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CONDENSATION AND LEFT-ORDERABLE GROUPS

FILIPPO CALDERONI AND ADAM CLAY

(Communicated by Vera Fischer)

Abstract. We discuss condensed left-orderings and develop new techniques to
show that the conjugacy relation on the space of left-orderings is not smooth.
These techniques apply to the solvable Baumslag Solitar groups BS(1, n) and to
Thompson’s group F.

1. Introduction
The study of definable quotients of Polish spaces is one of the main themes

in modern descriptive set theory, with the primary goal being to understand the
Borel structure of Polish spaces modulo analytic equivalence relations. A funda-
mental question is whether the quotient space, equipped with the quotient Borel
structure, is standard. The first trace of such an analysis dates back to the work of
Glimm [Gli61] and Effros [Eff65].

If G is a countable group acting continuously on the Polish space X, we denote
by X/G the space of orbits, endowed with the quotient Borel structure. In this
case X/G is standard if and only if the orbit equivalence relation on X induced by
the G-action is smooth. That is, if and only if there is a Borel map θ : X → R such
that x1 , x2 lie in the same G-orbit if and only if θ(x1) ! θ(x2). It is owing to this
characterization that for the remainder of the article we assume that all groups are
countable unless otherwise indicated.

Following this trend, a question posed by Deroin, Navas, and Rivas [DNR16]
raised the problem of whether the space of left-orderings LO(G) of a left-orderable
group G modulo the conjugacy G-action is always standard, or equivalently,
whether or not the orbit equivalence relation is always smooth. Using descrip-
tive set theory to demonstrate nonsmoothness, the authors show that LO(G)/G is
not a standard Borel space in many cases; for example, when G is a nonabelian free
group or a free product of left-orderable groups [CC22, CC23].

Denote the equivalence relation induced by the conjugacy action of a group G on
its space of left-orderings by Elo(G), and let BS(1, n) denote the Baumslag–Solitar
group. In this article, we show the following.
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Theorem 1.1.
(1) For all n ≥ 2, Elo(BS(1, n)) is not smooth.
(2) The conjugacy equivalence relation Elo(BS(1, 2)) is Borel bi-reducible with E0.

The novelty of Theorem 1.1 is twofold. Theorem 1.1(1) provides the first ex-
amples of left-orderable solvable groups G with nonstandard quotient LO(G)/G.
Moreover, Theorem 1.1(2) shows the first example of a finitely generated group G
for which Elo(G) is not smooth, yet hyperfinite.

Using similar techniques, we also show how work of Navas implies that Elo(G)
is not smooth whenever LO(G) contains isolated points, and are able to tackle
Thompson’s group F in a similar manner.

Theorem 1.2. For Thompson’s group F, the conjugacy relation Elo(F) is not smooth.

Central to our analysis is the idea of condensed left-orderings in LO(G), which
are orderings that can be approximated by their conjugates. Their existence turns
out to be equivalent to nonsmoothness of Elo(G) (Proposition 2.2); moreover, they
can be detected by analyzing LO((G)), the free part of the conjugacy G-action on
LO(G). (See Proposition 3.9.)

2. Condensed points
A Polish space is a separable and completely metrizable topological space. For a

Polish space X we denote by F(X) the Effros standard Borel space of closed subsets
of X. The standard Borel structure on F(X) is generated by the sets

FU ! {F ∈ F(X) | F ∩U ! ∅}
for all open U ⊆ X.

An equivalence relation E on the Polish space X is Borel if E ⊆ X × X is a Borel
subset of X × X. Most of the Borel equivalence relations that we will consider
in this paper arise from group actions as follows. Let G be a countable discrete
group. Then a Polish G-space is a Polish space X equipped with a continuous action
(g , x) (→ g · x of G on X. The corresponding orbit equivalence relation on X, which
we will denote by EX

G , is a Borel equivalence relation with countable classes. Let X
be a fixed Polish G-space. For a subgroup H ≤ G, denote OrbH (x) the orbit of x
under the induced H-action. Whenever G ! H, we let Orb(x) ! OrbG (x).

Recall that a Borel equivalence relation E is smooth if there exist a standard Borel
space Y and a Borel map θ : X → Y such that

x1 E x2 ⇐⇒ θ(x1) ! θ(x2).

An equivalence relation on a Polish space is generically ergodic if every invariant
set with the Baire property is meager or comeager. Whenever X is a Polish G-space,
the following are equivalent:

(i) EX
G is generically ergodic.

(ii) There is x ∈ X such that Orb(x) is dense in X.
Generic ergodicity is an obstruction to smoothness in many cases. In this man-

uscript, we will use the following fact:

Proposition 2.1 ([Hjo00, Corollary 3.5]). Suppose that G is a countable group and X
is a Polish G-space with no isolated points. If EX

G is generically ergodic, then EX
G is not

smooth.
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Following the terminology of Osin [Osi21b, Osi21a], we say that a point x ∈ X
is condensed if it is an accumulation point of Orb(x).

The following proposition is essentially due to Osin [Osi21b, Proposition 2.7],
who analyzed condensation in the Polish space of finitely generated marked
groups. Since we could not find the proof in the literature, we give the proof
of this general fact below.

Proposition 2.2. Suppose that G is a countable group and X is a Polish G-space. Then
the following are equivalent:

(1) EX
G is smooth.

(2) There are no condensed points in X.

Proof. Suppose that EX
G is smooth and let x be any element of X. Consider the

closed G-invariant set Y ! Orb(x). If EX
G is smooth, then EY

G is also smooth. As
Orb(x) is a dense G-orbit in Y, the action G ! Y is generically ergodic, so there
must be an isolated point in x0 ∈ Y. The point x0 cannot be an element of Y\Orb(x)
since these points are nonisolated by definition, and so x0 ∈ Orb(x). Now as the
G-action is continuous, every point of Orb(x), and, in particular, x itself must be
isolated in the subspace topology. It follows that x cannot be a condensed point.

On the other hand, suppose that no x ∈ X is a condensed point. Then for every
x ∈ X, the subspace topology on Orb(x) is discrete, and since Orb(x) is countable
it is therefore Polish. By Alexandrov’s theorem, Orb(x) must be a Gδ set for all
x ∈ X. (See [Kec95, Theorem 3.11].) Further, note that the saturation of an arbitrary
open set U ⊂ X is itself open, since the saturation can be written as a union of
the sets g · U where g ∈ G, each of which is open since G acts continuously. This
implies that the map X → F(X), x (→ Orb(x) is Borel showing that EX

G is Borel
reducible to !F(X) (e.g., see [Gao09, Exercise 5.4.8].) !

3. The conjugacy relation on the spaces of left-orderings
A group G is left-orderable if it admits a strict total ordering < such that g < h

implies f g < f h for all f , g , h ∈ G.

Proposition 3.1. The following are equivalent:
(1) G is left-orderable.
(2) There is P ⊆ G such that

(a) P · P ⊆ P,
(b) P - P−1 ! G \ {id}.

(3) There is a totally ordered set (Ω, <) such that G ↪→ Aut(Ω, <).

The subset P in (2) above is referred to as a positive cone. Every left-ordering <
of G determines a positive cone P< ! {g ∈ G : g > 1}, conversely, every positive
cone P determines a left-ordering <P according to the rule g <P h if and only
if g−1h ∈ P. The identification of left-orderings with the corresponding positive
cones allows us to define the space of left-orderings as follows. Equip {0, 1} with
the discrete topology, {0, 1}G with the product topology, and set

LO(G) ! {P ⊂ G : P is a positive cone } ⊂ {0, 1}G ,
equipped with the subspace topology. Note that the sub-basic open sets in LO(G)
are the sets of the form Ug ! {P : g ∈ P}, where g ∈ G \ {id}. One can easily
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check that LO(G) is a closed subset of {0, 1}G , hence a compact Polish space. We
regard LO(G) as a Polish G-space in the following precise sense. There is a G-
action by homeomorphisms on LO(G), given by g · P ! gPg−1. As mentioned
in the introduction, we denote by Elo(G) the orbit equivalence relation on LO(G)
induced by the conjugacy G-action.

3.1. Smoothness of Elo(G) and relatively convex subgroups. Let G be a group
equipped with a fixed left-ordering <. A subgroup C of G is convex relative to < if
whenever g , h ∈ C and f ∈ G with g < f < h, then f ∈ C. A subgroup C ⊆ G is
left-relatively convex in G (or relatively convex in G for short) if C is convex relative to
some left ordering of G.

Suppose that E, F are countable Borel equivalence relations on the Polish spaces
X and Y, respectively. Then the Borel map ϕ : X → Y is a Borel homomorphism from
E to F if x E y !⇒ ϕ(x) F ϕ(y). If the Borel homomorphism ϕ : X → Y from E
to F is countable-to-one, then we say that ϕ is a weak Borel reduction (in symbols,
E ≤w

B F). As pointed out by the kind referee we can establish the following fact.

Proposition 3.2. If C is relatively convex in G, then Elo(C) ≤w
B Elo(G). Thus, any prop-

erty of Elo(G) which is downward closed under weak Borel reductions (such as smoothness,
hyperfiniteness, α-amenability, treeability, etc.), passes to Elo(C) for every relatively convex
subgroup C ≤ G.

Proof. Suppose that C is relatively convex in G. We let G act on the quotient G/C
by conjugation. A subgroup C is relatively convex in a left-orderable group G if
and only if there is a G-invariant linear order on G/C (e.g., see [ADvS18, Ber90]),
so fix such a linear order <G/C . Then for every left-order P ∈ LO(C), define the
left-order P̄ ∈ LO(G) lexicographically by declaring

g ∈ P̄ ⇐⇒ C <G/C gC or (g ∈ C and g ∈ P).

I.e., P̄ is the union of P and all positive cosets. Then the function LO(C) →
LO(G), P → P̄ is one-to-one and C-equivariant. In particular, it is a one-to-one
weak Borel reduction from Elo(C) to Elo(G). !

We leverage the dichotomy established in Proposition 2.2 to re-prove a special
case of Proposition 3.2: that the nonsmoothness of Elo(G) is detected by relatively
convex subgroups. First, we need the following observation.

Proposition 3.3. Suppose that G is left-orderable, C ≤ G is relatively convex, and Q is
condensed in LO(C). If P ∈ LO(G) satisfies P ∩ C ! Q, then P is condensed in LO(G).

Proof. Fix a relatively convex C ≤ G and a positive cone Q ∈ LO(C) that is an
accumulation point in OrbC (Q). Also, let P ∈ LO(G) with P ∩ C ! Q. We will
need the following.

Claim 3.3.1. If c ∈ C and P ∈ ⋂n
i!1 Ugi for gi ∈ G \ C, then cPc−1 ∈ ⋂n

i!1 Ugi .

Proof of the Claim. Assume that c ∈ P. Since C is convex with respect to <P , we have
c <P gi for all i ! 1, . . . , n. So, for i ! 1, . . . , n we have c−1 gi ∈ P, and, therefore,
c−1 gi c ∈ P. We obtain gi ∈ cPc−1 for all i ≤ n, therefore, cPc−1 ∈ ⋂n

i!1 Ugi .
Next, suppose that c ∈ P−1. Then g−1

i <P c for all i ! 1, . . . , n since C is convex.
Therefore, gi c ∈ P and thus c−1 gi c ∈ P, and we conclude as in the previous case,
completing the proof of the claim. !
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Now let P ∈ ⋂n
i!1 Uci ∩

⋂m
j!1 Ug j for some c1, . . . , cn ∈ C and g1 , . . . , gm ∈ G \C.

Since P ∩ C ∈ OrbC (P ∩ C)′ there exists c ∈ C such that

c(P ∩ C)c−1 ! P ∩ C and c(P ∩ C)c−1 ∈
n⋂

i!1
Uci .

Then cPc−1 ! c(P ∩ C)c−1 ∪ c(P \ C)c−1 ! P, and cPc−1 ∈ ⋂n
i!1 Uci ∩

⋂m
j!1 Ugi by

the previous claim. !

Corollary 3.4. For a left-orderable group G, the following are equivalent:
(1) Elo(G) is smooth.
(2) For every relatively convex C ≤ G the conjugacy orbit equivalence relation Elo(C) is

smooth.

Proof. The only nontrivial implication is (1) !⇒ (2). Fix a relatively convex
C ≤ G such that Elo(C) is not smooth. It follows from Proposition 2.2 that there
is a positive cone Q ∈ LO(C) that is an accumulation point in OrbC (Q). Since
C is relatively convex in G, we can find some positive cone P ∈ LO(G) such that
Q ! P ∩ C. Proposition 3.3 yields that P is condensed in LO(G), hence Elo(G) is
not smooth. !

Remark 3.5. Note that the condition on relatively convex subgroups in Corol-
lary 3.4(2) cannot be replaced with a condition on proper relatively convex sub-
groups, as the example below shows (see also [CC22]).

Consider the infinitely generated group1
H∞ ! 〈x1 , x2, . . . | xi xi−1x−1

i ! x−1
i−1 for 1 < i and xi x j ! xj xi for |i − j | > 1〉.

Then, for every left-ordering of H∞, one can show the convex subgroups are
precisely the finitely generated subgroups of the form Hj ! 〈x1 , x2, . . . , xj〉 where
j ≥ 1. This follows from first observing that every element Hj can be represented
by a word of the form

xa1
1 xa2

2 . . . x
aj

j

where ai ∈ Z, by using repeated applications of xj x j−1 ! x−1
j−1xj and xj xi ! xi x j for

all i < j−1 to shuffle all occurrences of xj to the right hand side of any representative
word. By writing every element of H∞ in this form, it is straightforward to check
that Hj is convex relative to every left-ordering of H∞. Moreover, there are no
other relatively convex subgroups aside from the subgroups Hj . For if C were
such a subgroup, there would exist j such that Hj ≤ C ≤ Hj+1. But then C should
descend to a convex subgroup of Hj+1/Hj " Z under the quotient map, which is
only possible if C ! Hj or C ! Hj+1 since there are no proper, nontrivial convex
subgroups in Z.

Now, one observes that the left-orders of H∞ are in bĳective correspondence
with sequences (εi ) ∈ {0, 1}N that encode the signs of the generators. For example,
we can set xi > id if and only if εi ! 1. It is not hard to see that the conjugacy action
of H∞ on the set LO(H∞) yields an action of H∞ on {0, 1}N given that xj · (εi ) is the
same as (εi) in every entry except the ( j − 1)th position, which has been changed.

1This example also appears in [CC22, Example 2.10], where there is a typo in the group presentation
which is corrected here. We acknowledge Meng Che “Turbo” Ho for finding the typo and suggesting
how to fix it.
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Two left-orderings of H∞ are in the same orbit if and only if their corresponding
sequences in {0, 1}N are eventually equal.

Thus every relatively convex proper subgroup C ≤ H∞ is a Tararin group,2 so
LO(C) is finite, and yet Elo(H∞) is not smooth.

3.2. Nonsmoothness and isolated points. Recall that a positive cone P determines
a Conradian left-ordering of G if g , h ∈ P implies g−1h g2 ∈ P for all g , h ∈ G [Nav10].
Given a positive cone P ∈ LO(G), the Conradian soul of <P is the (unique) subgroup
C ≤ G that is maximal with respect to the following conditions:

(1) C is convex relative to the ordering <P of G, and
(2) P ∩ C determines a Conradian left-ordering of C.

We recall the following theorem proved via different techniques in both [Cla10]
and [Nav10].
Theorem 3.6. If the Conradian soul of <P is trivial, then P is condensed.

Thus if G admits a positive cone P having trivial Conradian soul, then Elo(G) is
not smooth.

As a consequence of Theorem 3.6, every isolated point in LO(G) (that is, P ∈
LO(G) such that there exist g1 , . . . , gn ∈ G \ {id} with {P} ! ⋃n

i!1 Ugi ) must have
nontrivial Conradian soul, as isolated points cannot be condensed. In fact, Navas
shows much more.
Theorem 3.7 ([Nav10, Proposition 4.9]). Suppose that P is an isolated point and let
C ≤ G be its Conradian soul. Then C is a Tararin group, so LO(C) ! {Q1 , . . . ,Q2k } for
some k > 0; moreover, if G is not a Tararin group, then there exists i ∈ {1, . . . , 2k } such
that (P \ C) ∪ Qi is a condensed point of LO(G).

As an immediate consequence, we apply Proposition 2.2 and observe the fol-
lowing corollary.

Corollary 3.8. Suppose that G is not a Tararin group. If LO(G) contains an isolated
point, then Elo(G) is not smooth.

3.3. The free part of LO(G)/G. For a left-orderable group G denote by LO((G))
the free part of its conjugacy action. That is, we set

LO((G)) ! {P ∈ LO(G) : ∀g ! 1(g−1Pg ! P)}.
Note that for any P ∈ LO((G)), the orbit Orb(P) is infinite.

Proposition 3.9. If LO((G)) ! ∅, then Elo(G) is not smooth.

Proof. Suppose P ∈ LO((G)). By Proposition 2.2, it suffices to show that P is
condensed. Let P ∈ ⋂n

i!1 Ugi , which is a basic open neighborhood of P. And
assume that g1 <P · · · <P gn without loss of generality. Then, we claim that

g−1
1 gi g1 ∈ P

for i ! 1, . . . , n. For i ! 1, it follows from the assumption that P ∈ Ug1 . For i ≥ 2,
g1 <P gi implies that 1 <P g−1

1 gi , whence 1 <P g−1
1 gi g1 because P is a semigroup.

Therefore, for i ! 1, . . . , n, we have
gi ∈ g1Pg−1

1 .

2Recall that a left-orderable group is Tararin if it admits exactly finitely many left-orders.
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This shows that g1Pg−1
1 ∈ Orb(P)∩⋂n

i!1 Ugi . Since P ∈ LO((G)), we conclude that
g−1

1 Pg1 ! P, therefore P is condensed. !

3.4. Baumslag–Solitar groups. Fix an integer n. The Baumslag–Solitar group
BS(1, n) is given by the presentation 〈a , b | bab−1 ! an〉. There is an injective
homomorphism ρ : BS(1, n) → Homeo+(R) defined by setting

ρ(a)(x) ! x + 1,
ρ(b)(x) ! nx.

The following construction of left-orderings on BS(1, n) is due to Smirnov
[Smi66]. For any α ∈ R \ Q we can define a corresponding Pα ∈ LO

(
BS(1, n)

)

by declaring
g ∈ Pα ⇐⇒ ρ(g)(α) > α.

Note that the map R \ Q→ LO(BS(1, n)), α (→ Pα is injective. In fact, for different
irrational numbers α < β, we can choose some g ∈ BS(1, n) such that

ρ(g) ! nr x +
s

nt

with r > 0, and having fixed point q ! s
nt (1−nr ) strictly between α and β. This choice

is always possible because the range of ρ consists of precisely those functions of
the form f (x) ! nr x + s

nt with r, s , t ∈ Z. Moreover, we can always choose t and
r so that the denominator D ! nt (1 − nr ) satisfies 1/|D | < β − α, therefore, the
interval (α, β) must contain a point of the form m

D , for some m ∈ Z. Then, since
r > 0, we have ρ(g)(α) < α for all α < q, and ρ(g)(β) > β for all β > q. This means
that g ∈ Pβ \ Pα, showing that the function α (→ Pα is injective.

It is well known that the conjugacy action BS(1, n) ! LO(BS(1, n)) is not
generically ergodic, however with our new technique we can easily prove the
following corollary.

Corollary 3.10. For n > 1 and G ! BS(1, n), the conjugacy relation Elo(G) is not
smooth.

Proof. By Proposition 3.9, it suffices to prove that for any α ∈ R \ Q, the positive
cone Pα belongs to the free part of the conjugacy action. To see this, assume that
hPαh−1 ! Pα. One checks that hPαh−1 ! Pρ(h)(α). Therefore, we have Pρ(h)(α) ! Pα
and, since the map α (→ Pα is injective, it yields that ρ(h)(α) ! α. However, for
every h ! 1, the order-preserving homeomorphism ρ(h) has only rational fixed
points. Therefore, it must hold that h is the group identity as desired. !

It is worth pointing out that Corollary 3.10 also follows from Proposition 2.2
and the work of Rivas and Tessera [RT16, Proposition 2.12]. However, our analysis
of the free part of BS(1, 2) ! LO

(
BS(1, 2)

)
allows us to further settle the Borel

complexity of Elo(BS(1, 2)). Recall that an equivalence relation E is hyperfinite if it
is the union of an increasing sequence of finite Borel equivalence relations.

Corollary 3.11. Elo(BS(1, 2)) is hyperfinite.

Proof. Let G ! BS(1, 2) and let Y ! {Pα | α ∈ R \ Q} be the set of Smirnov’s
left-orders. Rivas [Riv10, Theorem 4.2] establishes that LO(G) \ Y is countable,
therefore, Y is Borel. Moreover, Y is closed under conjugation. Therefore, Y is a
free standard Borel G-space with the standard Borel structure induced by LO(G).
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(a) b+I (b) b−I

Figure 1. The graphs of the functions b+I and b+I on the interval I

It follows that Elo(G) ∼B EY
G , and the latter equivalence relation is hyperfinite by

[CJM+23, Corollary 7.4]. !

To the best of our knowledge Corollary 3.11 provides the first example of
finitely generated left-orderable group, whose conjugacy equivalence relation is
not smooth, yet hyperfinite.

3.5. Thompson’s group F. Thompson’s group F may be defined by the presenta-
tion

F ! 〈a , b | [ab−1 , a−1ba], [ab−1 , a−2ba2]〉.
There is an injective homomorphism ρ : F → PL+([0, 1]) whose image consists of
all piecewise linear homeomorphisms of [0, 1] having dyadic rational breakpoints,
and whose linear segments have slopes that are integral powers of two.

Given an interval I ! [ p
2q ,

p+1
2q ] ⊂ [0, 1], we can define functions b+I , b

−
I : [0, 1] →

[0, 1] that lie in the image of ρ and whose support is equal to I, as follows. First,
the function b+I is given by

b+I (t) !



t if 0 ≤ t ≤ p
2q ,

2t − p
2q if p

2q ≤ t ≤ p
2q + 1

2q+2 ,
t + 1

2q+2 if p
2q + 1

2q+2 ≤ t ≤ p
2q + 1

2q+1 ,
1
2 t + p+1

qq+1 if p
2q + 1

2q+1 ≤ t ≤ p+1
2q ,

t if p+1
2q ≤ t ≤ 1.

It is clear from this description that b+I lies in the image of ρ. On the interval I, the
graph of b+I appears as in Figure 1(A). We can analogously define b−I , which is the
identity outside of I and whose graph appears as in Figure 1(B).

Proposition 3.12. Let S ⊂ [0, 1] be finite, and choose x , y ∈ [0, 1] \ S with x ! y. Then
there exists g ∈ F such that ρ(g)(s) ! s for all s ∈ S, ρ(g)(x) > x, and ρ(g)(y) < y.
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Proof. As the dyadic rational numbers are dense, we may choose disjoint intervals
I , J with dyadic rational endpoints, satisfying I ∩ S ! J ∩ S ! ∅, with x ∈ I and
y ∈ J. Now set f ! b+I ◦ b−J , then f satisfies f (s) ! s for all s ∈ S, and f (x) > x
while f (y) < y. Moreover, f is in the image of ρ, so the proposition follows. !

Fix an enumeration e : N → Q ∩ (0, 1), writing e (i) ! ri . Every enumeration of
Q can be used to define a positive cone Pe ⊂ F in the usual way: given g ∈ F, let ri
denote the first rational number in the enumeration satisfying ρ(g)(ri ) ! ri . Then
declare g ∈ Pe if and only if ρ(g)(ri ) > ri .

Theorem 1.2 now follows from the following proposition.

Proposition 3.13. For every enumeration e : N→ Q ∩ (0, 1), we have Pe ∈ LO((F)).

Proof. Let h ∈ F\{id} and suppose that ρ(h)(ri ) ! ri for all i < N , while ρ(h)(rN ) !
rN . Set S ! {r0 , . . . , rN−1}, x ! rN and y ! ρ(h)(rN ). Apply Proposition 3.12 to
arrive at g ∈ F with ρ(g)(ri ) ! ri for all i < N and ρ(g)(rN ) > rN , so that
g ∈ Pe . On the other hand, ρ(h−1 gh)(ri ) ! ri for all i < N , while ρ(g)(ρ(h)(rN )) <
ρ(h)(rN ) holds by our choice of g, which is equivalent to ρ(h−1 gh)(rN ) < rN . Thus
h−1 gh # Pe , meaning g # hPe h−1. Thus Pe ! hPe h−1. !

From this, we conclude with the following corollary.

Corollary 3.14. Elo(F) is not smooth.

4. Open problems
In a previous draft of this paper we asked whether Elo

(
BS(1, n)

)
is hyperfinite

for n > 2. This question was addressed by Ho, Le, and Rossegger [HLR24], who
gave an alternative proof of Theorem 1.1 and answered our question affirmatively.

Therefore, it is natural to ask if our methods can be used to analyze other solvable
groups, and more generally by the following question.

Question 4.1. What is the Borel complexity of Elo(G), for G abelian-by-abelian?

Regarding Thompson’s group F and the complexity of Elo(F), very little is known
beyond Theorem 1.2. In particular, we ask the following question.

Question 4.2. Is Elo(F) hyperfinite?

Question 4.2 is related to two famous problems: whether Thompson’s group
F is amenable, and whether every countable Borel equivalence relation induced
by the action of an amenable group is hyperfinite, a long-standing open question
posed by Benjamin Weiss. A negative answer to Question 4.2 would imply that the
amenability of F and a positive answer to Weiss question are mutually exclusive.
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