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Abstract—Compute eXpress Link (CXL) is emerging as a
promising memory interface technology. However, its perfor-
mance characteristics remain largely unclear due to the limited
availability of production hardware. Key questions include: What
are the use cases for the CXL memory? What are the impacts of
the CXL memory on application performance? How to use the
CXL memory in combination with existing memory components?
In this work, we study the performance of three genuine CXL
memory-expansion cards from different vendors. We characterize
the basic performance of the CXL memory, study how HPC
applications and large language models (LLM) can benefit from
the CXL memory, and study the interplay between memory
tiering and page interleaving. We also propose a novel data
object-level interleaving policy to match the interleaving policy
with memory access patterns. Our findings reveal the challenges
and opportunities of using the CXL memory.

I. INTRODUCTION

Compute eXpress Link (CXL) is a promising memory inter-
face technology. Based on the standard PCle serial interface,
CXL attaches memory to the CPU and appears as a CPU-
less NUMA node. The CXL memory can be accessed in a
cache-coherent fashion using load/store instructions. However,
CXL memory introduces longer memory access latency. This
longer latency comes from PCle, CXL memory controller, and
CXL home agent (HA) on the CPU. Figure 1 compares local
NUMA, traditional remote NUMA, and CXL-based memory
expansion in terms of memory latency.

Given the CXL performance, we face a series of questions:
what are the use cases for the CXL memory? What are the
impacts of real CXL memory on application performance? At
the application level, how to use the CXL memory in com-
bination with fast memory components (e.g., using uniform
page-level interleaving vs. data object-level interleaving vs.
memory binding)? This paper aims to discuss those questions,
and explore various paths to use the CXL memory. We study
three genuine CXL memory expansion cards instead of using
memory simulation or emulation.
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Fig. 1. Breakdown of CXL memory access latency.

The CXL memory is a unique “NUMA node”. The CXL
memory appears as a CPU-less NUMA node. In the three
systems we evaluate, the CXL memory appears as a two-
hop-away NUMA node in terms of access latency. Depending
on the memory vendors, the peak bandwidth of the CXL
memory varies a lot, ranging from 9.8% to 80.3% of the
peak bandwidth of local DRAM. Moreover, as we increase the
number of threads accessing the CXL memory, its bandwidth
is quickly saturated due to the limited data transfer rate in
CXL attached memory instead of PCle bus — with saturation
occurring when the number of threads reaches just four. In
contrast, local DRAM (LDRAM) and remote DRAM-based
NUMA nodes (RDRAM) exhibit much better scalability. This
scaling difference between the CXL memory and DRAM
highlights the importance of appropriately distributing memory
accesses between them for high performance. Also, when the
system is under heavy load, we observe that the latencies of
LDRAM and RDRAM are similar to that of the CXL memory
because of the contention on the memory controller (MC) or
data path, which shows the potential of using CXL as LDRAM
or RDRAM for latency-sensitive applications.

Using the CXL memory for large language models
(LLM) faces challenges. LLM can be memory-consuming
and have execution phases sensitive to memory band-
width [27], [46], [54], hence having potentials to benefit from
CXL. We study the cases that use the CPU memory as an
extension to the GPU memory to enable LLM training (using
ZeRO-Offload [54]) and inference (using FlexGen [63]) such
that we can use less GPUs for LLM without the constraint
of GPU memory capacity. This method has to frequently




copy tensors between the GPU and CPU, and offloads certain
computations from the CPU to the GPU to maximize GPU
memory saving or reduce I/O offload. This method (named
tensor offloading in the rest of the paper) has been commonly
studied and deployed in industry.

We find that using tensor offloading based upon the CXL
memory brings limited performance improvement. This is
because the tensor copy between the CXL memory and GPU
memory goes through a longer data path than memory accesses
directly from CPU. Using CXL 1.1 on our platform, this data
path is bottlenecked by the PCle interconnect between CPU
and GPU. As a result, adding CXL cannot show the bandwidth
benefits for tensor offloading. In contrast, the computation
offloaded to the CPU (i.e., the optimizer for LLM training
and the attention computation for LLM inference), which
tends to be bandwidth sensitive, can benefit from the extra
bandwidth of CXL. In addition, the CXL memory increases
memory capacity and allows us to use larger batch sizes for
LLM inference, leading to throughput gains. Our study is
unprecedented, because of its practicality of using real CXL
for GPU-based LLM, different from CPU-based study [68].

CXL can be used to save fast memory without causing
performance loss, and using application semantics to guide
page interleaving for CXL can maximize CXL benefits. Our
work goes beyond the existing work [67], [68] that focuses on
applications exhibiting ms-scale latency (e.g., social network
microservices) or commercial workloads to study the potential
of the CXL memory. We study a spectrum of HPC work-
loads, covering the most common and representative “HPC
dwarfs” [6]. We reveal that some HPC applications (such
as CG and BT [15]) can tolerate the low bandwidth and
high latency of the CXL memory under certain scales (the
performance loss is less than 3.2%, compared with LDRAM),
because of their compute-intensive nature.

In addition, the page interleaving policy, embraced by the
industry (e.g., Micron and AMD [47], Astera Labs [30],
and Samsung [48]) as an application-transparent technique to
integrate CXL with the existing memory components, provides
opportunities to save LDRAM for HPC applications. When
interleaving CXL and RDRAM, we see minor performance
difference from interleaving CXL and LDRAM for some
applications. This is because the CXL memory dominates the
memory performance, and the performance of other memory
components has minor impact on the overall performance.

To maximize the interleaving performance, we introduce
a novel data object-level interleaving policy. Different from
Linux uniform page-level interleaving [67], this policy decides
whether memory pages allocated to a data object should be
interleaved between CXL and DRAM or allocated to LDRAM
first (“LDRAM preferred”). This policy maximizes memory
bandwidth (or minimizes latency) for data objects whose
accesses favor high bandwidth (or low latency). This policy
reduces LDRAM usage by 32% and outperforms the uniform
interleaving policy (Linux default) by 65% on average.

Memory tiering solutions need to be improved. Treating
the CXL memory as a memory tier, existing work [13], [32],

[44], [50], [55], [73] migrates pages between the CXL memory
and fast memories based on page access frequency or recency
(i.e., hotness). Those solutions are seldom studied with the
real CXL memory, and how they interplay with the existing
system (e.g., page interleaving) is largely unknown.

We find that the dynamic page migration in memory tiering
are not integrated well with the static page interleaving,
because of invalidness of NUMA hint faults. Depending on
temporal and spatial distribution of hot pages, the dynamic
page migration can degrade performance compared to no
migration. We also observe that the old-fashioned NUMA first
touch and Tiering-0.8 [73] (the most recent Linux Patch for
AutoNUMA to support memory tiering) is very effective, out-
performing a set of page migration and interleaving solutions.

II. BACKGROUND
A. Compute Express Link

The CXL specification defines three protocols: CXL. io,
CXL.cache, and CXL.mem. There are three types of CXL
devices. The type-3 device is related to our evaluation. Such
a device supports CXL.io and CXL.mem, and is used for
memory bandwidth or capacity expansion in memory tiering.
The CXL specification has been going through three major
versions: 1.1, 2.0, and 3.0. CXL 1.1 focuses on directly-
attached CXL devices, CXL 2.0 incorporates switch-based
pooling, and CXL 3.0 supports switch-less pooling and higher
bandwidth.

Most of the real CXL devices nowadays are host-managed
device memory with host-only coherent (HDM-H) using CXL
1.1. The three devices for our evaluation are among them.

B. CXL Systems for Evaluation

CXL requires compatible hardware in both the CPUs and
peripheral devices. The 4th-generation Intel Xeon Scalable
Processors (such as Sapphire Rapids) and the 4th-generation
AMD EPYC Processors (such as Genoa) are among the first
mainstream server CPUs to support the CXL 1.1. Several CXL
memory devices have been developed as commercial products
by leading hardware manufacturers such as Micron. We use
three CXL devices from three vendors. See Table 1.

The system A in Table I has two sockets (0 and 1), with
a CXL device attached to Socket 1 by CXL link over PCle
5.0. Accessing CXL memory from Socket 0 goes through
HyperTransport interconnect, leading to longer latency than
accessing from Socket 1. From the view of a CPU, there are
three NUMA nodes: local DDR (LDRAM), remote DDR on
the other socket (RDRAM), and CXL memory. The system B
has the same organization as A. The system C has a different
organization: the CXL device is attached to Socket 0 (not 1).

ITII. BASIC PERFORMANCE CHARACTERISTICS

Evaluation methodology. We evaluate memory latency and
bandwidth using Intel Memory Latency Checker (MLC) [22].
MLC disables hardware prefetcher for Intel processors (the
systems B and C), but cannot do so for AMD processors
(the system A). For latency tests, MLC uses typical pointer



TABLE I
THREE SYSTEMS WITH CXL DEVICES.

[ Sys [ Component | Description |

OS (kernel) Ubuntu 22.04 LTS (Linux kernel v6.2.15)
CPUs 2x AMD EPYC 9354 CPUs @3.8 GHz,
32 cores and 512 MB LLC per CPU
A PCle PCIe 5.0, speed 32GT/s, 16 lanes
Memo Socket 0: 12x DDRS5-4800 channels, memory 768GB
Ty Socket 1: 12x DDR5-4800 channels, memory 768GB
max bandwidth 460.8 GB/s per socket
CXL A Single channel DDR5-4800, memory
128 GB, max bandwidth 38.4 GB/s per channel
OS (kernel) Fedora Linux 36 (Linux kernel v6.6.0-rc5)
CPUs 2x Intel(R) Xeon(R) Platinum 8470 CPU @2.0GHz,
52 cores and 210 MB LLC per CPU (Saphire Rapids)
B PCle PCle 5.0, speed 32GT/s, 16 lanes
Memo Socket 0: 8x DDRS5-4800 channels, memory 1TB
Ty Socket 1: 8x DDRS5-4800 channels, memory 1TB
max bandwidth 307.2 GB/s per socket
CXL B Single channel DDR5-8000, memory
64 GB, max bandwidth 64.0 GB/s per channel
OS (kernel) Ubuntu 22.04 (Linux kernel v6.2.15)
CPUs 2x Intel(R) Xeon(R) Gold 6438Y+ @2.0GHz,
32 cores and 60 MB LLC per CPU
c PCIe PClIe 5.0, speed 32GT/s, 16 lanes
Memor Socket 0: 8x DDR5-4800 channels, memory 512GB
Y Socket 1: 8x DDRS5-4800 channels, memory 512GB
max bandwidth 307.2 GB/s per socket
CXL C Dual channel DDR5-6200, memory
128 GB, max bandwidth 48.4 GB/s per channel
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Fig. 2. Load latency with random and sequential accesses to a cache block.

chasing. For each latency test, we repeat the test 5,000 times,
and report the average value after excluding outliers (caused by
operating system services and random TLB misses). For band-
width tests, we use MLC to perform sequential and random
memory accesses. The sequential accesses in combination with
thread-level parallelism introduces parallel memory accesses,
revealing peak memory bandwidth. For each bandwidth test,
we repeat the test 2,000 times, and report the average value.

Latency results. See Figure 2. Compared with LDRAM,
CXL is much slower than one-hop-away NUMA node
(RDRAM). In fact, assuming that adding a hop of NUMA
distance introduces a constant latency in a system, the CXL
memory is comparable to a two-hop-away NUMA node, in
terms of access latency. Figure 2 shows that the CXL memory
from different vendors show quite different latency. For exam-
ple, for sequential accesses, the CXL memory in the system A
adds latency by 153 ns, while the CXL memory in the system
B adds latency by 211 ns, compared to LDRAM. Since the
two systems use the same PCle and DRAM technologies, such
a latency difference mainly comes from the difference in the
CXL controller and HA on the CPU.
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Fig. 3. Bandwidth scaling for data loading. Note that the scales of the figures
for the three systems are different.
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Bandwidth results. Figure 3 shows that bandwidth scaling
of LDRAM, RDRAM, and CXL are different as we change the
number of threads. The CXL memory bandwidth is saturated
as the number of threads is over 8, while the saturation points
for LDRAM and RDRAM are much higher than that in CXL
(e.g., 28 and 20 on the system B), because the bandwidth
of CXL memory is constrained by the bandwidth of a single
DDR channel. The peak CXL memory bandwidth is lower
than that of RDRAM (the CXL memory bandwidth is 17.1%
and 46.4% of the RDRAM bandwidth on the systems A and
B respectively), but can be close to the RDRAM bandwidth
(see the system C).

The difference in bandwidth scaling between LDRAM,
RDRAM, and CXL highlights the importance of distributing
memory accesses between them. For example, in the system
B, to maximize the bandwidth usage, we would assign 6,
23, and 23 threads to access CXL, LDRAM, and RDRAM
respectively, because increasing thread counts beyond these
points does not improve the bandwidth, shown in Figure 3(d).
Using the above thread counts can lead to a peak bandwidth
of 420 GB/s, larger than any other thread assignment.

Performance under load. We study memory latency and
bandwidth under varying load. Figure 4 presents the results of
how latency and bandwidth vary by gradually increasing the
load on memory. For this test, we employ Intel MLC, utilizing
32 threads. In our methodology, each thread performs memory
accesses to cache lines and delays for a time interval between
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Fig. 4. Memory latency and bandwidth under varying load.

two accesses. We vary the time interval from 0 to 80us. This
setup ensures that each worker thread is engaged in repeated,
sequential memory accesses, allowing for a detailed analysis
of how varying load conditions impact memory performance.
When the time interval is O (corresponding to the right side
of each subfigure in Figure 4), the bandwidth is close to the
maximum bandwidth and the latency skyrockets as the queuing
effects in hardware dominate. When the time interval is high
enough (80us, corresponding to the left side of each subfigure
in Figure 4), the latency is close to the raw, unloaded latency.

Basic observation. The latency of accessing LDRAM and
RDRAM can be similar to the CXL memory when reaching
their peak memory bandwidth. For example, in Figure 4(c),
once the bandwidth consumption of LDRAM and RDRAM
approaches the peak (110GB/s for LDRAM and 84GB/s for
RDRAM), their latencies are as high as 543 ns and 600
ns respectively, which are pretty close to the CXL memory
latency (400 ns - 550 ns) when approaching the peak CXL
bandwidth under heavy load. This demonstrates the potential
of using CXL as LDRAM and RDRAM under heavy load.

Takeaway: CXL memory performs as a NUMA node with latency
similar to RDRAM but lower (or comparable) bandwidth. Different
from the traditional NUMA node, the CXL memory is unique in
terms of performance scalability and performance under heavy load.

IV. CXL FOR LARGE LANGUAGE MODELS

LLMs are crucial for powering various Al applications,
but their substantial memory footprint presents deployment
challenges. We study the performance of LLMs with tensor
offloading techniques using the CXL memory, a promising
solution to address the constraint of GPU memory capacity.
Tensor offloading moves tensors out of GPU memory when
they are not in use, allowing for the execution of larger models
that exceed the GPU’s memory capacity. The evaluation is
conducted on the system A, featuring an NVIDIA A10 GPU
with 24GB memory, connected to the host CPU via PCle Gen
4, offering a maximum bandwidth of 32GB/s.

The CXL memory on the system A uses CXL 1.1, which
does not allow the GPU to directly access the CXL memory;
instead, the accesses must go through the CPU. Under CXL
1.1, the data path from the GPU to the CXL memory is “GPU
- PCle - CPU - PCIe - CXL memory”, longer than the direct
“CPU - PCIe - CXL memory” path. The data path in CXL
1.1 is different from the CXL devices peer-to-peer access
supported in CXL 3.1 (using “GPU - PCle - CXL memory”).
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We explore the effects of the CXL 1.1 data path on the data
transfer bandwidth and latency.

Bandwidth results. We measure memory access bandwidth
by repeatedly and randomly copying data blocks between the
GPU memory (labeled as “g”) and CPU memory (labeled
as “c”) using various page allocation strategies. The size of
the data blocks varies from 128 byte to 4GB, illustrated in
Figure 5. We use membind [5] to specify the memory device
as the source or destination for data transfers.

LLM basic observation 1. The memory bandwidth for the
GPU access to the memory hierarchy with CXL is constrained
by the PCle bandwidth between the CPU and GPU, due to the
absence of peer-to-peer access support in CXL 1.1.

Counter-intuitively, using the CXL memory does not in-
crease the memory bandwidth for the GPU. As shown in
Figure 5, the peak memory bandwidth is similar across various
memory interleaving policies (the difference is less than 3%).
This lack of bandwidth increase with the CXL memory is
primarily due to the PCle interconnect between the CPU and
GPU acting as a performance bottleneck.

Latency results. We develop a microbenchmark to mea-
sure the data transfer latency. The microbenchmark runs on
CPU 1 (the CPU close to the CXL memory) and uses
cudaMemcpy () for data transfer. The benchmark repeatedly
transfers a 64-byte data (a cache block) between the CPU and
GPU. The transfer happens 100K times, and we report the
average time for one transfer. We use membind, similar to the
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Fig. 7. Overview of ZeRO-Offload in a training step.

bandwidth tests. Figure 6 shows the results.

LLM basic observation 2. Accessing the CXL memory
from the GPU can result in longer latency than expected.

The difference of data transfer latency between “GPU - CXL
memory” and “GPU - CPU memory” (in Figure 6) is greater
than the latency difference between “CPU - CXL memory” and
“CPU - CPU memory” (in Figure 2). For example, accessing
the CXL memory from the GPU is, on average, 500 ns longer
than accessing the CPU memory from the GPU. In contrast,
accessing the CXL memory from the CPU is only 120 ns
longer than accessing the CPU memory from the CPU. The
longer latency-difference from the GPU side comes from the
longer data-path between the GPU and CXL memory.

We study the implication of using the CXL memory for
LLM training and inference using tensor offloading on System
A, as follows.

A. LLM Training

1) ZeRO-Offload Background: ZeRO-Offload [54] is com-
monly employed in the industry to enable larger LLM training
using smaller GPU memory. To save the GPU memory, ZeRO-
Offload efficiently offloads full-precision model parameters,
gradients, and optimizer states (e.g., momentum and variance)
to the CPU memory, moving them back to GPU memory
when needed. Figure 7 depicts the workflow of ZeRO-Offload.
Specifically, it @ performs forward and @ backward com-
putation on GPU; and @ offloads gradients to the CPU
memory during the backward step. To reduce the overhead
of tensor movement between CPU and GPU (4), ZeRO-
Offload performs optimization computation (e.g., the ADAM
optimizer) on the CPU; and @ moves updated parameters
from the CPU memory to the GPU memory before the next
forward step. This strategy minimizes data movement volume
between the GPU and CPU memory for each training step. As
a result, ZeRO-Offload enables 10x larger model training on
a single GPU with 1.4x higher throughput.

2) Using CXL Memory: We evaluate two LLMs: BERT
[14] and GPT2 [49]. For BERT, we consider three configura-
tions: 110 million (base), 340 million (medium), and 4 billion
(large) parameters. For GPT2, we evaluate models with 4, 6,
and 8 billion parameters. Figure 8 shows the performance
with various interleaving policies and model sizes. We use
the notation “bs=effective batch size @model size” to represent
the batch size and number of model parameters. For a given
model size, the batch size is chosen to be the maximum
without causing an out-of-memory (OOM) error on the GPU.
To better understand the performance, we break it down to the
“optimization step” (i.e., the ADAM optimizer on the CPU,
which is exposed to the critical path) and “data movement”
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Fig. 9. Performance of the optimizer and data movement under various
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(i.e., the gradient transfer from the GPU to the CPU and the
parameter transfer from the CPU to the GPU). The memory
capacities for various interleaving policies (i.e., LDRAM only,
LDRAM+CXL, LDRAM+RDRAM, and “interleave all”’) are
196GB, 324GB, 392GB, and 520GB. Figure 9 shows the
results, including data movement exposed to the critical path.

Evaluation results. LLM training observation 1. Using the
CXL memory brings little performance improvement or even
negative performance impact to ZeRO-Offloading.

See GPT2. Figure 8 shows that the performance differ-
ence between LDRAM+RDRAM, LDRAM+CXL, and “in-
terleave all” is less than 5% for the 4B and 6B models.
For the 8B, LDRAM outperforms ‘interleave all” by 14%,
and LDRAM+RDRAM outperforms LDRAM+CXL by 16%.
There is no performance benefit of using CXL.

Figure 9 reveals three reasons for the above observation.
(1) The data movement takes a rather small portion of the
training time in GPT?2 (less than 5% in all cases). (2) Because
of the bottleneck in the extra PCle, the data movement
does not get benefits from the better bandwidth offered by
interleaving CXL and DDR (the CPU memory). Instead, the
data movement suffers from longer access latency of the




CXL memory. As a result, compared with using LDRAM,
using CXL actually increases data transfer time and has a
minor impact on the training time. (3) The optimizer takes
a larger portion of the training time, compared to the data
movement. The optimizer happens on the CPU and is sensitive
to memory latency. Using CXL increases its execution time
(2%-18%), compared to using LDRAM. When the batch size
is small, the optimizer takes a significant portion of the training
time (e.g., 31% when bs=3@8B). In such cases, optimizer
slowdown substantially decreases overall training throughput.
For example, when bs=3@8B, using “interleave all” performs
worse than LDRAM+RDRAM by 11% due to the worse
performance in the optimizer by 8%. We have the similar
observations for BERT.

We expect that using a larger model (such as GPT-3
with 175 billion parameters), which has larger numbers of
parameters and gradients, would result in data movement
taking a larger portion of training time to transfer parameters
and gradients. Unfortunately, we cannot evaluate such a large
model due to the limited memory capacity on our GPU. In
addition, after reducing the data path between the GPU and
CXL memory, the CXL memory can play a bigger role in
reducing training time. Also, using the interleaving policy
for the optimizer is not good for performance because of
the latency sensitive nature of the optimizer. Using the first
touch or “preferred policy”, the optimizer performance can be
improved.

B. LLM Inference

1) FlexGen Background: LLM inference is memory-
consuming. FlexGen [63] is a cutting-edge framework de-
signed for LLM inference with constrained GPU memory
capacity. To address the memory capacity limitation, FlexGen
offloads model parameters, KV cache, and activations to the
host CPU memory hierarchy (including DRAM and NVMe
SSD). Figure 10 shows the workflow of FlexGen. The LLM
inference consists of two stages: prefill and decode.

During the prefill stage, which happens only once per
inference batch, (1) FlexGen transfers parameters from the
CPU memory hierarchy to the GPU. (2) FlexGen executes
attention and MLP computation layer by layer on the GPU.
@ At the end of each attention layer, the generated KV
cache is offloaded to the CPU memory hierarchy. The decode
stage generates tokens and significantly influences the over-
all throughput of the inference process. To minimize tensor
movement between the GPU and CPU, @ FlexGen conducts
attention computation directly on the CPU. @ FlexGen then
transfers model parameters and activations generated in the at-
tention layer from the CPU to the GPU for MLP computation,
and @ transfers activations generated in the MLP layer to the
CPU for the following computation.

Offloading policy and cost model. FlexGen allows tensors
to be partially placed in the CPU memory hierarchy and uses
a cost model to determine the optimal offloading policy for
maximum inference throughput within a memory capacity
constraint. The cost model considers latency and bandwidth
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Fig. 10. Overview of LLM inference with FlexGen.
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Fig. 11. Comparison LLM inference throughput across memory systems, each
with 324 GB capacity.

differences between NVMe and DRAM but does not differen-
tiate among LDRAM, RDRAM, and CXL memory.

2) Using CXL Memory: Evaluation setup. We evaluate
LLaMA [69] with 65 billion parameters and OPT [93] with
66 billion parameters. The batch sizes for evaluation are
determined by performing a linear programming-based [66]
policy search to maximize inference throughput while respect-
ing memory and hardware constraints. The lengths of the
input prompts and output tokens are standardized at 2,048
and 256, respectively. The evaluation platform has 196 GB
LDRAM, 196 GB RDRAM, 128 GB CXL, and 128 GB
NVMe. Leveraging GRUB mmap and numactl [5], we build
the host memory hierarchy with various capacities and media
types.

Evaluation results. LLM inference observation (LIO) 1.
The performance of the CXL memory is comparable to that
of RDRAM, and surpasses NVMe when applied in LLM
inference with the tensor offloading.

Figure 11 presents the results. Each evaluation uses two
equal-sized memory medias with a total capacity of 324 GB.
According to FlexGen’s tensor offloading policy, only 8% of
the KV cache resides on the GPU, and the remaining KV
cache, weights, and activations reside on the CPU. Figure 11
shows that the inference throughput using LDRAM + CXL
is similar to that of LDRAM + RDRAM, with the difference
being less than 3%. Furthermore, LDRAM + CXL shows an
improvement of 24% for LLaMA and 20% for OPT in overall
throughput, compared to LDRAM + NVMe.

LIO 2. The throughput of prefill and decode stages responds
differently to memory latency and bandwidth.

Figure 11 shows that during the prefill stage, the throughput
difference in the prefill stage across the three interleaving
policies largely reflects the trend of latency difference in
the memory systems. For example, LDRAM + RDRAM
outperforms LDRAM + CXL and LDRAM + NVMe by 20%
and 28% on average, respectively. This is because during the
prefill stage, tensors are loaded from the CPU to the GPU and
such data loading is sensitive to the latency.




TABLE II
LLM INFERENCE CONFIGURATION FOR EVALUATION. “BS” AND “C”
STANDS FOR “BATCH SIZE” AND “KV CACHE”, RESPECTIVELY.
ACCORDING TO OFFLOADING POLICY IN FLEXGEN, ALL WEIGHTS AND
ACTIVATIONS ARE STORED IN CPU MEMORY.

Takeaway: (1) The CXL memory as a memory capacity expander
enables LLMs to train and infer with larger batch sizes, which in
turn improves system throughput. However, when the GPU accesses
the CXL memory, the lack of peer-to-peer access support in CXL
1.1 prevents them from leveraging the extra bandwidth and results
in longer latency due to the extended data path. (2) Computation
offloaded to the CPU can benefit from extra CXL bandwidth.

. ¢ on ¢ on Memory
LLM Memory hierarchy BS GPU | CPU | footprint
LLaMA LDRAM Only (196 GB) 14 20% 80% 200 GB
LLaMA | LDRAM + RDRAM (392 GB) 40 4% 96% 348 GB
LLaMA Interleave all (520 GB) 56 4% 96% 438 GB
OPT LDRAM Only (196 GB) 9 27% 73% 168 GB
OPT LDRAM + RDRAM (392 GB) 40 4% 96% 326 GB
OPT Interleave all (520 GB) 64 4% 96% 448 GB
F LDRAM Only (196 GB) I Interleave LDRAM + CXL (324 GB)
. [ Interleave LDRAM + RDRAM (392 GB) M Interleave all (520 GB)
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Fig. 12. Comparison of LLM inference throughput across various memory
systems with different capacities.

In contrast, during the decode stage, the throughput is
more sensitive to memory bandwidth (see Figure 11). The
decoding throughput using LDRAM + CXL is 27% better than
using LDRAM + NVMe on average. LDRAM + RDRAM
and LDRAM + CXL perform similarly. This is because
in the decode stage, the attention computation happens on
the CPU, leading to intensive data access and sensitive to
large bandwidth difference between CXL and NVMe (but not
relatively small difference between CXL and RDRAM).

LIO 3. CXL increases the capacity of the memory system,
thereby enhancing the throughput of LLM inference due to
larger batch size.

Figure 12 illustrates the inference throughput with various
capacities of the CPU memory. Table II summarizes the
offloading policy search results with those capacities. The
LLM batch size scales up with the increased memory system
capacity. Specifically, with LDRAM + CXL, LDRAM +
RDRAM, and LDRAM + RDRAM + CXL, the batch size
increases by 1.14x, 1.85x, and 3x for LLaMA, and 2.11x,
3.44x and 6.11x for OPT, respectively, compared to the case
of utilizing LDRAM only. The overall throughput increases
by 28%, 81% and 86% on average respectively, compared to
LDRAM only.

We further decompose performance into prefill and decode.
During the prefill stage, the inference throughput is dominated
by the latency of GPU accessing the CPU memory hierarchy,
hence LDRAM only outperforms LDRAM + CXL, LDRAM
+ RDRAM, and LDRAM + RDRAM + CXL by 50%, 41%,
and 9% on average, respectively. However, during the decode
stage, as the batch size increases, the inference throughput
improves by 42%, 114%, and 109% on average for LDRAM
+ CXL, LDRAM + RDRAM, and LDRAM + RDRAM + CXL
respectively, compared with LDRAM only.

V. HPC WORKLOADS

We analyze HPC workload performance, focusing on seven
workloads from NPB [15] and XSBench benchmark [70],
which require processing a large working memory set using
multiple threads, are summarized in Table III. They col-
lectively cover the most common and representative HPC
applications [6]. We use various memory allocation policies,
including preferred and interleaving. The preferred policy for
a specific memory node indicates that the memory is allocated
in that memory node first; when that memory node runs out of
space, the page allocation goes to another memory node closet
to the CPU according to the NUMA distance. The interleaving
policy indicates that pages are allocated among memory nodes
in a round robin fashion. We present evaluation results on the
system A, because we have limited accesses to B and C.

A. Evaluation Results

We have the following observations unseen in the existing
CXL evaluation [67], [68].

HPC observation 1. When the interleaving involves the
CXL memory, we can save LDRAM by using RDRAM.

Figure 13 shows the results with various interleaving
policies, and the benchmarks run on CPU 0. We can
see that the performance difference between the interleav-
ing RDRAM+CXL and interleaving LDRAM+CXL is less
than 9.2% for all benchmark. In general, we can save
LDRAM while achieving similar performance by interleaving
RDRAM+CXL instead of interleaving LDRAM+CXL.

The above results are because of large performance gap
between the CXL memory and DDR (e.g., 2.1x and 1.2x
longer in memory access latency, compared to LDRAM and
RDRAM respectively.): because of data dependency and lim-
ited hardware resources (e.g., Miss Status Handling Registers
(MSHR) and the queues in MC), the performance is highly
impacted by the slow CXL memory and irrelevant whether
the LDRAM or RDRAM is utilized.

HPC observation 2. Bandwidth-sensitive and latency-sensi
-tive applications respond differently to the bandwidth increase
offered by CXL.

Figure 14 shows the results for MG (bandwidth-sensitive)
and CG (latency-sensitive). For MG, we see that when the
number of threads increases from 4 to 32, the performance of
“interleave all” (i.e., interleaving between LDRAM, RDRAM
and CXL, which achieves the highest bandwidth) is consis-
tently better than that of CXL preferred by 10%-85%. Also,
for CG, the performance of “interleave all” performs worse
than that of CXL preferred by up to 1.6x, because using
CXL preferred, consecutive memory accesses tend to fall into




TABLE III
HPC WORKLOADS FOR EVALUATION. “BW” STANDS FOR “BANDWIDTH”.

Type Workload Characterization Input Problem | Mem. footprint BW-hungry Objects
BT Dense linear algebra Unit-strided memory accesses from dense matrices Class E 166 GB u(39.6G), rsh(39.6G), forcing(39.6G)
LU Sparse linear algebra Indexed loads and stores from compressed matrices Class E 134 GB u(39.6G), rsd(39.6G)
CG Sparse linear algebra Irregular memory accesses based on indirect indexing Class E 134 GB a(48.9G)
MG Structured grids Dynamic updates based on subdivided regular grids Class E 210 GB v(64.2G), 1(73.4G)
Sp Structured grids Intense floating-point computations for linear equations Class E 174 GB u(39.6G), rsh(39.6G), forcing(39.6G)
FT Spectral method Bandwidth-consuming matrix transpose Class D 80 GB u0(32.0G), ul(32.0G)

XSBench Monte Carlo Computation based on repeated random trials Extra large 116 GB nuclide_grids

I LDRAM Only
BT

[ RDRAM Only 3 CXL Preferred

I Interleave LDRAM+RDRAM

[ Interleave LDRAM+CXL [ Interleave RDRAM+CXL

sp FT

Il Interleave all
XSBench

6000

4000

better
Execution Time (Sec)

W cG MG
1500 1500 1500 800 L
1000 1000 1000 600 7o
400 500
2000 500 500 500 200 S50l
0 0 0 0 0 0

400
1000
300
200

100

0

Number of Threads: 32

Fig. 13. The performance of various interleaving policies for HPC applications.
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Fig. 14. The scalability study for CG and MG. The performance is normalized
by that of using LDRAM only.

the same memory node, which is favored by CG for high
performance (see more discussions for HPC observation 3).

HPC observation 3. The CXL memory can show unex-
pected high performance for the latency-sensitive applications
with random memory accesses.

The CG results in Figures 13 and 14 support the above
observation. CG is a latency-sensitive application because of
its indirect indexing-based memory accesses. In Figure 14,
CXL preferred performs better than using RDRAM-only by
10.9%-57.2% when the number of threads is 4-20. This seems
to be counter-intuitive, because the CXL memory has higher
latency than RDRAM. This superior performance comes from
the optimization in the CXL device or customized caching
policy in the processor for expensive, CPU-less memory
accesses [67], and this optimization is especially effective for
CG-style workloads. When the number of threads is larger
than 20, the CXL memory accesses become more intensive,
and CXL inferior performance becomes more obvious.

In Figure 13, we also observe that CXL preferred out-
performs any other CXL-related interleaving policies in CG,
despite other polices provide higher bandwidth and shorter av-
erage access-latency. This indicates that for a latency-sensitive
workload with a random, scattered memory accesses, gathering
accesses in one memory node instead of spreading to multiple

memory nodes benefits performance because of reduction of
row buffer misses in memory devices.

B. Object-Level Interleaving

Instead of generally interleaving pages across the entire ap-
plication (named uniform interleaving), we propose a method
to interleave pages at the data object level. This enables
fine-grained control over how pages are interleaved. Since
different data objects have different access patterns, using the
fine-grained control allows the bandwidth-sensitive object to
be accessed with high bandwidth, while the latency-sensitive
object is allocated locally for high performance.

Interleaving method. To implement object-level
interleaving, we employ numa_alloc_interleaved
_subset () [5] in Linux, which allows for the allocation
of a data object in an interleaved manner among specific
NUMA nodes. We use two criteria to select data objects to
use the interleaving policy.

o The object must have a large memory footprint, which
means taking at least 10% of total memory consumption.

« Memory accesses to the object must be intensive; among
the data objects that meet the first criterion, we select
data objects with the largest number of memory accesses.
Multiple data objects may be selected.

With high thread-level parallelism, memory accesses to the
above data objects are more sensitive to memory bandwidth.
Besides the above data objects, the memory allocation for
other objects uses the “preferred” policy. The last column
in Table III summarizes those bandwidth-hungry data objects
selected for interleaving.

We evaluate the effectiveness of our object-level interleaving
using the following approach. In each test, we run the work-
load on CPU 0 using both LDRAM (memory node 0) and
CXL memory. LDRAM is limited to either 64GB or 128GB
by using GRUB mmap, and the memory consumption of all
applications exceeding 64GB, which allows us to assess the
cases with both sufficient and insufficient LDRAM. The CXL
memory is consistently 128GB. We make the following object-
level interleaving observations (abbreviated as OLI observa-
tions).
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OLI observation 1. When the local DRAM is sufficient
(with 128 GB), the object-level interleaving performance is
similar to that with LDRAM preferred, and consistently out-
performs the uniform interleaving in all scenarios.

Figure 15(a) shows that OLI performance is 65% better
than the uniform interleaving on average, demonstrating the
effectiveness of OLI to meet the diverse requirements of
latency-sensitive and bandwidth-sensitive objects. Addition-
ally, we observe that by using OLI, we can effectively reduce
the fast memory size by an average of 32% (and up to
40% for FT), while still achieving similar performance as
LDRAM preferred. The performance difference between OLI
and LDRAM preferred is less than 1% on average for all HPC
workloads, except XSBench, when LDRAM is sufficient.

OLI observation 2. When the local DRAM is insufficient
(64 GB), the OLI outperforms any other cases.

Figure 15(b) shows that on average, OLI performs 1.42x
better than LDRAM preferred (and up to 2.35x for BT). It
also outperforms the uniform interleaving by 1.32x on average
(and up to 1.84x for LU). See the following reasons. (1) The
performance of LDRAM preferred is highly related to when
the data objects are allocated. If LDRAM is full, latency-
sensitive objects might end up in the slower CXL memory. (2)
The bandwidth-sensitive data objects do not have opportunities
to be allocated on both LDRAM and CXL for high bandwidth.

In XSBench, LDRAM preferred performs better than both
the uniform and object-level interleaving. This is because most
of the memory accesses in XSBench are concentrated in a
small, latency-sensitive memory set.

Takeaway: The CXL memory offers additional bandwidth, but
HPC workloads may not benefit from it directly. The uniform
interleaving can undermine performance, while the data object-level
interleaving delivers performance comparable to or better than the
default LDRAM-centric page allocation while saving fast memory
size.

VI. MEMORY TIERING BASED ON PAGE MIGRATION

Memory tiering is an application-transparent solution to
integrate the CXL memory into the existing memory systems.

Treating the CXL memory as a memory tier, existing memory

tiering solutions [13], [32], [44], [50], [55], [73] rely on

memory profiling to count memory accesses at the page level.

Then, those solutions move frequently accessed (hot) pages to

the fast memory tier, and demote less frequently access (cold)

pages to the slow memory tier. In contrast to the interleaving
studied in Sections IV- V, which are static page placement
solutions, the memory tiering solutions are dynamic.

We use the system A. We limit the capacity of the fast
memory (i.e., LDRAM), while the capacity of the slow mem-
ory (i.e., CXL) remains the same.

We evaluate three state-of-the-art memory tiering solutions
as follows. We also evaluate No Balance (between NUMA
nodes) representing the static page placement without mi-
gration. Our study is featured with analyzing the interplay
between page migration and interleaving.

e AutoNUMA [13] is the default NUMA-balancing policy in
Linux. AutoNUMA counts memory accesses by manipu-
lating an access bit in PTE. When a page is accessed, a
NUMA hint fault is triggered. By tracking these faults,
AutoNUMA determines the origin of memory accesses
and relocates pages to minimize their distance from the
computing processes. AuUtoNUMA is enabled by setting
numa_balancing to 1 in /proc/sys/kernel.

e Tiering—0.8 [73] is a recent Linux patch which uses
the similar hint fault-based profiling as Aut oNUMA. Unlike
AutoNUMA, it considers the recency of page accesses based
on the re-fault interval to identify hot pages. Additionally,
Tiering-0.8 dynamically adjusts the page promotion criteria
to throttle migration traffic and save memory bandwidth.
Tiering-0.8 is enabled by setting numa_balancing to 2.

o TPP [44] uses hint faults to determine page migration. Upon
encountering hint faults, TPP decides to promote a page
based on its presence on the LRU list in Linux.

A. Page Migration with Uniform interleaving

Evaluation setup. To study the impact of page migra-
tion, we evaluate four memory-intensive applications, includ-
ing BTree [2], an in-memory index lookup; PageRank [7]
and Graph500 [45], both graph processing applications; and
Silo [71], an in-memory database engine. We run them with
64 threads. We configure the memory consumption of each
application to be around 130GB. This configuration ensures
a fair comparison between static page placement solutions
(i.e., the NUMA first touch and interleaving): LDRAM (.e.,
50GB) is set to less than half of each application’s memory
consumption, hence both solutions can fully utilize LDRAM.

Metrics. We collect the execution time and page migration
statistics, including the number of hint faults and migrated
pages. Such statistics is collected by periodically reading
the Linux counters from /proc/vmstat. Those counters
capture page accesses from the entire system, but primarily
influenced by page migrations because of the application.

Evaluation results. Page migration observation (PMO) 1.
Different applications perform differently with different page
migration and static page placement solutions. No single
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TABLE IV
COMPARISON OF PERFORMANCE STUDIES ON GENUINE CXL
Paper HPC Study LLM Study Memory Tiering . Performance Optimization
Training Inference Solutions Identify
Evaluated Limitations
MICRO23 [67] No N/A N/A TPP N/A BW-aware page allocation
EuroSys24 [68] No N/A CPU-based AutoNUMA N/A N/A
SupMario [41] Yes N/A CPU-based TPP Yes Predictive interleaving &
regulated migration
This work Yes GPU-based GPU-based TPP, AutoNUMA, Tiering-0.8 Yes Object-level interleaving

solution can get the best performance for all applications. The
effectiveness of a solution to an application depends on the
distribution of hot pages in the working set (e.g., scattered or
concentrated), and variance and size of the hot page set.

Figure 16 shows execution time. We observe that BTree is
not sensitive to any solution (the performance variance is less
than 3%), because of its irregular memory access patterns.
PageRank achieves the best performance with the first touch
without page migration, which is 88% better than any page
migration solution plus interleaving, because PageRank has a
small and stable set of hot pages. Graph500 achieves the best
performance with Tiering-0.8 plus interleaving, outperforming
other solutions by up to 33%, because Graph500’s hot pages
are scattered across memory tiers, and interleaving is helpful
for improving data locality. Silo achieves the best performance
with Tiering-0.8 plus the first touch, outperforming other
solutions by up to 20%. Silo implements a B-tree-like data
structure gathering hot data into fewer pages, making the first
touch more effective than interleaving.

PMO 2. When using first touch, Tiering-0.8 outperforms
TPP and AutoNUMA, because of its smaller profiling over-
head and dynamic adjustment of the page promotion threshold.

Figure 16 illustrates that using the first touch, Tiering-0.8
outperforms NO Balance, AutoNUMA, and TPP by 7%,
3%, and 31%. We quantify page hints faults caused by differ-
ent memory tiering strategies and observe that Tiering-0.8 has
59 x fewer hint faults. Memory profiling in TPP incurs a large
overhead, and the reduced number of hint faults in tiering-
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0.8 contributes to performance improvement. Compared to
AutoNUMA, Tiering-0.8 has a comparable number of hint
faults but exhibits large variance in the number of migrated
pages. For example, in PageRank, Tiering-0.8 results in 7.6
million more migrations. This variance is due to adaptiveness
of page promotion threshold in Tiering-0.8.

PMO 3. The page migration based on hint faults is not
integrated well with the uniform interleaving.

We observe that using page migration plus the application
level interleaving, the number of hint faults is 72,721 X
less than that of page migration plus the first touch on
average. Our investigation reveals that when the application-
level interleaving is employed, the application’s pages are
placed in unmigratable regions, preventing the pages to trigger
hint faults. Hence, page migration cannot be effective.

B. Page Migration with Object-Level Interleaving

Evaluation setup. To enable fair comparison between the
uniform and object-level interleaving, the capacity of LDRAM
is set to 40GB for FT, 100GB for MG, and 50GB for others,
such that all static page placement solutions can fully utilize
LDRAM for each application. The CXL memory does not
have a capacity constraint, because it is the slowest memory
tier. We use 32 threads on the socket 1.

Evaluation results. PMO 4. Using the page migration plus
the object-level interleaving results in minor performance
improvement on HPC workloads, compared to the object-level
interleaving without page migration.



Figure 17 shows that without page migration, the object-
level interleaving outperforms the first-touch and uniform
interleaving by up to 45%. However, page migration negatively
impacts effectiveness of the object-level interleaving: when
using AutoNUMA, Tiering-0.8, and TPP, the performance
degrades by 46%, 88%, and 63% on average, compared
to using the object-level interleaving without page migra-
tion. This occurs because the object-level interleaving utilizes
the additional CXL bandwidth for bandwidth-hungry objects.
However, the page migration undermines this benefit.

PMO 5. The page migration can improve performance for
some applications but lose performance for others.

Figure 17 shows that different HPC workloads exhibit
different preferences for page migration. For example, the page
migration degrades performance for FT, SP and XSBench, and
yields almost no performance difference in MG, regardless of
using the interleaving or first touch, because these workloads
have uniformly accessed working set or highly skewed and
scattered hot memory region, which make hotness detection
challenging. In contrast, the page migration improves BT and
LU performance by up to 51% and 20%, respectively, since
hot pages in BT and LU have good locality to be detected.

Takeaway: (1) There is significant potential to improve the per-
formance of page migration in the memory tiering solutions. (2)
Dynamic page migration and static page interleaving are not well-
integrated. (3) Dynamic page migration may degrade performance;
a better static page placement strategy without page migration, such
as object-level interleaving, can lead to better performance.

VII. RELATED WORK

CXL. In 2019, Intel introduced Compute Express Link
(CXL [61], [72]), an open industry-standard interconnect be-
tween processors and devices such as accelerators, memory
buffers, and smart network interfaces. Since its introduction,
the CXL has garnered significant attention and investment
from both researchers and industry practitioners [4], [11], [18],
[23], [33]-[36], [44], [60], [62], [64], [65], [67], [74], [85],
[88], [92]. For example, Google has explored the potential of
CXL memory in memory tiering and swapping in its cloud
computing infrastructure [34], while Microsoft has developed
CXL-based memory pools for public cloud platforms [8], [35],
and Meta has designed the CXL-based tiered memory system
in hyperscale datacenters [44].

Emulation-based CXL study. Most of the explorations of
using the CXL memory from both industry and academics
leverage NUMA servers to emulate CXL memory perfor-
mance [18], [23], [79], [88], [91]. For example, Yang et al. [88]
overcome the memory wall with emulated CXL-enabled SSDs,
Jang et al. [23] apply emulated CXL memory to the billion-
scale approximate nearest neighbor search using a software-
hardware co-design solution.

Performance study on genuine CXL. Recent studies
analyzed the performance of actual CXL hardware [41], [67],
[68]. Sun et al. [67] represent the first comprehensive effort to
analyze CXL memory performance using genuine CXL-ready
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systems and devices. Nonetheless, a wide range of applications
from some fields (such as HPC, Al inference and training)
are still not extensively studied. Tang et al. [68] investigate
the CXL performance in various datacenter scenarios and
propose an Abstract Cost Model to estimate the cost-benefit
of using CXL memory. However, their work does not address
the limitations of existing memory tiering solutions. Liu et
al. [41] analyze the root causes of CXL latency’s impact
on system performance. They further propose a performance
model designed to predict CXL-induced slowdowns, guide
the uniform interleaving ratio, and regulate page migration
throttling in memory tiering. Nonetheless, their performance
evaluation is restricted to CPU-centric scenarios. Our work
differs in multiple perspectives, as shown in Table IV: (1)
workload diversity, covering both LLMs and HPC; (2) practi-
cality of the evaluation platform, which utilizes GPUs instead
of CPUs for LLM; (3) deep insights into memory tiering;
and (4) performance optimization techniques, such as object-
level interleaving (Sec. VI-B) and thread assignments based
on bandwidth scaling (Sec. III).

Tiered memory systems. Different memory compo-
nents [1], [9], [10], [16], [19], [61], [72], [77], [83] can show
different memory latency, bandwidth, capacity, and monetary
cost. Using multiple memory components, tiered memory
systems can save cost and improve memory capacity [3],
[12], [28], [31], [56], [58], [87]. Using the CXL memory,
it is natural to build a tiered memory where local DDR is
the fast tier and the CXL memory is a slow tier. Many
solutions [17], [20], [21], [24], [25], [29], [37]-[40], [42],
[43], [501-[53], [551, [571, [75], [76], [78], [80]-[82], [84],
[86], [89], [90] have been proposed to explore and leverage the
tiered memory systems to improve application performance.
However, the performance of those solutions on CXL-ready
systems (especially their interplay with page interleaving) is
not clear [26], [59], [64].

VIII. CONCLUSIONS

In this paper, we characterize the performance of the real
CXL memory and explore its use cases. We explore the use of
CXL for LLM training and inference, study the performance
of the CXL memory with a spectrum of HPC applications,
and investigate how application-transparent solutions (page
interleaving and memory tiering) perform with the real CXL.
We also create a data object-level interleaving method that
switches between the interleaving and NUMA node-preferred
polices at the data object level, and demonstrate its superior
performance. We hope that our study can shed some lights
on how the future HPC systems can leverage CXL memory
expansion.
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