized acceleration

q̈ = q̈
d, a set of operational-space tasks and constraints can

be achieved given the redundancy in the degrees of freedom

of humanoid robots. As a multi-task example, a humanoid

robot is often tasked to generate interaction forces with a low

priority while maintaining the whole-body balance with a high

priority. Operational-Space Control (OSC), a.k.a task-space

control, achieves multiple dynamic tasks by prioritizing tasks

in a hierarchy [247, 250]. Tasks with low priorities are solved

within the null space of the high-priority tasks, enforcing that

hierarchies are strictly maintained among tasks. Such a task

hierarchy is also named the stack of tasks [251].

Overall, closed-form approaches are computationally effi-

cient and are straightforward to implement. However, they

have difficulty in incorporating inequality tasks, such as

joint limit and obstacle avoidance. Although this issue can

be addressed within the closed-form approach, such as us-

ing a smooth operator [251], much of the community uses

optimization-based methods that address this issue efficiently.

C. WBC through Optimization

In contrast with closed-form approaches, there have been

a variety of studies formulating the WBC as an optimization

problem. These optimization-based methods enhance the flex-
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ibility of WBC, enabling the modular addition and removal of

dynamic tasks [252, 253], including inequality tasks.

A salient feature of optimization-based WBC is the resolu-

tion of conflicting dynamic tasks through two prioritization

schemes: strict task hierarchy [254] or soft task weight-

ing [130, 233, 234, 255]. Due to the linear property of both

the dynamics equation (5) and dynamic tasks (7), optimization-

based WBC is often formulated as a Quadratic Program (QP),

which can be solved efficiently to a global optimum and enjoys

a wide range of solver selections.

A strict task hierarchy can be ensured through a cascaded

hierarchical QP. This method sequentially solves a series

of QP subproblems with tasks from high to low priorities;

lower-priority QPs produce solutions within the combined null

space of all preceding QPs [254]. The sequential solve of QP

terminates either when it successfully solves all subproblems

or when it encounters an infeasible subproblem and thus skips

all the remaining low-priority tasks [256]. Hierarchical QP

is essentially equivalent to the closed-form stack-of-tasks ap-

proach, with the benefit of incorporating inequality constraints

more naturally. However, solving multiple QP subproblems

imposes significant computation and memory burdens. Addi-

tionally, the hierarchical QP inherits a common issue of OSC:

the task Jacobians becomes rank-deficient when approaching

singularities, which induce large unstable movements [257].

In contrast to hierarchical QP, which solves tasks in a strict

order, weighted QP resolves task conflicts by treating dynamic

tasks as soft constraints within the cost functions, with weights

indicating their relative priority. Therefore, weighted QP can

be regarded as a special case of hierarchical QP with only one

hierarchy or vice-versa as documented in [258]. Such a setup

enjoys the benefit of solving only a single optimization, which

is faster than a hierarchical QP and can be further accelerated

by exploiting sparsity and warm-start. However, tuning weight

parameters can be burdensome for a large number of tasks, and

can lead to instability [259]. Even with well-tuned parameters,

the loss of strict task priorities means low-priority tasks can

interfere with high-priority ones. Nevertheless, weighted QP

is still widely applied in many robotics studies due to its easy

setup and computation efficiency compared with hierarchical

QP. For example, many of the weighted QP methods were

designed during the DARPA Robotics Challenge [130, 233,

234, 260].

D. WBC for Loco-manipulation

WBC for loco-manipulation aims to achieve the desired

motion while maintaining instantaneous balance and contact

stability. Given the desired motion and contact sequence,

loco-manipulation control can be categorized into two folds.

(i) When all interactions with the environment and objects

are static or quasi-static, they can be modeled as external

wrenches. In this case, the WBC solves a robot balancing prob-

lem with the external wrenches as dynamic tasks. (ii) When the

manipulated object has a substantial mass or is dynamically

moving, such as carrying a heavy box, the object becomes an

integral part of the robot-object system. Therefore, the WBC

must account for the balance of both the robot and the dynamic

object.

1) Interaction as an External Wrench: In this first category,

a subset of contacts is responsible for interacting with the

environment or objects to apply a desired wrench. This desired

wrench can be specified by a user or derived from the

estimated object weight. Considering the desired wrench from

the interaction, the remaining contacts maintain the system

balance using three distinct strategies.

The first strategy involves simultaneously optimizing con-

tact wrench, joint acceleration, and joint torque using the

robot’s full-body dynamics, as detailed in Sec. VI-C. In this

approach, the desired wrench for interaction is a dynamic task

within the WBC. The WBC must also satisfy the dynamics

constraint, contact stability constraint, and balance stability

constraint. The contact stability constraint enforces that the

resultant contact wrench lies inside the contact wrench cone

(CWC) [261], maintaining firm and stable contact. The bal-

ance stability constraint designs a desired rate of centroidal

momentum, often based on feedback in the CoM position and

body orientation [190]. In the presence of state deviations,

the balance stability results in a redistribution of the contact

wrenches or a movement of the centroidal state to counteract

and restore stability [91].

The second strategy, known as pre-optimization [3, 262],

involves two stages in sequence. First, it determines the opti-

mal distribution of contact wrenches based on the desired rate

of centroidal momentum derived from the balance stability of

CD. The second stage computes the joint torques needed to re-

alize the contact wrenches using inverse dynamics of full-body

dynamics. Note that, deriving the desired rate of centroidal

momentum in the first stage is particularly challenging due to

the non-holonomy [263] of angular momentum, i.e., the kinetic

momentum of rotation is not directly related to the orientation

of body links. As a result, the body orientation requires

additional regulation (e.g., joint-level postural feedback [3])

beyond simple feedback on angular momentum.

To address the non-holonomy issue, the third strategy uses

post-optimization [264]. The main idea is to treat the floating-

base robot as a fixed-based system when calculating joint

torques. The underactuated portion of the obtained torque is

then mapped to contact wrenches through an optimal distribu-

tion problem. This method avoids the challenge of specifying

the momentum of rotation in the pre-optimization strategy.

2) Interaction as a Unified Robot-Object Model: A unified

robot-object system can leverage the additional object to

regulate the robot’s dynamics. This yields more dynamically

feasible behavior when carrying heavy or dynamically-moving

objects. The unified model incorporates each manipulated ob-

ject as an additional “robot” – either a passive object or a real

robot – and connects the robot and object via action-reaction

force pairs [265]. The balance stability must consider the

combined CoM and inertia of the robot-object system [219].

Additionally, the contact stability between the robot and the

object is maintained to ensure that the object remains securely

attached. While direct control of the interaction forces is fea-

sible, adaptive force control that regulates the relative position

between the object and the robot offers greater robustness.

This approach mitigates the impact of inevitable inaccuracies

in modeling inertia parameters and stiffness properties [189].
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Key Takeaways for Whole-Body Control: The core of whole-

body control lies in addressing an inverse dynamics problem

to produce joint-level torque control. However, this problem is

challenging due to the underactuation and contact-constrained

nature of humanoid robots. Closed-form approaches such

as inverse dynamics control and operational-space control

are computationally efficient. Therefore, they have been tra-

ditionally prevalent. On the other hand, optimization-based

strategies, particularly quadratic programs, are increasingly

favored as they adapt more effectively to a wide range of task

specifications and offer more reliable solutions. Undoubtedly,

both lines of WBC research have significantly advanced the

progress of humanoid robot control over the past two decades.

In the near term, optimization-based WBC will continue to be

a popular choice for low-level control to achieve high-level

loco-manipulation tasks. We also see neural WBC [266, 267,

268] gaining popularity, as we will discuss in the following

section. For further reading, we recommend the survey on

optimization-based WBC for legged robots [9] and the chapter

on closed-form WBC techniques for humanoid robots [7].

E. Challenges in Numerical Optimization

Robotic planning and control techniques that are formal-

ized as numerical optimization problems heavily rely on

advances in applied discrete mathematics and optimization

theory. These advancements address challenges such as non-

convexity, numerical robustness, and real-time resolution per-

formance. However, a plateau may have been reached in

the transfer of these techniques to the field of robotics at

large – humanoids specifically – despite exploiting the unique

properties of robotic models. These properties can enhance

the efficiency of optimization problem formulation and its

resolution by tailoring them to specific applications. However,

as evidenced by the formulation OCP, including MPC (Sec. V)

and WBC (Sec. VI), inherent physical uncertainties can disrupt

closed-loop performance. Extending these formulations to

loco-manipulation primarily involves (i) augmenting models

to incorporate loco-manipulated counterparts and (ii) refining

contact models formulations to account for various interactions

(e.g., impact [269], rolling, deforming). However, these exten-

sions risk overcomplicating the problem, potentially hindering

effective formalization, even if the resulting formulations are

sparse.

Contact-explicit optimization formulations [6] are gener-

ally preferred due to their faster convergence and simplified

formulation. However, they still suffer from the curse of

dimensionality, which limits the complexity of the considered

problem, the length of the preview window, and the discretiza-

tion granularity of the decision variables. While increasing the

resolution of the discretization and the length of the preview

horizon increases the quality and stability of the results, the

corresponding decrease in solution speed can, in some cases,

cause an overall reduction in system stability. However, as

computational power increases, this lowers the significance of

these challenges.

Importantly, however, the contact-explicit formulations have

the significant limitation of requiring the user to determine

the contact mode sequence for the problem, which generally

limits the ability to generate complex motions. Alternatively,

contact-implicit formulations introduce complementarity con-

ditions to eliminate the strict dependence on the contact mode

sequence [162, 167, 270]. However, contact complementarity

conditions are nonsmooth, introducing severe computational

challenges. Generally, this is tackled via regularizing the

complementarity problem, e.g., [170], which approximates the

constraint with a continuous affine function. Even with this

linearized approximation, contact-implicit approaches struggle

to scale to the high dimensionality of humanoid robots due to

excessive computation and numerical difficulty. However, im-

proved solver formulations, either as first-order solvers such as

Alternating Direction Method of Multipliers (ADMM) [271]

or specialized methods [168] for handling the complementarity

conditions, have the potential to increase the tractability of

real-time contact-implicit optimization.

Possibly more importantly, all these approaches, however,

still have only local optimality guarantees. The level of

nonconvexity or nonlinearity of the problem influences the

solution quality, which often results in poor local minima

or sub-optimal solutions. When the structure of the problem

requires deviations from local candidate solutions, a feasible

solution, even one that is only locally optimal, may never be

found. This feasibility issue remains an open challenge for

nonconvex nonlinear optimization.

Additionally, optimization approaches are almost always

deterministic in nature, failing to capture the stochasticity in

the state estimates and future contact events. This lack of

consideration of uncertainty along the optimization horizon

is critical, as it leads to limited robustness in translation to

the real world. Addressing this uncertainty and lack of global

optimality has led to the combination of search techniques

with traditional trajectory optimization. For example, Model

Predictive Path Integral (MPPI) [211] samples a variety of

random control signals and their resulting state trajectories

to determine the best action to take. Alternative contacts

and objectives can also be sampled with contact-implicit

approaches to help avoid local minima and find the globally

optimal solution to accomplish a task [272]. Although both of

these approaches heavily leverage computational paralleliza-

tion for expediency, parallelizing the underlying optimization

algorithms explicitly designed for trajectory optimization is

gaining increasing prevalence, both on the CPU [273] and

GPU [205, 274], as discussed in Sec. V. Despite this, the

inclusion of the uncertainty into the optimization problem,

whether through sampling [275], smoothing [276], or the

introduction of stochasticity [277], is a promising approach

for mitigating some of these challenges.

Despite the gains in these algorithms for considering the

full system dynamics, the robustness of the mathematical

solution when performing numerical optimization has been

a concern due to the infeasibility of complex optimization

problems, regardless of the computation speed improvement.

As discussed in Sec. VI WBC, arbitrating techniques address

infeasibility by (i) relaxing the hard constraint to the soft con-

straint by combining them in the cost with a weighted sum and

(ii) prioritizing the constraints by achieving the important ones
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first. However, how to design a smart solver to automatically

resolve this issue and provide numerical robustness is still an

open question. In addition, weight-tuning in high-dimensional

problems with complex objectives is nontrivial, highly task-

dependent, and can lead to instability [259]. Researchers

have made initial steps to apply auto-tuning techniques to

streamline the tuning process in Optimal Control Problem

(OCP) designs for humanoid robots [278, 279]. Until these

are solved, assigning definitive but non-violating constraints

and designing objective functions while maintaining global

versatility still depend on expert knowledge.

VII. LEARNING LOCO-MANIPULATION SKILLS

Robot skill refers to the ability to use its own percep-

tion, planning, and control capabilities to complete speci-

fied tasks autonomously [280]. Among a variety of robot

skills, loco-manipulation is highly valuable for augmenting

and complementing human capabilities. Traditionally, loco-

manipulation skills are developed from human designer knowl-

edge, distilled into pre-programmed planners or controllers.

In contrast, learning-based methods leverage computation and

data. Although learning skills require collecting extensive data

from either autonomous exploration or expert guidance, this

approach is powerful as it tends to yield novel behaviors that

are difficult to encode from human knowledge.

This section reviews learning-based approaches that explore

two main directions: (i) enhancing a specific skill in terms of

agility, robustness, and safety, and (ii) broadening the overall

skill set of robots, revolving around two pivotal goals: versa-

tility and generalization. Versatility refers to the capability of a

single framework or policy to master multiple skills, whereas

generalization involves adapting existing skills to new, out-of-

distribution tasks and environments. Versatility can be viewed

as a prerequisite for generalization. For a model to generalize

across a wide range of tasks, it must possess a broad and

versatile set of skills that can be applied in novel contexts.

However, possessing versatile skills alone does not guarantee

generalization—the model must also be capable of correctly

prompting and adapting those skills to meet novel objectives.

For instance, in the context of skill learning, a versatile policy

can track multiple trajectories within the training dataset,

while a generalizable policy should be able to track motions

beyond those seen in the dataset, thereby demonstrating out-

of-distribution capabilities.

Among learning-based methods, Reinforcement Learning

(RL) without demonstration and learning from demonstration,

also known as Imitation Learning (IL), have shown remarkable

proficiency for robotic skill learning. RL has been successful in

coordinating complex full-body motions for humanoid robots,

including dancing [266, 281], agile soccer maneuvers [282],

and robust locomotion [38, 42]. However, RL policies are often

fine-tuned for specific tasks within specific environments.

This limitation largely stems from the reward function being

narrowly tailored to a specific task, and the policy only capable

of learning from the same or similar environments. In contrast,

IL addresses this problem by leveraging large datasets of

demonstrations [40, 283]. Recent advancements in IL have

demonstrated promising results for scaling to a large number

of skills [10], showing potential for solving complex multi-

skill tasks.

For the basics of RL and IL, we refer readers to the

survey paper [16]. In this section, we discuss these methods

for learning humanoid loco-manipulation skills. As shown in

Fig. 10, we introduce RL in Sec. VII-A and IL in Sec. VII-B

and Sec. VII-C. Thereafter, we discuss the benefits of combin-

ing model-based and learning-based methods in Sec. VII-D.

Finally, we discuss methods for learning versatile skills with

a single policy in Sec. VII-E.

A. Skill Learning: Reinforcement Learning from Scratch

RL, enhanced by modern deep learning toolchains and

algorithms, has garnered significant attention in the field of

robotics over the past decade. RL promises an effective way

to learn motor skills by rewarding desirable behaviors and

penalizing undesired behaviors, with minimal or no supervi-

sion during training. The end-to-end RL policies translate raw

sensory input to actuation and are executable in real time.

RL provides distinct benefits but also comes with its own

challenges. Compared with model-based methods, numerous

RL methods are model-free (see Sec. VII-E for model-based

RL), eliminating the need for accurate dynamics. Furthermore,

RL does not require demonstration data, making its training

setup straightforward. However, it often requires meticulous

design of reward functions to shape the policy’s behavior.

In addition, deploying a learned policy on robot hardware

often encounters a sim-to-real gap, a well-known issue induced

by the inaccurate physical model used by the simulator.

Policy learning from scratch often requires extensive and

time-consuming interactions with the environment without

a guarantee for task completion. For example, popular RL

algorithms such as Proximal Policy Optimization (PPO) [284]

and Soft Actor-Critic (SAC) [285] fail in most humanoid loco-

manipulation tasks [286], partly due to the complexity of these

tasks, the sample inefficiency, and the sparse reward design.

1) Comparison Between RL Algorithms: PPO [284], and

similarly other on-policy reinforcement learning algorithms

such as A3C [287], is sample inefficient, but the policy update

is fast and scalable. PPO is widely used in sim-to-real settings

where simulation data is relatively cheap to obtain, e.g., in

a parallelized simulation environment such as Isaac Gym

[215]. SAC [285], and similarly, Twin Delayed Deep Deter-

ministic (TD3) [288] and Deep Deterministic Policy Gradient

(DDPG) [289], are sample-efficient off-policy algorithms, but

slower to train due to higher computational costs for the policy

updates. In addition, Q-learning-based methods such as SAC

can introduce model bias during the training process since they

estimate gradients using a learned Q-function, whereas policy

gradient methods such as PPO have the advantage of directly

estimating the gradients of the learning objective. Off-policy

algorithms are widely used when data collection is expensive,

e.g., when the data can only be obtained from a real robot.

The recent literature on RL for humanoid robots relies mainly

on simulation data, and hence PPO is widely employed. For

other RL settings, such as real-world RL, we envision that
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Fig. 10. The organization of approaches for skill learning. RL does not require
reference data in a standard setup. IL makes use of four different data sources
for efficient learning. The larger the morphology gap or sim-to-real gap is,
the more challenging it becomes to learn effectively from these data.

more off-policy RL algorithms and novel RL algorithms will

play an important role in learning humanoid skills.

2) Improving Learning Efficiency: Several approaches have

been proposed to improve learning efficiency. Curriculum

learning expedites training by allowing the policy to achieve

simple tasks in the early stage of training and then progres-

sively increasing the task difficulty and complexity [290].

Another approach is to promote exploration. Researchers use

curiosity mechanisms, which encourage visiting unexplored

states, to intrinsically motivate learning without an explicit

reward design [291]. This has been shown to overcome the

sparse reward setting and achieve complex loco-manipulation

behaviors such as door opening. [281] also incorporates

curiosity-based rewards to learn versatile loco-manipulation

skills without any motion priors. Lastly, substituting reward

terms with constraints in a constrained RL framework can

significantly simplify reward tuning while achieving state-of-

the-art locomotion performance [292].

3) Addressing the Sim-to-real Gap: Sim-to-real is another

formidable challenge in RL. Nevertheless, RL has been suc-

cessfully applied to various areas of robotics, notably in

quadrupeds [293], where the sim-to-real gap has been con-

sistently overcome. The success of quadrupeds hinges on

new investments in infrastructure for affordable hardware and

highly parallel physics engines, spearheaded by key players in

the robotics field. It is also important to note that quadrupeds

benefit from an inherently stable dynamic system similar to

manipulators while operating in less complex environments

compared to typical loco-manipulation tasks.

In contrast, humanoid loco-manipulation faces steeper sim-

to-real challenges. Humanoid robots possess higher DoFs

and unstable dynamics, where the center of mass constantly

moves out of the support polygon. Therefore, learning whole-

body balance control is sensitive to parameters in a physics

simulation, underlining the sim-to-real gap due to differences

in dynamics between the virtual and real worlds. Additionally,

humanoids are expected to perform human-level manipulation

tasks where the complex environment and the differences in

observation space, such as visual appearances, aggravate the

sim-to-real-gap.

To address the sim-to-real challenge, a diverse set of main-

stream approaches have been explored for humanoid robots.

Domain Randomization (DR) is among the most widely

adopted approaches, which varies the properties of a robot

model, such as mass, friction, and actuator dynamics, to

train a generalized policy robust in the real world. Many

humanoid works [42, 282] achieve sim-to-real transfer through

DR. While DR is straightforward to set up, policy training

is sensitive to the parameter randomization range, inducing

laborious tuning: a larger range is challenging for the policy

to fit all physical parameters (i.e., fail to learn), and a smaller

range does not cover the full spectrum of parameters that can

occur in the physical world (i.e., fail to transfer).

System Identification (SI) is another popular approach to

enhancing model fidelity by approximating the system’s input-

output behavior from real-world data. Real-to-sim techniques

use optimization [294] or search [295] to obtain simulation

parameters that can best explain the real robot trajectories

collected from policy execution. Learning to align simulation

behavior with policy rollouts in the real world has also shown

success in sim-to-real transfer [296]. However, it is challenging

to collect real-world data covering the full space of states and

actions, particularly for versatile, safety-critical tasks.

While SI uses real-world data to obtain an accurate model,

Domain Adaptation (DA) uses real-world data directly to

fine-tune a simulator-trained policy. In DA, the parameter

distribution in simulation is defined as the source domain, and

parameter distribution in the real world is defined as the target

domain. The fine-tuning effectively transfers the policy from

the source domain to the target domain. For example, Sim-to-

Lab-to-Real [297] develops a two-stage transfer: pre-training

in simulation and fine-tuning in the real world. Although only

limited hardware data is needed for fine-tuning, safety is still

a major concern. Safety filters are often deployed to prevent

dangerous movements when collecting real-world data [298].

Despite these efforts to address the sim-to-real gap, a

systematic solution remains elusive, as the aforementioned ap-

proaches are often case-specific. Against this backdrop, devel-

oping physics engines that facilitate real-to-sim construction

and sim-to-real transfer is crucial. However, physics engines

are constrained by real-time requirements and continue to

face challenges in accurately solving contact dynamics. For

instance, MuJoCo [214] employs a soft contact model that can

lead to unphysical penetration artifacts, while PhysX [215]

approximates friction cones using low-fidelity pyramids that

widen the sim-to-real gap. Although existing solutions in-

evitably involve trade-offs between accuracy and efficiency,

advancements in contact modeling will significantly narrow
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TABLE V
SKILL LEARNING METHODS BASED ON DATA SOURCE

Methods and Data Pros and Cons Algorithms

RL Without
Reference

6novel behavior
: reward tuning

PPO [284], SAC [285]

IL Robot Execution

6annotated data
6dynamically feasible
: scarce
: limited diversity

Diffusion [283], IRL [300]

IL Teleoperation
6multimodal behavior
: rare full-body motion

BC-RNN [89],
ACT [268, 301]

IL Motion Capture

6accurate kinematics
: small dataset
: limited outdoor data
: proprioception-only

RL motion imitation
[302], GAIL [303],
AMP [304, 305]

IL Human Video

6diverse abundant data
: non-physical motion
: proprioception-only

RL motion imitation [306],
GAIL [307], OKAMI [308]

the sim-to-real gap.

Key Takeaways: RL provides an effective way to learn

novel behaviors for humanoid loco-manipulation. However,

in practice, the success of RL often relies on informative

representations for both observation and action, extensive

reward engineering, curriculum learning design, and a vast

amount of trial-and-error experiences to estimate gradients.

Consequently, using RL to train robots is almost never prac-

tical in the real world, at least for the current stage of devel-

opment. Therefore, RL policies are predominantly trained in

simulations. This makes the sim-to-real gap the Achilles’ heel

of RL, significantly dampening its initial promise. Compared

with quadruped robots, the sim-to-real gap is particularly

challenging for humanoid robots with high DoFs executing

complex loco-manipulation tasks. This is why IL, leveraging

limited but in-domain real-world data, has gained popularity

over pure RL without demonstration data. For further reading

in RL, we recommend the survey on learning-based legged

locomotion [16] and the practical lessons for training robotic

RL agent [299].

B. Skill Learning: Imitation from Robot Experience

Imitation Learning (IL) is an umbrella term that represents

a class of algorithms, including supervised, unsupervised,

and reinforcement learning, that train policies from expert

demonstrations. IL is particularly effective for complex tasks

that are difficult to specify explicitly. Three essential steps exist

in IL [18]. The first step is to capture the expert demonstration.

The next step involves retargeting, where these demonstrations

are mapped to the robot motions. If the captured motion

comes from the same robot, such as from teleoperation, the

retargeting step is unnecessary. The final step is policy training

using the retargeted data.

We discuss four possible sources of demonstrations for

humanoid robots: (i) policy execution, (ii) teleoperation,

(iii) motion capture, and (iv) human videos, as illustrated in

Fig. 10 and Table V. We group these data sources into two

categories: the robot experience data, which represents those

directly obtained from the robots through policy execution

or teleoperation, and the human data, which includes human

motion captures and videos of human activities obtained from

the Internet. Robot experiences exhibit smaller morphological

�
	����������� ������������������ ��		������������ %�)������������&��

16�))�0�)�/3 %�)���������8
%��B�/���3

T O���
�)����)��X
T PN�K6�)���H
T ����/�)�%��/6��E
T �����������
�R
T %����	�)_
T D�3K��/6

T ~����%��w��K�_
T �&B�/������3��E
T 0��/�K�������
)����H
T �&B�/�������w��
T ��
�d�%������

����	���/K�����
~3��	�/K��������

~�K����
��&���%��B�/���3

%��������8
PN�����~���

PN�����~���

Fig. 11. Control flow for learning from teleoperated demonstrations. Expert
data is created from teleoperated trajectories (dashed lines), which in turn is
used to train and deploy an autonomous skill policy (solid lines).

discrepancies and are directly applicable to policy learning

but are typically scarce. Conversely, human data are more

abundant but present significant morphological differences to

humanoid robots.

1) Obtaining Robot Experience Data: A reliable way to

obtain robot experience data is to execute existing policies,

either model-based or learning-based. However, collecting

data on a physical robot requires a laborious setup of the

environment and raises significant safety concerns. Therefore,

conducting these executions in simulation is a more efficient

approach, although the fidelity of the simulator will inevitably

cause a sim-to-real gap.

Teleoperation is one of the most common ways to directly

capture robot data commanded by human experts. A main

advantage of teleoperation is its ability to provide smooth,

natural, and precise trajectories for a wide range of tasks.

Fig. 11 outlines the control flow of teleoperation data used as a

source of policy training. The first step of this process is gen-

erating the demonstration through teleoperation, represented

by the top path of the control flow (dashed lines). Motion

retargeting maps human measurements from the teleoperation

device to the desired trajectories in the robot domain. Robot

execution data collected from teleoperation can be used to

train autonomous policies (solid lines) that directly command

the robot’s motion without human intervention.

However, teleoperation for the full-body of a humanoid has a

number of limitations. Firstly, a majority of teleoperation sys-

tems capture only manipulation skills [10]. Generally, Virtual

Reality (VR)-based teleoperation schemes cannot sense the

operator’s gait and are restricted to simply commanding walk-

ing speeds and directions via joysticks [242, 309, 310]. Full-

body sensing, including human gaits, often requires additional

equipment such as IMU suits [240, 311] or exoskeletons [245].

These devices may be prohibitively expensive, bulky, compli-

cated to maintain, and lack transparency and user-friendliness.

Secondly, while teleoperation can generate versatile training

data for a wide range of tasks, the utility of this data may

be limited if the robot’s kinematics fail to seamlessly retarget

the reference human motion. Additionally, retargeting dynamic

tasks such as walking or pushing an object relies heavily on the

dynamic model of the human demonstrator [240] and requires

meeting high synchronicity [311] and rich sensory feedback.

Although both teleoperation data and policy execution data

are recorded from robots, they exhibit distinct characteristics.

During teleoperation, human instructors tend to provide di-

verse demonstrations even for the same task. Therefore, teleop-
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eration data are often multimodal; that is, given a specific task,

there exists a distribution of plausible ways to accomplish the

task. In contrast, data from executing a single policy are often

unimodal; that is, given an input, the output is often fixed.

Different policy learning approaches have been proposed to

address these multimodal and unimodal data features.

2) Approaches to Learning from Robot Experience Data:

From unimodal policy execution data, which contains paired

observations and actions, IL approaches are often used for pol-

icy distillation. Behavior Cloning (BC) casts IL as a supervised

learning problem, which remains one of the most straightfor-

ward approaches for robot skill learning [312, 313]. Another

IL technique is Inverse Reinforcement Learning (IRL), which

reconstructs rewards from the data in addition to training an

RL policy. The IRL study in [300] infers a generalizable

reward of the expert demonstration for bipedal locomotion and

then uses it to train an RL policy in unseen terrains.

To capture the data multimodality and produce diverse

future actions, the Action Chunking Transformer (ACT) [268,

301] is adopted to handle distribution shifts due to the com-

pounding error inherent in naive BC. Diffusion policy [283],

a BC method, shows the ability to acquire multimodal lo-

comotion skills by learning from a large dataset collected

from multiple expert policies. However, obtaining these skills

requires large-scale versatile data, which motivates the scaling

of data collection via teleoperation in industrial companies,

e.g., Tesla and Toyota Research [10].

Key Takeaways: Although collecting high-quality data de-

mands considerable effort and resources, IL from robot experi-

ence remains a reliable method for attaining skills with expert-

level performance. Industrial companies and research labs are

increasingly focusing on scaling data collection to develop

a broader range of diverse policies through IL. Especially,

teleoperation is one of the most popular ways to collect

humanoid robot experiences nowadays. For further reading on

collecting robot experience data, we recommend the survey on

humanoid robot teleoperation [314]. We also find the survey

on imitation learning of humanoid bipedal locomotion [18] a

decent summary.

C. Skill Learning: Imitation from Human Data

While robot experiences can serve as a reliable data source,

collecting loco-manipulation data directly from robots remains

a formidable challenge. Collecting teleoperation data, even

though it is one of the most commonly used approaches, is

costly and tedious to scale. Additionally, gathering robot data

by deploying existing model-based methods or trained policies

presents additional difficulties. Deploying these methods on

hardware raises safety concerns. On the other hand, data

collected from a simulator or synthesized from a model suffers

from sim-to-real gaps. Furthermore, model-based methods

based on human knowledge (e.g., dynamics models, heuristic

trajectories) generate consistent but similar behaviors, leading

to limited data diversity.

Learning from a large, diverse corpus of human data mit-

igates these challenges, as recording human data is more

accessible and scalable due to the reflexive usage of loco-

Human Videos 
from Internet (2D) Reconstruction

Human Data

Human Motion 
Capture

Human 
Motion (3D)

Retargeting
Robot Motion

IL Policy

GAIL, AMP, RL tracking

Fig. 12. A pipeline for learning from human data. The 3D human motion
data can be recorded from motion capture systems or reconstructed from
2D human videos. Robot motion is retargeted from 3D human motion for
imitation learning.

(b)

(a)

Fig. 13. Motion capture of human data. (a) The human interacts with
household items [177]. (b) The human interacts with items with whole-body
manipulation [315].

manipulation skills by humans in their daily lives. Further-

more, training policies to imitate human data can simplify

the synthesis of loco-manipulation behaviors. Recent research

efforts in 3D human motion data archival have surged in

the vision and computer graphics communities. As shown

in Fig. 12, there are currently two primary approaches to

acquiring 3D human motion data: (i) recording directly from

motion capture systems and (ii) reconstructing from 2D videos.

1) Obtaining Human Data: Various tracking systems

are used to obtain human motion data. As shown in

Fig. 13, [177, 315] captures humans interacting with var-

ious objects while moving around. The following datasets,

CMU [316], SFU [317], LAFAAN [318], and AMASS [319],

are commonly used because they provide a wide variety of

human motions. However, motion capture data often require

heavily instrumented environments and actors, making them

expensive to scale, and indoor lab settings provide little

exposure to outdoor activities.

Alternatively, videos and images obtained from the Internet

offer a rich and diverse source of human motion data, in-

cluding athletic performances, artistic dances, or daily chores.

However, motion extracted from internet data is usually of

lower quality, containing noise, jittery, and non-physical arti-

facts due to occlusion and motion blurs. Therefore, the recon-

struction of accurate 3D human poses from 2D data remains

an active research topic in the computer vision community.



23

Animation is also a widely explored approach to obtaining

human motion data. Although the approach is effective in

designing expressive motions for virtual human characters, the

process often requires the use of sophisticated animation tools

by professional animators [320], which makes it less scalable

than motion capture or Internet videos. To address this limita-

tion, researchers have been pursuing motion generation, lever-

aging human data to generate diverse and realistic motions.

Recent advances in generative models, particularly diffusion-

based approaches for video generation such as Sora [321]

and Stable Video Diffusion [322], have significantly propelled

progress in motion generation. A comprehensive survey [323]

highlights the impressive capability of these models to gen-

erate realistic human motions. However, our focus here is

training IL policies to generate physically plausible actions

that achieve the motions demonstrated in human data. The

training pipeline is shown in Fig. 12.

2) Challenges in Learning from Human Data: Using offline

human motion data (from any source) to train humanoids

inevitably creates an embodiment gap both in observation and

action spaces due to different body proportions, joint con-

figurations, and mass distributions between most humanoids

and humans. Closing this embodiment gap requires retar-

geting, which involves mapping the motion collected from

a source skeletal model to a target robot model. Previous

work in computer graphics and robotics has explored various

retargeting strategies, such as joint-space [240, 268, 324]

and task-space correspondence [301], contact points [219],

fingertips [325], gait synchronization [245, 311], and motion

feasibility filter [158, 267]. Developing systematic solutions

for retargeting the entire human body, including dexterous

hands, remains a critical topic for advancing humanoids.

Another correspondence problem is that the human data

are only proprioception-based, which lacks sensory input and

action output. Notably, these human data lack tactile or force

measurement from interactions, which limits the capability of

learning for loco-manipulation with rich physical interaction.

To solve this issue, IL trains control policies that track ref-

erences within a physical simulator. Specifically, IL control

policies accept state-only references instead of state-action

pairs and output control signals. The physical simulator plays a

key role in providing sensory input and validating the physical

feasibility of the policy action.

3) Approaches to Learning from Human Data: Examples

of learned human-like motions include walking using Gener-

ative Adversarial Imitation Learning (GAIL) [303, 307] and

Adversarial Motion Prior (AMP) [304, 305, 326], which is

an extension of the GAIL. Recently, RL-based motion imita-

tion using motion capture data has successfully transferred

to humanoid robots [267, 268, 324, 327]. However, most

of these works achieve only relatively conservative loco-

manipulation behaviors. Highly agile behaviors, as shown in

DeepMimic [328], still exist only in simulators, and similar

capabilities have yet to be replicated with real robots.

Human motion imitation can also achieve robust policies

capable of rich interactions with objects in unstructured en-

vironments. For example, [306, 329] demonstrates the learn-

ing of full-body gymnastic skills for humanoids in physics

simulation, utilizing video reconstruction data and RL-based

motion imitation. [330, 331] learns loco-manipulation policies

enabling simulated humanoid characters to carry boxes. Fur-

thermore, [302] mimics motion capture data to achieve tasks

such as playing basketball and grasping objects. However,

many of these approaches rely on privileged information, such

as the ground truth of object and ego poses, from the simulator,

which limits their extension to real-world hardware.

Key Takeaways: Transferring skills from humans, especially

through Internet-scale datasets, unlocks a broad range of

loco-manipulation capabilities for humanoid robots. Although

learning from human data holds great promise, a large body

of what has been achieved in simulation has yet to be real-

ized in real-world robots. Developing affordable and capable

humanoid robots and high-fidelity simulators of real-world

loco-manipulation scenarios can accelerate progress in this

research direction. As we witness an increasing accessibility

of humanoid robots in the market, we foresee that imitation

from human data will enable humanoid robots to acquire a vast

and diverse skill set. This skill set is fundamental to building

humanoid foundation models discussed in Sec. VIII.

D. Skill Learning: Hybrid Methods

Approaches that combine learning-based methods (IL and

RL) and model-based methods are illustrated in Fig. 14.

1) Combining Pure RL and IL: The combination of IL

and pure RL without demonstration data has led to effective

sim-to-real transfers. A two-stage teacher-student paradigm is

widely adopted [40, 42, 332]. In these works, a teacher policy

is first trained from simulated privileged observation using

pure RL. Then, a student policy clones the behavior of the

teacher, achieving a similar performance using only partial

observations. The trained student policy is readily deployable

on hardware with onboard observations. Another two-stage

paradigm [333] reverses the order of the two policies. It

first uses IL to pre-train an imitation policy from expert data

and then uses an RL policy to fine-tune the imitation policy,

achieving performance beyond the IL expert and adapting to

different environments or tasks [334].

2) Learning to Track Trajectory Reference: Combining

model-based methods with learning-based methods is exten-

sively explored. Numerous works on quadruped robots [335,

336] use MPC to generate reference motions and use them

as imitation rewards for RL-based motion imitation. How-

ever, calculating MPC online can prolong the training time

and occasionally fail to find a feasible solution. Online RL

that tracks offline-generated trajectories avoids this problem

and has achieved effective RL policies for versatile bipedal

locomotion [38, 337, 338]. Supervised learning is also used

to mimic TO-generated offline motions. For example, [339]

allows humanoid robots to achieve brachiation on monkey

bars. In addition to enhancing learning methods with model-

informed trajectories, a learned policy can also suggest effec-

tive warm starts or hyperparameters for model-based methods,

thus significantly reducing the iterations required for conver-

gence to an optimal trajectory.
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Fig. 14. The frameworks of combining model-based methods and model-free
methods for skill learning.

3) Learning to Augment Trajectory Reference: Rather than

tracking the reference trajectory, augmenting the reference

with a residual is another popular approach. Early work on dy-

namic movement primitives [340] modifies the reference tra-

jectory by learning a task-specific force output, which achieves

a humanoid racket swing. A milestone in trajectory augmenta-

tion is the demonstration of bipedal locomotion in [341]. Since

then, there have been more studies on trajectory augmentation

with successful dynamic locomotion [342, 343]. Recently,

loco-manipulation skills are also achieved through augmenting

TO-based reference trajectory [344]. Beyond joint-level refer-

ence, a policy can also augment the task-space reference. For

example, [345] learn a locomotion policy to adapt the foot

placement reference derived from inverted pendulum models.

Both imitation and augmentation of the reference trajectory

share benefits and drawbacks. As a benefit, references expedite

the learning process and provide an effective way of learning

complex skills. However, both methods rely on predefined

trajectories and, therefore, have limited potential to learn

emergent, diverse behaviors.

Key Takeaways: This subsection summarizes hybrid meth-

ods with successful humanoid hardware deployments. Hybrid

methods that combine learning methods with and without

demonstration are effective for learning complex and robust

behaviors. We also show that model-based methods are not

in conflict with learning-based methods, as they can provide

guidance for efficient learning. Overall, hybrid methods that

combine learning-based and model-based approaches have

achieved superior efficiency, versatility, and performance in

humanoid tasks that outperform single methods alone.

E. Representation and Composition for Versatile Skills

A good representation of skills makes it easy to compose

tasks. In general, a skill can be represented explicitly as a state-

action trajectory that accomplishes a task or implicitly as a

network structure and its learned weights. In this subsection,

we explore implicit representations for skill composition to

achieve versatile and multi-skill tasks.

Recent learning-based approaches enable smooth transitions

between multiple skills. Among them, Mixture of Experts

(MOE) is widely used. MOE employs a hierarchical architec-

ture; it first trains multiple distinct skills, implicitly encoded in

low-level expert policies, and then learns a high-level policy

to select [346] or blend [47] these expert networks. This

architecture allows for smooth transitions between skills and

facilitates the completion of diverse tasks. However, MOE en-

counters expert imbalance issues favoring certain experts while

degrading others, which could diminish the diversity provided

by the experts. Instead of obtaining and then blending multiple

policies, structured representations improve memory efficiency

and allow a single policy to achieve multiple tasks. Next,

we introduce three well-received structured representations:

motion representation, goal representation, and state transition

representation, all shown in Fig. 15.
1) Motion Representation: Motion representation extracts

the essential features and temporal dependencies of high-

dimensional long-horizon motions [347]. Specifically, motion

representation encodes high-dimensional motions in a low-

dimensional latent space. Such latent-space representations are

commonly learned in an unsupervised manner using generative

models such as Variational Autoencoders (VAEs) [348] and

Generative Adversarial Networks (GANs) [349]. Compared

to VAEs, GANs have greater potential to generate realistic

motions following the reference data distribution, but they

are often difficult to train. The result of learning motion

representation is often a model that can synthesize versatile

motions given latent codes. Therefore, the generative model

can be reused for new downstream tasks by pairing it with

a high-level task-specific policy. For example, several stud-

ies [350, 351, 352] learn a high-level RL policy to efficiently

use a reduced-dimensional latent space motion representation

and allow simulated humanoid robots to follow a set of user-

commanded tasks.
2) Goal Representation: Another approach to learning a

single policy for multiple tasks is through the representation

of goals. The goal is typically represented as a feature vector,

which can be encoded from an image of the scene in its final

state, a natural language instruction, or a desired state from

observing human demonstrations. This goal representation is

often paired with Goal-Conditioned Policies (GCPs) [353].

Unlike standard RL policies that achieve only one task, GCPs

achieve multiple tasks within a single general policy condi-

tioned on different goals. GCPs have demonstrated versatile

humanoid skills using IL, such as diffusion-model based

BC [283] and RL with imitation objectives [267, 324, 354].
3) State Transition Representation: The latent space can

also represent the transition dynamics of a Markov Decision

Process (MDP). In this representation, data collected from the

MDP are used to train a dynamics model that predicts the
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transition probability between abstract, compressed represen-

tations of MDP states. This learned dynamics model is often

referred to as a world model [355]. Sampling from a world

model yields imaginary data, which can be achieved efficiently

in parallel. By leveraging the imaginary data, Model-Based

RL (MBRL) achieves greater efficiency compared to a typical

model-free setting, where interaction data must be obtained

from a simulated or real environment. MBRL has shown

success in agile motor skills on humanoids [356, 357]. Another

approach, TD-MPC2 [358], uses the world model in an MPC

fashion, planning actions that lead to imaginary trajectories

with high scores. Beyond data efficiency, the world model can

mitigate the sim-to-real gap by fine-tuning a small batch of

real-world data [359].

Key Takeaways: Enabling robots to accomplish versatile

skills and multiple tasks is one of the main trends in robot

skill learning. Whereas obtaining and blending single-skill

policies is widely explored, more recent methods put efforts

into achieving multiple tasks in a single policy. This requires

a more structured representation of the skill motion, the task

goal, and/or the environment dynamics. Latent space models,

goal-conditioned policies, and world models are promising

approaches toward this objective. However, many of these

methods are still limited to the computer graphics community

and yet to be implemented on humanoid hardware.

F. Learning for Humanoid Loco-manipulation

Loco-manipulation skills are challenging for learning-based

methods as they often struggle with achieving physically

stable contact or precise contact forces. While many learning-

based approaches, such as CooHOI [360], demonstrate hu-

manoid loco-manipulation skills in simulation, the physical

interactions with external environments or objects are often

oversimplified. As a result, only a few studies have demon-

strated sim-to-real transfer for loco-manipulation skills. A

large part of these studies rely on sim-to-real RL, with a

few examples shown in Fig. 16. However, sim-to-real RL

for loco-manipulation typically involves complicated reward

designs that are fine-tuned for specific environments and

tasks [361, 362], see Sec. VII-A. To enable loco-manipulation

tasks, these methods define the contact sequence either im-

plicitly using reference trajectory [344, 361] or explicitly via

reward design [281], thus increasing the success rate of sim-to-

real transfer. To address the uncertainty of the mass and other

properties of the manipulated object, most RL approaches

rely on domain randomization to provide robustness to object

parameters [42].

A hierarchical RL structure that manages distinct skills is a

viable strategy for achieving various loco-manipulation tasks

such as falling recovery and ball kicking [282]. However,

hierarchical RL has scalability issues, see Sec. VII-E. On the

other hand, IL methods, particularly those employing RL with

motion imitation, have enabled humanoid loco-manipulation

via teleoperation, as outlined in Sec. VII-B. Although tele-

operation is not autonomous, it is a crucial intermediate step

to collect humanoid data. This has led to promising devel-

opments in autonomous loco-manipulation skills [267, 268],
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Fig. 15. Implicit skill representations. (a) Represent motions in latent space.
(b) Represent goals in latent space and instruct a goal-conditioned policy for
execution. (c) Represent state transitions with a world model and then use the
learned world model for sample efficient training.

with the potential for further expansion to more diverse loco-

manipulation tasks.

Key Takeaways: Although learning-based methods for hu-

manoid loco-manipulation are less developed than model-

based methods, their significance should not be overlooked.

Learning-based methods are potentially more robust, as they

can adapt to unstructured scenarios that model-based methods

struggle to explicitly address, such as recovering from a

fall in an arbitrary configuration [363]. Moreover, learning-

based methods can find emergent behaviors that are challeng-

ing for model-based methods [291]. The recent success of

quadrupedal loco-manipulation [81, 85, 86] shows significant

promise for humanoids. However, transferring these algo-

rithms from quadruped to humanoid is challenging because

of the more complex dynamics of humanoids, which require

enhanced safety measures and precise balance control.
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G. Challenge in Lack of Benchmarks for Loco-manipulation

The development of humanoid loco-manipulation skills is

still in its infancy compared to more established tasks such as

humanoid locomotion [364] and tabletop manipulation [365].

To advance this emerging field, there is a pressing need for

large-scale, systematic benchmarks specifically designed for

humanoid loco-manipulation, encompassing both simulation

and real-world environments. Benchmarks that define loco-

manipulation tasks and evaluation metrics can significantly

accelerate research in this field.

For benchmarks in simulation, HumanoidBench [286] and

Mimicking-Bench [366] offer a list of loco-manipulation tasks,

such as sitting on a piece of furniture and wiping a window.

SMPLOlympics [367] presents a collection of sports as tasks

for simulated humanoids. These benchmarks provide metrics

for evaluating the performance of humanoid algorithms and

help verify the reproducibility within MuJoCo [214] and Isaac

Gym [215]. However, these tasks represent only a subset of

human skills, and the evaluation metrics remain highly task-

specific. Expanding the benchmarks to include a broader range

of real-world tasks, along with more standardized metrics,

would enhance their utility and practicality. Moreover, the sim-

to-real gap continues to limit the practical value and reliability

of these simulation benchmarks: it remains uncertain how well

performance in simulation translates to real-world deployment,

although promising results have been demonstrated in zero-

shot sim-to-real transfer.

For hardware benchmarks, the development of affordable

and capable humanoid robots as standardized platforms for

hardware evaluation can significantly accelerate the research.

Research efforts on open-source humanoid hardware and

software, such as Hector [2], the MIT Humanoid [179], the

Berkeley Humanoid [368], and the Duke Humanoid [46]

represent valuable contributions. Additionally, rapid prototyp-

ing of diverse humanoid robots facilitates cross-embodiment

generalization, while mass production of standardized robots

streamlines the deployment of benchmarks, such as through

the Robotic Grand Factory initiatives [369]. Complement-

ing these efforts, the construction of remote-accessible real-

world environments, as exemplified by the DARPA Robotics

Challenge, Robotarium [370], and TriFinger [371], enables

researchers to focus on advancing algorithms. Ideally, these

physical environments share the same benchmark metrics as

the simulators to facilitate sim-to-real transfer, while remaining

highly customizable to support novel tasks.

H. Challenge in Data Scarcity

As discussed in Sec. VII-B, the four data sources present

a trade-off between quality and availability. The lack of high-

quality large-scale robot data becomes a bottleneck for robot

skill learning. To solve the bottleneck, much effort has been

put into data scaling. There is ongoing debate about whether

scaling is the best approach to generalist humanoid robots.

The central question we must answer is which aspect of

human motion we want robots to learn. Some humanoid

tasks can be achieved simply by mimicking 3D human pose

(a) (b)

(c) (d)

Fig. 16. Learning-based methods for humanoid loco-manipulation skills. (a)
Getting up and chasing a ball [282]. (b) Tying shoelace [268]. (c) Multi-
contact box manipulation [344]. (d) Dancing with a human [266].

trajectories [267, 268, 308, 311, 324], but a true general-

purpose robot emerges from purposive learning: the ability to

identify meaningful intentions from human data and adapt past

experiences to new tasks or environments [372]. Therefore,

human data must teach the robot not only what humans are

doing, but also how and why they are doing it. Current data

acquisition methods that capture human joint poses only en-

able learning what humans are doing. In this regard, imitation

of human data at the trajectory level is not fundamentally

generalizable due to the inevitable gap in morphology and

in the surrounding environment.

We argue that generalization in loco-manipulation is

achieved by including the motion of the manipulated ob-

jects, enhanced with a greater variety of sensing modalities

instead of data quantity scaling. To develop truly versatile

and adaptive humanoids, human data should also include

that of the manipulated objects, cognitive actions (e.g., trust,

compete, collaborate) paired with multimodal observations

(e.g., whole-body haptic sensing, egocentric images), so that

humanoids can learn the ‘how’ and ‘why’. However, instru-

menting the environment and the manipulated objects with

force and tactile sensing is highly complex and difficult to

scale. Potential approaches include leveraging vision-language

models to extract information from videos [373, 374, 375],

employing video generation models [376] or physics-based

simulation [214, 215] to generate synthetic data, and adopting

hybrid strategies that effectively combine these synthetic data

sources with limited real-world multimodal data [377, 378].

Recent work aims to bridge the gap between human animation

and humanoid applications by collecting human multimodal

observations [379, 380] and human kinetics [381]. Together

with the rapid advancement in humanoid hardware, purposive

learning with more informative human data will become the

mainstream approach to achieve versatile and general-purpose

humanoids.

VIII. FOUNDATION MODELS FOR HUMANOID ROBOTS

Foundation Models (FMs) are large pre-trained models us-

ing Internet-scale data [382]. Recent progress in FMs such as

Large Language Models (LLMs) and Vision-Language Mod-

els (VLMs) has demonstrated groundbreaking capabilities in
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solving a wide range of downstream tasks (through in-context

learning or fine-tuning), such as code generation and video

understanding [383]. The common sense reasoning capabilities

of FMs have inspired many explorations of their applications

in robotics [11, 12]. Despite this growing interest, research

on FMs specifically for humanoid robots remains sparse. In

this section, we first provide an overview of FMs in the

context of general robotics (e.g., mobile manipulation, instead

of humanoids) and then explore their potential applications to

humanoid robots.

Strategies to leverage FMs for robotics can generally be

categorized into two, as shown in Fig. 17. The first strategy

(Sec. VIII-A) elicits actionable knowledge from pre-trained

LLMs/VLMs for robotic tasks, without additional model fine-

tuning. The second strategy (Sec. VIII-B) collects abundant

robotic data to fine-tune or co-train a Robot Foundation Model

(RFM) that generalizes to control tasks with common sense

reasoning capability [384, 385, 386, 387, 388, 389].

A. Applying LLMs/VLMs to Humanoid Robots

Applying LLMs/VLMs to humanoids is still a nascent field.

Many studies have demonstrated the successful deployment

of LLMs/VLMs across various robot embodiments, such as

dexterous hands [390], manipulators [391], mobile manipula-

tors [392], quadrupedal robots [393], and bipedal robots [394].

Among these works, a majority way of using LLMs/VLMs

is to leverage pre-trained models without robot data. Al-

though these pre-trained models have semantic understanding

capability and context awareness, they often lack embodied

knowledge and can prescribe actions that are ambiguous or

non-admissible. Therefore, considerable research efforts have

focused on task-planning mechanisms to enable the generation

of admissible action plans. For example, SayCan [392] ranks

available actions based on value functions obtained during the

training of corresponding action policies for mobile manipu-

lators. VLM-PC [395] restricts GPT-4o to output plans with

skills available only for quadruped navigation.

1) FMs for selecting low-level skills (task planning): Such

task planning capability of FMs has advanced the complexity

of tasks that a humanoid can accomplish. For instance, [396]

and [397] use pre-trained LLMs to select skills and task goals

for animated humanoid characters. OmniH2O [267] employs

GPT-4 [383] to select autonomous skills such as greeting a

human. HYPERmotion [398] applies an LLM to construct

task graphs that enable a hybrid wheeled-leg robot to execute

complex loco-manipulation tasks. However, using FMs with a

fixed skill set limits skill versatility. In addition, for complex

behaviors such as those in humanoid loco-manipulation tasks,

it is essential to allow FMs to author the detailed motions

of low-level skills, instead of selecting from the existing,

relatively-abstract low-level skills.

2) FMs for authoring low-level skills: Thus, many re-

search efforts have focused on identifying the best bridge

between FMs and low-level robot skills. For example, re-

searchers have proposed to generate code [391, 399] and

reward functions [393, 394, 400] as intermediate represen-

tations for bipedal and quadrupedal robots. Compared to
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Fig. 17. Sec. VIII-A details different approaches to applying LLMs and VLMs
in robotics tasks. These approaches prompt pre-trained LLMs and VLMs
to generate task-relevant intermediate representations that can be executed
by low-level policies or controllers. Sec. VIII-B presents two approaches to
building humanoid foundation models. The first approach uses robot data to
train multi-skill policy, and the second approach fine-tunes an existing VLM.
Both approaches directly output actions for low-level humanoid control.

selecting the existing skills, these intermediate representations

provide additional flexibility in adjusting the generated motion.

Furthermore, FMs can generate whole-body poses [401, 402]

and whole-body contacts [403, 404] for humanoid robots.

These techniques allow users to intuitively direct a robot’s

behavior through expressive inputs such as natural language,

images, or even gestures.

B. Building Humanoid Foundation Models

While most FMs are developed in the vision or language

domain, building them in the robotics domain for embodied

intelligence is a natural extension. Similar to LLM and VLM,

Robot Foundation Models (RFMs) are large models trained

from Internet-scale robotic datasets. These RFMs often pro-

cess multimodal inputs (e.g., egocentric images, and natural

language as task description) and enable interaction with

the physical world through robot action outputs. Therefore,

they are also called Vision-Language-Action (VLA) models.

Leveraging the Internet-scale multimodal dataset, RFMs hold

the promise of generalization across diverse tasks and provide

a natural interface for human-robot interaction, both essential

for real-world robot applications.

1) Hierarchical vision-language-conditioned policy: One

popular approach to building RFMs is to create a multi-

task sensorimotor control policy using a high-capacity model

that can consume large amounts of robot data. The trained

policy can perform a wide variety of low-level skills, even

for multiple robot embodiments. To enable high-level rea-

soning/planning, this approach often employs a hierarchical

framework combining a pre-trained LLM or VLM with the

low-level control policy, initialized from scratch. During train-

ing, this setup aligns the semantic knowledge of the LLM
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and VLM with the physical behavior of the control policy,

enabling cross-modal capabilities such as language-to-action.

Transformer [405] is a common choice for such a low-level

policy due to its scalability. To enable interactive user com-

mands, the low-level policy is conditioned on language and/or

image inputs, often tokenized with pre-trained text or image

encoders from LLMs or VLMs. For example, RT-1 [384] and

VIMA [386] both train a language-conditioned visuomotor

policy with a large amount of manipulation data and have

demonstrated the ability to perform a wide range of skills.

However, successful implementations are limited to robots that

have stable dynamics and a large amount of high-quality data

collected with significant resources [385, 387, 406, 407].

Applying such a hierarchical framework to humanoid robots

is an exciting new direction. Recent works have extended

RFMs to the humanoid upper body [377, 388, 389]. For exam-

ple, NVIDIA developed GR00T N1 [377], a general-purpose

FM for humanoid robots, and Figure AI demonstrates Helix, a

hierarchical VLA for dexterous manipulation and collaboration

between two humanoid robots. However, building an RFM for

humanoid loco-manipulation remains a challenging endeavor:

the inherent instability in locomotion and high-dimensional

action space in dexterous hands makes it difficult to collect

high-quality data efficiently. Therefore, VLA for humanoid

loco-manipulation is shown only in simulation. For example,

HumanVLA [312] and SuperPADL [313] train a humanoid

action policy aligned with the latent space of pre-trained

VLMs, enabling skills based on image and language inputs.

2) End-to-end Vision-Language-Action model: To leverage

prior knowledge in FMs, another popular approach is to build

an end-to-end VLA model, as exemplified by RT-2 [385],

OpenVLA [387], and Gato [408]. This approach treats robot

data (i.e., observations and actions) as tokens in the language

model’s vocabulary, allowing direct fine-tuning or co-training

with existing VLMs. Unlike the previous approach, VLA

outputs actions as tokens directly without relying on trainable

low-level policies. The VLA model not only generates robot

actions for diverse skills, but also retains semantic reasoning

abilities in the language and vision domain, enhancing its

generalization capacity compared to models trained in single

domains. For example, RT-2 [385] represents the actions as

a string of numbers similar to the tokens from the pre-

trained vision and language tokenizer of the base VLMs.

However, representing actions with stringified numbers can

be token-inefficient with high degrees-of-freedom robots such

as humanoids.

A key research question in building RFMs is the design of

effective algorithms and model architectures. Although most

of today’s RFMs are based on autoregressive transformer

models [405], their computational inefficiency over long se-

quences poses a significant challenge for both training and

inference. This has driven the exploration of alternative models

that are both efficient and high-capacity, such as state-space

models [409].

The key to the success of training an RFM, especially in

the case of VLA, heavily depends on the choice of input and

output representations. Most RFMs take as input a combina-

tion of task descriptions in language, visual observations of

the surrounding environment, and the history of robot states.

Outputs typically consist of robot actions, which are derived

from either a multi-task policy (the first approach) or an end-

to-end VLA model (the second approach). There are variations

in the VLA model where its token outputs specify more than

just actions. For example, Octo [410] and RDT-1B [411] use

the token output for a diffusion denoising process. π0 [406]

maps a learned token to robot actions through a diffusion head,

enabling high-frequency control (up to 50 Hz for a bimanual

manipulator with a wheelbase). GR-2 [412] predicts tokens

that represent future images and actions; thus it functions as

both a world model and a visuomotor policy. For humanoid

robots, input and output are not yet well defined. For tasks

involving rich physical interactions, the force feedback is as

crucial as egocentric visual input. Given the unstable dynamics

of humanoid robots, a more practical approach is to use end-

effector and body poses as action outputs from the RFM

and adopt additional low-level policies to ensure balance

and safety via high-frequency feedback control. Incorporating

robotic data as a new modality into state-of-the-art FMs would

require significantly more data. Hence, designing effective

input/output representation for humanoid loco-manipulation

tasks still remains an open research question.

C. Opportunities and Challenges in Foundation Models

Integrating Foundation Models (FMs) into humanoid robots

offers distinct opportunities and challenges. On the oppor-

tunity side, since the majority of data used to train FMs

is collected by humans, the knowledge embedded in these

models is inherently biased towards human-like embodiments.

Consequently, humanoid robots could potentially utilize ex-

isting knowledge in FMs more effectively due to a smaller

embodiment gap. This advantage extends beyond planning and

control capabilities to include interactions with humans using

natural modalities such as language and gestures.

A major challenge in applying FMs to humanoids arises

from the high inference cost. Running large foundation models

using only onboard computing is not feasible due to the limited

power and computation, which hampers real-time hardware

control. To address this challenge, several solutions have been

proposed. One effective strategy involves adopting a decentral-

ized hierarchy [388], where FMs operate over the cloud and

provide only high-level decisions at a lower frequency, while

another controller remains onboard and manages real-time task

execution. However, the inference delay and internet latency

may impede the control performance. Another approach is

to enhance the speed of the computing platform and the

efficiency of FMs. For instance, NVIDIA introduced Jetson

Thor, an onboard computing platform designed for humanoid

robots. Google proposed SARA-RT [413], which accelerates

the model speed without compromising its quality.

The training of FM is also resource and time consuming.

For example, training the LLaMA model took 34 days on

992 NVIDIA A100-80B GPUs [414], which incurs high cost,

high energy consumption, as well as carbon dioxide emission.

As FMs continue to scale up, the training cost increases

further. A promising approach to maintaining a reasonable cost
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for training robotics FMs is to leverage parameter-efficient

fine-tuning techniques. For example, OpenVLA leverages

the LoRA technique to fine-tune an FM with a robotics

dataset [387].

A critical component of the humanoid foundation model that

has yet to be developed is a scaling law, similar to the training

of large language models [415]. The scaling law provides

guidance on how we should scale up model, compute, and

data, to meet the desired performance in the most efficient

way. A major research effort focuses on scaling the robotics

dataset. Open X-Embodiment extends the idea to a much

larger robotics dataset across various robot embodiments and

tasks [407]. Recent work has already explored a data scaling

law for robot manipulation, with a focus on generalization

capabilities [416], as well as model scaling behaviors for

zero-shot capabilities in action selection [417], which marks

important initial steps towards this direction.

Beyond computational limitations, FMs face additional

challenges when deployed in humanoid systems. Safety con-

straints are particularly concerning, as models trained on inter-

net data may generate unsafe actions when controlling physical

robots that are inherently unstable. Establishing a thorough

evaluation procedure to assess the safety level of humanoid

robots will be essential. Moreover, ethical considerations arise

from biases present in human-generated training data, which

can lead to unfair or discriminatory robot behaviors across

different user demographics. These biases may be amplified in

embodied systems that interact directly with humans in diverse

settings. Federated learning approaches could help address

some of these ethical concerns by enabling model training

across distributed devices while preserving data privacy and

potentially reducing centralized data biases [418].

Key Takeaways: With rapid progress in FMs and humanoid

robots, a plethora of research studies on humanoid embod-

ied intelligence is anticipated. The first method outlined in

Sec. VIII-A provides a more accessible way to leverage VLMs

and, thus, has been the popular approach taken by researchers

so far, but VLMs as is lack a deep understanding of robot

actions. In the near future, we expect increased research efforts

devoted to VLA models described in Sec. VIII-B to address

this issue. It takes great effort to train RFMs from (i) a large

amount of real robot data (e.g., Gemini-Robotics [388, 389])

or (ii) a combination of robot data with synthetic data from

simulation or video generation models (e.g., GR00T N1 [377]).

With the development of RFMs, we expect to have FMs

that can well understand robot action and the physical world,

enabling rapid deployment of robotic controllers achieved with

little to no additional robot data. For further reading of FMs

for robotics, we recommend the survey in [11, 12]. Since most

of the FMs are built with the Transformer backbones, please

refer to [405] for a comprehensive mathematical foundation.

IX. ADDITIONAL DISCUSSIONS

A. Model-based Methods Versus Learning-based Methods

Based on the studies in this survey, we provide a clear

comparison between model-based and learning-based methods

in Table. VI. In this table, we compare the performance in

TABLE VI
COMPARISON BETWEEN MODEL-BASED AND LEARNING-BASED METHODS

Model-based Learning-based
MPC, WBC RL IL VLA

Performance measure

Flexibility to incorporate
multi-modal sensor

low medium high very high

Robustness high very high low very low
Motion accuracy very high medium medium very low
Real-time feasibility high high high low
Versatility high medium high high
Generalizability medium low low high

Achieved performance of humanoid skills

Locomotion
very high

[6, 30]
very high
[37, 40]

medium
[283]

NA

Loco-manipulation
(hand and foot contact)

high
[2, 218]

medium
[41, 281]

low
[268]

NA

Whole-body
multi-contact

medium
[140]

high
[419]

NA NA

several aspects: the ability to incorporate multi-modal sensor

input, the control robustness, the motion accuracy, the real-

time feasibility, the versatility, and the generalizability of each

method. Additionally, we evaluate the state-of-the-art capa-

bility in several humanoid skills, including locomotion, loco-

manipulation, and whole-body multi-contact control. We list

representative papers that achieved these skills as supporting

evidence for this evaluation. Note that many algorithm per-

formances reported are anecdotal and highly depend on their

implementation. Therefore, obtaining a concrete numerical

comparison is challenging. This is mentioned in Sec. VII-G

challenges in lack of appropriate benchmark.

A key takeaway from this comparison is that learning-based

methods exhibit superior robustness via RL and versatility via

IL, while model-based approaches offer advantages in motion

accuracy. The emerging paradigm of VLA holds promise for

enhanced generalizability; however, its effectiveness in master-

ing humanoid skills has yet to be convincingly demonstrated.

B. Hardware Limitations for Humanoid Robots

Advancements in control, planning, and learning for loco-

manipulation necessitate robot hardware that has high-power-

density actuators, strong yet lightweight limbs, and accurate

sensing. These requirements are often limitations to hardware

performance, which drives hardware designers to push the

boundary of humanoid physical capabilities.

The traditional approach to increase torque capacity is

through high gear reduction [420] and the inclusion of elastic

elements to be impact-resilient [28]. However, the last decade

has witnessed advancements in electric motor design such as

Quasi-Direct Drive (QDD) actuators (less than 10:1 gear ratio)

achieving dynamic and accurate motions [2, 368]. Among the

many advantages QDD actuators offer for achieving dynamic

motions are their backdrivability and high force control band-

width, due to reduced actuator backlash and friction [179].

However, achieving high torque requires a high current, which

in turn causes strain on power electronics and overheating.

Solving this problem involves manufacturing with materials

to enhance heat dissipation [420] and continuing to improve

controller performance for energy efficiency [43].



30

Another key element of hardware design is the robot’s

inertial properties. In building robots capable of gymnastic-

style maneuvers, many designs place mass away from end-

effectors [2, 46, 179]. The MIT Humanoid, for example,

contains around 75% of its mass in the torso [179]. This is

often achieved through belt drives or parallel mechanisms to

remotely actuate joints such as the ankle or knee [2, 46]. While

this significantly reduces rotational inertia and the torque

demand for agile maneuvers, there are a number of notable

drawbacks. Four-bar transmissions often reduce joint range

of motion, while belt drives may require additional modeling

and maintenance [420]. Specialized mechanisms for remote

actuation that allow a full range of motion can potentially

address this problem [421].

Battery technology remains one of the primary hardware

limitations in the development of sustained, autonomous hu-

manoid robots. Limited battery capacity restricts both opera-

tional time and the feasibility of executing high-power, full-

body motions in untethered scenarios. One promising direction

is the development of more compact and integrated battery

designs. For example, embedding battery cells directly into the

structural components of the robot chassis can increase effec-

tive energy capacity without compromising weight distribution

or form factor. In parallel, solid-state batteries have become

commercially available with enhanced energy density and

safety profiles [422]. This has increased the operation times of

humanoid robots, such as Apptronik’s Apollo (4hrs) [423] and

Unitree’s G1 (2hrs) [424]. Nevertheless, the continued reliance

on tethered power in laboratory settings [1, 4, 5, 46] indicates

that battery technology remains a limitation.

C. The Future Applications and Challenges of Humanoid

Robots in the Society

Humanoid robots with loco-manipulation capabilities will

become an essential part of our lives and a pillar of the future

economy, similar to how smartphones and autonomous driving

have transformed our lives.

Given a sufficient amount of time, humanoid robots will be

increasingly autonomous and capable of performing general

human-level tasks across a wide range of domains. The com-

ponents discussed in this paper—sensing, planning, control,

and learning—coordinate in real time to execute complex,

goal-directed behaviors. This integration enables humanoid

robots to take on tedious, hazardous, and physically demand-

ing tasks.

• In outdoor environments, they could serve as first respon-

ders during national crises, providing medical care and

emergency support; monitor controlled settings in civil

and mechanical infrastructure; deliver and sort building

materials at construction sites; explore subterranean or

collapsed structures with harsh and unpredictable terrain;

and assist in agricultural tasks such as planting crops.

• In factories and warehouses, humanoid robots have the

potential to address the growing demand for flexible

manufacturing by performing tasks such as delivery,

assembly, and inspection, helping to offset the impact of

a declining industrial workforce.

• In human-centered settings such as households and hos-

pitals, they have the potential to carry laundry, load

dishwashers, and move patients between beds, supporting

the needs of an aging population and improving their

quality of life.

However, significant challenges remain in integrating hu-

manoid robots into all aspects of society. To be fully accepted,

these robots must be physically and mentally reliable, high-

lighting the core technical challenges of achieving robust and

safe mobility and manipulation. Their intentions must also be

well predicted and communicated with humans, which calls

for advancements in effective human-robot interaction. Beyond

the technical hurdles, economic and ethical concerns also pose

major obstacles. Humanoid robots are still far from being

commercially viable due to high costs, and the absence of

legal and regulatory policies further hinders their appearance

in our daily lives.

X. CONCLUSION

Humanoid robotics is advancing at an unprecedented pace,

as seen in recent groundbreaking innovations from both indus-

try and academia. In this survey, we go over foundational and

state-of-the-art methods for humanoid loco-manipulation, from

both model-based and learning-based perspectives. Although

humanoid robots still face significant technical challenges,

their agility, safety, reliability, and versatility have been im-

proved significantly. More opportunities are emerging through

the exploration of new paradigms. Physically, advanced ob-

servers (vision and whole-body tactile sensing) and estimators

are emerging for contact-rich whole-body loco-manipulation.

Cognitively, foundation models grounded on humanoid robots

have great potential to unlock the ability of open-world under-

standing and the development of generalized intelligent agents.

More importantly, an integration of foundation models with

planning and control policies presents promising capabilities.

In the foreseeable future, the cost of humanoid robots will con-

tinue to decrease, making them more accessible; their physical

capability (hardware intelligence) and cognitive intelligence

will significantly advance. We look forward to humanoid

robots that are responsive, purposeful, and fully capable of

human-like loco-manipulation tasks in the upcoming decade.
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[171] V. Kurtz, A. Castro, A. Ö. Önol, and H. Lin, “Inverse dynamics

trajectory optimization for contact-implicit model predictive control,”
arXiv preprint arXiv:2309.01813, 2023.

[172] S. A. Esteban, V. Kurtz, A. B. Ghansah, and A. D. Ames, “Reduced-
order model guided contact-implicit model predictive control for hu-
manoid locomotion,” arXiv preprint arXiv:2502.15630, 2025.

[173] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. b. Kim, and
P. Agrawal, “Learning to jump from pixels,” in Proceedings of the

Conference on Robot Learning, vol. 164, 2022, pp. 1025–1034.
[174] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:

Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3699–3706, 2020.

[175] Y.-C. Lin, B. Ponton, L. Righetti, and D. Berenson, “Efficient humanoid
contact planning using learned centroidal dynamics prediction,” in
IEEE International Conference on Robotics and Automation, 2019, pp.
5280–5286.

[176] S. Xu, Z. Li, Y.-X. Wang, and L.-Y. Gui, “Interdiff: Generating
3d human-object interactions with physics-informed diffusion,” in
Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2023, pp. 14 928–14 940.
[177] J. Li, J. Wu, and C. K. Liu, “Object motion guided human motion

synthesis,” ACM Transactions on Graphics, vol. 42, no. 6, pp. 1–11,
2023.

[178] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak, “Affordances
from human videos as a versatile representation for robotics,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2023, pp. 13 778–13 790.
[179] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit hu-

manoid robot: Design, motion planning, and control for acrobatic be-
haviors,” in IEEE-RAS International Conference on Humanoid Robots,
2021, pp. 1–8.

[180] G. Romualdi, S. Dafarra, G. L’Erario, I. Sorrentino, S. Traversaro,
and D. Pucci, “Online non-linear centroidal mpc for humanoid robot
locomotion with step adjustment,” in International Conference on

Robotics and Automation, 2022, pp. 10 412–10 419.
[181] M. Elobaid, G. Romualdi, G. Nava, L. Rapetti, H. A. O. Mohamed,

and D. Pucci, “Online non-linear centroidal mpc for humanoid robots
payload carrying with contact-stable force parametrization,” in IEEE

International Conference on Robotics and Automation, 2023, pp.
12 233–12 239.

[182] J. Li and Q. Nguyen, “Force-and-moment-based model predictive
control for achieving highly dynamic locomotion on bipedal robots,”
in IEEE Conference on Decision and Control, 2021, pp. 1024–1030.

[183] B. Henze, C. Ott, and M. A. Roa, “Posture and balance control for
humanoid robots in multi-contact scenarios based on model predictive
control,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2014, pp. 3253–3258.
[184] S. H. Bang, C. Gonzalez, G. Moore, D. H. Kang, M. Seo, R. Gupta,

and L. Sentis, “Rpc: A modular framework for robot planning, control,
and deployment,” in IEEE/SICE International Symposium on System

Integration, 2025, pp. 1142–1148.
[185] L. Penco, N. Scianca, V. Modugno, L. Lanari, G. Oriolo, and

S. Ivaldi, “A multimode teleoperation framework for humanoid loco-
manipulation: An application for the icub robot,” IEEE Robotics

Automation Magazine, vol. 26, no. 4, pp. 73–82, 2019.
[186] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning



35

with centroidal dynamics and full kinematics,” in 2014 IEEE-RAS

International Conference on Humanoid Robots, 2014, pp. 295–302.
[187] M. P. Polverini, A. Laurenzi, E. M. Hoffman, F. Ruscelli, and N. G.

Tsagarakis, “Multi-contact heavy object pushing with a centaur-type
humanoid robot: Planning and control for a real demonstrator,” IEEE

Robotics and Automation Letters, vol. 5, no. 2, pp. 859–866, 2020.
[188] E. Dantec et al., “Whole body model predictive control with a memory

of motion: Experiments on a torque-controlled talos,” in International

Conference on Robotics and Automation, 2021, pp. 8202–8208.
[189] H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko,

and E. Yoshida, “Model preview control in multi-contact motion-
application to a humanoid robot,” in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, 2014, pp. 4030–4035.
[190] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a

humanoid robot,” Autonomous robots, vol. 35, pp. 161–176, 2013.
[191] H. Li, R. J. Frei, and P. M. Wensing, “Model hierarchy predictive

control of robotic systems,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 3373–3380, 2021.

[192] J. Wang, S. Kim, S. Vijayakumar, and S. Tonneau, “Multi-fidelity
receding horizon planning for multi-contact locomotion,” in IEEE-RAS

International Conference on Humanoid Robots, 2021, pp. 53–60.
[193] J. Li, Z. Le, J. Ma, and Q. Nguyen, “Adapting gait frequency for

posture-regulating humanoid push-recovery via hierarchical model pre-
dictive control,” arXiv preprint arXiv:2409.14342, 2024.

[194] R. Budhiraja, J. Carpentier, and N. Mansard, “Dynamics consensus
between centroidal and whole-body models for locomotion of legged
robots,” in IEEE International Conference on Robotics and Automation,
2019, pp. 6727–6733.

[195] A. Herzog, S. Schaal, and L. Righetti, “Structured contact force
optimization for kino-dynamic motion generation,” in Proc. IEEE/RSJ

Int. Conf. Intell. Robots Syst., 2016, pp. 2703–2710.
[196] D. Mayne, “A second-order gradient method for determining optimal

trajectories of non-linear discrete-time systems,” International Journal

of Control, vol. 3, no. 1, pp. 85–95, 1966.
[197] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-

plex behaviors through online trajectory optimization,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2012, pp.
4906–4913.

[198] L. B. Rall, Automatic differentiation: Techniques and applications.
Springer, 1981.
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