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Abstract—Graph Neural Networks (GNNs) have demonstrated
outstanding results in many graph-based deep-learning tasks.
However, training GNNs on a large graph can be difficult due
to memory capacity limitations. To address this problem, we can
divide the graph into multiple partitions. However, this strategy
faces a memory explosion problem. This problem stems from a
long tail in the degree distribution of graph nodes. This strategy
also suffers from time-consuming graph partitioning, difficulty in
estimating the memory consumption of each partition, and time-
consuming data preparation (e.g., block generation). To address
the above problems, we introduce Buffalo, a GNN training
system. Buffalo enables flexible mapping between the nodes and
partitions to address the memory explosion problem, and enables
fast graph partitioning based on node bucketing. Buffalo also in-
troduces lightweight analytical modeling for memory estimation,
and reduces block generation time by leveraging graph sampling.
Evaluating large-scale real-world datasets (including billion-
scale datasets), we show that Buffalo effectively addresses the
memory capacity limitation, enabling scalable GNN training and
outperforming prior works in the compute-vs-memory efficiency
Pareto frontier. With a limited memory budget, Buffalo achieves
an end-to-end reduction of training time by 70.9% on average,
compared to state-of-the-art (DGL [73], PyG [12], and Betty [93]).

I. INTRODUCTION

Graph neural network (GNN) frameworks such as DGL [34]

and Pytorch Geometric [12] have been widely adopted for

GNN training. These frameworks let users write GNN training

programs using a set of graph-neighborhood aggregation oper-

ators and deep learning (DL) operators without worrying about

the implementation of low-level message-passing primitives

and their interactions with DL models.

Problems. Although current frameworks provide numerous

operators and optimizations for training GNNs, training ad-

vanced GNNs over large-scale graphs is still quite challenging

because the memory complexity of aggregation scales expo-

nentially with the depth of GNNs. This makes them inefficient

for several important use cases: (i) GNN training that exploits

multi-hop information [42], [76], [103], and (ii) GNN training

that explores advanced aggregators [16]. Unfortunately, the

most common way to overcome the complexity of memory

consumption is via sampling. Systems such as DGL [73]

and Pytorch Geometric [12], provide sampling-based methods,

where a graph is sampled and used in each training iteration.

However, using a low sampling rate can lead to biased results

and loss of the GNN model accuracy [70]. Also, sampling
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Fig. 1. The degree frequency of all nodes in the OGBN-products dataset.

cannot be applied to certain datasets and tasks. For example,

in molecule structure prediction, dropping connections in

between atoms would lead to completely different molecules.

Furthermore, batch-based training that utilizes sampling can

still encounter out-of-memory (OOM) issues. To tackle the

GPU memory capacity problem, another strategy in addition

to sampling is to divide the input graph into multiple partitions.

Each partition fits into the GPU memory, and the GPU

processes the partitions in order. However, the partition-based

approach faces multiple problems.

First, the partition-based approach can suffer from a so-

called bucket explosion problem. We observe that the num-

ber of nodes with various degrees often follows a power-

law distribution, which is characterized by a long tail. This

problem is commonly seen in many datasets (e.g., OGBN-

papers [29], MAG [21], IGB [29], and others [78], [104]).

Figure 1 shows the degree frequency of all nodes (i.e., for a

specific node-degree, the number of nodes with that degree).

This figure, using the OGBN-products dataset, supports the

above observation. When bucketing the nodes according to

their degrees for efficient processing (called degree bucketing),

as the existing system does [73], the distribution with such a

long tail can lead to a large bucket that accommodates the

long tail. This bucket is much larger than the other buckets,

which not only causes load imbalance across buckets but also

invalidates the effectiveness of the partition-based approach to

reduce memory consumption.

Second, the graph partitioning can be time-consuming.

Existing efforts employ either graph-level partitioning [74],

[101] or batch-level partitioning [4], [84], [93], both of which

commonly employ METIS [26]. METIS iteratively simplifies,

partitions, and refines the graph. This process is slow and com-

putationally intensive, because it explores how to exchange

nodes between partitions based on repeated analysis of node

dependency across partitions. To accelerate the METIS-based

partitioning, Betty [93] applies METIS to a smaller graph

of output nodes rather than the larger graph of input nodes
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as other solutions [12], [90], [101]. However, Betty must

explicitly embed node-dependency information into the graph

of output nodes in order to minimize redundancy across the

partitions. This embedding process can take a few minutes

for a billion-scale graph (e.g., OGBN-papers). In general,

the METIS-based graph partitioning is time-consuming. As

a result, the graph partitioning must happen offline before the

GNN training.

Third, estimating the memory consumption of each partition

to avoid underutilization of GPU memory or memory overflow

is challenging. The memory estimation for each partition must

consider the variance of degree across nodes, data dependen-

cies, and complex graph topology. As a result, the memory

consumption of a partition is not a simple linear relationship

to the number of nodes, which is challenging to predict.

Fourth, the block generation needed by the GNN training

is time-consuming. A block in a GNN framework represents

a structure that summarizes the connectivity and features of

a subset of nodes and edges from the graph. Using blocks

can enhance the training process because each block bundles

connectivity information into a single object, enabling efficient

data transfer. To generate the block, node connectivity must

be examined from one node to another and from one GNN

layer to another following a specific order. During training,

the neighbors of a node can change across iterations be-

cause of node sampling in each iteration. Without sampling,

node neighbors remain unchanged, risking overfitting in GNN

training. Thus, we need to assess node connectivity in each

iteration, which is time-consuming.

Solutions. To address the above problems, we introduce

Buffalo, an online GNN training system. Buffalo does not

change GNN. With Buffalo, the GNN convergence result is

exactly the same as that when sufficient GPU memory is

provided to accommodate the whole graph. Buffalo is general

and supports full-batch and mini-batch training, because it

allows a batch to be partitioned to fit into GPU memory.

To address the bucket explosion problem, Buffalo splits and

groups buckets into bucket groups. Each group is a list of

small-sized buckets with varying degrees of nodes or a portion

of a large-sized degree-bucket. This bucket re-organization

enables a flexible mapping between nodes and the partitions.

Buffalo performs graph partitioning based on buckets (i.e.,

bucket-level partitioning), which is much faster than using

METIS. Using bucket-level partitioning effectively exploits

the clustering structure of the graph, hence avoiding repeated

analysis on node dependency and significantly saving time. In

particular, the real-world graph typically exhibits clustering

characteristics, where the nodes with similar degrees are

clustered together [2], [15], [28], [50], [79] , which aligns

with the principle of degree bucketing. Since there are fewer

connections across clusters (compared with nodes within each

cluster), using bucket-level partitioning, there are fewer con-

nections across partitions. Hence, the bucket-level partitioning

does not need to check node dependency across partitions, but

simply splits and groups buckets, which is lightweight.

Buffalo introduces lightweight analytical modeling to esti-

mate memory consumption of each partition. The modeling

uses graph characteristics (e.g., the degree of the buckets

and average clustering coefficient) to quantify the redundancy

across partitions and efficiently predict memory consumption.

To reduce block generation time, Buffalo samples all neigh-

bors of the center nodes in the subgraph (after sampling),

thereby avoiding repeated connection checks to confirm which

neighbors are selected from the original graph (before sam-

pling). Also, the neighborhood checks occur in parallel at the

node level. As a result, Buffalo significantly decreases block

generation time by 10x, making online training feasible.

Besides the above solutions, Buffalo is featured with a

scheduling algorithm to improve load balance across parti-

tions. The algorithm minimizes the number of bucket groups

by modeling the bucket-level partitioning as a knapsack prob-

lem and employing a greedy search algorithm. The analytical

modeling is used to estimate memory consumption, ensuring

that the bucket group does not violate the GPU memory

constraint. Buffalo significantly enhances the efficiency and

feasibility of training large-scale graphs on individual GPUs.

Results. We evaluate Buffalo on a wide range of datasets

with representative GNN models and compare it with state-of-

the-art GNN systems (DGL [73], PyG [12], and Betty [93]).

Our results show that Buffalo can successfully address the

OOM issue from bucket explosion, compared to DGL and

PyG. Buffalo achieves up to 70.9% speedup compared to Betty

under the same memory budget. Besides, we demonstrate

Buffalo’s ability to enable the training of complex GNN

models and large datasets: it achieves a 74.4% speedup for

GNN models with an aggregation depth of 2 and a hidden size

of 1,024 on the OBGN-arxiv dataset. Additionally, it attains

a 72.5% speedup for models with an aggregation depth of 2

and hidden size 128 on the OGBN-products dataset. Notably,

Buffalo also trains on the billion-scale OGBN-papers dataset in

just tens of seconds per iteration with a single GPU, drastically

cutting the time taken by state-of-the-art methods [40], [69],

[93] that typically require minutes to tens of minutes.

II. BACKGROUND AND PRELIMINARIES

A. GNN Memory Overhead

GNNs have demonstrated success in many traditional graph

analytic tasks [3], [32], [62], [66], [80], [102]. Unlike DNNs,

GNNs take graphs as inputs, consisting of nodes (entities with

feature vectors) and edges (relationships between nodes). Each

layer performs two major operations: message-passing (i.e.,

neighborhood aggregation) and permutation-invariant function

(i.e., DNN compute).

Except the input features of large-scale graphs [5], [7], [93],

message passing also can result in huge memory overload,

especially with multi-hop aggregation and memory-intensive

aggregators (e.g., LSTM). To see the problem, we analyze

the memory consumption of a widely-used GNN model,

GraphSAGE [16] using two million-scale datasets (OGBN-

product and OGBN-arxiv [17]). We use a server with an

NVIDIA RTX6000 GPU (24GB memory) and 192GB CPU

memory. Section V has more details about the hardware
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Fig. 2. Large-scale GNN training is memory intensive and can easily lead to
OOMs. The figure shows the memory consumption of training GraphSAGE
over OGBN-products and OGBN-arxiv.

setup. Figure 2 reveals that scaling GNNs easily hits the GPU

memory capacity limit, resulting in OOMs with either (a) more

advanced aggregators (e.g., from Pool to LSTM), (b) more

aggregation depths (e.g., from 2-hop to 3-hop aggregation),

(c) larger hidden dimensions (e.g., from 256 to 512), or with

(d) a larger sampling rate (e.g., from 15 to 20). In general,

memory capacity is a major bottleneck preventing scientists

and practitioners from exploring more advanced GNN training.

B. GNN Framework

Multiple GNN frameworks have been created to mitigate

the huge memory overhead of GNN training via distributed

training (Table I). A common approach is the graph-level par-

titioning using METIS [25] to reduce communication between

nodes, employed by DGL [101], PyG [12], AliGraph [91], and

others [45], [47], [90], [97]. ParGNN [35], GLISP [104], and

others [14], [22], [23], [71]) also use balanced workload parti-

tioning and pipelining. Buffalo improves memory efficiency on

individual GPUs via fine-grained bucketing-level partitioning

and scheduling, and hence complements the existing efforts.

Existing works, such as BGL [40] and cuGraph [11], focus

on reducing I/O and sampling overhead in GNN training. In

contrast, our work addresses the memory bottleneck while

maintaining computational efficiency. Unlike the complex

disk-based design [69], both Betty [93] and Buffalo work

for individual GPUs. Different from Betty, Buffalo solves the

bucket explosion problem and enables online training.

C. Zero Padding via Degree Bucketing

Degree bucketing, aka bucketization, is a technique com-

monly employed by GNN frameworks (e.g., DGL [34] and

DEMO-Net [81]) to make massage passing more efficiently. In

particular, to exploit hardware efficiency, DNN operators often

take a batch of inputs to execute in parallel. Since batched

inputs require input shape to be identical, DNN operators often

presume fixed-sized inputs. However, this assumption cannot

always hold in GNN, as the size of GNN inputs can vary

significantly. In GNN, each input comprises a group of nodes,

and the input size reflects the number of neighboring nodes

Fig. 3. An illustration of degree bucketing. The nodes with the degrees of 1-3
are grouped into three degree-buckets according to their degrees. The nodes
with the degrees of 4 and 5 are grouped into another degree bucket. These
four degree-buckets are fed to GNN for training.

Algorithm 1: Degree-bucketing based Training Itera-

tion.
Input : A batch (i.e., a sampling subgraph): G;

Aggregation depth (layer): Ĉ;
GNN model weights: ē ;

Output: Updated GNN weights: ē ′

1 ĚěĝĨěě ĘīęġěĪĩ ← {};
2 ĘĢĥęġĩ ← {};
3 for Ģ ← 1 to Ĉ do

4 ĘĢĥęġĩ[Ģ ] ← BlockGenerate( G, l);
5 ĚěĝĨěě ĘīęġěĪĩ[Ģ ] ← Bucketing( ĘĢĥęġĩ[Ģ ] , l);

foreach bucket Ę ∈ ĚěĝĨěě ĘīęġěĪĩ[Ģ ] do

6 ℎğĚĚěĤĢ ← Aggregate(ĘĢĥęġĩ[Ģ ], Ę);
7 ℎğĚĚěĤĢ ← Update(ℎğĚĚěĤĢ , ēĢ)

8 Ģĥĩĩ ← Loss(ℎğĚĚěĤĈ , labels) ;
9 Compute gradients w.r.t. model parameters ē ;

10 ē ′ ← Optimizer.step(), Update ē ;
11 return ē ′

connected to the group of nodes. A solution to address the

above problem is to pad all nodes to match the maximum de-

gree of neighbors. However, this brings in significant memory

overhead and redundant computation on wasted padding.

To minimize the padding overhead, existing frameworks

group nodes possessing identical degree into so-called degree

bucket. The degree bucketing efficiently handles large, diverse

graph datasets, and is crucial for memory-intensive aggregators

(e.g., LSTM [16], transformer [36], [98], and MLP [18], [60]).

With degree bucketing, if a node’s degree is less than Ă (i.e.,

the cut-off degree), then this node and other nodes with the

same degree are grouped into the same bucket. The nodes with

a larger degree than Ă are grouped together into a single bucket

(called the degree-Ă bucket). The above bucketing strategy

effectively groups nodes. Ă is usually determined by the user.

Figure 3 illustrates the concept of degree bucketing.

Algorithm 1 depicts GNN training based on degree buck-

eting. At each training iteration, the algorithm processes a

subgraph to produce a list of buckets for each GNN layer

(or each aggregator layer). See Line 1. The training proceeds

through Ĉ GNN layers (where Ĉ is the aggregation depth) at

a layer-by-layer basis. At each layer, GNN performs message-

passing to aggregate node-neighbor information, and updates

node representations. Once all layers have been processed, the

algorithm calculates the loss, back-propagates the gradients,

and the optimizer states to update the GNN model parameters.

The training iteration repeats until the GNN converges.
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TABLE I
COMPARISON OF GNN TECHNIQUES.

Framework/
Type

Fine
Dynamic Traditional

Redundancy Complex
Convergence Need

Technique Granularity?
Real-time Method

Aware? Design?
Complete Explicit

Partition? METIS-based? Match? Caching?

DistDGL [101] Distributed N N Y N Y N N
PyG [90] , AliGraph [91] Distributed N N Y N Y N Y
DistGNN [47] Distributed N N Y N Y N Y
NeuGraph [45] Distributed Y N N N Y N Y
SUGAR [90],ParGNN [35] Distributed N N Y N Y N N
CLISP [104] Distributed N N Y Y Y N N
G3 [71] Distributed Y N N N Y N N
BGL [40] Distributed Y N Y N Y N Y
Dask cuGraph [11] Distributed N N Y N Y N Y
Cugraph [11] Individual GPUs N/A N/A N/A N/A Y N/A Y
MariusGNN [69] Individual GPUs N N N N Y N Y
Betty [93] Individual GPUs N N Y Y N Y N
Buffalo Individual GPUs Y Y N Y N Y N
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Fig. 4. The bucket-volume distribution across buckets.
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Fig. 5. Time comparison of different execution phases. Each horizontal bar
shows the total time for partitioning, block generation, and GPU compute in
one iteration. We use two datasets, OGBN-arxiv and OGBN-products.

III. MOTIVATION

We conduct preliminary analysis on the memory capacity

challenges faced by GNN training to motivate our study.

Bucket explosion on large-scale graphs. When the size of

a batch (i.e., sampling subgraph) is small, the max degree in a

batch is typically limited, and the number of nodes in a bucket

(i.e., the bucket volume) is relatively balanced across buckets.

See the degree distribution of the Cora dataset in Figure 4.a as

an example. However, as the graph scales up in size, the bucket

volume becomes significantly skewed across buckets, leading

to the so-called bucket explosion problem. Figure 4.b depicts

the bucket explosion problem on the OGBN-arxiv dataset with

Ă=10. Because of the long-tail distribution of degrees, nodes

whose degrees are equal or higher than Ă are all gathered into

the same bucket, leading to an explosion of the last bucket.

Memory-inefficiency from bucket explosion. Bucket ex-

plosion reduces memory efficiency because the explosion

bucket not only has a high volume, but nodes within that

bucket also have more neighbor embeddings involved in

message passing which further increases GPU memory usage.

The existing batch-level partitioning strategies cannot address

this problem. For example, Figure 4.c shows that even after

batch-level partitioning using a start-of-the-art solution Betty

[93] on OGBN-arxiv, each micro-batch still suffers from the

bucket explosion problem: the last bucket (the bucket 10) is

much larger than any other bucket. The reason is that bucket

explosion is tightly related to the long tail distribution of node

degrees, whereas a batch-level partitioned subgraph still has

long tail distribution, mitigating but not eliminating the bucket

explosion problem. The bucket explosion can further introduce

load imbalance across micro-batches, shown in Figure 4: the

memory cost of micro-batch 1 exceeds that of micro-batch

0 by 20%. Such load imbalance largely comes from the

imbalance between the last buckets in the two micro-batches.

Graph partitioning is time-consuming per training it-

eration. Graph partitioning usually takes tens of seconds

to minutes to finish [40], [47], [58], [90], which makes it

infeasible to be used for online training. Integrating the graph

partitioning into the training process – essentially enabling

online partitioning – brings the benefits of being adaptive to

changes in the graph structure during training.

To study the overhead of graph partitioning, we apply the

METIS-based partitioning to the subgraph in each training

iteration. Figure 5 illustrates execution times of different

execution phases (i.e., partitioning, block generation, and GPU

compute) on two datasets. The results indicate that the METIS-

based partitioning method requires significantly more time

than GPU compute. For instance, partitioning OGBN-products

takes 33.36 seconds, while GPU compute time for training

takes only 3.43 seconds, shown in Figure 5.b.

Data preparation time is non-negligible for micro-batch

generation. One challenge often missed in the existing work is

the data preparation cost after partitioning. Data preparation is

needed to create micro-batches. Such data preparation gener-

ates block representations for micro-batches [6]. To generate a

block, we must track the neighbor dependencies of that block,

which would be extremely time-consuming, given that the

dependencies between nodes/edges are complicated in large

graphs. Figure 5 shows that the block generation accounts for

non-trivial amount of overhead (54.3%). As one increases the
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Fig. 6. Overview of Buffalo. The major components of Buffalo are included into a light-yellow box.

Fig. 7. Scheduling of bucket groups with Buffalo.

number of micro-batches, the overhead of block generation

increases. Without reducing this overhead, the computing

efficiency of batch-level partitioning is low.

IV. DESIGN

A. Overview
Buffalo aims to enable large-scale GNN-training using a

single GPU. To achieve this, Buffalo introduces an effective

bucketization method, which provides fine-grained control of

buckets to mitigate the memory-inefficiency issue caused by

the bucket explosion problem. Figure 6 provides a design

overview of Buffalo. Different from the normal GNN training

with bucketing, Buffalo introduces two transformation opera-

tions at the bucket level: bucket split and grouping. The split

operation partitions a bucket (i.e., a degree-bucket), e.g., the

bucket that causes the bucket explosion problem, into smaller

degree-buckets (called micro-buckets). The grouping operation

allows one to combine micro-buckets and the non-split degree-

buckets into bucket groups. Figure 7 shows how the graph in

Figure 3, represented as {1: {9}, 2: {0, 1, 3, 6, 7, 10}, 3: {11},

4: {4, 8}, 5: {2, 5}}, is partitioned into two bucket groups and

how the two groups are scheduled during GNN training.

Each bucket group is then transformed into a GNN micro-

batch, where Buffalo provides a highly efficient implementa-

tion to collect all dependent nodes/edges for a given bucket

group to construct a micro-batch. To maximize the usage of

GPU memory and minimize the number of bucket groups, we

formulate the grouping problem into a knapsack problem, and

introduce a greedy search algorithm to find the solution, which

is lightweight and works surprisingly well in practice.

Additionally, we introduce analytical models for memory

estimation. The models consider the impact of graph charac-

teristics (e.g., the average clustering coefficient and the average

node-degree of the graph) and node redundancy between

bucket groups, and they help determine whether any grouping

plan violates the GPU memory constraint. The analytical

models are lightweight and accurate in comparison to profiling

from actual GPU training.

B. Bucket-Level Partitioning

Challenge: Complexity of computation dependency.

Since the GNN bucketing mechanism faces a bucket explosion

issue, which we aim to mitigate this issue during GNN

computation. While splitting the graph into independent micro-

batches is straightforward for DNNs (due to the 1:1 corre-

spondence of inputs and labels), scheduling buckets is com-

plex(using “splitting” and “grouping” of buckets, depicted in

Section IV-C1). This complexity arises from the neighborhood

aggregation operation, which samples neighboring nodes, cre-

ating dependencies among partitioned buckets. Consequently,

depending on at which layer we schedule the degree buckets,

we have different schedule complexity. We use Figure 8 as an

example to explain the above problem.

Figure 8.a shows the computation dependency in a multi-

layer aggregation graph. Each degree-bucket at a layer depends

on a list of buckets with varying degrees in its previous

layer, to perform neighborhood aggregation. For example, the

degree-5 bucket in Layer 1 has neighbors in the buckets of

degree-1, degree-3, and degree-5 in Layer 0. This means that

each node in the degree-5 bucket′ has 5 neighbors to perform

neighborhood aggregation in Layer 1, such as the neighbor

nodes Ĭ1, Ĭ2, Ĭ3, Ĭ4, and Ĭ5. Node Ĭ1 has only one neighbor

involved in neighborhood aggregation in Layer 0. Nodes Ĭ2

and Ĭ3, each of which has three neighbors, are placed in the

degree-3 bucket. Meanwhile, the nodes Ĭ4 and Ĭ5 both have 5

neighbors, hence the two nodes belong to the degree-5 bucket.
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Fig. 8. An example of bucket partitioning at a non-output layer (Layer 1).

In the example of Figure 8, assuming that we aim to

partition all degree buckets into two partitions, we must decide

which layer to partition. If we partition buckets at the non-

output layer, e.g., Layer 1, it can generate two partitions shown

in Figure 8.b and Figure 8.c, respectively. With the Layer 1-

based partitioning, in the partition 0, the degree-8 bucket′′ in

Layer 2 misses a dependency (i.e., the degree-7 bucket′ in

Layer 1); in the partition 1, the degree-7 bucket′′ in Layer

2 also misses dependencies (i.e., the degree-5 bucket′ and

degree-6 bucket′ in Layer 1). These missing dependencies

prevent GNN training from doing gradient accumulation and

releasing activation memory.

Solution: Buffalo partitions the degree buckets at the

output layer. The output layer relies on the information from

the previous layer for its computations but does not serve as a

dependency for any subsequent layers, as it is the final layer.

As such, the loss calculation (Line 8) in Algorithm 1 can be

done at a micro-batch level (i.e., a subset of output nodes and

their dependencies). In the example of Figure 8, if we partition

at Layer 2 (the output layer), each partition no longer has

dependencies on other partitions, and all activation memory

associated with one partition can be released after gradient

calculation has been done. Hence, the partition at Layer 2 is

better than at Layer 1.

In Buffalo, we partition the hierarchical aggregation graph

into ć subgraphs, where the nodes at the output layer of

these subgraphs are disjoint sets. With this partition, we extend

the traditional degree-bucketing algorithm (Algorithm 1). The

major extension is highlighted in blue in Algorithm 2. With

the extended algorithm, after bucket groups are generated by

the Buffalo Scheduler (Section IV-C), Buffalo loads individual

bucket groups from the host memory to the GPU memory, and

gradients are generated after each bucket groups is processed.

The gradients then get accumulated across consecutive bucket

groups; the GNN parameters are updated once all bucket

groups have been processed. This method makes the Buffalo

training as effective as the original training because it does

not impact the training convergence. In the next subsection,

we describe how the Buffalo Scheduler works.
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Fig. 9. The schedule of degree buckets for Figure 4(a).

Algorithm 2: Degree-bucketing based Training with

Buffalo. The algorithm extension is highlighted in blue.

Input : A batch (i.e., a sampling subgraph): G;
The aggregation depth: Ĉ;
Memory constraint: ĉctr;
GNN model weights: ē ;

Output: Updated GNN weights: ē ′

1 G1, G2,...,Gć ← Buffalo_Scheduler(G, Ĉ, ĉctr);
2 ĦėĨĪğĪğĥĤěĚ ĚěĝĨěě ĘīęġěĪĩ ← {{}} ;
3 for ġ ← 1 to ć do
4 for Ģ ← 1 to Ĉ do

5 ĘĢĥęġġĢ ← BlockGenerate (Gġ , Ģ) ;
6 ĦėĨĪğĪğĥĤěĚ ĚěĝĨěě ĘīęġěĪĩ[ġ ] [Ģ ] ←

Bucketing(ĘĢĥęġġĢ , Ģ);
7 foreach bucket Ę ∈

ĦėĨĪğĪğĥĤěĚ ĚěĝĨěě ĘīęġěĪĩ[ġ ] [Ģ ] do

8 ℎğĚĚěĤġĢ ← Aggregate(ĘĢĥęġġĢ , Ę);
9 ℎğĚĚěĤġĢ ← Update(ĘĢĥęġġĢ , ēĢ);

10 ĦėĨĪğėĢ Ģĥĩĩ ← Loss(ℎğĚĚěĤġĈ , label groups[k]);
11 Backward pass, compute gradients w.r.t.model parameters;
12 AccumulatePartialGradients(M);

13 ē ′ ← Optimizer.step(), Update ē ;
14 return ē ′

C. Buffalo Scheduling

1) Background: Scheduling a degree-bucket list into bucket

groups performs two operations. (1) Splitting degree buckets

into micro-buckets. When Buffalo performs this operation,

each micro-bucket must be small enough to fit into the

GPU memory. However, they must not be too small to fully

utilize GPU resources (including GPU memory and thread-

level parallelism). (2) Grouping micro-buckets and non-split

degree-buckets. The grouping results are bucket groups. Based

on the bucket groups, we build micro-batches, each including
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Algorithm 3: Buffalo Scheduler

Input : A batch (i.e., a sampling subgraph): G;
The aggregation depth: Ĉ;
Memory constraint: ĉctr;
Sampling size (cut-off degree): Ă;

Output: A list of subgraphs corresponding to K micro-batches: G1,
G2,...,Gć ;

1 ĚěĝĨěě ĘīęġěĪĩĈ ← DegreeBucketing(G, Ĉ) ;
2 ć ← 1;
3 while ć f ćģėĮ do
4 if bucket explosion detected then

5 ĚěĝĨěě ĘīęġěĪĩĈ [Ă : Ă + ć − 1] ←
SplitExplosionBucket(ĚěĝĨěě ĘīęġěĪĩĈ [Ă ],
ć);

6 ĩīęęěĩĩ, B1, B2,...,Bć ←
MemBalancedGrouping(ĚěĝĨěě ĘīęġěĪĩĈ , ć , ĉctr,

Ă) ;
7 if ĩīęęěĩĩ then

8 break;
9 else

10 K ← K + 1;

11 G1,...,Gć ← MicroBatchGenerator(B1, B2,...,Bć);
12 return G1,G2,...,Gć

a bucket group plus the group’s node dependencies.

Figure 9 gives an example to show the results after schedul-

ing (using splitting and grouping). These results correspond to

the graph (the dataset OGBN-arxiv) shown in Figure 4.b. In

this example (shown in Figure 9.a), the degree-10 bucket is

split; the non-split degree-{2,3,4,5} buckets, along with the

first micro-bucket of the split degree-10 bucket, form group 0,

while the non-split degree-{1,6,7,8,9} buckets, along with the

second micro-bucket of the split degree-10 bucket, constitute

group 1. After the scheduling, each group generates one micro-

batch. Figure 9.b shows the corresponding memory cost of the

micro-batches of the two groups.

To maximize the benefits of bucket scheduling, we must

consider the possibility of grouping the micro-buckets with

non-split degree-buckets. However, the solution space for

grouping the micro-buckets and degree buckets is large, mak-

ing it challenging to find an optimal solution. Assuming ćMB

is the number of micro-buckets and ćDB is the number of non-

split buckets, there are ćMB · ćDB!/(ćDB − ćMB)! possible

solutions in this space. We introduce an algorithm for the

splitting and grouping operations.

2) Scheduling Algorithm: The algorithm accepts three in-

put variables: a subgraph representing a training batch, the

aggregation depth, and a GPU memory constraint, as shown in

Algorithm 3. The algorithm output is ć micro-batches. Each

micro-batch respects the constraint of GPU memory capac-

ity. The memory consumption is balanced across the micro-

batches to avoid the waste of GPU memory. The algorithm

also minimizes ć in order to reduce the overhead of data

preparation and loading.

The scheduling algorithm is generally depicted in Algo-

rithm 3. Following the degree bucketization process (Line 1

in Algorithm 3), which generates a bucket list for the output

layer, Buffalo uses a bucket-group plan generator, shown in

Lines 4—6 in Algorithm 3, to generate a list of bucket groups

Algorithm 4: MemBalancedGrouping

Input : Degree bucket list of the output layer:
ĚěĝĨěě ĘīęġěĪĩĈ ;
Bucket group size: ć ;
Memory constraint: ĉctr;
Sampling size (cut-off degree): Ă;

Output: success or fail;
Bucket groups: B1, B2,...,Bć ;

1 B1, B2,...,Bć ← {};
2 ĉěĩĪ ← BucketMemEstimator(ĚěĝĨěě ĘīęġěĪĩĈ);
3 ĉest sorted ← sort(ĉest, descending);
4 while ĉest sorted ≠ ∅ do
5 ęīĨ ĘīęġěĪ ← ĉest sorted.pop();
6 ĉ1, ĉ2,...,ĉć ← RedundancyAwareMemEstimator(B1,

B2,...,Bć);
7 find the bucket group Bġ with the lowest memory estimation;
8 Bġ .add(ęīĨ ĘīęġěĪ);
9 end

10 ĉ1, ĉ2,...,ĉć ← RedundancyAwareMemEstimator(B1,

B2,...,Bć);
11 if any ĉġ > ĉctr then

12 return Ĝ ėğĢ,

13 else
14 return ĩīęęěĩĩ, B1, B2,...,Bć
15 end

þ1, þ2, .., þć . The group generation includes splitting (Line 5)

and grouping (Line 6), which are described in more details

below. Once the bucket group plan is generated, Buffalo

uses a RedundancyAwareMemEstimator (more details

in Section IV-D) to estimate the memory consumption of

each bucket group (ĉ1, ĉ2, ..., ĉć ). If any bucket group’s

memory consumption exceeds the memory capacity, Buffalo

increments ć by one and repeats the process until a valid set

of ć subgraphs is found. In the particular case, where the total

estimated memory of the entire buckets (e.g., ć = 1) is less

than the memory constraint, we do not do anything and treat

the original subgraph (G) as the micro-batch.

SplitExplosionBucket (Line 5 in Algorithm 3) evenly splits

a degree bucket into micro-buckets when a degree bucket faces

the bucket explosion problem. As a result, each micro-bucket

has roughly the same number of output nodes after splitting.

In addition to splitting the explosion bucket into micro-

buckets, Buffalo also supports flexibly regrouping micro-

buckets and non-split buckets to form bucket groups. Specif-

ically, Buffalo formulates the degree-bucket grouping into

a load-balanced bin packing problem [67] and utilizes a

MemBalancedGrouping algorithm (Line 6 in Algorithm 3)

to group micro-buckets and non-split buckets into memory-

balanced bucket groups. The load-balanced bin packing prob-

lem consists of packing items of different sizes into a finite

number of bins, achieving well-balanced packing while mini-

mizing the number of used bins.

In our approach, we treat each bucket as an item and have its

value equal to its weight. Both the weight and value of the item

equate to the estimated memory of the corresponding bucket.

This is intuitive because the goal here is to ensure that the

cumulative weight of the items, i.e., the memory consumption

of a group of buckets, does not surpass the bin’s capacity, i.e.,

the GPU memory constraint. The load needs to be balanced so
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there is no waste of GPU memory, and we reduce the overhead

of data preparation and loading by minimizing the number of

bins (i.e., bucket groups).

we introduce a greedy approximation method to solve the

bucket grouping. At the beginning, we sort the buckets, includ-

ing both micro-buckets and non-split buckets, in descending

order by their memory estimation from BucketMemEstimator()

(Line 3 in Algorithm 4). Then, starting from the bucket with

the largest memory estimation, the algorithm iterates through

the sorted micro-buckets and non-split buckets and places

the bucket in the bucket group that has the lowest memory

estimation so far. The memory estimation for the bucket group

is provided by RedundancyAwareMemEstimator(), which we

discuss in more details in the next section. This method ensures

that the most valuable item (the largest bucket) is considered

first, in order to accelerate the solution-finding process. During

the iteration, Buffalo accumulates the memory consumption of

the buckets. If any of the bucket groups has an accumulated

memory size larger than the GPU memory constraint, the

grouping algorithm returns a fail status, where a larger ć

will be tested by the Buffalo scheduler in the next iteration.

Otherwise, Buffalo returns a list of bucket groups using the

accumulated buckets (Line 14 in Algorithm 4).

D. Memory Estimation

Challenges of memory estimation. Existing memory es-

timation techniques, like the one in [93], can reasonably

estimate the working memory of individual buckets during

GNN training. However, estimating the overall GNN memory

consumption is complex because simply summing the memory

estimates of individual buckets does not accurately predict the

actual consumption of a bucket group, which we call the non-

linear relationship. The non-linear relationship incurs major

challenges for Buffalo’s grouping algorithm. If the memory

estimation of a bucket group is inaccurate, then a proposed

bucket-group partition plan may still lead to OOM or under-

utilized GPU memory during actual training.

The core reason for this non-linear relationship in GNN

memory consumption is because of node redundancy across

micro-batches built from bucket groups. When a micro-batch

ğ loads target nodes and their neighbors into GPU memory,

some of these neighbors may be required by another micro-

batch Ġ , which creates duplication for memory estimation

when the micro-batch Ġ loads neighbors. Such duplication

happens more often in the Ĉ-hop aggregation layer than (Ĉ-

1)-hop layer because neighbors tend to grow exponentially as

the hop increases. This redundancy problem commonly exists

in many GNN training methods [93], [104].

To illustrate this non-linear relationship, we train a Graph-

SAGE model with an LSTM aggregator and an aggregation

depth 2 on the OGBN-arxiv dataset. The cut-off degree (Ă

degree) for the 1-hop neighbors and 2-hop neighbors are 25

and 10 respectively. The hidden size of the LSTM aggregator

is 128. Without bucket splitting and grouping, the memory

consumption of a batch is 13.68GB. When splitting the batch

across the 1-hop and 2-hop buckets to generate two micro-

batches, the overall memory consumption of each micro-

batch is 8.57GB and 10.95GB, which is 25% and 60% larger

than half of the memory consumption of the original batch

(6.84GB). This example highlights how node redundancy

across micro-batches leads to a non-linear increase in memory

consumption. We propose a lightweight memory-estimation

method that accounts for redundancy.

Quantifying redundancy is the core of the memory es-

timation, represented by a redundancy-aware grouping ratio

ĎĝĨĥīĦ in Buffalo. ĎĝĨĥīĦ quantifies the impacts of node

connections in a bucket group on the memory consumption

of a micro-batch after grouping. The grouping ratio ĎĝĨĥīĦ
is calculated by considering how input nodes are related to

output nodes, how many connections each node has within

a bucket, and how interconnected the nodes are within the

buckets. Hence, ĎĝĨĥīĦ is related to the number of input nodes

(ą), the number of output nodes (ċ), the neighbor degree of

the bucket (Ā), and the average clustering coefficient (ÿ, a

metric to quantify the node clustering of the input graph, which

is discussed later). A higher ĎĝĨĥīĦ indicates a closer to the

linear relationship of memory consumption when merging two

buckets, and vice versa.A larger ċ, Ā, or ÿ leads to a lower

grouping ratio. In contrast, a larger ą leads to a higher grouping

ratio. The grouping ratio should be at most 1 (which means a

perfect linear relationship).

Based on the above discussion, we define the grouping ratio

for a given bucket ğ in Equation 1.

Ďgroup [ğ] = ģğĤ(1,
ąğ

ċğ × Āğ × ÿ
) (1)

Given Ĥ entities (including micro-buckets and non-split buck-

ets) for grouping and their degrees ({ğ1, ğ2, .., ğĤ}∈ {1, 2, ...,

Ă, Ă +1, ..., Ă +ć}), the memory estimation of a bucket group

is calculated with the following equation.

ğĤ∑

ğ=ğ1

ĉest [ğ] × Ďgroup [ğ] (2)

Note that when ĎĝĨĥīĦ [ğ] equals 1, the memory consump-

tion of a bucket group becomes the linear addition of the

memory estimation of individual buckets. However, given that

ĎĝĨĥīĦ [ğ] is most likely less than 1, the memory consumption

of a bucket group is usually much smaller than the sum of

individual buckets in that group. Next, we discuss why ą, ċ,

Ā, and ÿ are related to the redundancy ratio as follows.

About ą and ċ. A higher ratio of input nodes (ą) to output

nodes (ċ) within a bucket indicates a more significant number

of input nodes associated with the output nodes in the bucket.

Hence, the bucket tends to have more overlap with other

buckets in terms of nodes, leading to high redundancy.

About Ā. The redundancy ratio is divided by ĚěĝĨěě (Ā).

The rationale behind this is as follows: Ā is related to node

dependency. Grouping buckets introduces node redundancy

because of the existence of node dependencies. Ā quantifies

the potential of the node redundancy.
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TABLE II
THE INFORMATION FOR THE TRAINING DATASETS AND THEIR

CHARACTERISTICS.

Dataset
Feat.

Nodes Edges
Avg. Avg. Power

Dim. Deg. Coef. Law

Cora 1433 2.7K 10K 3.9 0.24 :

Pubmed 500 19K 88K 8.9 0.06 :

Reddit 602 0.2M 114.6M 492 0.579 6

OGBN-arxiv 128 0.16M 2.31M 13.7 0.226 6

OGBN-products 100 2.45M 61.86M 50.5 0.411 6

OGBN papers 128 111.1M 1.6B 29.1 0.085 6

About ÿ. ÿ is a term borrowed from the graph theory and

used to quantify how closely connected a node’s neighbors

are, which reflects the tendency of nodes to form clusters. A

higher ÿ signifies a well-connected graph with many clusters,

while a lower ÿ suggests a more sparsely connected and less

clustered graph. In the context of a degree bucket with the

degree of cut-off, especially in cases where there is bucket

explosion, ÿ of the bucket that stores nodes with the degree of

cut-off closely resembles that of the original input graph. This

observation suggests that as the subgraph grows large enough,

ÿ becomes a reasonable representation of the entire graph’s

characteristics. Hence, ÿ is an essential parameter to estimate

the actual number of input nodes after grouping buckets. To get

the actual number of input nodes in the input layer, we need

to eliminate the redundancy within the input layer. Hence, we

divide ÿ to estimate the grouping ratio.

ą, ċ and Ā can be obtained during the micro-batch genera-

tion. ÿ is a graph characteristic and can be obtained by offline

graph analysis, utilizing the equation presented on page 142

of reference [27]. Hence, obtaining ą, ċ, Ā, and ÿ do not

bring any computation overhead. Our method is general and

applicable to any aggregators in GNN.

E. Data Preparation

To reduce the data preparation time required for micro-

batch generation from the subgraph (the subgraph is gener-

ated by sampling of the original graph as in the traditional

approaches), we accelerate block generation using two tech-

niques. (1) We track all neighbors of the center nodes in

the subgraph following the sampling order, hence avoiding

repeated connection check in the subgraph for block gen-

eration. (2) Tracking neighbors happens in parallel at the

node level instead of micro-batch level, hence offering more

parallelism. In particular, before block generation, we use

a Compressed Sparse Row (CSR) matrix to represent the

adjacency relationships of a subgraph after sampling. For

each CSR row, neighbor sampling for the center nodes is

performed in parallel, which involves concurrent operations

to gather the required neighbors for some center nodes in

a micro-batch. As the CSR matrices provide efficient row

accesses and parallel processing allows simultaneous sampling

of neighbors, we significantly reduce the overall time needed

for data preparation.

V. EVALUATION

Implementation. We implement Buffalo in DGL [73], which

is an open-source state-of-the-art GNN library. We choose

DGL due to its excellent performance from various opti-

mizations against single-GPU efficiency, such as fused mes-

sage passing kernels, shared-memory graph store, and many

more [73]. DGL shows superior performance compared to

other frameworks. For example, for a 2-layer GCN model with

the dataset Reddit on an NVIDIA P100 GPU, the training

throughput of DGL is 2x better than PyG [10]. Hence, DGL

provides a high bar for studying performance and memory

saving.

Platform. We use a machine equipped with two Intel(R)

Xeon(R) Gold 6126 CPU @ 2.60GHz, RAM 192GB, each

with 24 cores. The machine has an NVIDIA Quadro RTX

6000 GPU with 24GB memory. We use another machine

equipped with two Intel(R) Xeon(R) Platinum 8380 CPU @

2.30GHz, RAM 512GB, each with 24 cores. This machine has

an NVIDIA A100GPU with 80GB memory. We use CUDA

12.1, cuDNN 8.9, Python 3.10, and PyTorch [52] 2.1.0.

Workloads. We use five datasets from DGL benchmarks [73],

each representing a distinct input graph. Table II summa-

rizes these datasets. Due to disk space limitations, we are

unable to test the IGB [29] dataset. We employ GNN models

GraphSAGE [16] and GAT [68], which are commonly used

in existing work [39], [46], [51], [99].

We choose shallow GNNs (2-5 layers) from DGL bench-

marks [73] because they are commonly used in both research

and production to avoid issues like over-smoothing in deeper

models, as highlighted by recent studies and practices at

companies like Pinterest and Twitter [9], [59], [94]–[96].

Baseline. We use DGL, PyG, and Betty for performance

comparison. We choose DGL and PyG because they are widely

used GNN training frameworks. We choose Betty because it

achieves memory-efficient training of GNNs on a single GPU.

We also look into cuGraph [11]. Although cuGraph is an

effective tool for accelerating GNN training, we cannot use it

as a baseline or to speed up our data preprocessing because of

the following reasons: First, cuGraph’s cuGraphSAGEConv

is limited to basic aggregation functions, including mean,

sum, min, and max, and does not accommodate memory-

intensive advanced aggregators like LSTM, Meta [24], [33]

. However, these advanced aggregators are necessary for

developing advanced GNN models. Second, these large-scale

graphs formatted in cuGraph for GNN training cannot be

accommodated by individual GPUs.

A. Improvements of Compute-vs-Memory Efficiency

We evaluate compute-vs-memory efficiency. We control the

availability of GPU memory and measure the end-to-end time

per training iteration. The time includes data preparation time,

data transfer time (from CPU memory to GPU memory), and

training time on GPU. Figure 10 shows the results. The figure

shows that Buffalo excels DGL, PyG, obtaining better Pareto

frontier in terms of compute-vs-memory efficiency. While

DGL and PyG achieve lower execution time on the small

1074

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on June 15,2025 at 21:05:45 UTC from IEEE Xplore.  Restrictions apply. 



2 2.5 3 3.5

1

2

P
e
r-
it
e
ra
ti
o
n
	t
im
e
	(
s
)

Cora

(a)

DGL PyG Betty Buffalo

1.5 2 2.5 3

1

2

3
Pubmed

(b)
5 10 15 20 25
0

10

20

30
Reddit

(c)
CUDA	memory	(GB)

5 10 15 20
0

10

20

30
OGBN-arxiv

(d)
10 15 20

0

50

100

OGBN-products

(e)
20 40 60
0

100

200

OGBN-papers

(f)

DGL	&	PyG
				OOM

DGL	&	PyG
				OOM

DGL	&	PyG
				OOM

DGL	&	PyG
				OOM

Fig. 10. Training time and CUDA memory cost with varying numbers of micro-batches for GraphSAGE.

2 3 4 5 12 15

#	micro-batches

0

20

40

60

80

100

P
e
r-
it
e
ra
ti
o
n
	t
im
e
	(
s
)

Cora Pubmed

Reddit

OGBN-

arxiv

OGBN-

products

OGBN-

papers

b
e
tt
e
r

Training	time	on	GPU

Data	loading

Blocks	construction

Connection	check

METIS	partition

REG	construction

Buffalo	scheduling
bar1:	Betty

bar2:	Buffalo
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dataset Cora, they both suffer from OOM when training on

the large data sets Reddit, OGBN-arxiv, and OGBN-products

on tested models and configs. In contrast, Betty and Buffalo

do not have the OOM issue. Compared with Betty, Buffalo

reduces the iteration time by 70.9% on average. This large per-

formance benefit comes from Buffalo’s bucket-level splitting

and grouping mechanism with various optimizations, which

effectively mitigate the bucket explosion problem on large

datasets while achieving better compute-vs-memory efficiency

without incurring the expensive graph partitioning overhead.

B. Execution Time Breakdown

Figure 11 shows how different components contribute to the

end-to-end training time of Betty and Buffalo across various

datasets and micro-batch sizes. We report the end-to-end time

per epoch, which includes the following components: (1) Buf-

falo scheduling: the execution time of Buffalo scheduler, (2)

REG construction: Betty’s process for embedding node redun-

dancy information into the graph, (3) METIS partition: Betty’s

graph partitioning a given graph (REG) using METIS [25],

(4) connection check: tracking dependencies between nodes

and these nodes’ neighbors, (5) block construction: generating

blocks based on the connection check, (6) data loading: the

transfer time of data from CPU to GPU, and (7) training

time on GPU: the time spent on forward, backward, and step

functions. We do not report the time for DGL and PyG, as

they do not use graph partition on individual GPUs.

We make several observations. First, as the graph size in-

creases, the training per iteration time also increases, as larger

graphs often have bigger batch sizes. On average, Buffalo

reduces the end-to-end training time by 70.9%, compared with

Betty. The improvement mostly comes from avoiding the ex-

pensive graph partitioning, e.g., REG construction and METIS

partition, which takes 46.8% of the end-to-end training

time on average in Betty. In contrast, Buffalo does not have
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Fig. 12. Time comparison between block generation time of Buffalo and
Betty. Each horizontal bar represents the block generation in one iteration.
We use two datasets, OGBN-arxiv, and OGBN-products.

this time cost, and Buffalo scheduling only incurs minimal

overhead. Other improvement comes from the optimization of

block generation implemented with C++ (see Section V-C).

Second, as graph size increases, we see an interesting shift

of performance bottlenecks. For smaller graphs like Cora and

Pubmed, the GPU compute time dominates overall training

time. However, for larger graphs such as Reddit and OGBN-

arxiv, graph partitioning overhead becomes the main contrib-

utor to execution time. Here, Buffalo significantly reduces

execution time compared to Betty by avoiding costly graph

partitioning. As the graph moves to a million scale, e.g.,

OGBN-products, the overhead from connection checks and

block construction rises sharply. This is because Betty must

partition a batch into more micro-batches in order to fit each

micro-batch to the device’s memory. Additionally, Betty does

not support block generation for billion-scale OGBN-papers

because Betty cannot process nodes with zero in-edges (shown

as no data in Figure 11 for OGBN-papers).

C. Optimization of Block Generation

We compare the block generation performance of Buffalo

and Betty. Figure 12 shows that Buffalo takes significantly

less time than Betty for block generation, up to 8 times faster.

For instance, Betty requires 5.21 seconds to generate blocks

for OGBN-arxiv to produce 16 micro-batches, while Buffalo

takes only 0.70 seconds, as illustrated in Figure 12.b.

D. Reduction of Peak Memory Consumption

We re-evaluate the cases presented in Figure 2 using Buf-

falo. Figure 13 shows the results. With Buffalo, we suc-

cessfully address all OOM issues. Shown in Figure 13.a,

Buffalo enables a sophisticated aggregator (LSTM) using fif-

teen micro-batches. Additionally, Buffalo allows us to execute

GNN models with more layers (3 and 4 layers, using 2 and 5

micro-batches, respectively). Moreover, Buffalo allows us to
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execute GNN models with larger hidden sizes, such as 512,

using 2 micro-batches. Notably, we achieve this while also

increasing the fanout to 20 and 800 using 2 and 13 micro-

batches, respectively. This demonstrate the effectiveness of

Buffalo in overcoming the memory capacity wall.

E. Load Balance after Applying Buffalo

We measure the memory consumption of each micro-

batch after using Buffalo. Figure 14 shows the result for

three datasets — OGBN-arxiv (split into 4 micro-batches),

OGBN-products (12 micro-batches), and OGBN-papers (8

micro-batches). For each dataset, the memory consumption of

micro-batches is almost the same. The difference in memory

consumption across micro-batches is only 4%-6%.

F. Sensitivity Analysis for Memory Budget and Bucket Size

We examine how the memory budget is related to the bucket

group size (i.e., the number of output nodes in a bucket group).

To assess performance with various bucket group sizes, we

utilize four different GPU memory budgets: 16GB, 24GB,

48GB, and 80GB, along with OGBN-products. We perform

our analysis using a 2-layer GraphSAGE model with an LSTM

aggregator. Figure 15 shows the performance of this model

with different GPU memory budgets and bucket group sizes.

We use NVIDIA GPU A100. The data points labeled 2, 4,

12, and 18 in the figure indicate the number of micro-batches

generated. Given a GPU memory budget of 80GB, the training

memory cost is 76.65GB, and the end-to-end time is 9.37

seconds. In general, as the GPU memory budget increases, the

size of the bucket group increases, resulting in shorter training

times. This implies that the GNN operates more efficiently

when more GPU memory is available.

G. Performance on Multi-GPU

To employ Buffalo on multiple GPUs, we create micro-

batches using Buffalo scheduling with the consideration of

GPU memory capacity on each GPU. Then, we use data

parallelism to train GNN. We repeat the evaluation in Figure

15 using two A100 GPUs in a machine connected by PCIe

instead of one GPU. The CUDA memory budget per GPU

is still 16GB, 24GB, 48GB, and 80GB. With two GPUs, the
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Fig. 15. Bucket group size v.s. memory budget.

iteration times are reduced slightly by 3%-5%. This happens

because each iteration includes both the time to generate

micro-batches and the time for training. The training time is

making up only 9%-12% of the total time. While multiple

GPUs can speed up training, the time for generating micro-

batches stays the same. Additionally, the extra communication

time between the GPUs adds 0.9%-1.2% to the total time,

leading to a small overall reduction in iteration time.

H. Computation Efficiency

We evaluate the computation efficiency of Buffalo. The

computation efficiency is defined as the total number of nodes

across all micro-batches divided by the end-to-end training

time per training iteration. In this evaluation, we also compare

Buffalo with several alternative batch-level partitioning strate-

gies: Random, Range, METIS, and Betty. These four partition

strategies are applied on the subgraph only contains output

nodes. The Range partition method sequentially and evenly

splits the 1D space of output nodes, whereas the Random

partition method does so evenly but randomly. For example,

given the indices of output node {10, 35, 46, 79, 105, 123,

254, 328}, when split into two partitions, the Range partition

results in {10, 35, 46, 79} and {105, 123, 254, 328}. In

contrast, the Random partition might yield {328, 79, 35, 123}
and {254, 105, 10, 46}. Buffalo completes training using

12 micro-batches(Figure 14.b), while the Random and Range

requires 14 micro-batches. The Random and Range methods

don’t effectively reduce redundancy, which leads to larger

partition sizes than Buffalo. METIS divides output nodes via

partitioning the graph. , while Betty first transforms the graph

to a new graph including node-redundancy information before

using METIS. Figure 16 shows that computation efficiency

remains stable for Range, Random, METIS, and Betty as

the number of micro-batches increases. However, Buffalo

outperforms the best of these by 36.4%, indicating Buffalo

can handle more node computations per epoch.

I. Evaluation of Memory Estimation

Table III shows the memory estimation error of Buffalo

on all datasets, using GraphSAGE with LSTM and mean

aggregator. GraphSAGE has a hidden size of 256 and 2 layers.
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TABLE III
MEMORY ESTIMATION ERROR FOR LSTM AND MEAN AGGREGATOR.

Dataset Cut-off
LSTM mean

# batch
Error

rate %
# batch

Error
rate%

Cora 10,25 4 4.3 4 10.02

Pubmed 10,25 4 5.7 4 5.16

Reddit 10,25 4 0.16 4 0.29

OGBN-arxiv 10,25 4 0.5 4 1.82

OGBN-products 10,25 16 7.6 8 0.34

OGBN-papers 10,25 16 4.1 8 3.6

TABLE IV
TRAINING WITH DGL V.S. TRAINING WITH BUFFALO

Dataset Model DGL / Loss Buffalo/ Loss

Cora
SAGE 0.0017 ± 0.0010 0.0018 ± 0.0011
GAT 1.8931 ± 0.0100 1.9005 ± 0.0097

Pubmed
SAGE 0.0003 ± 0.0001 0.0003 ± 0.0001
GAT 1.0916 ± 0.0067 1.0911 ± 0.0045

Reddit
SAGE OOM 0.2107 ± 0.0044
GAT OOM 2.7091 ± 0.0027

OGBN-arxiv
SAGE 0.9786 ± 0.0043 0.9691 ± 0.0039
GAT OOM 3.0569 ± 0.0010

OGBN-products SAGE OOM 0.3519 ± 0.0088

OGBN-papers SAGE OOM 1.4548 ± 0.0036
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Fig. 17. Convergence curves for batch(sampling subgraph) training and micro-
batch training using Buffalo.

Our estimation exhibits a low error rate: in all cases, the rate

is below 10.02%.

J. Training Convergence and Loss

We examine model convergence with Buffalo. Figure 17

presents the convergence curve for GraphSAGE on OGBN-

arxiv, comparing batch and micro-batch training across three

batch sizes with identical hyperparameters. The curves are

closely aligned, indicating that the model convergence is not

impacted by Buffalo and micro-batch training. Using all other

datasets, we see the same trend.

Table IV presents the training loss of DGL with batch

(sampling subgraph) training and Buffalo using micro-batch

training. Overall, the training loss of Buffalo is almost the

same as that of DGL. This is because Buffalo only changes

the schedule of training at the micro-batch level and the

micro-batch training is mathematically equivalent to the batch

(sampling subgraph) training.

VI. RELATED WORK

Joint optimization for graph data and operations. GN-

NAdvisor [77] focuses on optimizing data patterns from the

graph structure, utilizing both the graph’s inherent structure

and model-specific information simultaneously to enhance

performance. WiseGraph [19] is designed to optimize both

the partitioning of graph data and GNN operations concur-

rently. ByteGNN [100] focuses on locality-aware partitioning

and partial code execution to minimize data movement and

copying overhead. GraphPart [44] emphasizes the selection of

representative nodes within graph partitions for active learning.

Kim et al. [31] leverage a performance model to guide

data division and introduce locality-aware neighbor sampling

to reduce data movement during training. Song et al. [63]

introduce a locality-aware neighbor sampling technique to

further minimize data movement overhead.

Data-preprocessing for graph analysis. There are many

data-preprocessing techniques, including [1], [8], [30], [40],

[65], [89], [97]. Our approach differs from them because of

the fine-grained partitioning method to address the bucket

explosion problem.

Load balance for graph analysis. There are many load-

balance efforts for graph analysis, including [13], [41], [48],

[49], [61], [64], [72]. However, those efforts focus on the

balance of number of nodes across partitions, not the balance

of memory consumption like Buffalo. Hence, Buffalo makes

more effective usage of GPU memory.

Memory tiering. Memory tiering [20], [37], [38], [43],

[53]–[58], [75], [82], [83], [85]–[88], [92] combines multiple

memory components to address memory capacity problems.

Buffalo is a solution to leverage tiered memory.

VII. CONCLUSION

In this paper, we reveal a bucket explosion problem that

leads to OOM and limits the effectiveness of existing methods

to train GNN on single GPUs. We introduce Buffalo, a system

addressing the bucket explosion and enabling load balancing

between graph partitions for GNN training. Our comprehen-

sive evaluation demonstrates that Buffalo significantly im-

proves compute-vs-memory efficiency, successfully mitigates

out-of-memory challenges, reduces end-to-end training time

by 70.9%, and outperforms existing methods by 36.4% in

terms of computation efficiency, advancing the capability of

GNN training on a single GPU.
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APPENDIX

A. Abstract

This artifact includes source codes and expected experimen-

tal data to replicate the evaluations in this paper.

We used Figure 2 to denote the OOM situation of the

current advanced GNN training, and Figure 13 to illustrate

how Buffalo breaks the memory wall. Figure 6 presents our

estimate of memory consumption during the workflow of

Buffalo. Figure 10 shows the trend for maximum memory

consumption and training time per epoch as the number of

micro-batches increases. Finally, Figure 17 provides evidence

that model convergence is not affected by Buffalo, confirming

the effectiveness of micro-batch training. .

The framework of Buffalo is developed based on DGL

(pytorch backend). The requirements are as follows: Pytorch

>= 2.1, and DGL >= 2.2. The other software dependency

includes sortedcontainers, pyvis, pynvml, tqdm, pymetis, and

seaborn.

The results of our experiments, as presented in the paper,

were obtained using a machine equipped with an RTX 6000

GPU (24 GB memory) and an Intel® Xeon® Gold 6126 CPU

@ 2.60 GHz. You can use a different configuration as long as

it includes at least one GPU.

B. Artifact check-list (meta-information)

• Model: In artifact evaluation, we use primarily the GraphSAGE
model to show the performance of Buffalo.

• Data set: The datasets used are ogbn-arxiv and ogbn-products,
which can be downloaded directly from the Open Graph Bench-
mark(OGB) website.

• Runtime environment: Ubuntu20.04, CUDA 12.1 pytorch >=
2.1, and DGL >= 2.2. Details can be found in the github
repo https://github.com/PASAUCMerced/Buffalo.git. Python 3.9
is just one option in the requirement. You can also use another
Python version, e.g., Python3.11, but you need to configure the
corresponding PyTorch and DGL versions.

• Hardware: At least one GPU.
• Metrics: GPU memory usage and execution time.
• Experiments: To save time, we choose Figure 10, 11, 2&13,

17 to denote that Buffalo can effectively reduce the maximum
memory consumption without changing the training conver-
gence.

• How much disk space required (approximately)?: 60GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour.
• How much time is needed to complete experiments (approx-

imately)?: a few hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache-2.0 license.
• Data licenses (if publicly available)?: MIT License and U.S.

Government Work license.
• Archived (provide DOI)?:10.5281/zenodo.14676525

C. Description

1) How to access.: You can obtain the artifact from

https://github.com/PASAUCMerced/Buffalo.git.

2) Hardware dependencies.: The results presented were

collected from a machine equipped with a single RTX6000

GPU (24 GB memory). If you use a GPU with different mem-

ory capacity, the problem of out-of-memory (OOM) during

Fig. 18. Directory structure of the artifact.

mini-batch training may vary. Running the benchmark requires

up to 60 GB of disk space. Aside from this, there is no other

special hardware requirement.

3) Software dependencies.: Ubuntu20.04, CUDA 12.1,

Python 3.9, PyTorch 2.1 or higher, and DGL 2.2 or higher.

The main software include DGL, PyTorch, sortedcontainers,

pyvis, pynvml, tqdm, and pymetis. The software might have

compatibility issues, so please be cautious when installing

software.

4) Data sets.: The datasets (OGBN-arxiv and OGBN-

products) we used in the artifact can be downloaded from

Open Graph Benchmark(OGB) Dataset.

5) Models. : The model used in artifact is GraphSAGE with

different aggregators, number of layers, hidden size, and fan

out size.

D. Installation

Obtain the artifact (see Section C1), and extract the archive

files.

Next, download the benchmarks and generate the

full batch data into the folder /dataset/. You can

execute the bash file gen_data.sh located in the folder

/Buffalo/pytorch/micro_batch_train/ with

fanout 10 and 25. After this, you will find the folder

/dataset/fan_out_10,25 containing the pickle files of

the full batch data after sampling.

E. Experiment Workflow

We present the directory structure of our artifact in Fig-

ure 18. The directory pytorch contains all necessary files

for the micro-batch training and mini-batch training. In

the folder bucketing/, bucket_partitioner.py in-

cludes our implementation of the degree-bucket scheduler.

bucket_dataloader.py is designed to construct the

micro-batch based on the scheduling results of Buffalo. The

folder Figures/ contains important figures for analysis and

performance evaluation. In Section F, we explain how these

scripts replicate the results shown in those figures to evaluate

the performance.

F. Evaluation and Expected Results

We select scripts for certain figures to replicate the

evaluation, and the commands that need to be executed

are located in the folder Figures/. For example, in

Figure 10/, you can execute the bash file to get the
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results for full batch size as well as 2, 4, 8, 16, and

32 micro-batches. The results will be saved in the folder

/Buffalo/Figures/Figure 10/log/. After that, run

data_collection.py to summarize the maximum mem-

ory and time consumption data of micro-batches training.

These data are stored in a table shown in README.md in

Figure 10/.

The output of the execution will be stored in log/ folder

in each figure folder. The logs of expected results are stored in

log/bak/ folder, and the figures and/or tables of expected

results are displayed in each figure folder.

More details can be found in the README.md file.
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