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CONDENSATION AND LEFT-ORDERABLE GROUPS

FILIPPO CALDERONI AND ADAM CLAY

(Communicated by Vera Fischer)

AsstracT. We discuss condensed left-orderings and develop new techniques to
show that the conjugacy relation on the space of left-orderings is not smooth.
These techniques apply to the solvable Baumslag Solitar groups BS(1, ) and to
Thompson'’s group F.

1. INTRODUCTION

The study of definable quotients of Polish spaces is one of the main themes
in modern descriptive set theory, with the primary goal being to understand the
Borel structure of Polish spaces modulo analytic equivalence relations. A funda-
mental question is whether the quotient space, equipped with the quotient Borel
structure, is standard. The first trace of such an analysis dates back to the work of
Glimm [Gli61] and Effros [Eff65].

If G is a countable group acting continuously on the Polish space X, we denote
by X/G the space of orbits, endowed with the quotient Borel structure. In this
case X/G is standard if and only if the orbit equivalence relation on X induced by
the G-action is smooth. That is, if and only if there is a Borel map 0: X — R such
that x1, x7 lie in the same G-orbit if and only if 6(x1) = 6(x2). It is owing to this
characterization that for the remainder of the article we assume that all groups are
countable unless otherwise indicated.

Following this trend, a question posed by Deroin, Navas, and Rivas [DNR16]
raised the problem of whether the space of left-orderings LO(G) of a left-orderable
group G modulo the conjugacy G-action is always standard, or equivalently,
whether or not the orbit equivalence relation is always smooth. Using descrip-
tive set theory to demonstrate nonsmoothness, the authors show that LO(G)/G is
not a standard Borel space in many cases; for example, when G is a nonabelian free
group or a free product of left-orderable groups [CC22, CC23].

Denote the equivalence relation induced by the conjugacy action of a group G on
its space of left-orderings by E,(G), and let BS(1, n) denote the Baumslag—Solitar
group. In this article, we show the following.
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Theorem 1.1.

(1) Foralln > 2, En(BS(1, n)) is not smooth.
(2) The conjugacy equivalence relation E,(BS(1,2)) is Borel bi-reducible with Ey.

The novelty of Theorem 1.1 is twofold. Theorem 1.1(1) provides the first ex-
amples of left-orderable solvable groups G with nonstandard quotient LO(G)/G.
Moreover, Theorem 1.1(2) shows the first example of a finitely generated group G
for which Eix(G) is not smooth, yet hyperfinite.

Using similar techniques, we also show how work of Navas implies that Ej;(G)
is not smooth whenever LO(G) contains isolated points, and are able to tackle
Thompson’s group F in a similar manner.

Theorem 1.2. For Thompson’s group F, the conjugacy relation Ey,(F) is not smooth.

Central to our analysis is the idea of condensed left-orderings in LO(G), which
are orderings that can be approximated by their conjugates. Their existence turns
out to be equivalent to nonsmoothness of E\o(G) (Proposition 2.2); moreover, they
can be detected by analyzing LO((G)), the free part of the conjugacy G-action on
LO(G). (See Proposition 3.9.)

2. CONDENSED POINTS

A Polish space is a separable and completely metrizable topological space. For a
Polish space X we denote by F(X) the Effros standard Borel space of closed subsets
of X. The standard Borel structure on F(X) is generated by the sets

Fu={FeF(X) | FNU # 0}

for all open U C X.

An equivalence relation E on the Polish space X is Borel if E C X X X is a Borel
subset of X X X. Most of the Borel equivalence relations that we will consider
in this paper arise from group actions as follows. Let G be a countable discrete
group. Then a Polish G-space is a Polish space X equipped with a continuous action
(g,x) = g-xof Gon X. The corresponding orbit equivalence relation on X, which
we will denote by E é , is a Borel equivalence relation with countable classes. Let X
be a fixed Polish G-space. For a subgroup H < G, denote Orby(x) the orbit of x
under the induced H-action. Whenever G = H, we let Orb(x) = Orbg(x).

Recall that a Borel equivalence relation E is smooth if there exist a standard Borel
space Y and a Borel map 0: X — Y such that

x1Exp, & Q(JCl) = 0(x2).

An equivalence relation on a Polish space is generically ergodic if every invariant
set with the Baire property is meager or comeager. Whenever X is a Polish G-space,
the following are equivalent:

() Eé is generically ergodic.

(ii)) Thereis x € X such that Orb(x) is dense in X.

Generic ergodicity is an obstruction to smoothness in many cases. In this man-

uscript, we will use the following fact:

Proposition 2.1 ([Hjo00, Corollary 3.5]). Suppose that G is a countable group and X
is a Polish G-space with no isolated points. If Eé( is generically ergodic, then Eé is not
smooth.
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Following the terminology of Osin [Osi21b, Osi21a], we say that a point x € X
is condensed if it is an accumulation point of Orb(x).

The following proposition is essentially due to Osin [Osi21b, Proposition 2.7],
who analyzed condensation in the Polish space of finitely generated marked
groups. Since we could not find the proof in the literature, we give the proof
of this general fact below.

Proposition 2.2. Suppose that G is a countable group and X is a Polish G-space. Then
the following are equivalent:

(1) EZ is smooth.

(2) There are no condensed points in X.

Proof. Suppose that EY is smooth and let x be any element of X. Consider the
Y is also smooth. As

closed G-invariant set Y = Orb(x). If EY is smooth, then E,
Orb(x) is a dense G-orbit in Y, the action G ~ Y is generically ergodic, so there
must be an isolated pointin xo € Y. The point xy cannot be an element of Y\ Orb(x)
since these points are nonisolated by definition, and so xp € Orb(x). Now as the
G-action is continuous, every point of Orb(x), and, in particular, x itself must be
isolated in the subspace topology. It follows that x cannot be a condensed point.
On the other hand, suppose that no x € X is a condensed point. Then for every
x € X, the subspace topology on Orb(x) is discrete, and since Orb(x) is countable
it is therefore Polish. By Alexandrov’s theorem, Orb(x) must be a G; set for all
x € X. (See [Kec95, Theorem 3.11].) Further, note that the saturation of an arbitrary
open set U C X is itself open, since the saturation can be written as a union of
the sets g - U where g € G, each of which is open since G acts continuously. This

implies that the map X — F(X),x +— Orb(x) is Borel showing that Eé is Borel
reducible to =r(x) (e.g., see [Gao09, Exercise 5.4.8].) m]

3. THE CONJUGACY RELATION ON THE SPACES OF LEFT-ORDERINGS

A group G is left-orderable if it admits a strict total ordering < such that g < h
implies fg < fhforall f,g,h € G.

Proposition 3.1. The following are equivalent:

(1) G is left-orderable.
(2) Thereis P C G such that
(@) P-PCP,
(b) PuP! =G\ {id}.
(3) There is a totally ordered set (Q), <) such that G — Aut(Q, <).

The subset P in (2) above is referred to as a positive cone. Every left-ordering <
of G determines a positive cone P. = {¢ € G : ¢ > 1}, conversely, every positive
cone P determines a left-ordering <p according to the rule ¢ <p h if and only
if ¢7'h € P. The identification of left-orderings with the corresponding positive
cones allows us to define the space of left-orderings as follows. Equip {0, 1} with
the discrete topology, {0, 1}© with the product topology, and set

LO(G) = {P c G : P is a positive cone } C {0, 1},

equipped with the subspace topology. Note that the sub-basic open sets in LO(G)
are the sets of the form U, = {P : ¢ € P}, where ¢ € G\ {id}. One can easily
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check that LO(G) is a closed subset of {0,1}C, hence a compact Polish space. We
regard LO(G) as a Polish G-space in the following precise sense. There is a G-
action by homeomorphisms on LO(G), given by ¢ - P = ¢Pg~!. As mentioned
in the introduction, we denote by Ejo(G) the orbit equivalence relation on LO(G)
induced by the conjugacy G-action.

3.1. Smoothness of E;;(G) and relatively convex subgroups. Let G be a group
equipped with a fixed left-ordering <. A subgroup C of G is convex relative to < if
whenever g,h € Cand f € Gwith g < f < h, then f € C. A subgroup C C G is
left-relatively convex in G (or relatively convex in G for short) if C is convex relative to
some left ordering of G.

Suppose that E, F are countable Borel equivalence relations on the Polish spaces
X and Y, respectively. Then the Borel map ¢: X — Y is a Borel homomorphism from
EtoFifxEy = @(x) F p(y). If the Borel homomorphism ¢: X — Y from E
to F is countable-to-one, then we say that ¢ is a weak Borel reduction (in symbols,
E <} F). As pointed out by the kind referee we can establish the following fact.

Proposition 3.2. If C is relatively convex in G, then Eo(C) < Eo(G). Thus, any prop-
erty of Eo(G) which is downward closed under weak Borel reductions (such as smoothness,
hyperfiniteness, a-amenability, treeability, etc.), passes to E\o (C) for every relatively convex
subgroup C < G.

Proof. Suppose that C is relatively convex in G. We let G act on the quotient G/C
by conjugation. A subgroup C is relatively convex in a left-orderable group G if
and only if there is a G-invariant linear order on G/C (e.g., see [ADvS18, Ber90]),
so fix such a linear order <g;c . Then for every left-order P € LO(C), define the
left-order P € LO(G) lexicographically by declaring

gepP = C<gic gC or (geCandgeP).

Le., P is the union of P and all positive cosets. Then the function LO(C) —
LO(G),P — P is one-to-one and C-equivariant. In particular, it is a one-to-one
weak Borel reduction from E(C) to Ejx(G). O

We leverage the dichotomy established in Proposition 2.2 to re-prove a special
case of Proposition 3.2: that the nonsmoothness of E,(G) is detected by relatively
convex subgroups. First, we need the following observation.

Proposition 3.3. Suppose that G is left-orderable, C < G is relatively convex, and Q is
condensed in LO(C). If P € LO(G) satisfies P N C = Q, then P is condensed in LO(G).

Proof. Fix a relatively convex C < G and a positive cone Q € LO(C) that is an
accumulation point in Orbc(Q). Also, let P € LO(G) with PN C = Q. We will
need the following.

Claim 3.3.1. Ifc € Cand P € N, Uy, for gi € G\ C, then cPc™ € NI, Uy,.

Proof of the Claim. Assume that ¢ € P. Since C is convex with respect to <p, we have
c<pgiforalli=1,...,n. So, fori =1,...,n we have c‘lgi € P, and, therefore,
c~gic € P. We obtain g; € cPc™! forall i < n, therefore, cPc™ € NI, Uy,.

Next, suppose that c € P~1. Then gi‘l <pcforalli=1,...,n since C is convex.
Therefore, g;c € P and thus ¢! gic € P, and we conclude as in the previous case,
completing the proof of the claim. O
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Now let P € N1, Uciﬂﬂ;”:l Uy, forsomecy,...,cp, € Cand g1,...,9m € G\ C.
Since P N C € Orbc (P N C)’ there exists ¢ € C such that

n
cPNC)c'#PNC and c(PNC)c e ﬂ u,..
i=1
Then cPc™! = ¢(PNC)c P Uc(P\C)et #P,and cPc' e N, U, N Ny U, by
the previous claim.

Corollary 3.4. For a left-orderable group G, the following are equivalent:
(1) Eio(G) is smooth.
(2) For every relatively convex C < G the conjugacy orbit equivalence relation Eio(C) is
smooth.

Proof. The only nontrivial implication is (1) = (2). Fix a relatively convex
C < G such that Ejx(C) is not smooth. It follows from Proposition 2.2 that there
is a positive cone Q € LO(C) that is an accumulation point in Orbc(Q). Since
C is relatively convex in G, we can find some positive cone P € LO(G) such that
Q = P N C. Proposition 3.3 yields that P is condensed in LO(G), hence Ej;(G) is
not smooth. O

Remark 3.5. Note that the condition on relatively convex subgroups in Corol-
lary 3.4(2) cannot be replaced with a condition on proper relatively convex sub-
groups, as the example below shows (see also [CC22]).

Consider the infinitely generated group!

1= xl__ll for1 <iand x;x; = x;jx; for [i — j| > 1).

Heo = (x1,%2,...| XiXi—1X;
Then, for every left-ordering of He, one can show the convex subgroups are
precisely the finitely generated subgroups of the form H; = (x1, x2, ..., x;) where
j = 1. This follows from first observing that every element H; can be represented
by a word of the form
a1 ,.02 aj

1X X

X 2 X

where a; € Z, by using repeated applications of x;x;-1 = x] xjand x;jx; = x;x; for

alli < j—1toshuffleall occurrences of x; to the right hand side of any representative
word. By writing every element of Hy in this form, it is straightforward to check
that H; is convex relative to every left-ordering of H.,. Moreover, there are no
other relatively convex subgroups aside from the subgroups H;. For if C were
such a subgroup, there would exist j such that H; < C < Hj+1. But then C should
descend to a convex subgroup of Hj1/H; = Z under the quotient map, which is
only possible if C = H; or C = Hj41 since there are no proper, nontrivial convex
subgroups in Z.

Now, one observes that the left-orders of Ho, are in bijective correspondence
with sequences (¢g;) € {0, 1}¥ that encode the signs of the generators. For example,
we canset x; > id if and only if €; = 1. It is not hard to see that the conjugacy action
of Hy, on the set LO(Ho ) yields an action of He, on {0, 1 given that x; - (¢;) is the
same as (€;) in every entry except the (j — 1)th position, which has been changed.

1This example also appears in [CC22, Example 2.10], where there is a typo in the group presentation
which is corrected here. We acknowledge Meng Che “Turbo” Ho for finding the typo and suggesting
how to fix it.
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Two left-orderings of Ho, are in the same orbit if and only if their corresponding
sequences in {0, 1}" are eventually equal.

Thus every relatively convex proper subgroup C < H, is a Tararin group,? so
LO(C) is finite, and yet Ej;(Ho) is not smooth.

3.2. Nonsmoothness and isolated points. Recall thata positive cone P determines
a Conradian left-ordering of Gif ¢, h € Pimplies g7'hg? € Pforall g, h € G [Nav10].
Given a positive cone P € LO(G), the Conradian soul of <p is the (unique) subgroup
C < G that is maximal with respect to the following conditions:

(1) C is convex relative to the ordering <p of G, and
(2) P N C determines a Conradian left-ordering of C.

We recall the following theorem proved via different techniques in both [Cla10]
and [Nav10].

Theorem 3.6. If the Conradian soul of <p is trivial, then P is condensed.

Thus if G admits a positive cone P having trivial Conradian soul, then E;(G) is
not smooth.

As a consequence of Theorem 3.6, every isolated point in LO(G) (that is, P €
LO(G) such that there exist g1,...,gn» € G\ {id} with {P} = U?=1 Uyg,) must have
nontrivial Conradian soul, as isolated points cannot be condensed. In fact, Navas
shows much more.

Theorem 3.7 ([Nav10, Proposition 4.9]). Suppose that P is an isolated point and let
C < G be its Conradian soul. Then C is a Tararin group, so LO(C) = {Q1, ..., Qo] for
some k > 0; moreover, if G is not a Tararin group, then there exists i € {1, ... ,2KY such
that (P \ C) U Q; is a condensed point of LO(G).

As an immediate consequence, we apply Proposition 2.2 and observe the fol-
lowing corollary.

Corollary 3.8. Suppose that G is not a Tararin group. If LO(G) contains an isolated
point, then E\o(G) is not smooth.

3.3. The free part of LO(G)/G. For a left-orderable group G denote by LO((G))
the free part of its conjugacy action. That is, we set

LO((G)) = {P € LO(G) : Vg # 1(¢"'Pg # P)}.
Note that for any P € LO((G)), the orbit Orb(P) is infinite.
Proposition 3.9. If LO((G)) # 0, then Ex(G) is not smooth.

Proof. Suppose P € LO((G)). By Proposition 2.2, it suffices to show that P is
condensed. Let P € (N, U, which is a basic open neighborhood of P. And
assume that g1 <p --- <p g, without loss of generality. Then, we claim that

81'8ig1€P
fori=1,...,n. For i =1, it follows from the assumption that P € Uy,. Fori > 2,
g1 <p gi implies that 1 <p g7 l¢;, whence 1 <p 81 l¢;¢1 because P is a semigroup.
Therefore, fori =1, ...,n, we have

gi € s1Pgit.

2Recall that a left-orderable group is Tararin if it admits exactly finitely many left-orders.
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This shows that g1P g7 L e Orb(P)N N, Ug,;. Since P € LO((G)), we conclude that
g7'Pg1 # P, therefore P is condensed. O

3.4. Baumslag—Solitar groups. Fix an integer n. The Baumslag-Solitar group
BS(1,n) is given by the presentation {a,b | bab=! = a"). There is an injective
homomorphism p: BS(1,7n) — Homeo, (R) defined by setting

p@)(x) = x +1,
p(b)(x) = nx.

The following construction of left-orderings on BS(1,n) is due to Smirnov
[Smi66]. For any a € R\ Q we can define a corresponding P, € LO(BS(1,n))
by declaring

g§€P, = p(9(a)>a.

Note that the map R\ Q — LO(BS(1, n)), @ = P, is injective. In fact, for different
irrational numbers o < 8, we can choose some g € BS(1, n) such that
s
p(g)=n"x+ o
with r > 0, and having fixed point g = m strictly between o and . This choice
is always possible because the range of p consists of precisely those functions of
the form f(x) = n"x + % with 7,5,¢t € Z. Moreover, we can always choose t and
r so that the denominator D = n!(1 — n") satisfies 1/|D| < B — a, therefore, the
interval (a, f) must contain a point of the form 4, for some m € Z. Then, since
r > 0,wehave p(g)(a) < aforalla < gq,and p(g)(B) > pforall > g. This means
that ¢ € Pg \ P,, showing that the function a — P, is injective.
It is well known that the conjugacy action BS(1,1n) —~ LO(BS(1,n)) is not
generically ergodic, however with our new technique we can easily prove the
following corollary.

Corollary 3.10. For n > 1 and G = BS(1, n), the conjugacy relation Eo(G) is not
smooth.

Proof. By Proposition 3.9, it suffices to prove that for any a € R \ Q, the positive
cone P, belongs to the free part of the conjugacy action. To see this, assume that
hPyh™ = P,. One checks that hPyh™ = Py(y(a). Therefore, we have Pp)(a) = Pa
and, since the map a +— P, is injective, it yields that p(h)(a) = a. However, for
every h # 1, the order-preserving homeomorphism p(h) has only rational fixed
points. Therefore, it must hold that / is the group identity as desired. O

It is worth pointing out that Corollary 3.10 also follows from Proposition 2.2
and the work of Rivas and Tessera [RT16, Proposition 2.12]. However, our analysis
of the free part of BS(1,2) ~ LO(BS(1,2)) allows us to further settle the Borel
complexity of E;o(BS(1,2)). Recall that an equivalence relation E is hyperfinite if it
is the union of an increasing sequence of finite Borel equivalence relations.

Corollary 3.11. Ex(BS(1,2)) is hypetfinite.

Proof. Let G = BS(1,2) and let Y = {P, | @« € R\ Q} be the set of Smirnov’s
left-orders. Rivas [Riv10, Theorem 4.2] establishes that LO(G) \ Y is countable,
therefore, Y is Borel. Moreover, Y is closed under conjugation. Therefore, Y is a
free standard Borel G-space with the standard Borel structure induced by LO(G).
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(a) by (8) by

Ficure 1. The graphs of the functions b; and b} on the interval I

It follows that Ejo(G) ~p EX, and the latter equivalence relation is hyperfinite by
[CIM*23, Corollary 7.4]. O

To the best of our knowledge Corollary 3.11 provides the first example of
finitely generated left-orderable group, whose conjugacy equivalence relation is
not smooth, yet hyperfinite.

3.5. Thompson's group F. Thompson’s group F may be defined by the presenta-
tion
F=(a,b|[ab™",a" ba],[ab~",a"*ba®]).

There is an injective homomorphism p: F — PL, ([0, 1]) whose image consists of
all piecewise linear homeomorphisms of [0, 1] having dyadic rational breakpoints,
and whose linear segments have slopes that are integral powers of two.

Given an interval [ = [2%, %l] c [0, 1], we can define functions b;r, bI_: [0,1] —
[0,1] that lie in the image of p and whose support is equal to I, as follows. First,
the function b} is given by

t ifo<t<4f,

2-5 HE<t<fege
bi(t) = 1E+2ql+2 ifzﬂq+2;wéfs%+qu+“

M+ ln kg <t<by

t if 2 <t <1,

It is clear from this description that b} lies in the image of p. On the interval I, the
graph of b} appears as in Figure 1(A). We can analogously define b, which is the
identity outside of I and whose graph appears as in Figure 1(B).

Proposition 3.12. Let S C [0, 1] be finite, and choose x, y € [0, 1]\ S with x # y. Then
there exists ¢ € F such that p(g)(s) =s forall s € S, p(g)(x) > x, and p(g)(y) < y.
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Proof. As the dyadic rational numbers are dense, we may choose disjoint intervals
I, ] with dyadic rational endpoints, satisfying NS = JNS = @, with x € [ and
y € ]. Now set f = b} o by, then f satisfies f(s) = s forall s € S, and f(x) > x
while f(y) < y. Moreover, f is in the image of p, so the proposition follows. O

Fix an enumeration e: N — QN (0, 1), writing e(i) = r;. Every enumeration of
Q can be used to define a positive cone P, C F in the usual way: given ¢ € F, let r;
denote the first rational number in the enumeration satisfying p(g)(r;) # r;. Then
declare g € P, if and only if p(g)(r;) > r;.

Theorem 1.2 now follows from the following proposition.

Proposition 3.13. For every enumeration e: N — QN (0, 1), we have P, € LO((F)).

Proof. Leth € F\{id} and suppose that p(h)(r;) = r;foralli < N, while p(h)(ry) #
rN. Set S = {rg,...,rn-1), x = ry and y = p(h)(rn). Apply Proposition 3.12 to
arrive at ¢ € F with p(g)(r;) = r; for all i < N and p(g)(rn) > rn, so that
g € P,. On the other hand, p(h‘lgh)(ri) =r;foralli < N, while p(g)(p(h)(rn)) <
p(h)(rn) holds by our choice of g, which is equivalent to p(h‘lgh)(rN) < ry. Thus
h=lgh ¢ P,, meaning ¢ ¢ hP.h~'. Thus P, # hP.h~1. o

From this, we conclude with the following corollary.

Corollary 3.14. Ej(F) is not smooth.

4. OPEN PROBLEMS

In a previous draft of this paper we asked whether Ej, ( BS(1, n)) is hyperfinite
for n > 2. This question was addressed by Ho, Le, and Rossegger [HLR24], who
gave an alternative proof of Theorem 1.1 and answered our question affirmatively.

Therefore, it is natural to ask if our methods can be used to analyze other solvable
groups, and more generally by the following question.

Question 4.1. What is the Borel complexity of Eo(G), for G abelian-by-abelian?

Regarding Thompson's group F and the complexity of Ej, (F), very little is known
beyond Theorem 1.2. In particular, we ask the following question.

Question 4.2. Is Ej,(F) hyperfinite?

Question 4.2 is related to two famous problems: whether Thompson’s group
F is amenable, and whether every countable Borel equivalence relation induced
by the action of an amenable group is hyperfinite, a long-standing open question
posed by Benjamin Weiss. A negative answer to Question 4.2 would imply that the
amenability of F and a positive answer to Weiss question are mutually exclusive.
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