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Abstract—Compute eXpress Link (CXL) is emerging as a
promising memory interface technology. However, its perfor-
mance characteristics remain largely unclear due to the limited
availability of production hardware. Key questions include: What
are the use cases for the CXL memory? What are the impacts of
the CXL memory on application performance? How to use the
CXL memory in combination with existing memory components?
In this work, we study the performance of three genuine CXL
memory-expansion cards from different vendors. We characterize
the basic performance of the CXL memory, study how HPC
applications and large language models (LLM) can benefit from
the CXL memory, and study the interplay between memory
tiering and page interleaving. We also propose a novel data
object-level interleaving policy to match the interleaving policy
with memory access patterns. Our findings reveal the challenges
and opportunities of using the CXL memory.

I. INTRODUCTION

Compute eXpress Link (CXL) is a promising memory inter-

face technology. Based on the standard PCIe serial interface,

CXL attaches memory to the CPU and appears as a CPU-

less NUMA node. The CXL memory can be accessed in a

cache-coherent fashion using load/store instructions. However,

CXL memory introduces longer memory access latency. This

longer latency comes from PCIe, CXL memory controller, and

CXL home agent (HA) on the CPU. Figure 1 compares local

NUMA, traditional remote NUMA, and CXL-based memory

expansion in terms of memory latency.

Given the CXL performance, we face a series of questions:

what are the use cases for the CXL memory? What are the

impacts of real CXL memory on application performance? At

the application level, how to use the CXL memory in com-

bination with fast memory components (e.g., using uniform

page-level interleaving vs. data object-level interleaving vs.

memory binding)? This paper aims to discuss those questions,

and explore various paths to use the CXL memory. We study

three genuine CXL memory expansion cards instead of using

memory simulation or emulation.

*Co-first authors.
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Fig. 1. Breakdown of CXL memory access latency.

The CXL memory is a unique “NUMA node”. The CXL

memory appears as a CPU-less NUMA node. In the three

systems we evaluate, the CXL memory appears as a two-

hop-away NUMA node in terms of access latency. Depending

on the memory vendors, the peak bandwidth of the CXL

memory varies a lot, ranging from 9.8% to 80.3% of the

peak bandwidth of local DRAM. Moreover, as we increase the

number of threads accessing the CXL memory, its bandwidth

is quickly saturated due to the limited data transfer rate in

CXL attached memory instead of PCIe bus — with saturation

occurring when the number of threads reaches just four. In

contrast, local DRAM (LDRAM) and remote DRAM-based

NUMA nodes (RDRAM) exhibit much better scalability. This

scaling difference between the CXL memory and DRAM

highlights the importance of appropriately distributing memory

accesses between them for high performance. Also, when the

system is under heavy load, we observe that the latencies of

LDRAM and RDRAM are similar to that of the CXL memory

because of the contention on the memory controller (MC) or

data path, which shows the potential of using CXL as LDRAM

or RDRAM for latency-sensitive applications.

Using the CXL memory for large language models

(LLM) faces challenges. LLM can be memory-consuming

and have execution phases sensitive to memory band-

width [27], [46], [54], hence having potentials to benefit from

CXL. We study the cases that use the CPU memory as an

extension to the GPU memory to enable LLM training (using

ZeRO-Offload [54]) and inference (using FlexGen [63]) such

that we can use less GPUs for LLM without the constraint

of GPU memory capacity. This method has to frequently



copy tensors between the GPU and CPU, and offloads certain

computations from the CPU to the GPU to maximize GPU

memory saving or reduce I/O offload. This method (named

tensor offloading in the rest of the paper) has been commonly

studied and deployed in industry.

We find that using tensor offloading based upon the CXL

memory brings limited performance improvement. This is

because the tensor copy between the CXL memory and GPU

memory goes through a longer data path than memory accesses

directly from CPU. Using CXL 1.1 on our platform, this data

path is bottlenecked by the PCIe interconnect between CPU

and GPU. As a result, adding CXL cannot show the bandwidth

benefits for tensor offloading. In contrast, the computation

offloaded to the CPU (i.e., the optimizer for LLM training

and the attention computation for LLM inference), which

tends to be bandwidth sensitive, can benefit from the extra

bandwidth of CXL. In addition, the CXL memory increases

memory capacity and allows us to use larger batch sizes for

LLM inference, leading to throughput gains. Our study is

unprecedented, because of its practicality of using real CXL

for GPU-based LLM, different from CPU-based study [68].

CXL can be used to save fast memory without causing

performance loss, and using application semantics to guide

page interleaving for CXL can maximize CXL benefits. Our

work goes beyond the existing work [67], [68] that focuses on

applications exhibiting ms-scale latency (e.g., social network

microservices) or commercial workloads to study the potential

of the CXL memory. We study a spectrum of HPC work-

loads, covering the most common and representative “HPC

dwarfs” [6]. We reveal that some HPC applications (such

as CG and BT [15]) can tolerate the low bandwidth and

high latency of the CXL memory under certain scales (the

performance loss is less than 3.2%, compared with LDRAM),

because of their compute-intensive nature.

In addition, the page interleaving policy, embraced by the

industry (e.g., Micron and AMD [47], Astera Labs [30],

and Samsung [48]) as an application-transparent technique to

integrate CXL with the existing memory components, provides

opportunities to save LDRAM for HPC applications. When

interleaving CXL and RDRAM, we see minor performance

difference from interleaving CXL and LDRAM for some

applications. This is because the CXL memory dominates the

memory performance, and the performance of other memory

components has minor impact on the overall performance.

To maximize the interleaving performance, we introduce

a novel data object-level interleaving policy. Different from

Linux uniform page-level interleaving [67], this policy decides

whether memory pages allocated to a data object should be

interleaved between CXL and DRAM or allocated to LDRAM

first (“LDRAM preferred”). This policy maximizes memory

bandwidth (or minimizes latency) for data objects whose

accesses favor high bandwidth (or low latency). This policy

reduces LDRAM usage by 32% and outperforms the uniform

interleaving policy (Linux default) by 65% on average.

Memory tiering solutions need to be improved. Treating

the CXL memory as a memory tier, existing work [13], [32],

[44], [50], [55], [73] migrates pages between the CXL memory

and fast memories based on page access frequency or recency

(i.e., hotness). Those solutions are seldom studied with the

real CXL memory, and how they interplay with the existing

system (e.g., page interleaving) is largely unknown.

We find that the dynamic page migration in memory tiering

are not integrated well with the static page interleaving,

because of invalidness of NUMA hint faults. Depending on

temporal and spatial distribution of hot pages, the dynamic

page migration can degrade performance compared to no

migration. We also observe that the old-fashioned NUMA first

touch and Tiering-0.8 [73] (the most recent Linux Patch for

AutoNUMA to support memory tiering) is very effective, out-

performing a set of page migration and interleaving solutions.

II. BACKGROUND

A. Compute Express Link

The CXL specification defines three protocols: CXL.io,

CXL.cache, and CXL.mem. There are three types of CXL

devices. The type-3 device is related to our evaluation. Such

a device supports CXL.io and CXL.mem, and is used for

memory bandwidth or capacity expansion in memory tiering.

The CXL specification has been going through three major

versions: 1.1, 2.0, and 3.0. CXL 1.1 focuses on directly-

attached CXL devices, CXL 2.0 incorporates switch-based

pooling, and CXL 3.0 supports switch-less pooling and higher

bandwidth.

Most of the real CXL devices nowadays are host-managed

device memory with host-only coherent (HDM-H) using CXL

1.1. The three devices for our evaluation are among them.

B. CXL Systems for Evaluation

CXL requires compatible hardware in both the CPUs and

peripheral devices. The 4th-generation Intel Xeon Scalable

Processors (such as Sapphire Rapids) and the 4th-generation

AMD EPYC Processors (such as Genoa) are among the first

mainstream server CPUs to support the CXL 1.1. Several CXL

memory devices have been developed as commercial products

by leading hardware manufacturers such as Micron. We use

three CXL devices from three vendors. See Table I.

The system A in Table I has two sockets (0 and 1), with

a CXL device attached to Socket 1 by CXL link over PCIe

5.0. Accessing CXL memory from Socket 0 goes through

HyperTransport interconnect, leading to longer latency than

accessing from Socket 1. From the view of a CPU, there are

three NUMA nodes: local DDR (LDRAM), remote DDR on

the other socket (RDRAM), and CXL memory. The system B

has the same organization as A. The system C has a different

organization: the CXL device is attached to Socket 0 (not 1).

III. BASIC PERFORMANCE CHARACTERISTICS

Evaluation methodology. We evaluate memory latency and

bandwidth using Intel Memory Latency Checker (MLC) [22].

MLC disables hardware prefetcher for Intel processors (the

systems B and C), but cannot do so for AMD processors

(the system A). For latency tests, MLC uses typical pointer

2



TABLE I
THREE SYSTEMS WITH CXL DEVICES.

Sys Component Description

A

OS (kernel) Ubuntu 22.04 LTS (Linux kernel v6.2.15)

CPUs
2× AMD EPYC 9354 CPUs @3.8 GHz,

32 cores and 512 MB LLC per CPU
PCIe PCIe 5.0, speed 32GT/s, 16 lanes

Memory
Socket 0: 12× DDR5-4800 channels, memory 768GB
Socket 1: 12× DDR5-4800 channels, memory 768GB

max bandwidth 460.8 GB/s per socket

CXL A
Single channel DDR5-4800, memory

128 GB, max bandwidth 38.4 GB/s per channel

B

OS (kernel) Fedora Linux 36 (Linux kernel v6.6.0-rc5)

CPUs
2× Intel(R) Xeon(R) Platinum 8470 CPU @2.0GHz,
52 cores and 210 MB LLC per CPU (Saphire Rapids)

PCIe PCIe 5.0, speed 32GT/s, 16 lanes

Memory
Socket 0: 8× DDR5-4800 channels, memory 1TB
Socket 1: 8× DDR5-4800 channels, memory 1TB

max bandwidth 307.2 GB/s per socket

CXL B
Single channel DDR5-8000, memory

64 GB, max bandwidth 64.0 GB/s per channel

C

OS (kernel) Ubuntu 22.04 (Linux kernel v6.2.15)

CPUs
2× Intel(R) Xeon(R) Gold 6438Y+ @2.0GHz,

32 cores and 60 MB LLC per CPU
PCIe PCIe 5.0, speed 32GT/s, 16 lanes

Memory
Socket 0: 8× DDR5-4800 channels, memory 512GB
Socket 1: 8× DDR5-4800 channels, memory 512GB

max bandwidth 307.2 GB/s per socket

CXL C
Dual channel DDR5-6200, memory

128 GB, max bandwidth 48.4 GB/s per channel
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Fig. 2. Load latency with random and sequential accesses to a cache block.

chasing. For each latency test, we repeat the test 5,000 times,

and report the average value after excluding outliers (caused by

operating system services and random TLB misses). For band-

width tests, we use MLC to perform sequential and random

memory accesses. The sequential accesses in combination with

thread-level parallelism introduces parallel memory accesses,

revealing peak memory bandwidth. For each bandwidth test,

we repeat the test 2,000 times, and report the average value.

Latency results. See Figure 2. Compared with LDRAM,

CXL is much slower than one-hop-away NUMA node

(RDRAM). In fact, assuming that adding a hop of NUMA

distance introduces a constant latency in a system, the CXL

memory is comparable to a two-hop-away NUMA node, in

terms of access latency. Figure 2 shows that the CXL memory

from different vendors show quite different latency. For exam-

ple, for sequential accesses, the CXL memory in the system A

adds latency by 153 ns, while the CXL memory in the system

B adds latency by 211 ns, compared to LDRAM. Since the

two systems use the same PCIe and DRAM technologies, such

a latency difference mainly comes from the difference in the

CXL controller and HA on the CPU.
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Fig. 3. Bandwidth scaling for data loading. Note that the scales of the figures
for the three systems are different.

Bandwidth results. Figure 3 shows that bandwidth scaling

of LDRAM, RDRAM, and CXL are different as we change the

number of threads. The CXL memory bandwidth is saturated

as the number of threads is over 8, while the saturation points

for LDRAM and RDRAM are much higher than that in CXL

(e.g., 28 and 20 on the system B), because the bandwidth

of CXL memory is constrained by the bandwidth of a single

DDR channel. The peak CXL memory bandwidth is lower

than that of RDRAM (the CXL memory bandwidth is 17.1%

and 46.4% of the RDRAM bandwidth on the systems A and

B respectively), but can be close to the RDRAM bandwidth

(see the system C).

The difference in bandwidth scaling between LDRAM,

RDRAM, and CXL highlights the importance of distributing

memory accesses between them. For example, in the system

B, to maximize the bandwidth usage, we would assign 6,

23, and 23 threads to access CXL, LDRAM, and RDRAM

respectively, because increasing thread counts beyond these

points does not improve the bandwidth, shown in Figure 3(d).

Using the above thread counts can lead to a peak bandwidth

of 420 GB/s, larger than any other thread assignment.

Performance under load. We study memory latency and

bandwidth under varying load. Figure 4 presents the results of

how latency and bandwidth vary by gradually increasing the

load on memory. For this test, we employ Intel MLC, utilizing

32 threads. In our methodology, each thread performs memory

accesses to cache lines and delays for a time interval between

3
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Fig. 4. Memory latency and bandwidth under varying load.

two accesses. We vary the time interval from 0 to 80µs. This

setup ensures that each worker thread is engaged in repeated,

sequential memory accesses, allowing for a detailed analysis

of how varying load conditions impact memory performance.

When the time interval is 0 (corresponding to the right side

of each subfigure in Figure 4), the bandwidth is close to the

maximum bandwidth and the latency skyrockets as the queuing

effects in hardware dominate. When the time interval is high

enough (80µs, corresponding to the left side of each subfigure

in Figure 4), the latency is close to the raw, unloaded latency.

Basic observation. The latency of accessing LDRAM and

RDRAM can be similar to the CXL memory when reaching

their peak memory bandwidth. For example, in Figure 4(c),

once the bandwidth consumption of LDRAM and RDRAM

approaches the peak (110GB/s for LDRAM and 84GB/s for

RDRAM), their latencies are as high as 543 ns and 600

ns respectively, which are pretty close to the CXL memory

latency (400 ns - 550 ns) when approaching the peak CXL

bandwidth under heavy load. This demonstrates the potential

of using CXL as LDRAM and RDRAM under heavy load.

Takeaway: CXL memory performs as a NUMA node with latency
similar to RDRAM but lower (or comparable) bandwidth. Different
from the traditional NUMA node, the CXL memory is unique in
terms of performance scalability and performance under heavy load.

IV. CXL FOR LARGE LANGUAGE MODELS

LLMs are crucial for powering various AI applications,

but their substantial memory footprint presents deployment

challenges. We study the performance of LLMs with tensor

offloading techniques using the CXL memory, a promising

solution to address the constraint of GPU memory capacity.

Tensor offloading moves tensors out of GPU memory when

they are not in use, allowing for the execution of larger models

that exceed the GPU’s memory capacity. The evaluation is

conducted on the system A, featuring an NVIDIA A10 GPU

with 24GB memory, connected to the host CPU via PCIe Gen

4, offering a maximum bandwidth of 32GB/s.

The CXL memory on the system A uses CXL 1.1, which

does not allow the GPU to directly access the CXL memory;

instead, the accesses must go through the CPU. Under CXL

1.1, the data path from the GPU to the CXL memory is “GPU

- PCIe - CPU - PCIe - CXL memory”, longer than the direct

“CPU - PCIe - CXL memory” path. The data path in CXL

1.1 is different from the CXL devices peer-to-peer access

supported in CXL 3.1 (using “GPU - PCIe - CXL memory”).
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Fig. 6. 64-byte data transfer latency between the GPU and CPU.

We explore the effects of the CXL 1.1 data path on the data

transfer bandwidth and latency.

Bandwidth results. We measure memory access bandwidth

by repeatedly and randomly copying data blocks between the

GPU memory (labeled as “g”) and CPU memory (labeled

as “c”) using various page allocation strategies. The size of

the data blocks varies from 128 byte to 4GB, illustrated in

Figure 5. We use membind [5] to specify the memory device

as the source or destination for data transfers.

LLM basic observation 1. The memory bandwidth for the

GPU access to the memory hierarchy with CXL is constrained

by the PCIe bandwidth between the CPU and GPU, due to the

absence of peer-to-peer access support in CXL 1.1.

Counter-intuitively, using the CXL memory does not in-

crease the memory bandwidth for the GPU. As shown in

Figure 5, the peak memory bandwidth is similar across various

memory interleaving policies (the difference is less than 3%).

This lack of bandwidth increase with the CXL memory is

primarily due to the PCIe interconnect between the CPU and

GPU acting as a performance bottleneck.

Latency results. We develop a microbenchmark to mea-

sure the data transfer latency. The microbenchmark runs on

CPU 1 (the CPU close to the CXL memory) and uses

cudaMemcpy() for data transfer. The benchmark repeatedly

transfers a 64-byte data (a cache block) between the CPU and

GPU. The transfer happens 100K times, and we report the

average time for one transfer. We use membind, similar to the

4



Fig. 7. Overview of ZeRO-Offload in a training step.

bandwidth tests. Figure 6 shows the results.

LLM basic observation 2. Accessing the CXL memory

from the GPU can result in longer latency than expected.

The difference of data transfer latency between “GPU - CXL

memory” and “GPU - CPU memory” (in Figure 6) is greater

than the latency difference between “CPU - CXL memory” and

“CPU - CPU memory” (in Figure 2). For example, accessing

the CXL memory from the GPU is, on average, 500 ns longer

than accessing the CPU memory from the GPU. In contrast,

accessing the CXL memory from the CPU is only 120 ns

longer than accessing the CPU memory from the CPU. The

longer latency-difference from the GPU side comes from the

longer data-path between the GPU and CXL memory.

We study the implication of using the CXL memory for

LLM training and inference using tensor offloading on System

A, as follows.

A. LLM Training

1) ZeRO-Offload Background: ZeRO-Offload [54] is com-

monly employed in the industry to enable larger LLM training

using smaller GPU memory. To save the GPU memory, ZeRO-

Offload efficiently offloads full-precision model parameters,

gradients, and optimizer states (e.g., momentum and variance)

to the CPU memory, moving them back to GPU memory

when needed. Figure 7 depicts the workflow of ZeRO-Offload.

Specifically, it 1 performs forward and 2 backward com-

putation on GPU; and 3 offloads gradients to the CPU

memory during the backward step. To reduce the overhead

of tensor movement between CPU and GPU 4 , ZeRO-

Offload performs optimization computation (e.g., the ADAM

optimizer) on the CPU; and 5 moves updated parameters

from the CPU memory to the GPU memory before the next

forward step. This strategy minimizes data movement volume

between the GPU and CPU memory for each training step. As

a result, ZeRO-Offload enables 10× larger model training on

a single GPU with 1.4× higher throughput.

2) Using CXL Memory: We evaluate two LLMs: BERT

[14] and GPT2 [49]. For BERT, we consider three configura-

tions: 110 million (base), 340 million (medium), and 4 billion

(large) parameters. For GPT2, we evaluate models with 4, 6,

and 8 billion parameters. Figure 8 shows the performance

with various interleaving policies and model sizes. We use

the notation “bs=effective batch size@model size” to represent

the batch size and number of model parameters. For a given

model size, the batch size is chosen to be the maximum

without causing an out-of-memory (OOM) error on the GPU.

To better understand the performance, we break it down to the

“optimization step” (i.e., the ADAM optimizer on the CPU,

which is exposed to the critical path) and “data movement”
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Fig. 9. Performance of the optimizer and data movement under various
interleaving. The percentage numbers are in terms of total training time.

(i.e., the gradient transfer from the GPU to the CPU and the

parameter transfer from the CPU to the GPU). The memory

capacities for various interleaving policies (i.e., LDRAM only,

LDRAM+CXL, LDRAM+RDRAM, and “interleave all”) are

196GB, 324GB, 392GB, and 520GB. Figure 9 shows the

results, including data movement exposed to the critical path.

Evaluation results. LLM training observation 1. Using the

CXL memory brings little performance improvement or even

negative performance impact to ZeRO-Offloading.

See GPT2. Figure 8 shows that the performance differ-

ence between LDRAM+RDRAM, LDRAM+CXL, and “in-

terleave all” is less than 5% for the 4B and 6B models.

For the 8B, LDRAM outperforms ‘interleave all” by 14%,

and LDRAM+RDRAM outperforms LDRAM+CXL by 16%.

There is no performance benefit of using CXL.

Figure 9 reveals three reasons for the above observation.

(1) The data movement takes a rather small portion of the

training time in GPT2 (less than 5% in all cases). (2) Because

of the bottleneck in the extra PCIe, the data movement

does not get benefits from the better bandwidth offered by

interleaving CXL and DDR (the CPU memory). Instead, the

data movement suffers from longer access latency of the

5



CXL memory. As a result, compared with using LDRAM,

using CXL actually increases data transfer time and has a

minor impact on the training time. (3) The optimizer takes

a larger portion of the training time, compared to the data

movement. The optimizer happens on the CPU and is sensitive

to memory latency. Using CXL increases its execution time

(2%-18%), compared to using LDRAM. When the batch size

is small, the optimizer takes a significant portion of the training

time (e.g., 31% when bs=3@8B). In such cases, optimizer

slowdown substantially decreases overall training throughput.

For example, when bs=3@8B, using “interleave all” performs

worse than LDRAM+RDRAM by 11% due to the worse

performance in the optimizer by 8%. We have the similar

observations for BERT.

We expect that using a larger model (such as GPT-3

with 175 billion parameters), which has larger numbers of

parameters and gradients, would result in data movement

taking a larger portion of training time to transfer parameters

and gradients. Unfortunately, we cannot evaluate such a large

model due to the limited memory capacity on our GPU. In

addition, after reducing the data path between the GPU and

CXL memory, the CXL memory can play a bigger role in

reducing training time. Also, using the interleaving policy

for the optimizer is not good for performance because of

the latency sensitive nature of the optimizer. Using the first

touch or “preferred policy”, the optimizer performance can be

improved.

B. LLM Inference

1) FlexGen Background: LLM inference is memory-

consuming. FlexGen [63] is a cutting-edge framework de-

signed for LLM inference with constrained GPU memory

capacity. To address the memory capacity limitation, FlexGen

offloads model parameters, KV cache, and activations to the

host CPU memory hierarchy (including DRAM and NVMe

SSD). Figure 10 shows the workflow of FlexGen. The LLM

inference consists of two stages: prefill and decode.

During the prefill stage, which happens only once per

inference batch, 1 FlexGen transfers parameters from the

CPU memory hierarchy to the GPU. 2 FlexGen executes

attention and MLP computation layer by layer on the GPU.

3 At the end of each attention layer, the generated KV

cache is offloaded to the CPU memory hierarchy. The decode

stage generates tokens and significantly influences the over-

all throughput of the inference process. To minimize tensor

movement between the GPU and CPU, 4 FlexGen conducts

attention computation directly on the CPU. 5 FlexGen then

transfers model parameters and activations generated in the at-

tention layer from the CPU to the GPU for MLP computation,

and 6 transfers activations generated in the MLP layer to the

CPU for the following computation.

Offloading policy and cost model. FlexGen allows tensors

to be partially placed in the CPU memory hierarchy and uses

a cost model to determine the optimal offloading policy for

maximum inference throughput within a memory capacity

constraint. The cost model considers latency and bandwidth
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Fig. 10. Overview of LLM inference with FlexGen.
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Fig. 11. Comparison LLM inference throughput across memory systems, each
with 324 GB capacity.

differences between NVMe and DRAM but does not differen-

tiate among LDRAM, RDRAM, and CXL memory.

2) Using CXL Memory: Evaluation setup. We evaluate

LLaMA [69] with 65 billion parameters and OPT [93] with

66 billion parameters. The batch sizes for evaluation are

determined by performing a linear programming-based [66]

policy search to maximize inference throughput while respect-

ing memory and hardware constraints. The lengths of the

input prompts and output tokens are standardized at 2,048

and 256, respectively. The evaluation platform has 196 GB

LDRAM, 196 GB RDRAM, 128 GB CXL, and 128 GB

NVMe. Leveraging GRUB mmap and numactl [5], we build

the host memory hierarchy with various capacities and media

types.

Evaluation results. LLM inference observation (LIO) 1.

The performance of the CXL memory is comparable to that

of RDRAM, and surpasses NVMe when applied in LLM

inference with the tensor offloading.

Figure 11 presents the results. Each evaluation uses two

equal-sized memory medias with a total capacity of 324 GB.

According to FlexGen’s tensor offloading policy, only 8% of

the KV cache resides on the GPU, and the remaining KV

cache, weights, and activations reside on the CPU. Figure 11

shows that the inference throughput using LDRAM + CXL

is similar to that of LDRAM + RDRAM, with the difference

being less than 3%. Furthermore, LDRAM + CXL shows an

improvement of 24% for LLaMA and 20% for OPT in overall

throughput, compared to LDRAM + NVMe.

LIO 2. The throughput of prefill and decode stages responds

differently to memory latency and bandwidth.

Figure 11 shows that during the prefill stage, the throughput

difference in the prefill stage across the three interleaving

policies largely reflects the trend of latency difference in

the memory systems. For example, LDRAM + RDRAM

outperforms LDRAM + CXL and LDRAM + NVMe by 20%

and 28% on average, respectively. This is because during the

prefill stage, tensors are loaded from the CPU to the GPU and

such data loading is sensitive to the latency.
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TABLE II
LLM INFERENCE CONFIGURATION FOR EVALUATION. “BS” AND “C”

STANDS FOR “BATCH SIZE” AND “KV CACHE”, RESPECTIVELY.
ACCORDING TO OFFLOADING POLICY IN FLEXGEN, ALL WEIGHTS AND

ACTIVATIONS ARE STORED IN CPU MEMORY.

LLM Memory hierarchy BS
c on

GPU

c on

CPU

Memory

footprint

LLaMA LDRAM Only (196 GB) 14 20% 80% 200 GB

LLaMA LDRAM + RDRAM (392 GB) 40 4% 96% 348 GB

LLaMA Interleave all (520 GB) 56 4% 96% 438 GB

OPT LDRAM Only (196 GB) 9 27% 73% 168 GB

OPT LDRAM + RDRAM (392 GB) 40 4% 96% 326 GB

OPT Interleave all (520 GB) 64 4% 96% 448 GB

LDRAM Only (196 GB) Interleave LDRAM + CXL (324 GB)
Interleave LDRAM + RDRAM (392 GB) Interleave all (520 GB)
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Fig. 12. Comparison of LLM inference throughput across various memory
systems with different capacities.

In contrast, during the decode stage, the throughput is

more sensitive to memory bandwidth (see Figure 11). The

decoding throughput using LDRAM + CXL is 27% better than

using LDRAM + NVMe on average. LDRAM + RDRAM

and LDRAM + CXL perform similarly. This is because

in the decode stage, the attention computation happens on

the CPU, leading to intensive data access and sensitive to

large bandwidth difference between CXL and NVMe (but not

relatively small difference between CXL and RDRAM).

LIO 3. CXL increases the capacity of the memory system,

thereby enhancing the throughput of LLM inference due to

larger batch size.

Figure 12 illustrates the inference throughput with various

capacities of the CPU memory. Table II summarizes the

offloading policy search results with those capacities. The

LLM batch size scales up with the increased memory system

capacity. Specifically, with LDRAM + CXL, LDRAM +

RDRAM, and LDRAM + RDRAM + CXL, the batch size

increases by 1.14×, 1.85×, and 3× for LLaMA, and 2.11×,

3.44× and 6.11× for OPT, respectively, compared to the case

of utilizing LDRAM only. The overall throughput increases

by 28%, 81% and 86% on average respectively, compared to

LDRAM only.

We further decompose performance into prefill and decode.

During the prefill stage, the inference throughput is dominated

by the latency of GPU accessing the CPU memory hierarchy,

hence LDRAM only outperforms LDRAM + CXL, LDRAM

+ RDRAM, and LDRAM + RDRAM + CXL by 50%, 41%,

and 9% on average, respectively. However, during the decode

stage, as the batch size increases, the inference throughput

improves by 42%, 114%, and 109% on average for LDRAM

+ CXL, LDRAM + RDRAM, and LDRAM + RDRAM + CXL

respectively, compared with LDRAM only.

Takeaway: (1) The CXL memory as a memory capacity expander
enables LLMs to train and infer with larger batch sizes, which in
turn improves system throughput. However, when the GPU accesses
the CXL memory, the lack of peer-to-peer access support in CXL
1.1 prevents them from leveraging the extra bandwidth and results
in longer latency due to the extended data path. (2) Computation
offloaded to the CPU can benefit from extra CXL bandwidth.

V. HPC WORKLOADS

We analyze HPC workload performance, focusing on seven

workloads from NPB [15] and XSBench benchmark [70],

which require processing a large working memory set using

multiple threads, are summarized in Table III. They col-

lectively cover the most common and representative HPC

applications [6]. We use various memory allocation policies,

including preferred and interleaving. The preferred policy for

a specific memory node indicates that the memory is allocated

in that memory node first; when that memory node runs out of

space, the page allocation goes to another memory node closet

to the CPU according to the NUMA distance. The interleaving

policy indicates that pages are allocated among memory nodes

in a round robin fashion. We present evaluation results on the

system A, because we have limited accesses to B and C.

A. Evaluation Results

We have the following observations unseen in the existing

CXL evaluation [67], [68].

HPC observation 1. When the interleaving involves the

CXL memory, we can save LDRAM by using RDRAM.

Figure 13 shows the results with various interleaving

policies, and the benchmarks run on CPU 0. We can

see that the performance difference between the interleav-

ing RDRAM+CXL and interleaving LDRAM+CXL is less

than 9.2% for all benchmark. In general, we can save

LDRAM while achieving similar performance by interleaving

RDRAM+CXL instead of interleaving LDRAM+CXL.

The above results are because of large performance gap

between the CXL memory and DDR (e.g., 2.1× and 1.2×

longer in memory access latency, compared to LDRAM and

RDRAM respectively.): because of data dependency and lim-

ited hardware resources (e.g., Miss Status Handling Registers

(MSHR) and the queues in MC), the performance is highly

impacted by the slow CXL memory and irrelevant whether

the LDRAM or RDRAM is utilized.

HPC observation 2. Bandwidth-sensitive and latency-sensi

-tive applications respond differently to the bandwidth increase

offered by CXL.

Figure 14 shows the results for MG (bandwidth-sensitive)

and CG (latency-sensitive). For MG, we see that when the

number of threads increases from 4 to 32, the performance of

“interleave all” (i.e., interleaving between LDRAM, RDRAM

and CXL, which achieves the highest bandwidth) is consis-

tently better than that of CXL preferred by 10%-85%. Also,

for CG, the performance of “interleave all” performs worse

than that of CXL preferred by up to 1.6×, because using

CXL preferred, consecutive memory accesses tend to fall into
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TABLE III
HPC WORKLOADS FOR EVALUATION. “BW” STANDS FOR “BANDWIDTH”.

Type Workload Characterization Input Problem Mem. footprint BW-hungry Objects

BT Dense linear algebra Unit-strided memory accesses from dense matrices Class E 166 GB u(39.6G), rsh(39.6G), forcing(39.6G)

LU Sparse linear algebra Indexed loads and stores from compressed matrices Class E 134 GB u(39.6G), rsd(39.6G)

CG Sparse linear algebra Irregular memory accesses based on indirect indexing Class E 134 GB a(48.9G)

MG Structured grids Dynamic updates based on subdivided regular grids Class E 210 GB v(64.2G), r(73.4G)

SP Structured grids Intense floating-point computations for linear equations Class E 174 GB u(39.6G), rsh(39.6G), forcing(39.6G)

FT Spectral method Bandwidth-consuming matrix transpose Class D 80 GB u0(32.0G), u1(32.0G)

XSBench Monte Carlo Computation based on repeated random trials Extra large 116 GB nuclide grids
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Fig. 13. The performance of various interleaving policies for HPC applications.
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Fig. 14. The scalability study for CG and MG. The performance is normalized
by that of using LDRAM only.

the same memory node, which is favored by CG for high

performance (see more discussions for HPC observation 3).

HPC observation 3. The CXL memory can show unex-

pected high performance for the latency-sensitive applications

with random memory accesses.

The CG results in Figures 13 and 14 support the above

observation. CG is a latency-sensitive application because of

its indirect indexing-based memory accesses. In Figure 14,

CXL preferred performs better than using RDRAM-only by

10.9%-57.2% when the number of threads is 4-20. This seems

to be counter-intuitive, because the CXL memory has higher

latency than RDRAM. This superior performance comes from

the optimization in the CXL device or customized caching

policy in the processor for expensive, CPU-less memory

accesses [67], and this optimization is especially effective for

CG-style workloads. When the number of threads is larger

than 20, the CXL memory accesses become more intensive,

and CXL inferior performance becomes more obvious.

In Figure 13, we also observe that CXL preferred out-

performs any other CXL-related interleaving policies in CG,

despite other polices provide higher bandwidth and shorter av-

erage access-latency. This indicates that for a latency-sensitive

workload with a random, scattered memory accesses, gathering

accesses in one memory node instead of spreading to multiple

memory nodes benefits performance because of reduction of

row buffer misses in memory devices.

B. Object-Level Interleaving

Instead of generally interleaving pages across the entire ap-

plication (named uniform interleaving), we propose a method

to interleave pages at the data object level. This enables

fine-grained control over how pages are interleaved. Since

different data objects have different access patterns, using the

fine-grained control allows the bandwidth-sensitive object to

be accessed with high bandwidth, while the latency-sensitive

object is allocated locally for high performance.

Interleaving method. To implement object-level

interleaving, we employ numa_alloc_interleaved

_subset() [5] in Linux, which allows for the allocation

of a data object in an interleaved manner among specific

NUMA nodes. We use two criteria to select data objects to

use the interleaving policy.

• The object must have a large memory footprint, which

means taking at least 10% of total memory consumption.

• Memory accesses to the object must be intensive; among

the data objects that meet the first criterion, we select

data objects with the largest number of memory accesses.

Multiple data objects may be selected.

With high thread-level parallelism, memory accesses to the

above data objects are more sensitive to memory bandwidth.

Besides the above data objects, the memory allocation for

other objects uses the “preferred” policy. The last column

in Table III summarizes those bandwidth-hungry data objects

selected for interleaving.

We evaluate the effectiveness of our object-level interleaving

using the following approach. In each test, we run the work-

load on CPU 0 using both LDRAM (memory node 0) and

CXL memory. LDRAM is limited to either 64GB or 128GB

by using GRUB mmap, and the memory consumption of all

applications exceeding 64GB, which allows us to assess the

cases with both sufficient and insufficient LDRAM. The CXL

memory is consistently 128GB. We make the following object-

level interleaving observations (abbreviated as OLI observa-

tions).
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Fig. 15. (a) Performance speedup of various memory allocation strategies
compared to “LDRAM preferred”, using sufficient LDRAM (128GB). (b)
Performance speedup of various memory allocation strategies, compared to
“LDRAM preferred”, using insufficient LDRAM (64GB).

OLI observation 1. When the local DRAM is sufficient

(with 128 GB), the object-level interleaving performance is

similar to that with LDRAM preferred, and consistently out-

performs the uniform interleaving in all scenarios.

Figure 15(a) shows that OLI performance is 65% better

than the uniform interleaving on average, demonstrating the

effectiveness of OLI to meet the diverse requirements of

latency-sensitive and bandwidth-sensitive objects. Addition-

ally, we observe that by using OLI, we can effectively reduce

the fast memory size by an average of 32% (and up to

40% for FT), while still achieving similar performance as

LDRAM preferred. The performance difference between OLI

and LDRAM preferred is less than 1% on average for all HPC

workloads, except XSBench, when LDRAM is sufficient.

OLI observation 2. When the local DRAM is insufficient

(64 GB), the OLI outperforms any other cases.

Figure 15(b) shows that on average, OLI performs 1.42×

better than LDRAM preferred (and up to 2.35× for BT). It

also outperforms the uniform interleaving by 1.32× on average

(and up to 1.84× for LU). See the following reasons. (1) The

performance of LDRAM preferred is highly related to when

the data objects are allocated. If LDRAM is full, latency-

sensitive objects might end up in the slower CXL memory. (2)

The bandwidth-sensitive data objects do not have opportunities

to be allocated on both LDRAM and CXL for high bandwidth.

In XSBench, LDRAM preferred performs better than both

the uniform and object-level interleaving. This is because most

of the memory accesses in XSBench are concentrated in a

small, latency-sensitive memory set.

Takeaway: The CXL memory offers additional bandwidth, but
HPC workloads may not benefit from it directly. The uniform
interleaving can undermine performance, while the data object-level
interleaving delivers performance comparable to or better than the
default LDRAM-centric page allocation while saving fast memory
size.

VI. MEMORY TIERING BASED ON PAGE MIGRATION

Memory tiering is an application-transparent solution to

integrate the CXL memory into the existing memory systems.

Treating the CXL memory as a memory tier, existing memory

tiering solutions [13], [32], [44], [50], [55], [73] rely on

memory profiling to count memory accesses at the page level.

Then, those solutions move frequently accessed (hot) pages to

the fast memory tier, and demote less frequently access (cold)

pages to the slow memory tier. In contrast to the interleaving

studied in Sections IV- V, which are static page placement

solutions, the memory tiering solutions are dynamic.

We use the system A. We limit the capacity of the fast

memory (i.e., LDRAM), while the capacity of the slow mem-

ory (i.e., CXL) remains the same.

We evaluate three state-of-the-art memory tiering solutions

as follows. We also evaluate No Balance (between NUMA

nodes) representing the static page placement without mi-

gration. Our study is featured with analyzing the interplay

between page migration and interleaving.

• AutoNUMA [13] is the default NUMA-balancing policy in

Linux. AutoNUMA counts memory accesses by manipu-

lating an access bit in PTE. When a page is accessed, a

NUMA hint fault is triggered. By tracking these faults,

AutoNUMA determines the origin of memory accesses

and relocates pages to minimize their distance from the

computing processes. AutoNUMA is enabled by setting

numa_balancing to 1 in /proc/sys/kernel.

• Tiering-0.8 [73] is a recent Linux patch which uses

the similar hint fault-based profiling as AutoNUMA. Unlike

AutoNUMA, it considers the recency of page accesses based

on the re-fault interval to identify hot pages. Additionally,

Tiering-0.8 dynamically adjusts the page promotion criteria

to throttle migration traffic and save memory bandwidth.

Tiering-0.8 is enabled by setting numa_balancing to 2.

• TPP [44] uses hint faults to determine page migration. Upon

encountering hint faults, TPP decides to promote a page

based on its presence on the LRU list in Linux.

A. Page Migration with Uniform interleaving

Evaluation setup. To study the impact of page migra-

tion, we evaluate four memory-intensive applications, includ-

ing BTree [2], an in-memory index lookup; PageRank [7]

and Graph500 [45], both graph processing applications; and

Silo [71], an in-memory database engine. We run them with

64 threads. We configure the memory consumption of each

application to be around 130GB. This configuration ensures

a fair comparison between static page placement solutions

(i.e., the NUMA first touch and interleaving): LDRAM (i.e.,

50GB) is set to less than half of each application’s memory

consumption, hence both solutions can fully utilize LDRAM.

Metrics. We collect the execution time and page migration

statistics, including the number of hint faults and migrated

pages. Such statistics is collected by periodically reading

the Linux counters from /proc/vmstat. Those counters

capture page accesses from the entire system, but primarily

influenced by page migrations because of the application.

Evaluation results. Page migration observation (PMO) 1.

Different applications perform differently with different page

migration and static page placement solutions. No single

9



b
e
tt
e
r

Fig. 16. Execution time with various page migration and static page placement solutions for memory-intensive applications.
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Fig. 17. Execution time with various page management solutions for HPC applications.

TABLE IV
COMPARISON OF PERFORMANCE STUDIES ON GENUINE CXL

Paper HPC Study
LLM Study Memory Tiering

Performance Optimization

Training Inference
Solutions

Evaluated

Identify

Limitations

MICRO23 [67] No N/A N/A TPP N/A BW-aware page allocation
EuroSys24 [68] No N/A CPU-based AutoNUMA N/A N/A

SupMario [41] Yes N/A CPU-based TPP Yes
Predictive interleaving &

regulated migration
This work Yes GPU-based GPU-based TPP, AutoNUMA, Tiering-0.8 Yes Object-level interleaving

solution can get the best performance for all applications. The

effectiveness of a solution to an application depends on the

distribution of hot pages in the working set (e.g., scattered or

concentrated), and variance and size of the hot page set.

Figure 16 shows execution time. We observe that BTree is

not sensitive to any solution (the performance variance is less

than 3%), because of its irregular memory access patterns.

PageRank achieves the best performance with the first touch

without page migration, which is 88% better than any page

migration solution plus interleaving, because PageRank has a

small and stable set of hot pages. Graph500 achieves the best

performance with Tiering-0.8 plus interleaving, outperforming

other solutions by up to 33%, because Graph500’s hot pages

are scattered across memory tiers, and interleaving is helpful

for improving data locality. Silo achieves the best performance

with Tiering-0.8 plus the first touch, outperforming other

solutions by up to 20%. Silo implements a B-tree-like data

structure gathering hot data into fewer pages, making the first

touch more effective than interleaving.

PMO 2. When using first touch, Tiering-0.8 outperforms

TPP and AutoNUMA, because of its smaller profiling over-

head and dynamic adjustment of the page promotion threshold.

Figure 16 illustrates that using the first touch, Tiering-0.8

outperforms NO Balance, AutoNUMA, and TPP by 7%,

3%, and 31%. We quantify page hints faults caused by differ-

ent memory tiering strategies and observe that Tiering-0.8 has

59 × fewer hint faults. Memory profiling in TPP incurs a large

overhead, and the reduced number of hint faults in tiering-

0.8 contributes to performance improvement. Compared to

AutoNUMA, Tiering-0.8 has a comparable number of hint

faults but exhibits large variance in the number of migrated

pages. For example, in PageRank, Tiering-0.8 results in 7.6

million more migrations. This variance is due to adaptiveness

of page promotion threshold in Tiering-0.8.

PMO 3. The page migration based on hint faults is not

integrated well with the uniform interleaving.

We observe that using page migration plus the application

level interleaving, the number of hint faults is 72,721 ×

less than that of page migration plus the first touch on

average. Our investigation reveals that when the application-

level interleaving is employed, the application’s pages are

placed in unmigratable regions, preventing the pages to trigger

hint faults. Hence, page migration cannot be effective.

B. Page Migration with Object-Level Interleaving

Evaluation setup. To enable fair comparison between the

uniform and object-level interleaving, the capacity of LDRAM

is set to 40GB for FT, 100GB for MG, and 50GB for others,

such that all static page placement solutions can fully utilize

LDRAM for each application. The CXL memory does not

have a capacity constraint, because it is the slowest memory

tier. We use 32 threads on the socket 1.

Evaluation results. PMO 4. Using the page migration plus

the object-level interleaving results in minor performance

improvement on HPC workloads, compared to the object-level

interleaving without page migration.
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Figure 17 shows that without page migration, the object-

level interleaving outperforms the first-touch and uniform

interleaving by up to 45%. However, page migration negatively

impacts effectiveness of the object-level interleaving: when

using AutoNUMA, Tiering-0.8, and TPP, the performance

degrades by 46%, 88%, and 63% on average, compared

to using the object-level interleaving without page migra-

tion. This occurs because the object-level interleaving utilizes

the additional CXL bandwidth for bandwidth-hungry objects.

However, the page migration undermines this benefit.

PMO 5. The page migration can improve performance for

some applications but lose performance for others.

Figure 17 shows that different HPC workloads exhibit

different preferences for page migration. For example, the page

migration degrades performance for FT, SP and XSBench, and

yields almost no performance difference in MG, regardless of

using the interleaving or first touch, because these workloads

have uniformly accessed working set or highly skewed and

scattered hot memory region, which make hotness detection

challenging. In contrast, the page migration improves BT and

LU performance by up to 51% and 20%, respectively, since

hot pages in BT and LU have good locality to be detected.

Takeaway: (1) There is significant potential to improve the per-
formance of page migration in the memory tiering solutions. (2)
Dynamic page migration and static page interleaving are not well-
integrated. (3) Dynamic page migration may degrade performance;
a better static page placement strategy without page migration, such
as object-level interleaving, can lead to better performance.

VII. RELATED WORK

CXL. In 2019, Intel introduced Compute Express Link

(CXL [61], [72]), an open industry-standard interconnect be-

tween processors and devices such as accelerators, memory

buffers, and smart network interfaces. Since its introduction,

the CXL has garnered significant attention and investment

from both researchers and industry practitioners [4], [11], [18],

[23], [33]–[36], [44], [60], [62], [64], [65], [67], [74], [85],

[88], [92]. For example, Google has explored the potential of

CXL memory in memory tiering and swapping in its cloud

computing infrastructure [34], while Microsoft has developed

CXL-based memory pools for public cloud platforms [8], [35],

and Meta has designed the CXL-based tiered memory system

in hyperscale datacenters [44].

Emulation-based CXL study. Most of the explorations of

using the CXL memory from both industry and academics

leverage NUMA servers to emulate CXL memory perfor-

mance [18], [23], [79], [88], [91]. For example, Yang et al. [88]

overcome the memory wall with emulated CXL-enabled SSDs,

Jang et al. [23] apply emulated CXL memory to the billion-

scale approximate nearest neighbor search using a software-

hardware co-design solution.

Performance study on genuine CXL. Recent studies

analyzed the performance of actual CXL hardware [41], [67],

[68]. Sun et al. [67] represent the first comprehensive effort to

analyze CXL memory performance using genuine CXL-ready

systems and devices. Nonetheless, a wide range of applications

from some fields (such as HPC, AI inference and training)

are still not extensively studied. Tang et al. [68] investigate

the CXL performance in various datacenter scenarios and

propose an Abstract Cost Model to estimate the cost-benefit

of using CXL memory. However, their work does not address

the limitations of existing memory tiering solutions. Liu et

al. [41] analyze the root causes of CXL latency’s impact

on system performance. They further propose a performance

model designed to predict CXL-induced slowdowns, guide

the uniform interleaving ratio, and regulate page migration

throttling in memory tiering. Nonetheless, their performance

evaluation is restricted to CPU-centric scenarios. Our work

differs in multiple perspectives, as shown in Table IV: (1)

workload diversity, covering both LLMs and HPC; (2) practi-

cality of the evaluation platform, which utilizes GPUs instead

of CPUs for LLM; (3) deep insights into memory tiering;

and (4) performance optimization techniques, such as object-

level interleaving (Sec. VI-B) and thread assignments based

on bandwidth scaling (Sec. III).

Tiered memory systems. Different memory compo-

nents [1], [9], [10], [16], [19], [61], [72], [77], [83] can show

different memory latency, bandwidth, capacity, and monetary

cost. Using multiple memory components, tiered memory

systems can save cost and improve memory capacity [3],

[12], [28], [31], [56], [58], [87]. Using the CXL memory,

it is natural to build a tiered memory where local DDR is

the fast tier and the CXL memory is a slow tier. Many

solutions [17], [20], [21], [24], [25], [29], [37]–[40], [42],

[43], [50]–[53], [55], [57], [75], [76], [78], [80]–[82], [84],

[86], [89], [90] have been proposed to explore and leverage the

tiered memory systems to improve application performance.

However, the performance of those solutions on CXL-ready

systems (especially their interplay with page interleaving) is

not clear [26], [59], [64].

VIII. CONCLUSIONS

In this paper, we characterize the performance of the real

CXL memory and explore its use cases. We explore the use of

CXL for LLM training and inference, study the performance

of the CXL memory with a spectrum of HPC applications,

and investigate how application-transparent solutions (page

interleaving and memory tiering) perform with the real CXL.

We also create a data object-level interleaving method that

switches between the interleaving and NUMA node-preferred

polices at the data object level, and demonstrate its superior

performance. We hope that our study can shed some lights

on how the future HPC systems can leverage CXL memory

expansion.

ACKNOWLEDGMENT

This work was partially supported by U.S. National Sci-

ence Foundation (2104116, 2316202 and 2348350) and the

Chameleon Cloud. We thank the anonymous reviewers, as well

as our shepherd, for their feedback on the paper.

11



REFERENCES

[1] A. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S. Kim, J. Xiong,
and W.-m. Hwu, “Flatflash: Exploiting the byte-accessibility of ssds
within a unified memory-storage hierarchy,” in Proceedings of the

Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, 2019, pp. 971–985.

[2] R. Achermann and A. Panwar., “Mitosis workload BTree.” 2019, https:
//github.com/mitosis-project/mitosis-workload-btree.

[3] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” Proceedings of the

Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:8753499

[4] G. Alonso, A. Klimovic, T. Kuchler, and M. Wawrzoniak, “Rethinking
serverless computing: from the programming model to the platform
design,” 2023.

[5] Andi Kleen (SUSE Labs), “NUMA Support for Linux,” https://github.
com/numactl/numactl.

[6] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,
D. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick, “The
Landscape of Parallel Computing Research: A View from Berkeley,”
University of California at Berkeley, Tech. Rep. UCB/EECS-2006-18,
2006.
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