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Abstract—Traffic Sign Recognition (TSR) is crucial for safe
and correct driving automation. Recent works revealed a gen-
eral vulnerability of TSR models to physical-world adversarial
attacks, which can be low-cost, highly deployable, and capable of
causing severe attack effects such as hiding a critical traffic sign
or spoofing a fake one. However, so far existing works generally
only considered evaluating the attack effects on academic TSR
models, leaving the impacts of such attacks on real-world com-
mercial TSR systems largely unclear. In this paper, we conduct
the first large-scale measurement of physical-world adversarial
attacks against commercial TSR systems. Our testing results
reveal that it is possible for existing attack works from academia
to have highly reliable (100%) attack success against certain
commercial TSR system functionality, but such attack capabilities
are not generalizable, leading to much lower-than-expected attack
success rates overall. We find that one potential major factor is
a spatial memorization design that commonly exists in today’s
commercial TSR systems. We design new attack success metrics
that can mathematically model the impacts of such design on the
TSR system-level attack success, and use them to revisit existing
attacks. Through these efforts, we uncover 7 novel observations,
some of which directly challenge the observations or claims in
prior works due to the introduction of the new metrics.

I. INTRODUCTION

In the rapidly evolving landscape of Autonomous Driving
(AD) technology, AD vehicles, such as the millions of Tesla
cars [1] running on the public road, are becoming an integral
part of our daily lives. Compliance with traffic signs is essen-
tial for all vehicles, no matter if they are high-autonomy AD
vehicles (e.g., those for robo-taxi [2]), semi-autonomous AD
vehicles (e.g., those with Tesla Autopilot [3]), or conventional
human-driven vehicles. Failure to obey these rules can lead to
accidents, posing a threat to human life.

Due to the importance of traffic sign detection, a natural
question is whether AD vehicles are truly as secure as we
hope. To answer this critical question, recent research in
security analysis of Traffic Sign Recognition (TSR) systems
has highlighted vulnerabilities to a wide range of physical

adversarial attacks that can significantly impair the traffic sign
detection accuracy [4]–[13]. Among them, the most repre-
sentative and also the most widely-exploited attack vectors
are physical patches or posters [4]–[7], [9]–[11], which are
low-cost, highly deployable, and demonstrated capable of
causing various highly severe attack effects. For instance,
they can make critical legitimate traffic signs undetectable,
or hiding attacks, and trigger false detection at any attacker-
chosen positions, or appearing attacks. Such attacks can cause
various potential safety hazards such as traffic sign violations,
unexpected emergency braking, speeding, etc. Due to such
a high potential for practical impacts, these physical-world
adversarial attacks on TSR have drawn wide attention across
not only the technology community [14]–[18] but also the
general public [19]–[23].

Despite such high practical impact potentials, so far existing
works generally only considered evaluating the attack effects
on academic TSR models, leaving the impacts of these attacks
on real-world commercial TSR systems largely unclear. A
few recent works tried to understand such commercial TSR
system-level impacts, but their evaluation is all limited to one
particular vehicle model [7], [11], sometimes even an unknown
one [7], making both the generalizability and representative-
ness of these evaluation results questionable. This thus raises
a critical research question: Can any of the existing physical-
world TSR adversarial attacks achieve a general impact on
commercial TSR systems today?

To answer this critical research question, in this paper, we
perform the first large-scale measurement of physical-world
adversarial attacks against commercial TSR systems. In this
measurement, we focus on hiding attacks as they can most
directly impair the function of a commercial TSR product
(i.e., by nullifying the TSR function), and test their black-box
transfer attack effectiveness against commercial TSR systems,
which is the most practical threat model against commercial
systems and also the exact setup used by prior works to claim
their attack effects on commercial systems [7], [11]. In total,
we were able to include four different commercial vehicle
models in this testing, all of which are from the top 15 best-
selling vehicle brands in the US to ensure high representative-
ness (§II-A). As estimated later in §III-B, this setup can be
generalizable to at least 33.2% of the commercial TSR systems
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sold in the U.S. in 2023, which is significantly improved over
prior works (at most 3.8% or unknown). We tested all prior
works that demonstrated black-box attack transferability in the
physical world, which are presumably those having the highest
potential to successfully attack commercial systems.

Our testing results reveal that it is actually possible for
existing attack works from academia to have a highly-reliable
100% attack success rate against certain commercial TSR
system functionality, which is much higher than expected if
compared to the transfer attack success rates reported by the
corresponding original papers (e.g., for one such case the
reported was <20%). Meanwhile, we do not see generaliz-
ability of such attack capabilities over different commercial
vehicle models and sign types. Over the entire 30 attack test
combinations of different sign types, attack methods, surrogate
models, and vehicle models, the vast majority (28/30) do not
show any successful attack effects, leading to a 6.67% overall
transfer attack success rate against commercial TSR systems,
which is almost a magnitude lower than those reported in the
original papers (51.6% on average).

The much lower-than-expected black-box transfer attack
success rate on commercial systems suggests the potential
existence of deeper challenges for such attacks to take effect at
the TSR system level. Through our investigations, we find that
one major factor might be an unexpected spatial memorization
design that commonly exists in commercial TSR systems
today. Specifically, this design exhibits an effect that once a
sign is detected, both the detected sign type and the detected
location are persistently memorized until the sign’s reaction
task is finished. Different from methods like object tracking
that can only temporally memorize a detection result for a
very short time (typically < 3 sec), the spatial memorization
we observed will only forget/clear a detection result after the
sign’s reaction need in the spatial domain is met (e.g., when
the vehicle passes the detected sign), regardless of time.

Such a spatial memorization design can significantly impact
the success of existing adversarial attacks at the TSR system
level. For example, for hiding attacks, to achieve a system-
level success in which the TSR system is unable to show the
sign display at the sign’s reaction task period, the attack has to
be continuously successful at all possible detection moments
that can trigger such memorization before the vehicle passes
the sign. For appearing attacks, such an impact on the TSR
system-level attack success is the opposite: as long as the
attack can succeed in any of such detection moments, the TSR
system-level attack effect can be achieved.

Since such a spatial memorization design commonly exist-
ing in commercial TSR systems today may create a significant
discrepancy between the TSR model-level attack effect and
that at the TSR system level, we further mathematically model
its impact on the TSR system-level attack success for both
hiding and appearing attacks, which results in new attack
success metric designs that can systematically consider the
spatial memorization effect. Through both theoretical proof
and numerical analysis using these new metric designs, we
find that due to spatial memorization, hiding attacks are

theoretically harder (if not equally hard) than appearing attacks
in achieving TSR system-level attack success. Such an attack
hardness gap can be huge (⩾93.8% absolute differences in
attack success rate values). Meanwhile, due to the lack of
consideration of spatial memorization, existing TSR model-
level attack success metrics can be highly misleading in
judging the TSR system-level attack success, with a potential
of having ∼50% absolute attack success rate value differences.

Due to such potential huge differences in judging the TSR
system-level attack success, we then use the new attack success
metrics to revisit the evaluations, designs, and capabilities
of existing attacks in this problem space. These efforts lead
to various new findings compared to existing knowledge in
this problem space, some of which directly challenge the
observations or claims in prior works due to the introduction
of the new attack success metrics. For example, we find that
while some prior works in this problem space can be claimed
as effective using prior success metrics (e.g., with ∼50% to
90% success rates), when spatial memorization is considered,
their success rates can drop significantly to ⩽6.6% even in
white-box attack settings, making it no longer approximate to
claim them as effective at the TSR system level. As another
example, also due to spatial memorization, we find that the
benefits of certain prior attack designs can be seemingly high
(e.g., >20% attack success rate increase) using prior metrics,
but are actually nearly negligible (e.g., only 1% increase) at the
TSR system level after spatial memorization is considered. The
code and data will be made available at our website: https:
//sites.google.com/view/av-ioat-sec/commercial-tsr-test.

To sum up, this paper makes the following contributions:
• First large-scale commercial system measurements: We

conduct the first large-scale measurement of physical-
world adversarial attacks against commercial TSR sys-
tems. Our testing results reveal that although it is
possible for existing attack works from academia to have
highly reliable (100%) attack success against certain
commercial TSR system functionality, such black-box
commercial system attack capabilities are not general-
izable, leading to a much lower-than-expected overall
black-box transfer attack success rates.

• Discovery and analysis of spatial memorization: We
discover a spatial memorization design that commonly
exists in today’s commercial TSR systems, which can
keep memorizing a sign detection result until the sign’s
reaction need in the spatial domain is met (e.g., when
the vehicle passes the detected sign’s position). This
discovery is crucial as it is shown to be capable of
creating a significant discrepancy between the TSR
model-level attack effect and that at TSR system level.

• New attack success metric designs: We mathematically
model the impact of this design on the TSR system-level
attack success for both hiding and appearing attacks,
resulting in new attack success metric designs that can
systematically consider the spatial memorization effect.
We then use them to revisit the evaluations, designs, and
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TABLE I: Top 15 leading car brands in the United States
based on vehicle sales in 2023 [24]. The ones with direct
evidence of equipping front windshield cameras for TSR
systems from their official websites or vehicle manuals are
marked with check-marks. The vehicle models from 4 out of
the 5 highlighted brands below (with bold and underline) are
tested in our study (we choose to not directly reveal which
four for anonymity purpose).

Car brand Sales number TSR

Ford 1,904,038 ✓

Toyota 1,888,941 ✓

Chevrolet 1,702,700

Honda 1,156,591 ✓

Nissan 834,091 ✓

Hyundai 796,506 ✓

Kia 782,468 ✓

Jeep 641,166 ✓

Subaru 632,083

GMC 563,692 ✓

Ram 539,477 ✓

Tesla 498,000 ✓

Mazda 365,044 ✓

BMW 361,654 ✓

Volkswagen 329,025 ✓

capabilities of existing attacks in this problem space.
• New observations: Through the commercial TSR system

measurements, new metric designs and analysis, and the
revisiting of existing attacks, we uncover a total of 7
novel observations compared to existing knowledge in
this problem space, some of which directly challenge
the observations or claims in prior works due to the
introduction of the new attack success metrics.

II. BACKGROUND AND RELATED WORK

In the section, we introduce the background for Traffic Sign
Recognition (TSR) systems, physical-world adversarial attacks
against TSR system, security of autonomous driving (AD)
systems, and the threat model for this study.

A. Traffic Sign Recognition (TSR) System

As a key component of Advanced Driver Assistance Sys-
tems (ADAS), Traffic Sign Recognition (TSR) system is
defined as a system that employs camera sensors to detect
road signs, including but not limited to speed limit and STOP
signs [25]–[27]. Today, this technology is highly prevalent
across various vehicle brands to enhance both safety and

driving comfort. Table I shows the top 15 leading car brands
in the United States based on vehicle sales in 2023 [24]. We
surveyed their official websites and vehicle manuals, and were
able to find direct evidence of equipping front windshield
cameras for TSR for at least 13 out of these 15 brands.

Recent advancements in Deep Neural Networks (DNNs)
have propelled significant progress in various domains, in-
cluding TSR systems, which now increasingly rely on DNN-
based methodologies for real-time object detection [5], [7],
[28], [29]. These systems process camera sensor data through
DNN-based object detectors to identify road signs efficiently.
Current state-of-the-art object detection models are categorized
into two primary types: one-stage and two-stage detectors [30].
One-stage detectors, such as YOLO [31], are celebrated for
their rapid detection capabilities. Conversely, two-stage detec-
tors, exemplified by Faster R-CNN [32], are noted for their
exceptional accuracy. Prior research [5], [6], [28] focusing on
the security aspects of TSR systems has examined models
from both categories for evaluation comprehensiveness. In
line with these research, our analysis also encompasses object
detectors from both categories, aiming to provide a compre-
hensive assessment of TSR systems security.

B. Physical-World Adversarial Attacks against TSR

DNN models today are shown to be generally vulnerable
to adversarial examples (or adversarial attacks) [33]–[40].
Such vulnerabilities are especially extensively studied and
demonstrated in the vision domain [6], [33]–[39], [41]–[45].
Due to the increasing real-world penetration of TSR systems
and their fundamental reliance on the camera inputs, TSR
models soon became a natural target of adversarial attack
research, including many that were able to achieve particularly
high realism with successfully demonstrated attack effect in
the physical world [4]–[6], [8]–[13], [28], [46]–[48].

Among them, the most representative and also the most
widely-exploited attack vectors are physical patches/posters,
e.g., by physically printing attack patterns on sticker patches
and attaching them to the legitimate traffic sign surface [5],
[6], [9], [49], or on whole-sign posters that replace or spoof the
entire traffic sign surface [4], [5], [7], [9], [11]. These attacks
are low-cost, highly deployable, and demonstrated capable of
causing various severe attack effects, most notably (1) making
critical legitimate traffic signs undetectable, most representa-
tively hiding attack, or HA [5]–[7], [9]; and (2) triggering false
detection at any attacker-chosen positions, most representa-
tively appearing attack, or AA [5], [7], [9], [11]. For drivers
who are relying on such a driver assistance function, or higher-
autonomy AD systems that try to automatically react to real-
time TSR results (e.g., in Tesla [50]), such attacks, especially
the hiding ones, can directly impair the TSR function and
cause various potential safety hazards such as traffic-sign rule
violations, unexpected emergency braking, speeding, etc. Due
to such a high potential for practical impacts, these physical-
world adversarial attacks on TSR have drawn wide attention
in not only the technology community [14]–[18] but also the
general public [19]–[23].
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TABLE II: Existing works with successfully demonstrated
traffic sign hiding or appearing attack effects in the physical
world using sticker patches or whole-sign posters. HA: Hiding
Attack. AA: Appearing Attack. As shown, the commercial
system testing aspect is currently under-studied. Highlighted
in gray rows are the works that have demonstrated black-box
attack transferability in the physical world and thus have the
highest potential to successfully attack commercial systems,
which are thus the targets of our study later in §III and §IV.

Existing Demonstrated Commercial
works Year HA AA transferability? system testing?

AEFD [4] 2017 ✓ No None
RP2 [9] 2018 ✓ ✓ Yes None
SIB [5] 2019 ✓ ✓ Yes None

1 unknownFTE [7] 2022 ✓ ✓ Yes vehicle model
SysAdv [6] 2023 ✓ No None

DM [11] 2024 ✓ Yes 1 Tesla model

Despite such a high practical impact potential, so far these
works generally only considered evaluating the attack effects
on academic TSR models, leaving the impacts of these at-
tacks on real-world commercial TSR systems largely unclear.
Table II summarizes all the prior works so far that were able
to successfully demonstrate using physical patches or posters
to trigger HA or AA attack effects in the physical world. As
shown in the table, although many of them have demonstrated
the attack transferability across academic models, which could
be viewed as an indicator of high potential black-box attack
capability against commercial systems, very few works have
actually evaluated the attacks against real commercial vehicle
systems. For the only two works that have done so, the
evaluation is limited to one particular vehicle model (for one
of them it is even an unknown vehicle model) [7], [11],
making both the generalizability and representativeness of
these evaluation results questionable.

The observations above thus raise a critical research ques-
tion: Can any of these existing physical-world TSR adversarial
attacks achieve a general impact on commercial TSR systems
today? In this work, we thus aim to systematically answer this
critical research question by performing the first large-scale
testing of representative existing attacks against commercial
TSR systems of top popularity on the consumer market today.
Leveraging the observations and insights from the testing, we
also further systematically revisit existing evaluation metrics
and attack designs in this problem space.

C. Security of Autonomous Driving (AD) systems

Due to the fundamental reliance of AD systems on envi-
ronmental sensing, prior works have extensively investigated
sensor attacks within the AD context. These include spoof-
ing or jamming attacks targeting cameras [8], [51]–[53], Li-
DAR [54]–[57], RADAR [51], etc., highlighting vulnerabilities
at the sensor level. In contrast, our study focuses on the vul-
nerabilities at the autonomous AI algorithm level, specifically

targeting the TSR functions in AD systems, which is highly
crucial for safe and correct driving automation. While the
existing body of literature covers security aspects of various
components such as camera object detection [5]–[7], [9], [10],
[40], object tracking [41], [42], lane detection [45], and end-
to-end AD systems [38], [58], there is a notable gap in large-
scale studies on their effectiveness in real-world commercial
AD systems. In this work, we thus aim to bridge this critical
research gap by conducting the first large-scale measurements
of physical-world adversarial attacks on commercial TSR
systems, which not only expands the understanding of such
security vulnerabilities in real-world AD systems but also
provides various new insights into the design and evaluation
of existing works in this problem space.

D. Threat Model

To understand the impacts of these existing physical-world
TSR attack works from the commercial systems perspective,
we consider the most realistic transferability-based black-box
threat model, i.e., generating the adversarial attack pattern
using publicly-accessible surrogate TSR models and then
applying it to the attack-targeted TSR systems with unknown
model parameters and architectures. We choose this because
(1) as with most commercial products, commercial TSR sys-
tems, especially the most popular ones today in Table I, are by
default closed-source to the public and so far there is no effec-
tive approach to generally reverse-engineer them; and (2) this
is also the setup used by existing physical-world TSR attack
works to claim their attack effects on commercial systems [7],
[11]. For attack goals, we consider both traffic sign hiding
and appearing attacks as highlighted in §II-B, with a more
specific focus on the hiding attack side as it can most severely
impair a commercial TSR product by completely nullifying a
TSR system’s functionality. For attack vectors, we follow the
most representative and practical physical patch/poster attack
vectors (§II-B). Specifically, we use sticker patches for hiding
attacks (HA) and whole-sign posters for appearing attacks
(AA), which are the most practically-deployable attack vectors
on both sides [5]–[7], [9], [11].

III. LARGE-SCALE COMMERCIAL TSR SYSTEMS TESTING
AND OBSERVATIONS

In this section, we report our efforts on the first large-
scale testing of existing physical-world TSR model attacks
on commercial TSR systems. In this testing, we specifically
focus on the hiding attacks (HA) as they can make critical
traffic signs undetectable and thus most directly impair the
function of a commercial TSR product (§II-D). We first detail
the experimental setup and then report our key observations.

A. Attack Setup

Traffic Sign Selection. Our study considers two types of
traffic signs: the STOP sign and the 25 mph speed limit
sign. We choose these two types of signs since (1) STOP
and speed limit signs are the most popular targets in prior
works for demonstrating the adversarial attack effects in the
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TABLE III: Attack success rates for our reproduced RP2, SIB,
and FTE attacks compared to those in the original papers
following the same surrogate model and attack distance setups.

Attack success rate RP2 [9] SIB [5] FTE [7]

Reported by the papers 63.5% 60.5% 98.8%
Our reproduced attacks 60.5% 84.5% 98.7%

physical world [4]–[7], [9]–[11], [28], [59], [60]; and (2) both
are highly safety-critical as missing STOP signs can lead to
intersection collisions and 25 mph speed limit sign is usually
for residential or school districts where children can be outside
or crossing the street [61]. Meanwhile, these two are the only
two types of signs with demonstrated physical-world black-
box attack transferability in prior works [5], [7], [9].

Selected Attacks. As shown in Table II, there are three prior
works so far that were able to demonstrate black-box attack
transferability for the hiding attack effect in the physical world:
RP2 [9], SIB [5], and FTE [7]. Specifically, FTE was able to
demonstrate this against a commercial vehicle model, despite
an unknown one [7]. These three works have the highest
potential to successfully attack commercial systems; thus, we
aim to include all of them in our testing. Unfortunately, at
this point, none of these three works have open-sourced their
methods. Thus, we have to reproduce them. We tried our
best to reproduce them, which included both following their
papers closely and consulting with the original paper authors
for all three, and the reproduced attack success rates are
shown in Table III. Note that there are some performance
discrepancies between our reproduced version and the original
one. These discrepancies can be due to various factors, most
likely the differences in the experimental setups such as the
hyperparameters used in attack generation, the real-world data
collected for physical-world robustness, and realizability opti-
mization, etc. Despite our best efforts to replicate their original
experimental setup, including consulting the original paper
authors, it is fundamentally impossible to exactly replicate
their setup due to the lack of open-sourcing in these works.

Surrogate Model and Dataset Selection. As detailed
in §II-D, in this testing, we adopt the most realistic
transferability-based black-box threat model. To achieve this,
we carefully select surrogate models and datasets, based on
the selection by previous research in this field [6], [7], [28].
Specifically, we utilize the Microsoft COCO dataset [62]
to study adversarial attacks on STOP signs and the ARTS
dataset [29] for speed limit signs. Our surrogate model selec-
tion covers both one-stage and two-stage TSR model designs
(SII-A) to increase the chance of successful transfer attacks.
Specifically, we choose YOLO v5 (denoted as Y5) for the one-
stage model and Faster RCNN (denoted as FR) as the two-
stage one, both of which are from the most widely-used model
families in prior works [5], [7], [9], [10], [46]. In particular, Y5
is also the one that has been used to demonstrate a successful
transfer attack to a commercial vehicle model [7]. For Faster
RCNN, we adopt the latest official PyTorch implementation

Commercial 
vehicle under 
test (covered for 
anonymity)

(a) Real-world view (b) Bird’s-eye view

Traffic sign 
placement 
following 
traffic law

1.8 m 1.8 m

Fig. 1: Experiment setup for commercial TSR system testing.
We cover the vehicle in the photo for anonymity purpose.

that uses the ResNet-50-FPN-V2 backbone [63]. For the
Microsoft COCO dataset, the models are obtained directly
from the Y5 official website [64] and the PyTorch models [65].
For the ARTS dataset, we conduct our own model training.
The benign performances of these models have an mAP (mean
Average Precision) of 0.831 for Y5 and an mAP of 0.871 for
FR, consistent with those reported in prior research [28].

Test Environment Setups. Our experiments are performed
outdoors during sunny afternoons between 1 pm and 4 pm,
to simulate the most common real-world attack scenarios.
To maintain consistent testing conditions, we measure the
ambient light levels using a light meter, ensuring that all tests
are conducted within a light range of 25,000 to 30,000 lux.
Visual representations of the real-world environment and its
bird’s-eye view illustration are provided in Fig. 1. We select
a spacious rooftop parking structure as the location for these
experiments ensuring no presence of other vehicles or humans
to maintain safety. The placement of traffic signs is carefully
designed to follow traffic laws in the U.S. as outlined in
previous studies [6]. For the testing distance, we carefully set
the start point to be farther than the detection distance in the
benign case for each vehicle model (∼50 meters). For the
testing speed, we test at the maximum-allowed speed limit of
our rooftop parking structure (5 mph) to ensure safety.

B. Commercial Systems Under Test and Metric

Commercial Systems Under Test. We were able to include
4 different vehicle models in this testing through borrowing
or renting. These four vehicle models are among the five in
Table IV. As shown, all of them are among the top 15 popular
vehicle brands in the US based on vehicle sales (Table I)
and all of them are from the most recent model years, either
2023 or 2024. Note that we choose to not directly reveal
the exact vehicle brands and models for anonymity purpose;
this is already the least anonymization to protect the affected
companies (i.e., only 1 confusing vehicle model), and this
is also part of the agreement with the companies during
our responsible vulnerability disclosure. We denote the four
vehicle models we tested as C1 to C4. Table V shows the
TSR functionality support we found for C1 to C4 using benign
STOP and speed limit signs. As shown, two of them can
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TABLE IV: Four of the five commercial vehicle models below are tested in our study (denoted as C1 to C4 in Table V). Each
model has functions to detect a STOP sign, speed limit signs, or both. We choose not to directly reveal the exact models for C1
to C4 for anonymity purpose. Note that this is the least anonymization to protect the affected companies (i.e., only 1 confusing
vehicle model), and this is also part of the agreement with the companies during our responsible vulnerability disclosure.

Tesla Model 3 2023 Toyota Camry 2023 Nissan Sentra 2023 Mazda CX-30 2023 Hyundai Tucson 2024

TABLE V: TSR functions of the four vehicle models tested
in our measurement study. These four models are among the
five in Table IV. We choose to not directly reveal the exact
vehicle brands and models for anonymity purpose.

TSR functionality

Vehicle model STOP sign Speed limit sign

Car 1 (denote as C1) ✓ ✗
Car 2 (denote as C2) ✓ ✓
Car 3 (denote as C3) ✗ ✓
Car 4 (denote as C4) ✗ ✓

support STOP sign detection, while three of them can support
speed limit sign detection. In particular, C2 can support both.

Generalizability of the systems under test. While the
rankings of the vehicle sales in Table I have quantifiably shown
the representativeness of the vehicle models under test, it is
better if we can further quantify the generalizability of this
tested system setup. To achieve this, we use the market share
of the tested vehicle models as an estimate. Specifically, in
2023 the U.S. automotive industry sold around 15.6 million
vehicles [66]. Based on the data in Table I, at most 13.3 million
of these 15.6 million vehicles are TSR-equipped. The total
sales of the 5 possible vehicle brands in our test account for
33.2% of such upper-bound number of TSR-equipped vehicles
sold in 2023. Thus, our current testing results can be estimated
as generalizable to at least 33.2% of the commercial TSR
systems sold in the U.S. in 2023. Using this estimation, our
commercial TSR systems testing results can also be shown to
be much more generalizable than prior works in Table II (i.e.,
at most 3.8% for [11] and unknown for [7]).

TSR System-Level Attack Success Metric. In prior works,
the TSR adversarial attack success rates are generally cal-
culated by TSR model-level metrics, i.e., first determining
the attack success at TSR model output level per frame and
then aggregating the per-frame results over one or multiple
distance ranges [5], [6], [9], [12], [28], [46], [67] or a certain
number of consecutive frames [5], [67]. However, we find
that the TSR systems in commercial vehicle models today do
not generally show real-time traffic sign detection results to
end users; instead, the duration and timing of the detection
result display are more generally based on the system-level
needs for different sign types. For example, for speed limit

signs, we find that all the vehicle models supporting them
(C2 to C4) do not immediately show the speed limit sign
detection results when the sign is actually detected; instead,
the detection results will only be on display after the vehicle
passes the sign (more precisely, always when the vehicle body
is halfway past the sign in our experiments). This TSR system-
level design aligns with system-level needs for such traffic sign
detection functionality, as a newly-detected speed limit should
be applied after the vehicle drives past the physical location
of the sign [68]. This design can also be viewed as reasonable
if we consider the design of the speed limit sign display is to
indicate the speed limit of the current road segment, so it is
indeed correct to only show the new speed limit after it enters
the corresponding road segment. If it shows the new speed
before that, the car can be speeding before it enters a road
segment with a higher speed limit.

For the STOP sign, we have a similar observation: although
it is different from speed limit signs in that it should be
displayed before the vehicle passes the sign, we find that in C2
once the sign is detected, the TSR system will keep having the
sign display instead of showing the real-time detection results
until it passes the sign (this is also the spatial memorization
effect that we will investigate more later in §III-C). This again
aligns well with the system-level needs, as a detected STOP
sign should take effect until it is passed.

Due to these observations, we need to use an attack success
metric defined at the TSR system level to most generally
and practically-meaningfully capture the impacts of adversarial
attacks on commercial TSR systems. To this end, we thus
define the TSR system-level attack success per each traffic
sign reaction task on the TSR system user side, i.e., when the
TSR system user needs to react to a sign, if the TSR system is
able to correctly display the sign, the attack fails; otherwise,
the attack succeeds. For example, for speed limit sign, the
attack success is judged by whether the system can have the
sign displayed at the time when the vehicle passes the sign,
while for STOP sign it is judged by whether the system can
have the sign displayed before the vehicle passes the sign.

C. Testing Results and Observations

Overall Testing Results. Table VI summarizes the overall
testing results and the reproduced attack visualization is in
Fig. 2. As shown, there are 30 attack test combinations in total,
each for one combination of the 2 sign types, 3 attack methods,
2 surrogate models, and 4 vehicle models. For each benign and
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TABLE VI: Commercial TSR systems testing results against vehicle model C1 to C4 with comparisons to the black-box
transfer attack success rates reported by the original papers. The testings for each benign or attack setup are repeated 3 times.

C1 C2 C3 C4Original paper
transferability

Surrogate
model STOP STOP Speed limit Speed limit Speed limit Ave.

Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%

Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%RP2 18.9% FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%

Y5 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%SIB 46.1% FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%FTE 89.8% FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% 6.67%

RP!

SIB

FTE

Y5 FR Y5 FR

Fig. 2: Visualisation of the hiding attacks (HA) generated for
STOP and speed limit signs, which are used in our commercial
TSR systems testing. They are generated by the three most
promising prior works (RP2 [9], SIB [5], FTE [7]) using
surrogate models of both representative one-stage and two-
stage TSR model designs.

attack setup, we repeat the testing three times. As shown, we
are indeed able to find attack setups in which existing physical-
world adversarial attack works from academia can reliably
work on a certain commercial TSR system, more specifically
the RP2 attack using FR as the surrogate model, and the SIB
attack using Y5 as the surrogate model. In these setups, the
attack can always succeed over the three runs, leading to
a 100% success rate. Such a high black-box transfer attack
effectiveness is even higher than expected as the transfer attack
success rates are actually less than 50% for both and even less
than 20% for RP2. This suggests that for certain commercial
TSR systems, although from top brands in the US (Table I),
their TSR functionality can actually be much more vulnerable
than academic TSR models under black-box transfer attacks.
Interestingly, both successful attack setups are against C2, the
only vehicle model among the four that can support both STOP

and speed limit signs. We have already performed responsible
vulnerability disclosure to the C2 manufacturer to report these.

While there do exist successful attack cases, we do not see
generalizability of such attack effects over the entire testing
results. Over the entire 30 attack test combinations, the vast
majority (28/30) do not show any successful attack effects,
leading to a 6.67% overall transfer attack success rate against
commercial systems. As shown in the table, this is almost a
magnitude lower than those reported in the original papers [5],
[7], [9] (51.6% on average). Even for these two successful
attack setups, the attack effect is limited to the STOP sign
detection and cannot even generalize to the speed limit sign
detection for the same vehicle model (C2). This could be due
to the need to customize the detection accuracy for certain
sign types because of real-world deployment or customer
needs. Interestingly, although FTE was able to demonstrate a
successful transfer attack against a commercial vehicle model
in its paper, we were not able to find any successful attack
results against any of the four commercial vehicle models in
our tests. This further reveals the lack of generalizability of the
reported commercial TSR system attack success in the original
FTE paper, which cannot be revealed without the large-scale
commercial system testing efforts in this paper.

Note that we have performed statistical testing for the results
above to understand their statistical significance. While the
overall transfer attack success rate against commercial systems
over all 30 attack test combinations (6.67%) is statistically
significant, the statistical significance for the result of each test
combination cannot be calculated since the variance for each is
0 (all failure or all success as shown in Table VI). While it may
be possible that some variance can appear if we significantly
increase the number of attempts per test combination (e.g.,
to over 30) to make statistical significance calculable, we
cannot afford this due to inherent limitation for any outdoor
vehicle testing setups. Note that our current setup is already
scientifically more rigorous than all prior works in this as they
only tried once for each attack test. More details are in §V-B.
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Observation 1: It is in fact possible for existing physical-
world adversarial attack works from academia to have
highly reliable (100%) attack success against certain com-
mercial TSR system function in practice. However, such
black-box commercial system attack capability is currently
not generalizable over different representative commercial
system models and sign types. Overall, the black-box trans-
fer attack success rate on commercial systems (on our setup
that can account for at least 33.2% of commercial TSR
systems sold in the U.S. in 2023, as estimated in §III-B) is
much lower than that on academic models in prior works.

Spatial Memorization of TSR Results. The much lower-
than-expected black-box transfer attack success rate on repre-
sentative commercial systems suggests the potential existence
of deeper challenges for such attacks to take effect at the TSR
system level. Through our investigations, one major factor
might be an unexpected spatial memorization design that
commonly exists in commercial TSR systems today. Specifi-
cally, this design exhibits an effect that once a traffic sign is
detected, both the detected sign type and the detected location
are persistently memorized until the sign’s reaction task is
finished. Different from simple object tracking that can only
temporarily memorize a detection result for a very short time
(typically at most 3 seconds [6], [41], [67], [69]), the spatial
memorization we observed will only forget/clear a detection
result after the sign’s reaction need in the spatial domain is
met (e.g., when the vehicle spatially passes the position of a
detection STOP sign or speed limit sign), regardless of time.

Table VII shows our experimental investigation of this
design in the four commercial vehicle models. Fig. 3 illustrates
the experimental setup. As shown, in the experiments we first
keep the tested vehicle stationary and show the traffic sign on
the roadside in front of the vehicle for 1 to 3 seconds (sign
display time. Then, we hide the traffic sign and wait for 20 to
60 seconds (sign disappearing time). Then, we test whether the
sign detection result triggered at the sign display time is still
memorized by the TSR system after the sign has disappeared
for a certain time by driving the vehicle past the original
sign-display position. For the STOP sign, the memorization
is judged by whether the sign display disappears after driving
past the original sign-display position, and for the speed limit
sign, this is judged by whether the sign display appears after
driving past the original sign-display position. As shown, for
three out of the four vehicle models (C2 to C4), the sign
detection result can retain even after the sign has already
disappeared for 60 seconds, which is way longer than the
typical temporal memorization time from object tracking (3
seconds [41], [69]), and will only be cleared/forgotten when
the vehicle passes the position of the detected sign.

Such a spatial memorization design can significantly impact
how we judge the adversarial attack effect at the TSR system
level. For example, for hiding attacks, to achieve a system-
level success in which the TSR system is unable to show the
sign display at the sign’s reaction task period, the attack has to
be continuously successful at all possible detection moments

STOP sign
detection on 
display

Hide STOP sign

STOP sign 
display 
disappears

No sign display

Hide speed limit sign

No sign display Speed limit sign
detection on 
display

STOP sign
detection on 
display

Sign display time Sign disappearing time
Drive past original sign-display 
position to judge if the detection 
was spatially memorized

Fig. 3: Experimental setup for our investigation into the spatial
memorization design in commercial TSR systems. As shown,
we first show the sign to the vehicle for a short time (sign
display time), and hide the sign and wait for a certain time
duration (sign disappearing time). After that, we drive the
vehicle past the original sign-display position to measure
whether the sign detection result is spatially memorized.

that can trigger such memorization before the vehicle passes
the sign. As shown in our experiments in Table VII, such a
detection moment can be as short as 1 second. In most recent
prior works, the attack success is most commonly judged by
first separating the entire sign detection distance range into
small distance segments and claiming high attack effectiveness
as long as the majority of the distance segments have high
success rates [5], [7], [12]. However, due to such spatial
memorization, the TSR system-level hiding attack success can
only be achieved when all these distance segments have high
success rates, instead of just the majority, which thus may
make the TSR system-level hiding attack success harder than
expected. For appearing attacks, such an impact on the system-
level attack success is the opposite, as it does not really need
the majority of the segments to have high success rates; as long
as one of them can have a high success rate, the system-level
attack effect is achieved.

Observation 2: We discover a spatial memorization design
that commonly exists in today’s commercial TSR systems,
which can keep memorizing a sign detection result until the
sign’s reaction need in the spatial domain is met (e.g., when
the vehicle passes position of detected sign). This design
may create a significant discrepancy between TSR model-
level attack effect and that at the TSR system level.

IV. REVISITING EXISTING METRIC AND ATTACKS

As discussed above, the newly-discovered spatial memo-
rization design in commercial TSR systems today may create
a significant discrepancy between the TSR model-level attack
effect and that at the commercial TSR system level. Thus, in
this section we aim to mathematically model the impact of this
design on the TSR system-level attack success on both hiding
and appearing attack sides, and then use the resulting new
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TABLE VII: TSR detection result memorization rates when we hide the sign for a long time (20-60 seconds) after a short sign
display time (1-3 seconds). The experiment setup is in Fig. 3. As shown, three out of the four vehicle models exhibit a spatial
memorization design, i.e., keeping memorizing a sign detection result until the sign’s reaction need in the spatial domain is
met (e.g., when the vehicle passes the detected sign), regardless of time. Notice the observed much longer memorization time
(60 sec) than that from typical temporal memorization designs such as object tracking (typically <3 sec [6], [41], [67], [69]).

Sign disappearing time after the short sign display

STOP sign Speed limit signVehicle model
Sign

display
time 20 sec 40 sec 60 sec 20 sec 40 sec 60 sec

1 sec 0% (0/3) 0% (0/3) 0% (0/3) - - -C1 3 sec 0% (0/3) 0% (0/3) 0% (0/3) - - -

1 sec 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)C2 3 sec 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)

1 sec - - - 100% (3/3) 100% (3/3) 100% (3/3)C3, C4 3 sec - - - 100% (3/3) 100% (3/3) 100% (3/3)

TSR system-level metrics to revisit the evaluations, designs,
and capabilities of existing attacks in this problem space.

A. Revisiting Existing Attack Success Metrics

Limitation of Existing Model-Level Attack Success Met-
rics. In prior works, the TSR model-level attack success
metric is generally measured by averaging the per-frame attack
success among a set of frames sampled in the sign detection
distance range [5]–[7], [9]. In this paper, we denote such
metrics for object hiding and appearing attacks as fHA and
fAA, respectively. However, such averaged per-frame attack
success rates do not take the distribution of the attack effects
within a targeted distance range into consideration. Due to the
spatial memorization design, a certain distance range segment
with an especially high or low attack success rate can directly
lead to overall TSR system-level attack success or failure (as
found in §III-C, the detection result can be memorized within
1 second), which can thus make such existing metrics highly
misleading with respect to the TSR system-level attack effect.

Fig. 4 shows an illustrative example of such a misleading ef-
fect. As shown, there are two distance range segments, S1 and
S2, and the attack success rates are both f1

HA = f1
AA = 0%

for S1 and f2
HA = f2

AA = 100% for S2. As shown, using
the existing fHA and fAA metrics, the attack success rates
in this entire distance range will be the average of the attack
success rates in S1 and S2, and thus are fHA = fAA = 50%.
However, due to spatial memorization, on the hiding attack
side the 100% f2

HA cannot directly lead to the overall system-
level attack success, as the TSR system can still 100% detect
the sign in S1, memorize it, and correctly display it at the
sign’s reaction task period, leading to actually a 0% TSR
system-level attack success rate. On the appearing attack side,
although f1

HA is 0%, the attack can always (100%) trigger a
fake sign detection in S2 that will be memorized and displayed,
and thus the end-to-end TSR system-level attack success rate is
actually 100%. As can be seen, due to spatial memorization,
the TSR system-level attack success rate can be completely

different from that from fHA and fAA, which can lead to
highly problematic judgments of an attack’s capability at the
TSR system level, e.g., concluding that an attack is reasonably
effective (50%) when it actually cannot work at all (0%).

New Metric Design: Surrogate TSR System-Level Attack
Success Metrics. To avoid such misleading effects of exist-
ing TSR model-level attack success metrics, the most direct
solution is to perform system-level evaluations on commercial
TSR systems like our efforts in §III. However, it is highly
difficult and also too costly for the academic community to
always acquire a substantial number of commercial vehicles
for experiments. And also since these commercial TSR sys-
tems are black-boxes, it is difficult to perform model design-
level security research such as vulnerability cause analysis and
defense evaluations. To address this, we thus propose to design
surrogate TSR system-level attack success metrics that model
the spatial memorization effect on top of the existing model-
level metrics, which can make them directly calculable using
the more readily-accessible academic TSR model-based setups
used in prior works.

We start with hiding attacks. The symbols for calculat-
ing the metric are illustrated in Fig. 5. As shown, d de-
notes the benign-case detection distance of the targeted TSR
model. In alignment with existing model-level metric calcu-
lation, we divide d into n measurement segments, denoted
as Si, i ∈ {1, . . . , n}, and for each segment the averaged
per-frame attack success rates can be calculated, denoted as
f1
HA, f

2
HA, . . . , f

n
HA. To incorporate the spatial memorization

effect, we consider the minimum time to spatially memorize a
detected sign as t. To map this spatially memorizable detection
time to the detection distance range segments, we calculate the
distance traveled by the vehicle during t as v ∗ t, with v being
the vehicle speed. In this paper, we call each such distance
segment of v ∗ t as spatial memorization segments, denoted as
Ssm
j , j ∈ {1, . . . ,m},m = d

vt .
Due to spatial memorization, to achieve the TSR system-

level attack success, a hiding attack needs to achieve attack
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𝑆! 𝑆"

𝑓#$" = 100%
𝑓$$" = 100%

𝑓#$! = 0%
𝑓$$! = 0%

Existing TSR 
model-level attack 
success metric:
𝑓#$ = 50%
𝑓$$ = 50%

TSR system-
level attack
success:
0%
100%

Fig. 4: Illustration of the potentially misleading effect of existing TSR
model-level metrics with respect to the TSR system-level attack success.
As shown, although fHA and fAA are both 50% for this scenario, the
TSR system-level attack success rates are in fact 0% for hiding attack
(HA) and 100% for appearing attack (AA) due to spatial memorization.

𝑆! 𝑆" 𝑆#

Speed: 𝑣

Distance: 𝑑

…𝑓$%! 	or	𝑓%%!

𝑆!"#𝑆$"# …

𝑓$%" 	or	𝑓%%" 𝑓$%	# or	𝑓%%#

…

Spatial memorization segments ( ): length = 𝑣 ∗ 𝑡.
𝑡: minimum time to spatially memorize a detected sign

𝑆%"# …

Fig. 5: Setup for calculating the proposed surro-
gate TSR system-level attack success metric designs
(SysHA and SysAA, detailed design in §IV-A).

success at every spatial memorization segment in d; other-
wise, the sign can be detected and memorized, making the
attack fail at the system level. Thus, the system-level attack
success rate should be the product of fHA for all Ssm

j , i.e.,∏m
j=1 f

j
HA. However, to allow flexibility of the fHA success

rate measurements, which can incur heavy-weight physical-
world experiments, we do not prefer to require the measure-
ment of fHA exactly at the v ∗ t granularity; instead, we aim
to design the metric to be calculable for any distance choices
for Si. To achieve this, we thus use the f i

HA to approximate
the f j

HA for all Ssm
j inside a measurement segment Si; the

resulting surrogate TSR system-level metric, which we call
SysHA, is shown in Eq. (1). Note that for cases when a Ssm

j

spans multiple measurement segments Si, we use the average
fHA of these segments f i

HA as the fHA for Ssm
j .

SysHA =

n∏
i=1

(f i
HA)

m
n =

n∏
i=1

(f i
HA)

d
nvt (1)

On the appearing attack side, we can use a similar design
to model the impacts of spatial memorization on TSR system-
level attack success. Here, the difference is that the system-
level attack success can be achieved as long as the appearing
attack can succeed (and thus spatially memorized) in one of the
spatial memorization segments Ssm

j . Thus, the probability to
achieve an eventual sign appearing at the TSR system level is
the negation of the probability that the appearing attack cannot
succeed (and thus memorized) in any of the Ssm

j , i.e., 1 −∏m
j=1(1−f j

AA). Following the same design in SysHA to allow
measurement flexibility of fAA, we use f i

AA to approximate
f j
AA for each Ssm

j . The resulting surrogate TSR system-level
metric for appearing attack, which we call SysAA, is thus:

SysAA = 1−
n∏

i=1

(1− f i
AA)

d
nvt (2)

Implications to TSR System-Level Attack Hardness. As
informally discussed in §III-C, the spatial memorization design
may make hiding attacks harder than expected and appearing
attacks easier than expected. Now with the mathematical
modeling of the spatial memorization’s impacts on the TSR
system-level attack success above, we can both theoretically
and numerically analyze such impacts of the spatial memo-
rization on the TSR system-level attack hardness.

Theorem: When f i
HA = f i

AA, where i ∈ {1, . . . , n},
SysAA ⩾ SysHA always holds.

Proof. To prove this theorem, Eq. (2) can be reformulated
to the sum of the probabilities of all possible attack result
scenarios that can lead to a successful system-level appearing
attack. To derive that, we denote the power set of all the mea-
surement segments as P(S), where S = {Si|i ∈ {1, . . . , n}}.
Each possible attack result scenario can be described in the
form of two subsets of S: A and S \ A, where A is a subset
of P(S), i.e., A ∈ P(S). Among them, the appearing attack
for all Si ∈ A can succeed, and that for all Sj ∈ (S \ A)
fails. Due to spatial memorization, as long as A ̸= ∅, the TSR
system-level appearing attack effect can be achieved. Thus,
SysAA can be represented as:

SysAA =
∑

A∈(P(S)\∅)

 ∏
Si∈A

(f i
AA)

d
nvt

∏
Sj∈(S\A)

(1− f j
AA)

d
nvt


(3)

When f i
HA = f i

AA, SysHA =
∏n

i=1(f
i
HA)

d
nvt =∏n

i=1(f
i
AA)

d
nvt , which is actually one instance of A ∈ (P(S)\

A), i.e., A = S. Thus, we can calculate SysAA− SysHA:

SysAA− SysHA =∑
A∈P(S)\{∅,S}

 ∏
Si∈A

(f i
AA)

d
nvt

∏
Sj∈(S\A)

(1− f j
AA)

d
nvt


(4)

For ∀A ∈ P(S)\{∅, S}, f i
AA ⩾ 0 and (1−f j

AA) ⩾ 0, where
Si ∈ A and Sj ∈ (S \ A), we can have

∏
(f i

AA)
d

nvt

∏
(1 −

f j
AA)

d
nvt ⩾ 0, thus SysAA − SysHA ⩾ 0, and consequently,

SysAA ⩾ SysHA.
Numerical Analysis. The theoretical analysis above can

mathematically reveal that SysAA can always be equal or
larger than SysHA when fHA and fAA are equal. However, it
cannot reveal how large the gap between SysHA and SysAA
can be. Thus, we further perform a numerical analysis of
SysHA and SysAA. In this analysis, we set n = m, and
x = f i

HA = f i
AA for all i ∈ {1, . . . , n}. Thus, SysHA = xm

and SysAA = 1 − (1 − x)m. In Fig. 6, we plot the values
of SysHA, SysAA, fHA, and fAA when m = 2, . . . , 5. This
is a realistic approximation of m since as found in §III-C,
commercial TSR systems can spatially memorize a detection
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Fig. 6: Numerical analysis of the attack success rate values
from SysHA, SysAA, fHA, and fAA when m = 2, . . . , 5.
Here, we set n = m and x = f i

HA = f i
AA for all

i ∈ {1, . . . , n}.

result within one second. At normal driving speed, the traffic
sign can appear for at least 2-5 seconds, and thus there at least
exist 2-5 spatial memorization segments. As shown, SysAA
is always greater than SysHA when x is between 0 and 1,
and the difference (SysAA − SysHA) is at least 50% (when
m = 2) and can be as high as 93.8% when m = 5. This
means that even when hiding attacks and appearing attacks
seem to have similar model-level attack effectiveness, due to
the spatial memorization design the TSR system-level attack
effectiveness can have huge differences (⩾93.8% differences
in absolute attack success rate values).

Meanwhile, we observe that SysHA and SysAA can both
differ significantly from fHA and fAA results. As shown,
when m = 5, SysAA can be much higher than fAA (46.9%
difference in absolute attack success rate values), and SysHA
can be much lower than fHA (also 46.9% difference in abso-
lute attack success rate values). This thus numerically proves
the potentially misleading effect of existing TSR model-level
metrics with respect to TSR system-level attack effect, which
can lead to a misjudgment of the attack effectiveness to the
extent of nearly 50% in absolute values of attack success rate.

About the novelty and importance of the new metric
design. Note that the metric and the concept of spatial mem-
orization might seem straightforward, but no prior research
has discovered and analyzed the impact of this important TSR
system-level design from the security perspective, nor formu-
lated it mathematically. Before this paper, it was unknown that
such a design is commonly used in commercial TSR systems.
Additionally, as discussed above, mathematically modelling
and quantifying its impacts on adversarial attack success rates

TABLE VIII: White-box attack effectiveness for representative
prior works on hiding attacks measured by fHA and SysHA.
As shown, while the fHA results can indeed be claimed as
effective, it may not be appropriate to claim so with SysHA.
This suggests a potential lack of TSR system-level attack
effectiveness even in the white-box setting for existing works.

fHA

Distance ranges (meters)

0-5 5-10 10-15 15-20 20-25 25-30
Ave.

SysHA

RP2 41.8% 10.0% 23.8% 65.4% 99.9% 100% 56.8% 6.6%

SIB 84.6% 56.6% 82.0% 99.2% 100% 100% 87.1% 45.1%

FTE 88.9% 57.1% 13.6% 3.1% 47.8% 74.5% 47.5% 5.2%

as a metric is crucial for the research community to systemat-
ically understand real-world system vulnerabilities, especially
from the commercial TSR systems perspective. Meanwhile,
our theoretical and empirical analyses above further provide
mathematically provable insights about the design-level im-
plications and the magnitude of such impacts from the spatial
memorization design. These thus all make our newly-proposed
surrogate TSR system-level attack success metrics valid and
significant scientific contributions.

Meanwhile, we would like to clarify that we do not intend
to claim that the existing TSR model-level metrics do not have
important value when compared with our proposed surrogate
TSR system-level metric. As explained above, the design of
this new metric and the later experimental comparisons of
the results from these two metrics are only for the purpose
of scientifically understanding how much the newly-observed
spatial memorization design in commercial TSR systems today
can affect the judgment and understanding of the capability of
a certain attack design at the TSR system level.

Observation 3: Due to spatial memorization, hiding attacks
are theoretically harder (if not equally hard) than appearing
attacks in achieving TSR system-level attack success. Such
an attack hardness gap can be huge (e.g., ⩾93.8% absolute
differences in the attack success rate values). Meanwhile,
due to the lack of consideration of spatial memorization,
existing TSR model-level attack success metrics can be
highly misleading in judging the TSR system-level attack
effect, with a potential of having ∼50% absolute attack
success rate value differences.

B. Revisiting Existing Attacks

In this section, We use the SysHA and SysAA metrics to
revisit the evaluations, designs, and attack capabilities of the
important prior works in this problem space.

Specifically, we revisit (1) both hiding and appearing at-
tacks, with RP2 [9], SIB [5], FTE [7] as representative
examples on the hiding side, and SIB [5] and DM [11] as
representative examples on the appearing side; (2) both white-
box and black-box transfer attack setups, with the original
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TABLE IX: Black-box transfer attack effectiveness for representative prior works on hiding attacks measured by fHA and
SysHA. Each success rate value is an average over the results from 6 representative transfer target models: 3 one-stage models
(Y8, YS, DETR) and 3 two-stage models (two Faster RCNN with different backbones, MaskRCNN), which are detailed
in §IV-B. Although the fHA values show descent transfer attack success rates similar to those reported by the original paper,
those calculated by SysHA are much lower, similar to the observations from the commercial TSR testing in §III-C and Table VI.

Transfer attack success rates (averaged over a set of six transfer target models (§IV-B)

fHAOriginal paper
transferability 0-5m 5-10m 10-15m 15-20m 20-25m 25-30m Ave.

SysHA

RP2 18.9% 36.4% 32.0% 29.6% 46.0% 61.3% 50.0% 42.6% 14.5%

SIB 46.1% 20.7% 26.5% 37.2% 42.6% 54.9% 51.2% 38.9% 12.4%

FTE 89.8% 29.2% 36.4% 29.3% 34.0% 45.5% 40.1% 35.7% 11.0%

Ave. 51.6% 28.8% 31.6% 32.0% 40.9% 53.9% 47.1% 39.1% 12.6%

white-box attack setups evaluated in the original papers (e.g.,
YOLO v2 (Y2) for RP2, YOLO v3 (Y3) for SIB, and YOLO
v5 (Y5) for FTE) on the white-box side, and a set of represen-
tative transfer target models on the black-box transfer attack
setup side. Specifically, this transfer target model set includes
6 models in total, 3 from the one-stage model design (YOLO
v8 (Y8) [70], YOLOS (YS) [71], DETR [72]) and 3 from the
two-stage model design (two versions of Faster RCNN with
different backbones [65], and Mask RCNN [65]).

In all the experiments, we focus on STOP sign as the
representative attack target since it is used the most commonly
in prior works in their physical-world evaluation (in Table II,
five out of the six prior works only used STOP sign in
their physical-world experiments for TSR), which can thus
best suit our need in this section to revisit the evaluation of
prior works. All the attacks are physically printed out and
measured outdoor. The distance range measured is 0 to 30m
following the setups in prior works [5], [7], [9]. For each
attack setup, we calculate the SysHA or SysAA attack success
rate by averaging the SysHA or SysAA values across the full
combinations of a set of common speeds (25 mph, 30 mph,
and 35 mph, the most common speed limits for STOP sign-
controlled roads [6]) for v and all possible minimum spatial
memorization time t (0.05 seconds to 1 second with a step
of 0.05 seconds considering the common camera frame rate
20Hz [73] and the 1-second upper-bound of t found from our
experiments in §III-C).

In the following, we report the most notable findings our
these revisiting experiments.

White-Box Attack Effectiveness. We start by revisiting
the prior works in white-box attack setups. The impact of the
spatial memorization design on the TSR system-level attack
success is orthogonal to the attacker’s knowledge level (e.g.,
white- or black-box) of the targeted TSR model, and thus it
is of interest to use our new metrics to revisit existing attacks
even in the white-box attack setting. Table VIII shows the
white-box attack effectiveness of representative existing hiding
attacks measured by both fHA and SysHA. When using fHA,
the attack success rates are similar to those reported in the

original papers [5], [7], [9] and can be claimed as effective
(from ∼50% to 90%). However, as numerically analyzed
in §IV-A, due to spatial memorization the TSR system-level
attack success rate can be much lower. As shown, when using
SysHA, the attack success rates decrease significantly by 2 to
9 times, with the absolute success rate value drops of at least
40%. Most notably, the attack success rates for RP2 and FTE
are dropped to at most 6.6%. Thus, it may not be appropriate
to claim that these attacks can be effective at the TSR system
level. This suggests a potential lack of TSR system-level attack
effectiveness for existing works even in the white-box settings.

Observation 4: When spatial memorization is considered,
prior works in this problem space may not be claimed as
effective at the TSR system level even in white-box attack
settings. Our newly-proposed surrogate TSR system-level
metrics can help improve this in the future as they can
be leveraged to better approximate the impact of spatial
memorization on the TSR system-level attack success.

Black-Box Transfer Attack Effectiveness. We next revisit
the black-box transfer attack effectiveness of existing works.
Table IX shows the results for representative prior works on
hiding attacks measured by both fHA and SysHA. As shown,
when using fHA, all prior works show a descent transfer
attack success rates at ∼40%, which is very similar to the
reported numbers from the original papers on average (∼50%).
However, when using SysHA, the success rates becomes much
lower, which are generally decreased by around 3 times for all
three attacks. This is in fact quite similar to the observations
from the commercial TSR testing in §III-C and Table VI,
which found that the black-box transfer attack success rates
against commercial TSR systems are almost a magnitude lower
than those reported by the original papers on average. This
suggests that spatial memorization may indeed be a major
factor for the observed much lower-than-expected black-box
transfer attack success rates against commercial TSR systems.
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TABLE X: Attack capability comparison between the hiding
and appearing attacks proposed from the same prior work
(SIB [5]) measured by fHA, SysHA, fAA, and SysAA. As
shown, if using the prior TSR model-level attack success
metrics (fHA, fAA), the judgment of the attack capability
differences between the proposed hiding and appearing attacks
can be the completely opposite to those using SysHA and
SysAA due to the consideration of spatial memorization.

Hiding attack Appearing attack

SIB [5] fHA SysHA fAA SysAA

White-box attack 87.1% 45.1% 29.1% 87.6%
Black-box transfer attacks 38.9% 12.4% 31.7% 64.2%

Observation 5: When spatial memorization is considered,
the black-box transfer attack success rates of prior works
at TSR system level can be much lower than expected
(only ∼13%) for hiding attack. This suggests that existing
hiding attack works are unlikely to have direct impacts on
real-world commercial TSR systems in general, which is
consistent with our observations in our large-scale commer-
cial TSR systems testing. This suggests that future work in
this problem space should focus more on black-box attack
settings, which can be more generally enabled by our newly-
proposed surrogate TSR system-level attack success metrics.

Hiding vs. Appearing Attack Effectiveness. As numer-
ically analyzed in §IV-A, it can be much harder to achieve
hiding attack success than to achieve appearing attack success
at the TSR system level due to spatial memorization. Now
with concrete attack examples from prior works, we can more
directly study such attack hardness gaps. Table X shows the
comparison of the attack success rates for the hiding and
appearing attacks from the same prior work SIB [5]. The
success rates are calculated for both prior TSR model-level
metrics (fHA, fAA) and our newly-proposed surrogate TSR
system-level metrics (SysHA, SysAA) under both white-box
and black-box transfer attack settings. Here, the black-box
transfer attack success rates are calculated by averaging results
over a set of 6 representative target models (§IV-B).

As shown, in both white-box and black-box transfer attack
settings, SysHA is lower than fHA and SysAA is higher
than fAA, which is consistent with our numerical analysis
results (§IV-A) and is caused by the spatial memorization
effect. Interestingly, if we only use prior TSR model-level
metrics (fHA, fAA) to judge the attack capabilities between the
proposed hiding and appearing attacks, the conclusion will be
that the proposed hiding attack is more effective (if not much
more effective) than the proposed appearing one, as the fHA

results are always higher than the fAA results in both white-
box and black-box transfer attack settings; in particular, in the
white-box setting, the fHA success rate is ∼3 times of the fAA

one. However, when using SysHA and SysAA, the conclusion
is the completely opposite: the appearing attack success rate
is always higher than the hiding attack one in both white-

TABLE XI: The white-box appearing attack effectiveness of
RP2 [9] with and without the Nested AE (NAE) design
measured by fAA and SysAA. As shown, when using fAA, the
NAE design can indeed “significantly improve the robustness
of adversarial attack in various distances” according to the
original paper that proposed NAE as the key new design
contribution [5]: it improves fAA in every distance range seg-
ments, leading to a 22% improvements on average). However,
when using SysAA with spatial memorization considered, the
success rate improvement is almost negligible (∼1%).

fAA
RP2 [9]

0-5m 5-10m 10-15m 15-20m 20-25m Ave.
SysAA

w/o NAE 86.8% 100% 64.7% 66.9% 19.5% 67.6% 98.2%
w/ NAE 100% 100% 100% 88.3% 25.8% 82.8% 100%

box and black-box transfer attack settings, and the former can
be ∼2-5 times higher. This suggests that if not considering
spatial memorization, the judgment of the TSR system-level
attack capabilities across hiding and appearing attacks can be
completely wrong. This further highlights the importance of
systematically modelling the impacts of spatial memorization
on the TSR system-level attack success, which is exactly what
we aim to achieve in the design of SysHA and SysAA.

Observation 6: Using the hiding and appearing attacks
proposed from the same prior work, the hiding one can
indeed be much harder (2-5 times) than the appearing one in
both white-box and black-box transfer attack settings after
spatial memorization is considered. However, if using the
prior TSR model-level attack success metrics, the judgment
of such relative attack hardness differences can be the
completely opposite, which thus highlights the necessity of
the design of the new SysHA and SysAA metrics.

Judgement of the Value of New Attack Designs. As
numerically analyzed in §IV-A, spatial memorization can
significantly impact the attack success at the TSR system
level, with a potential of having ∼50% absolute attack success
rate value difference. Due to this, it is possible that certain
new attack designs proposed in prior works can be seemingly
highly beneficial to the attack success when judged using
the prior TSR model-level metrics, but when judged with
the consideration of spatial memorization, the benefits to
the attack success are actually very minimal. This thus may
significantly change how we judge the practical value of
certain prior attack designs at the TSR system level. Table XI
shows our investigation into one such example. As shown, in
this experiment we compare the white-box appearing attack
effectiveness of RP2 [9] with and without a specific attack
design called Nested AE, which we denote as NAE. This
design is proposed by Zhao et al. [5] as a key new appearing
attack design contribution. In this design, the key idea is to
decouple the task of varying distance attack into two pieces:
long-distance and short-distance attacks, and distribute them
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to different regions on the adversarial pattern printed on a
whote-sign poster, with the goal of systematically increasing
the distance of an appearing attack [5].

Fig. 7 shows a visualization of the adversarial patterns with
and without the NAE design reproduced by us (like what we
reported in §III-A for prior works on appearing attacks, this
prior attack design also has not been open-sourced so far).
As shown, we are able to reproduce the designed adversarial
pattern features, with an inner STOP sign-like adversarial
pattern “nested” at the center of an outer adversarial pattern,
with the inner one for short-distance attack effect and the
outer one for long-distance attack effect, which is consistent
with the reported adversarial pattern features in the original
paper (can be seen by Figure 5 in [5]). As shown by our
results in Table XI, when using fAA, such a design can indeed
“significantly improve the robustness of adversarial attack in
various distances” as claimed in the original paper [5]: it
improves fAA in every distance range segments from 0 to
30m, which is able to increase the average fAA success rates
by 22%, from lower than 70% to higher than 80%. However,
when using SysAA with spatial memorization considered, the
success rate improvement is almost negligible (∼2%), from
98.2% to 100%. This is mainly because due to spatial memo-
rization, it can be much easier to achieve a TSR system-level
appearing attack success compared to the attack capabilities
that can be reflected by the direct TSR model-level metrics
like fAA. Thus, even with a naive attack design, the attack
success rates at the TSR system level can already be very
high, which can thus make the necessity and practical value
of more sophisticated appearing attack designs very low.

Observation 7: Due to spatial memorization, the benefits of
certain attack designs can be seemingly high (e.g., >20%
attack success rate increase) using prior TSR model-level
success metrics, but actually nearly negligible (e.g., only 1%
increase) at the TSR system level. This thus highlights the
necessity of attack success metrics that can incorporate the
impact of spatial memorization, such as SysHA and SysAA,
with regard to the judgment of the necessity and practical
value of any given attack designs in this problem space, for
both the designs in the past or those in the future.

V. DISCUSSIONS

In this section, we provide detailed discussion on the ethics,
limitations, and future work.

A. Ethics

In discussing the ethical considerations of our measurement
study, it is crucial to highlight the measures taken to ensure
safety and responsibility. Our experiments with commercial
vehicles are conducted on the roof of a parking structure,
a controlled environment where we can ensure the absolute
absence of other vehicles and people when performing the
experiments. Additionally, we take precautions to make sure
that the adversarial attacks are not visible anywhere from
public roads, thereby eliminating any risk to others.

RP! w/o Nested AE RP! w/ Nested AE

Fig. 7: Visualisation of the adversarial patterns with and with-
out the Nested AE (NAE) design reproduced by us using RP2

(the original design has not been open-sourced). As shown, the
“nested” adversarial pattern feature is highly consistent with
that reported in the original paper (e.g., Fig. 5 in [5]).

Recognizing the direct impacts of our study on the secu-
rity of commercial vehicles, we have performed responsible
vulnerability disclosure to all the potentially affected vehicle
manufacturers following the ethical standard in the security
community. Specifically, this involved informing the vehicle
manufacturers for all the vehicle models we tested (i.e., C1
to C4) about our testing results, especially those with vehicle
models that were tested vulnerable such as the the vehicle
manufacturer for C2; we have already done all these. This
proactive approach allows the manufacturers to address and
mitigate any potential risks posed by these attacks, ensuring
the safety and security of their vehicles. Additionally, even
in this submission version, we do not directly reveal the
exact vehicle brands and models for C1 to C4 to protect the
potentially-affected companies (§III).

B. Limitations and Future Work

Threats to Validity for the Statistical Significance in
Commercial Systems Testing Results. To scientifically in-
terpret our commercial system testing results, it is important
to understand their statistical significance. First, for the overall
transfer attack success rates against commercial systems over
all 30 attack test combinations, the result (6.67% in Table VI)
is statistically significant with p < 0.02 using Z-Test [74],
Binomial Test [75], One-Sample T-Test [76], and Wilcoxon
Signed-Rank Test [77]. Second, for the result of each test
combination, we technically cannot compute the statistical
significance values since the variance for each is 0 (all failure
or all success as shown in Table VI) and statistical testing
methods are designed for data samples with variance (and thus
their calculation generally requires division by the standard
deviation [74]–[83], which is 0 in our case). For our case, this
may not be addressable by simply increasing the number of
attempts, since the root cause is the lack of variation in the
results, which is likely to continue since the output of each
test run for us is binary (failure or success). In hypothesis
testing, if all observed values are exactly the same as the
hypothesized value (i.e., there is no variation in the data), it
means that the data perfectly matches the null hypothesis [84]
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and there is no need to conduct further statistical tests to
determine significance, as the data inherently confirms the
hypothesis [85], [86]. In our experiments, this is indeed the
case as (1) we observe no variations during the 3 attempts
and (2) considering the spatial memorization design, in each
attempt there are also multiple TSR model-level tests when
the vehicle approaches the sign, but still no variations were
observed, which made us believe that the results are unlikely
to change even if we try a few more times (we cannot afford
a significant increase in the number of attempts as we explain
below). Note that this is also already statistically more rigorous
than all prior works in this: they only tried once for each attack
test [7], [11] (we have confirmed this with the authors), which
is not enough to even calculate variance.

Nevertheless, it is indeed possible that if we significantly
increase the number of attempts, some variations will appear
and thus allow us to calculate statistical significance. However,
since we need to manually drive the car past the sign and
circle back to the same starting point for each attempt, and
also need to manually take down and put up new adversarial
patterns, at 3 attempts and 14 different tested signs (2 benign,
12 attacks) we need to spend over 2 hours per vehicle model.
If we largely increase the attempt number, it may not be
possible to control the lighting conditions to be comparable
across these tests, which is one of the most critical factors for
the effectiveness of physical-world adversarial attacks [5], [7],
[60]. For example, if we conduct at least 30 attempts per test
as commonly suggested in statistical testing [87], it will cost
at least 10 hours in total and the lighting conditions will be
completely changed. Note that this is an inherent limitation
for any outdoor experimental setup on commercial vehicles.
To address this, one possibility is to use an indoor vehicle
testing facility with controlled lighting conditions. However,
we are not aware of any prior works in AD security that can
have such a setup, and also it is unclear whether such a setup
can accurately simulate outdoor conditions, as the targeted
physical environment for TSR adversarial attacks is outdoor.
We thus leave the solution exploration of this to future work.

More Root Cause Analysis for Commercial TSR System
Testing Results. In this work, we were able to perform the first
large-scale measurement of existing physical-world adversarial
attacks on commercial TSR systems by performing black-box
transfer attack testing on the commercial systems. Although
this was able to fill the critical research gap in achieving a
more general understanding of existing attacks’ impacts on
real-world commercial TSR systems, certain aspects remain
partially understood , for example the reason why the TSR
function of certain commercial systems can actually be much
more vulnerable than academic TSR models, and also why
the two successful attack setups are limited to the STOP sign
detection. There are multiple possible causes we can speculate,
e.g., for the former due to the need to reduce false alarm
rates in real-world deployment, or due to the long deployment
cycle to integrate latest academic model designs; and for the
latter due to the need to customize the detection accuracy
for certain sign types because of real-world deployment or

customer needs. However, due to the black-box nature of
these commercial systems, it requires more systematic follow-
up studies to scientifically answer these questions, which we
believe is one of the most highly desired future works.

Defense-Side Explorations. In this work, we mainly focus
on measuring and understanding the potential gap between
existing academic research and real-world commercial systems
on the attack side. In the future, it is also of interest to
explore such a potential gap on the defense side. Such a gap
may indeed exist, for example, due to spatial memorization,
hiding attacks can be easier to be defended against at the
TSR system level than expected, since as long as the defense
method can prevent the hiding attack success in any of the
spatially memorizable sign detection periods, it can prevent the
hiding attack success at the TSR system level. For appearing
attacks, this will be the opposite since to prevent the appearing
attack success at the TSR system level, the defense method
has to prevent the appearing attack success in all of the
spatially memorizable sign detection periods. We thus leave
a systematic investigation of these aspects to the future work.

About misclassification attacks. In this work, we focus on
the two most representative TSR adversarial attack types so
far with highly demonstrated physical-world realism, hiding
and appearing attacks (§II-B). Meanwhile, there are also prior
works studying misclassification attacks on TSR models (i.e.,
changing the detection from one sign to another) [7], [88],
which is less studied in the security community (potentially
due to their relatively indirect attack consequences compared
to direct sign hiding or appearing) but can also be of interest
to be studied from the commercial systems perspective, espe-
cially if we consider the potential impact from spatial mem-
orization. Specifically, for such attacks, if the attack doesn’t
always succeed/fail in every spatial-memorization segment, the
detected sign class will change across spatial-memorization
segments. The impact of spatial memorization will depend on
whether a later-detected different sign class will override a
previously-memorized sign class. For example, if the design
is to not override, the TSR system-level success depends on
the model-level success of the first/farthest-to-the-sign spatial-
memorization segment. If the design is to override, for speed
limit signs the TSR system-level success depends on the
last/nearest-to-the-sign spatial-memorization segment, while
for STOP sign the driver will see alternating/simultaneous
display of correct and incorrect signs and thus it may require
to newly define the TSR system-level success from the driver’s
perspective. To effectively answer these new questions, a
separate follow-up study is required since it will require new
research methodology designs starting from the commercial
system testing stage, which we thus leave to future work.

Impact from Other Possible Data Sources for TSR. Our
current commercial TSR system testing results are unlikely
to be influenced by other possible sources for TSR such as
GPS/map. For example, since all the tested signs are tem-
porarily placed at rooftop of a parking structure, no existing
maps can have these sign information. Thus, the failed attack
attempts cannot be due to possible sign information retrieved
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from GPS/map. Meanwhile, out of the 13 car brands providing
TSR in Table 1, for 12 of them (including all the brands
we tested) we cannot find any evidence that fusion is used;
specifically, for them their official websites or vehicle manuals
only mention the use of camera without any mention of the use
of other sources. Nevertheless, systematically understanding
whether fusion can be an impact factor on the current results
(and if so, how much) can be an interesting follow-up research
direction, especially those on designing new analysis methods
to systematically understand the root causes of many current
observations given the black-box nature of these systems as
discussed above. We thus leave this to future work.

VI. CONCLUSION

In this paper, we conduct the first large-scale measurement
of physical-world adversarial attacks against commercial TSR
systems. Our testing results reveal that although it is possible
for existing attack works from academia to have highly reliable
(100%) attack success against certain commercial TSR system
functionality, such black-box commercial system attack capa-
bilities are not generalizable, leading to a much lower-than-
expected black-box transfer attack success rates overall. We
find that one potential major factor is the spatial memorization
design that commonly exists in today’s commercial TSR
systems. We design new attack success metrics that can mathe-
matically model the impacts of this design on the TSR system-
level attack success, and use them to revisit existing attacks.
Through these efforts, we uncover 7 novel observations, some
of which can directly challenge the observations or claims in
prior works due to the use of our new metrics. We hope that the
results and new insights from this work can help inspire and
facilitate more practically meaningful and impactful research
in this critical problem space.
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