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Abstract

Large language models (LLMs) have achieved
impressive performance but face high compu-
tational costs and latency, limiting their de-
ployment in resource-constrained settings. In
contrast, small-scale LLMs (SLMs) are more
efficient yet struggle to capture evolving real-
world knowledge. Retrieval-augmented genera-
tion (RAG) helps by integrating external knowl-
edge, but imperfect retrieval can introduce dis-
tracting noise that misleads SLMs. We pro-
pose ROSERAG, a robust RAG framework for
SLMs via Margin-aware Preference Optimiza-
tion. ROSERAG employs multi-turn prompt-
ing for detailed reasoning, rejection sampling
for high-quality explanations, and contrastive
preference selection to refine responses by max-
imizing the likelihood gap between preferred
and non-preferred outputs. By integrating these
components into a margin-aware optimization
process, ROSERAG robustly enhances the ac-
curacy and reliability of SLMs for RAG appli-
cations. Extensive experiments on three open-
domain question answering benchmarks indi-
cate that our innovative ROSERAG surpasses
state-of-the-art baselines significantly.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in a wide array of natural
language processing tasks (Achiam et al., 2023;
Team et al., 2024; Dubey et al., 2024; Guo et al.,
2025). However, these powerful models are typ-
ically large-scale, requiring substantial computa-
tional resources for training, and often incurring
high latency during inference (Zhou et al., 2024).
Such limitations serve as a key hurdle that prevents
these models from being deployed in real prac-
tice. In contrast, small-scale LLMs (SLMs) offer
a viable alternative by providing high utility while
remaining computationally efficient and easier to
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Figure 1: Pilot studies. Fig. 1a: Ground Truth Doc-
uments with varying amounts of noisy documents.
Fig. 1b: Performance w.r.t. varying numbers of re-
trieved documents. Both the two sub-figures are results
with Qwen2.5-1.5B-Instruct on HotPotQA.

deploy in resource-constrained environments (Lu
et al., 2024; Vernikos et al., 2024).

Despite their efficiency, SLMs are fundamen-
tally constrained by their limited capacity. During
pre-training, they cannot fully capture the vast and
continuously evolving body of real-world knowl-
edge (Ovadia et al., 2024). As a result, SLMs of-
ten struggle in real-world scenarios where accurate
responses depend on newly emerging or dynam-
ically updated information. Retrieval-augmented
generation (RAG) (Lewis et al., 2020) mitigates
this limitation by retrieving a top-K set of semanti-
cally relevant documents at inference time, which
are then conditioned upon during response gen-
eration. By decoupling knowledge retrieval from
parametric memory, RAG enhances the adaptabil-
ity of SLMs, improving response fidelity while ob-
viating the need for expensive and frequent model
retraining (Wang et al., 2023; Asai et al., 2024; Xu
et al., 2024b). However, one inherent challenge for
RAG pipelines is the imperfect retrieval informa-

tion. The top-K documents returned by a retriever
may include irrelevant or noisy information, which
can mislead small-scale LLMs that are not robust
enough to effectively filter out such distractions. As
shown in Fig. 1, the susceptibility of SLMs to re-
trieval noise highlights a critical bottleneck in RAG
pipelines. This limitation highlights the necessity
of developing more robust mechanisms to enhance



SLMs’ resilience against spurious retrieval artifacts
and improve their reliability in downstream tasks.

Several existing works have sought to enhance
the robustness of RAG systems. Prompting-based

approaches (Wang et al., 2024a,b) attempt to mit-
igate noise by instructing the model to disregard
irrelevant information during inference. However,
these techniques heavily depend on the model’s
intrinsic ability to distinguish useful from spurious
content—a capability that SLMs often lack due to
their limited reasoning and generalization capacity.
On the other hand, Fine-tuning-based strategies

(Yoran et al., 2024; Wei et al., 2025) aim to im-
prove retrieval robustness by training models on
curated, denoised datasets using supervised fine-
tuning (SFT). Unfortunately, SFT tends to mimic
the behavior present in the training data, making
it highly sensitive to noise and prone to overfit-
ting (Chu et al., 2025), which ultimately limits the
generalization ability of the model.

In light of these challenges, we propose
Robust Retrieval-augmented Generation with
Small LLMs via Margin-aware Preference Opti-
mization (ROSERAG). ROSERAG introduces a
novel framework that robustly aligns SLMs with
high-quality responses without distillation from

teacher LLMs through a three-stage process: prefer-

ence data generation, contrastive preference data

selection, and margin-aware preference optimiza-

tion. Specifically, we employ a multi-turn prompt-
ing strategy to generate detailed rationales, coupled
with rejection sampling (Stiennon et al., 2020; Guo
et al., 2025) to filter out spurious reasoning, thereby
mitigating the influence of noisy retrieved docu-
ments. Besides, our contrastive selection mecha-
nism identifies the most challenging response pairs,
enabling the model to explicitly maximize the mar-
gin between preferred and non-preferred outputs.
By integrating these components into a unified op-
timization framework, ROSERAG significantly im-
proves the reliability and accuracy of small-scale
LLMs in retrieval-augmented settings, especially
under imperfect retrieval conditions that mirror
real-world scenarios.

Our contributions are summarized as follows:

• We propose ROSERAG, a novel RAG frame-
work that enhances SLM robustness against
noisy retrieval using margin-aware preference
optimization, reducing dependence on distilla-
tion from stronger models.

• We propose a multi-turn prompting strategy cou-

pled with rejection sampling to generate and fil-
ter robust reasoning rationales, for boosting the
quality of preference data.

• We design a contrastive preference data selection
scheme to maximize the margin between chosen
and rejected responses, leading to more discrim-
inative and generalizable model behavior.

• We conduct extensive experiments to demon-
strate that RoseRAG significantly improves re-
sponse quality in retrieval-augmented settings,
paving the way for more effective deployment
of small-scale LLMs in real-world applications.

2 Related Work

Retrieval-augmented generation (RAG) enhances
Large Language Models (LLMs) by integrating
non-parametric knowledge to improve generation
quality. Early approaches (Izacard et al., 2023;
Shi et al., 2024) treat LLMs as passive consumers
of retrieved information, assuming that retrieval
inherently improves generation. However, recent
studies (Wang et al., 2023; Li et al., 2023a; Yu et al.,
2024b) highlight that retrieved knowledge is often
noisy, incomplete, or even misleading, which can
hurt rather than enhance the performance LLMs.

To better align the retrieved information with
LLMs, Wang et al. (2023); Jeong et al. (2024) pro-
pose initial assessments to determine whether re-
trieval is necessary, using either BERT-family mod-
els or the frozen LLM as a classifier. However,
these approaches depend on classifier accuracy and
does not improve the LLM’s inherent ability to
handle noisy information. BlendFilter (Wang et al.,
2024b), ASTUTE (Wang et al., 2024a), and Robus-
tRAG (Xiang et al., 2024) leverage the LLM itself
to analyze or filter irrelevant information. However,
their effectiveness is contingent on the model’s ca-
pability; small-scale LLMs often fail to achieve
reliable results due to their limited intelligence.
Another line of research (Fang et al., 2024; Yoran
et al., 2024; Yu et al., 2024a,b) investigates training
LLMs to handle noisy contexts, e.g., those retrieved
from external corpora. These approaches typically
leverage powerful models such as GPT-4 or re-
quire extensive labeled data from auxiliary tasks to
generate high-quality responses. However, such re-
liance on large-scale models and costly annotations
limits scalability and practicality, particularly for
resource-constrained applications. Very recently,
InstructRAG (Wei et al., 2025) instructs LLMs to



provide rationales linking answers to retrieved pas-
sages, but pure supervised fine-tuning cannot fully
unleash the model’s reasoning capability towards
RAG applications. KnowPO (Zhang et al., 2024)
and DPA-RAG (Dong et al., 2024) optimize model
preferences to improve noisy information analy-
sis. Yet, they still require access to powerful LLMs
(e.g. GPT-4) to create preference data. Unlike
existing approaches, ROSERAG is specifically de-
signed to enhance the robustness of SLMs against
noisy retrieved information through margin-aware
preference optimization, eliminating the need for
additional classifiers or high-resource LLMs.

3 Preliminary

In this section, we introduce the concept of stan-
dard retrieval-augmented generation (RAG) and
monolithic preference optimization (ORPO).

3.1 Retrieval-augmented Generation

Given a pre-trained Large Language Model (LLM)
M¹, a knowledge base K = {Ki}

k
i=1 (where k rep-

resents the number of documents), a retriever R(·),
and a query q, the vanilla RAG, i.e. retrieve-then-
generate, is to retrieve top-K related documents
from the knowledge base first and then generate
answer based on retrieved information, which can
be formulated as

Kq = R(q,K;K),

y ∼ P¹(y|PromptCoT(q,Kq)), (1)

where y and PromptCoT(·) represent the generated
response and the chain-of-thought (CoT) prompt,
respectively.

3.2 Monolithic Preference Optimization

Preference alignment for large language mod-
els has traditionally relied on multi-stage proce-
dures—such as reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al., 2022; Bai
et al., 2022)—that require an additional reference
model to guide and stabilize training. In con-
trast, ORPO (Hong et al., 2024) is a monolithic
approach that integrates preference alignment di-
rectly into the supervised fine-tuning (SFT) phase,
thereby obviating the need for a separate refer-
ence model. ORPO augments the standard neg-
ative log-likelihood loss with an odds ratio-based
penalty that contrasts the probabilities of generat-
ing a chosen (preferred) response and a rejected

(non-preferred) response. Specifically, given an

input x and corresponding responses yw (chosen)
and yl (rejected), the odds of generating a response

are defined as odds¹(y | x) = Pθ(y|x)
1−Pθ(y|x)

, and the

odds ratio is given by OR¹(x, yw, yl) =
oddsθ(yw|x)
oddsθ(yl|x)

.
The overall loss function is formulated as

ℓORPO(x, yw, yl) = ℓSFT

+ ´ (− log Ã(logOR¹(x, yw, yl))) , (2)

where ℓSFT is the conventional supervised fine-
tuning loss, Ã(·) denotes the sigmoid function, and
´ is a hyperparameter that regulates the strength
of the preference alignment signal. By explic-
itly encouraging a larger margin between the cho-
sen and rejected responses, ORPO enables more
stable gradient updates and improved alignment
performance, as evidenced by its strong empiri-
cal results on benchmarks such as AlpacaEval (Li
et al., 2023b; Dubois et al., 2024, 2023) and MT-
Bench (Zheng et al., 2023).
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Figure 2: Framework of the proposed ROSERAG.

4 Method

Our ROSERAG enhances retrieval-augmented gen-
eration for SLMs through margin-aware preference
optimization. It consists of three key stages, as
shown in Fig. 2: (1) Preference Data Generation,
where the model is prompted with retrieved knowl-
edge and ground-truth answers to generate ratio-
nales, filtered via rejection sampling; (2) Prefer-

ence Data Selection, which employs a contrastive
strategy to maximize the margin between the least
likely chosen response and the most likely rejected
response; and (3) Preference Optimization, where
the model is trained using an ORPO loss. This uni-
fied framework effectively aligns SLM outputs with
high-quality responses, thereby improving model
robustness in retrieval-augmented settings.



4.1 Preference Data Generation

In order to enable our model to accurately evaluate
the relevance of retrieved documents and generate
reliable rationales, we design a multi-turn prompt-
ing strategy that encourages the model to articulate
its reasoning process. The core idea is to guide
the model into providing a concise, step-by-step
explanation for arriving at an answer by explic-
itly informing the model that the given knowledge
may consist of irrelevant information, while also in-
creasing the likelihood of correctness by including
the ground-truth label in the prompt. By explicitly
supplying the ground-truth answer, the model is
pushed toward generating a rationale that is consis-
tent with the expected output, thus facilitating the
subsequent preference optimization.

We instantiate this process by constructing a
prompt composed of a system message, a user mes-
sage, and an initial assistant message. The sys-
tem message defines the task and constraints, the
user message provides a set of retrieved knowledge
documents Kq, a question q, and the ground-truth
answer a∗, and the assistant message seeds the rea-
soning process. The prompt is presented in Fig. 3.
Given these messages, the model generates a con-
text r that encapsulates its analytical reasoning. To
mitigate the risk of incorrect analysis, we employ
rejection sampling (Liu et al., 2023; Guo et al.,
2025): we sample an answer a ∼ P¹(y | q, r)
and compare it with the ground-truth label. If a
matches the ground truth, the generated context r
will be retained as the chosen response yw; other-
wise, it will be filtered. For the rejected response
yl, we adopt the vanilla RAG response (as de-
fined in Eqn. (1)). This strategy not only leverages
the ground-truth label to promote the generation
of correct rationales, but also filters out spurious
reasoning. Therefore, it does not depend on ex-
pensive close-sourced powerful LLMs like Chat-
GPT (Ouyang et al., 2022), Gemini (Google, 2024),
and Claude (Bai et al., 2022), and can enable SLMs
to produce high-quality preference data as well.

4.2 Preference Data Selection

We propose a preference data selection method
based on contrastive learning (Tian et al., 2020;
Wang and Qi, 2022; Cui et al., 2021; Chen et al.,
2020; Li et al., 2020), designed to improve the
model’s ability to distinguish between chosen and
rejected responses. The underlying intuition is that
explicitly maximizing the margin between the pre-

Rationale Generation

System Prompt: You are a useful assistant.
I will provide one question, several pieces
of knowledge (which may be related or un-
related to the question), and the answer to
the question. Please explain your reasoning
process in a single paragraph consisting of
no more than four sentences. If the provided
knowledge is insufficient, you may make
an informed guess, but do not respond with
"Unknown".

User Prompt: Knowledge: Kq

Question: q
Answer: a∗

Assistant Prompt: Let’s think step by step.

Output: {rationale r}

Figure 3: Overview of the rationale generation process.

ferred (chosen) and non-preferred (rejected) out-
puts forces the model to learn more discriminative
representations, thereby enhancing its generaliza-
tion capability.

In practice, after the Preference Data Generation
step, for one query q we will have n candidate cho-
sen responses {y1w, y

2
w, . . . , y

n
w} and m candidate

rejected responses {y1l , y
2
l , . . . , y

m
l }. Each candi-

date is evaluated by its likelihood under the initial
model ¹, denoted as P¹(y | PromptCoT(q,Kq)). To
maximize the contrast between the two sets, we
select the candidate chosen response that the model
is least confident about, and the candidate rejected
response that it is most confident with (Robinson
et al.). Formally, the final selected responses are
defined as:

y∗w = arg min
1fifn

P¹(y
i
w | PromptCoT(q,Kq)),

y∗l = arg max
1fifm

P¹(y
i
l | PromptCoT(q,Kq)).

(3)

The motivation behind this selection strategy is
two-fold. First, by choosing the chosen response
with the minimal likelihood, we identify cases
where the model struggles to assign high confi-
dence to the correct answer; such instances provide
a strong corrective signal that refines the model’s
understanding of the desired output. Second, by
selecting the rejected response with the maximal



likelihood, we target cases where the model erro-
neously favors an undesirable output. This con-
trastive selection process accentuates the differ-
ences between correct and incorrect responses,
thereby forcing the model to maximize the mar-
gin between them and promoting a more robust
and effective preference optimization. Moreover,
by ensuring that the selected rationales yield the
correct answer, we minimize false positives, further
strengthening the overall training signal.

4.3 Preference Optimization

Given a preference tuple (x, y∗w, y
∗
l ), where x is the

input prompt PromptCoT(q,Kq), y∗w is the chosen
(preferred) response, and y∗l is the rejected (non-
preferred) response, our objective is to minimize
the ORPO loss:

min
¹

E(x,y∗w,y∗
l
)ℓORPO(x, y

∗
w, y

∗
l ). (4)

The y∗w, and y∗l are obtained from our preference
data generation and selection steps as stated before.

5 Theoretical Analysis

In this section, we provide a theoretical analysis to
support the effectiveness of ROSERAG. We derive
a closed-form solution for the model learned by
ROSERAG and examine how the proposed pref-
erence selection strategy influences the model’s
behavior.

We begin with a regularity condition ensuring
that the optimization space is sufficiently expres-
sive to achieve the global optimum.

Assumption 5.1. Assume that P (y|x) belongs to
the optimization space {P¹ : ¹ ∈ Θ} such that

P (y|x) = exp(Z(x))/

(

q∗l (y|x)

q∗w(y|x)
+ exp(Z(x))

)

,

where q∗w(y|x) and q∗l (y|x) denote the distribution
of y∗w and y∗l given the prompt x respectively.

This condition ensures that P¹ can attain an optimal
solution, allowing us to express the optimizer in a
closed form.

Lemma 5.1. Under Assumption 5.1, the solution
to optimizing Eqn. (4) is

P¹(y|x) =
exp(Z(x))

q∗
l
(y|x)

q∗w(y|x) + exp(Z(x))
(5)

where Z(x) is partition function such that
∑

y P¹(y|x) = 1.

To illustrate the benefit of the proposed pref-
erence selection strategy, we consider a scenario
where yw and yl are random variables following

yw ∼ fw(x) + Exp(¼),

yl ∼ fl(x) + Exp(¼), (6)

where Exp(¼) denotes an exponential random vari-
able with rate ¼, and fw(x) and fl(x) represent
the central locations of yw and yl, respectively. To
ensure a meaningful selection process, we assume
fw(x) > fl(x), indicating that yw is generally pre-
ferred over yl.

We compare our method to a baseline that ap-
plies ORPO without preference selection (i.e., n =
1 in Eqn. (3)). Let P̃¹(y|x) denote the solution
obtained without selection. We measure the re-
sponse quality using the absolute distance from the
expected preferred response, L(y) = |y − E[yw]|.
The following theorem formalizes the advantage of
our method. The proof is deferred to App C.

Theorem 5.1. Under (6), assume P̃¹(y|x) gener-
ates y with density function:

p · ¼e−¼[y−fw(x)] + (1− p) · ¼e−¼[y−fl(x)].

Let y ∼ P¹(y|x) and ỹ ∼ P̃¹(y|x). Then, the
expected absolute distance under P¹ is smaller than
that under P̃¹:

Ey∼Pθ(y|x)[L(y)] < Eỹ∼P̃θ(y|x)
[L(ỹ)]. (7)

Theorem 5.1 suggests that the proposed prefer-
ence selection strategy improves response align-
ment with the preferred choice yw. Our analy-
sis reveals that this selection process amplifies the
gap between preferred and non-preferred responses,
compelling the model to enhance their separation
and ultimately leading to more accurate and reli-
able outputs.

6 Experiment

In this section, we extensively evaluate the pro-
posed ROSERAG and answer the following ques-
tions: RQ1) How does ROSERAG perform com-
pared to state-of-the-art baselines? RQ2) What are
the roles of rejection sampling and preference data
selection in model performance improvements re-
spectively? RQ3) Can the proposed ROSERAG
benefit from more retrieved documents? RQ4) Is
it possible to apply different preference optimiza-
tion method to ROSERAG? RQ5) How does the
performance change with varying ´?



6.1 Datasets and Experiment Settings

Datasets and Evaluation Metrics. We conduct
experiments on three public benchmarks, includ-
ing HotPotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), and StrategyQA (Geva
et al., 2021). Following Shao et al. (2023); Wang
et al. (2024b), we evaluate the first 500 questions
from the development dataset for HotPotQA and
2WikiMultiHopQA, and evaluate questions from
the development dataset for StrategyQA. For multi-
hop question answering datasets, we employ exact
match (EM) and F1 as evaluation metrics, and for
the commonsense reasoning dataset, which is a bi-
nary classification task, we use accuracy and F1
score as the metrics. To evaluate the retrieval per-
formance, we leverage widely used Recall as the
evaluation metric.

Baselines. We adopt following state-of-the-art
baselines to evaluate against ROSERAG: 1) CoT
Prompting (Wei et al., 2022), 2) ReAct (Yao et al.,
2022), 3) SelfAsk (Press et al., 2023), 4) BlendFil-
ter (Wang et al., 2024b), 5) InstructRAG (Wei et al.,
2025), 6) RetRobust (Yoran et al., 2024), 7) AS-
TUTE (Wang et al., 2024a), and 8) ICL+RAG (Park
et al., 2024). We show more detailed information
about baselines in the Appendix A.

Implementation Details. We evaluate models
with three small-sclae LLMs: Qwen2.5-1.5B-
Instruct (Team, 2024), Llama-3.2-1B-Instruct1, and
gemma-2-2b-it (Team et al., 2024). We utilize the
state-of-the-art efficient retrieval method ColBERT
v2 (Santhanam et al., 2022) as the retriever imple-
mented by Khattab et al. (2022, 2023). The knowl-
edge base we employ is the collection of Wikipedia
abstracts dumped in 2017 (Khattab et al., 2023).
We show the detailed information about our imple-
mentations in the Appendix B.

6.2 Performance Comparison (RQ1)

To evaluate the effectiveness of the proposed
ROSERAG framework, we conduct experiments on
three benchmark datasets: HotPotQA, 2WikiMulti-
HopQA, and StrategyQA. We compare RoseRAG
against multiple retrieval-augmented generation
(RAG) baselines using three different small-scale
LLM backbones: Qwen2.5-1.5B-Instruct, Llama-
3.2-1B-Instruct, and gemma-2-2B-it. From the re-

1
https://github.com/meta-llama/llama-models/

blob/main/models/llama3_2/MODEL_CARD.md
2ASTUTE relies on powerful LLM. We cannot extract

answers when using Llama-3.2-1B-Instruct.

Table 1: Performance of ROSERAG with Qwen2.5-
1.5B-Instruct as the backbone.

HotPotQA 2WikiMultiHopQA StrategyQA
Method

EM F1 EM F1 Acc F1

CoT 13.0 20.9 18.8 23.5 55.9 17.9
vanilla RAG 27.2 38.4 6.2 11.4 55.5 23.9
ReAct 14.9 25.9 9.6 22.2 55.0 48.8
SelfAsk 20.4 32.8 19.2 25.3 51.1 42.9
BlendFilter 26.4 37.5 19.4 24.2 59.4 45.0
InstructRAG 31.2 39.6 23.6 26.9 53.7 39.1
RetRobust 16.8 24.6 13.0 19.9 51.5 37.3
ASTUTE 21.4 27.8 19.0 23.4 55.0 12.0
ICL+RAG 28.6 39.3 21.8 26.4 56.3 27.5
ROSERAG 34.8 44.8 31.6 35.0 59.8 52.1

Table 2: Performance of ROSERAG with Llama-3.2-
1B-Instruct as the backbone.

HotPotQA 2WikiMultiHopQA StrategyQA
Method

EM F1 EM F1 Acc F1

CoT 13.6 19.5 13.6 19.0 52.8 23.9
vanilla RAG 27.8 37.0 16.0 21.9 54.6 33.3
ReAct 15.4 24.7 10.2 15.9 51.1 61.9
SelfAsk 12.0 18.0 12.4 18.5 51.1 42.9
BlendFilter 20.6 29.7 17.8 23.1 55.9 34.8
InstructRAG 28.8 39.2 23.8 27.4 56.8 29.8
RetRobust 17.6 26.4 20.0 26.5 56.8 39.3
ASTUTE2 - - - - 58.1 35.1
ICL+RAG 25.4 36.1 19.2 24.2 54.6 29.7
RoseRAG 33.4 44.1 30.2 35.8 61.1 43.3

Table 3: Performance of ROSERAG with gemma-2-2b-
it as the backbone.

HotPotQA 2WikiMultiHopQA StrategyQA
Method

EM F1 EM F1 Acc F1

CoT 20.6 27.9 20.4 24.5 60.7 44.4
vanilla RAG 36.4 46.6 15.2 20.2 56.8 39.3
ReAct 26.6 38.1 21.0 26.9 55.5 45.2
SelfAsk 32.8 43.5 23.4 30.5 60.7 45.8
BlendFilter 34.6 45.4 23.2 29.6 62.5 49.4
InstructRAG 38.0 49.4 29.0 35.0 60.3 59.2
RetRobust 30.4 40.4 22.0 26.5 64.2 54.9
ASTUTE 22.4 32.5 14.8 19.5 62.0 42.0
ICL+RAG 32.4 42.9 16.4 22.5 62.4 54.3
RoseRAG 42.4 54.0 37.2 42.7 67.7 60.2

sults presented in Tables 1, 2, and 3, we observe
two key findings.

First, the proposed ROSERAG consistently out-
performs all baseline methods across different
datasets and model backbones, demonstrating its
effectiveness in retrieval-augmented generation for
small-scale LLMs. The substantial improvements
in EM and F1 scores indicate that the margin-
aware preference optimization and rejection sam-
pling in RoseRAG significantly enhance reason-
ing accuracy. Notably, compared to InstructRAG,
RoseRAG achieves superior performance, high-



lighting the necessity of incorporating preference
optimization in addition to supervised fine-tuning.

Second, the results reveal that SLMs exhibit dis-
tinct properties compared to powerful large-scale
LLMs, which impacts the effectiveness of various
RAG methods. Many retrieval-based techniques
that have shown strong performance with large-
scale models fail to maintain similar improvements
on small models. Methods such as ReAct and Self-
Ask, which decompose original queries into sub-
questions, struggle because SLMs lack the reason-
ing ability to perform accurate decomposition. Sim-
ilarly, approaches like BlendFilter and ASTUTE,
which rely on the LLM itself to filter irrelevant in-
formation, perform poorly since small models are
less capable of distinguishing irrelevant from noisy
content. The performance of InstructRAG and
ROSERAG highlights the necessity of fine-tuning
small-scale LLMs to enhance their ability to pro-
cess noisy retrieval results effectively. These find-
ings underscore the importance of adapting RAG
strategies specifically for small-scale SLMs rather
than directly transferring techniques optimized for
large-scale LLMs.

Table 4: Performance (Exaxt Match/F1) of ROSERAG
using different types of generated preference data on
HotPotQA with Qwen2.5-1.5B-Instruct.

Positive

w/o Selection Minimal Maximal

Negative
w/o Selection 30.6/39.9 33.2/43.1 27.6/37.1
Minimal 29.0/39.2 33.2/42.2 26.6/35.3
Maximal 33.0/43.6 34.8/44.8 28.8/38.4

6.3 Effectiveness of Data Selection (RQ2)

To assess the impact of our preference data selec-
tion strategy on performance, we conduct experi-
ments on HotPotQA using Qwen2.5-1.5B-Instruct
as the backbone. In this study, we vary the se-
lection method for both the positive (chosen) and
negative (rejected) responses, comparing three sce-
narios: no selection, selection based on the mini-
mal likelihood, and selection based on the maximal
likelihood. The performance—measured in Exact
Match (EM) and F1 scores—is reported in Table 4.
Based on the table, we have following findings:
Overall Effectiveness. Introducing a selection
strategy for the preference data markedly improves
performance compared to the baseline without any
selection. For example, when only the positive re-
sponses are refined using the minimal likelihood

Performance on HotPotQA

Exact Match F1 Score
0

0.1

0.2

0.3

0.4

0.5
Performance on 2WikiMultiHopQA

Exact Match F1 Score
0

0.1

0.2

0.3

0.4
RoseRAG

RoseRAG w/o Rejection Sampling

Figure 4: Accuracy of ROSERAG with and without
rejection sampling with Qwen2.5-1.5B-Instruct.

criterion (with negative responses remaining uns-
elected), the EM/F1 improves from 30.6/39.9 to
33.2/43.1. This result confirms that our preference
data selection module effectively enhances the qual-
ity of the training signal.

Optimal Selection Strategy. The optimal perfor-
mance (34.8/44.8) occurs when positive responses
have the lowest likelihood and negative responses
have the highest. This aligns with our intuition:
the minimal likelihood positive response likely rep-
resents a scenario where the model is less confi-
dent and, therefore, benefits more from corrective
feedback. Simultaneously, selecting the maximal
likelihood negative response targets cases where
the LLM is confidently incorrect, offering a strong
contrastive signal. Using the opposite criteria (max-
imal likelihood for positive/minimal likelihood for
negative) leads to a notable performance drop.

Importance of Positive Selection. The results sug-
gest that selecting the minimal likelihood candidate
for the positive response is particularly critical, as
it plays a direct role in the negative log-likelihood
(NLL) loss. By emphasizing these uncertain yet
correct outputs, the model receives a more effective
corrective signal, facilitating better alignment with
the desired responses.

6.4 Effectiveness of Rejection Sampling (RQ2)

In this section, we evaluate the effectiveness of re-
jection sampling in ROSERAG. Specifically, we
compare the performance of ROSERAG with and
without rejection sampling on two benchmark
datasets: HotPotQA and 2WikiMultiHopQA. From
results in Fig. 4, we can find that rejection sampling
is important for performance improvement. On
HotPotQA, rejection sampling improves both the
Exact Match and F1 scores significantly. Specifi-
cally, the EM score increases from 0.33 to 0.41, and
the F1 score rises from 0.37 to 0.46. This demon-
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Figure 5: Comparison of different experimental settings. Experiments are conducted on HotPotQA with Qwen2.5-
1.5B-Instruct as the backbone.

strates that rejection sampling enables the model to
generate more accurate and contextually relevant
responses by filtering out spurious rationales.

6.5 Different Numbers of Retrieved

Documents (RQ3)

Fig. 5a compares ROSERAG and vanilla RAG
on HotPotQA as the number of retrieved docu-
ments increases (K = {1, 2, 5, 8, 10}). The re-
trieval recall improves significantly when the num-
ber of retrieved documents increases from 1 to 5 but
plateaus beyond that. ROSERAG closely follows
this trend, with its EM score increasing rapidly
when retrieving 1, 2, and 5 documents. However,
beyond K = 5, the EM score plateaus, and the
performance at K = 10 remains nearly identi-
cal to that at K = 5, indicating that ROSERAG
effectively utilizes the most relevant retrieved in-
formation without being hindered by less relevant
documents. In contrast, vanilla RAG’s EM score
drops after retrieving more than 2 documents, in-
dicating its inability to filter noise and integrate
relevant content effectively due to its limited ca-
pacity. In comparison, RoseRAG demonstrates its
robustness and effectiveness by consistently im-
proving or maintaining high performance as the
number of retrieved documents increases. These re-
sults highlight ROSERAG’s robustness in handling
larger retrieval sizes for RAG applications.

6.6 Different Preference Optimization

Methods (RQ4)

Fig. 5b presents the performance comparison of
ROSERAG using different preference optimization
methods, including ORPO, RPO (Pang et al., 2025),
CPO (Xu et al., 2024a), and SimPO+SFT (Meng
et al., 2025), on HotPotQA dataset. The results
indicate that all methods achieve comparable per-
formance in both Exact Match and F1 scores, sug-
gesting that the proposed ROSERAG framework is
robust and does not rely on a specific preference

optimization technique. While minor variations
exist, the consistency across methods highlights
the generalizability of ROSERAG in effectively
leveraging preference optimization for retrieval-
augmented generation. This observation under-
scores the flexibility of our approach, allowing it
to integrate seamlessly with various preference op-
timization approaches. Consequently, ROSERAG
can be adapted to different optimization settings,
making it a versatile solution for enhancing the rea-
soning capabilities of SLMs in retrieval-augmented
generation tasks.

6.7 Different Values of ´ (RQ5)

Fig. 5c presents the performance of ROSERAG on
HotPotQA with varying values of ´, which controls
the strength of preference alignment in the ORPO
loss. We evaluate ´ over the range {0, 0.05, 0.1,
0.2, 0.3, 0.5, 1, 1.5, 2} and observe that setting ´
within the interval (0, 0.5) leads to better perfor-
mance compared to both ´ = 0 and excessively
large values of ´. This result underscores the ne-
cessity of preference alignment, as models trained
solely with supervised fine-tuning (´ = 0) exhibit
suboptimal performance. However, as ´ increases
beyond 0.5, both the Exact Match and F1 scores
decline, indicating that an overly strong preference
alignment term causes the model to focus exces-
sively on optimizing preference differences while
neglecting the learning of positive responses.

7 Conclusion

We introduce ROSERAG, a novel framework that
enhances the robustness of small-scale LLMs
(SLMs) in retrieval-augmented generation through
margin-aware preference optimization. By leverag-
ing multi-turn prompting with rejection sampling
and contrastive preference data selection, our ap-
proach effectively mitigates the impact of noisy
retrieved content. We conducted extensive experi-
ments on three benchmarks, and the results demon-



strate that ROSERAG outperforms state-of-the-art
baselines. Moreover, ROSERAG can be general-
ized well for different kinds of SLMs, justifying its
generalizability and broad applicability for RAG.

Limitations

The proposed ROSERAG framework consists of a
hyper-parameter ´ to balance the SFT and prefer-
ence optimization, which might require additional
effort to tune. Fortunately, we observe that setting
´ ∈ [0.1, 0.5) can achieve a good performance and
we set it to a fixed value to achieve good perfor-
mance in this paper.
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A Baselines

We adopt following state-of-the-art baselines to evaluate our proposed ROSERAG:

• CoT (Wei et al., 2022) instructs the LLM to generate answers accompanied by explicit reasoning steps.

• ReAct (Yao et al., 2022) integrates reasoning, action, and observation steps, concluding the generation
process upon reaching a terminal state. The action step involves either generating a query to retrieve
additional knowledge or finalizing the generation, while the observation step incorporates the retrieved
knowledge documents.

• SelfAsk (Press et al., 2023) involves generating follow-up questions, retrieving relevant information,
and answering these follow-up questions. Each retrieval operation is based on the generated follow-up
questions. When no additional follow-up questions are produced, the LLM provides the answer to the
original question. We prepend the newly retrieved knowledge to the original question following the
approach of Yoran et al. (2023).

• BlendFilter (Wang et al., 2024b) combines internal and external knowledge to enhance retrieval quality.
Additionally, it employs the LLM to filter out irrelevant information, thereby preventing the model
from being misled.

• InstructRAG (Wei et al., 2025) instructs the LLM to generate rationales that analyze the relevance
between the query and the retrieved knowledge. Subsequently, it conducts supervised fine-tuning (SFT)
on the LLM using the generated rationales.

• RetRobust (Yoran et al., 2024) introduces an additional NLI model to assess the relationship between
the query and the retrieved knowledge. If the relationship is deemed irrelevant, the model disregards
the corresponding knowledge during generation.

• ASTUTE (Wang et al., 2024a) mitigates the pitfalls of imperfect retrieval by adaptively eliciting and
integrating essential internal knowledge with externally retrieved data. Its iterative, source-aware
consolidation process effectively resolves knowledge conflicts, yielding more accurate and trustworthy
responses even in worst-case scenarios.

• ICL+RAG (Park et al., 2024) leverages machine reading comprehension examples to guide the model
in identifying unanswerable queries and resolving conflicting information from retrieved texts. By
providing tailored in-context demonstrations during inference, the approach improves the reasoning
capabilities and overall accuracy of retrieval-augmented language models on open-domain QA tasks.

B Implementation Details.

We evaluate models with three small-sclae LLMs: Qwen2.5-1.5B-Instruct (Team, 2024), Llama-3.2-1B-
Instruct 3, and gemma-2-2b-it (Team et al., 2024). We employ the state-of-the-art efficient retrieval method
ColBERT v2 (Santhanam et al., 2022) as implemented by Khattab et al. (2022, 2023), which applies
quantization to accelerate approximate nearest neighbor search. Our knowledge base comprises Wikipedia
abstracts from the 2017 dump (Khattab et al., 2023). Experiments are conducted using Transformers (Wolf
et al., 2020), TRL (von Werra et al., 2020), and vLLM (Kwon et al., 2023). In all experiments, we adopt
a 3-shot in-context learning setting following the approach of Shao et al. (2023); Wang et al. (2024b),
with the value of K set to 5 for all methods. The prompts for generating preference data are shown
in Fig.6 and Fig.7, while those for question answering are presented in Fig.8, Fig.9, and Fig. 10. We
generate preference data using the first 10k training samples from HotPotQA and 2WikiMultiHopQA,
as well as the entire training set of StrategyQA. For all backbones, we apply LoRA (Hu et al., 2022)
with a rank of 16 and lora_alpha = 32, targeting ”all-linear” modules. Experiments are conducted
on eight 80G A100 NVIDIA GPUs. The learning rate and number of training epochs are selected from

3
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{2e− 5, 3e− 5, 5e− 5, 2e− 4, 5e− 4} and {2, 3, 4}, respectively. Note that RoseRAG by definition is
generic and can be trained with diverse parameter-efficient fine-tuning (PEFT) methods (Houlsby et al.,
2019; Li and Liang, 2021; Lester et al., 2021; Wang et al., 2024c; Chen et al., 2024a; Wu et al., 2024; Liu
et al., 2025; Miao et al., 2025).

C Mathematical Derivations

Lemma C.1. (Lemma C.1 in (Chen et al., 2024b)) Denote U(t) := log(1 + exp(−t)). For a, b > 0, the
following inequality holds

a · U(t) + b · U(−t) ≥ a log(1 + b/a) + b log(1 + a/b)

and equality holds if and only if t = log(a/b)

Lemma C.2. Under Assumption 5.1, the solution to minimizing the ORPO loss ℓORPO(x, y
∗
w, y

∗
l ) is

Pθ(y|x) =
exp(Z(x))

q∗
l
(y|x)

q∗w(y|x) + exp(Z(x))
(8)

where Z(x) is partition function such that
∑

y Pθ(y|x) = 1.

Proof. Consider the last term in general ORPO loss

2E(x,yw,yl) [− log Ã(logORθ(x, yw, yl))]

=2E(x,yw,yl)U (log oddsθ(yw|x)− log oddsθ(yl|x))

=

∫

q(x)qw(yw|x)ql(yl|x)U (log oddsθ(yw|x)− log oddsθ(yl|x)) dxdy

+

∫

q(x)qw(yl|x)ql(yw|x)U (log oddsθ(yl|x)− log oddsθ(yw|x)) dxdy

≥

∫

q(x)qw(yw|x)ql(yl|x) log

(

1 +
qw(yl|x)ql(yw|x)

qw(yw|x)ql(yl|x)

)

dxdy

+

∫

q(x)qw(yl|x)ql(yw|x) log

(

1 +
qw(yw|x)ql(yl|x)

qw(yl|x)ql(yw|x)

)

dxdy

(9)

where the first inequality follows from Lemma C.1. For equivalence,

log oddsθ(yw|x)− log oddsθ(yl|x) = log
qw(yw|x)ql(yl|x)

qw(yl|x)ql(yw|x)
(10)

Thus, for any x, yw, yl,

log oddsθ(yw|x)− log
qw(yw|x)

ql(yw|x)
= log oddsθ(yl|x)− log

qw(yl|x)

ql(yl|x)
(11)

Therefore, Eqn. (11) holds if and only if there exists some Z(x) such that

log
Pθ(y|x)

1− Pθ(y|x)
= Z(x) + log

qw(y|x)

ql(y|x)
⇐⇒ Pθ(y|x) =

exp(Z(x))
ql(y|x)
qw(y|x) + exp(Z(x))

(12)

Finally, substituting ql and qw with q∗l and q∗w respectively, yields Eqn. (8).

Lemma C.3. Denote P̃θ(y|x) as the solution to minimizing ORPO loss without the selection step.
Then Pθ(y|x) generates y ∼ fw(x) + exp(¼) with probability greater than P̃θ(y|x), and generates
y ∼ fl(x) + exp(¼) with probability lower than P̃θ(y|x):

Pθ(y|x) > P̃θ(y|x) if y ∼ fw(x) + Exp(¼)

Pθ(y|x) < P̃θ(y|x) if y ∼ fl(x) + Exp(¼)
(13)



Proof. Order statistics Y(k), representing the k-th smallest value in a sample drawn from an exponential
distribution Exp(¼), has the probability density function:

n!

(k − 1)!(n− k)!

[

1− e−λy
]k−1

[e−λy]n−k¼e−λy (14)

Let q∗l denote the distribution of minimum value among yil and q∗w denote the the distribution of maximum
value among yiw. The ratio of their corresponding densities is given by:

q∗l (y|x)

q∗w(y|x)
=

(

exp(−¼(y − fl(x)))

1− exp(−¼(y − fw(x)))

)n−1 exp(−¼(y − fl(x)))

exp(−¼(y − fw(x)))
. (15)

Rewriting this expression yields,

q∗l (y|x)

q∗w(y|x)
=

(

exp(−¼(y − fl(x)))

1− exp(−¼(y − fw(x)))

)n−1 ql(y|x)

qw(y|x)
. (16)

For y ∼ fw(x) + Exp(¼), define dw = y − fw(x) and dl = y − fl(x). Then,

dl = dw + [fw(x)− fl(x)] = dw − c, where c = fl(x)− fw(x) < 0.

By Lemma C.1, the closed form solutions differ only in the ratio R:

R =
exp(−¼(y − fl(x)))

1− exp(−¼(y − fw(x)))
=

exp(−¼dl)

1− exp(−¼dw)
=

exp(¼c) exp(−¼dw)

1− exp(−¼dw)
(17)

Since dw ∼ Exp(¼), we have U = exp(−¼dw) ∼ Uniform(0, 1), allowing us to express:

R < 1 ⇐⇒ U <
1

1 + exp(¼c)
=⇒ P(R < 1) =

1

1 + exp(¼c)
>

1

2
(18)

Similarly, for y ∼ fl(x) +Exp(¼), we obatin P(R > 1) > 1/2. This implies that the distribution Pθ(y|x)
generates y ∼ fw(x) + exp(¼) with a probability greater than P̃θ(y|x) and generates y ∼ fl(x) + exp(¼)
with probability lower than P̃θ(y|x).

Theorem C.1. Under (6), assume P̃θ(y|x) generates y with density function:

p · ¼e−λ[y−fw(x)] + (1− p) · ¼e−λ[y−fl(x)].

Let y ∼ Pθ(y|x) and ỹ ∼ P̃θ(y|x). Then, the expected absolute distance under Pθ is smaller than that
under P̃θ:

Ey∼Pθ(y|x)[L(y)] < Eỹ∼P̃θ(y|x)
[L(ỹ)]. (19)

Proof. Denote L̃1 = |À| and L̃2 = |À + c|, where À ∼ Exp(¼)− 1/¼. Then

Eỹ∼P̃θ(y|x)
[L(ỹ)] = pEξ[L̃1] + (1− p)Eξ[L̃2] (20)

A well-known fact is that function ϕ(t) = E|À − t| is convex in t and attains its unique global minimum
at the median m of À. Since median of Exp(¼) is (log 2)/¼, it follows that:

m =
log 2− 1

¼
< 0 (21)

Given that m < 0 < −c, we conclude:

ϕ(−c) > ϕ(0) ⇐⇒ Eξ[L̃2] > Eξ[L̃1] (22)

By Lemma C.3, Pθ(y|x) has larger p than P̃θ(y|x), denoted as q.

Ey∼Pθ(y|x)[L(y)]− Eỹ∼P̃θ(y|x)
[L(ỹ)] = (q − p) ·

[

Eξ[L̃1]− Eξ[L̃2]
]

< 0 (23)

D Prompt



System Prompt: You are a useful assistant. I will provide one question, several pieces of knowledge
(which may be related or unrelated to the question), and the answer to the question. Please explain
your reasoning process in a single paragraph consisting of no more than four sentences. If the
provided knowledge is insufficient, you may make an informed guess, but do not respond with
"Unknown".

User Prompt: Knowledge: Kq

Question: q
Answer: a∗

Assistant Prompt: Let’s think step by step.

Output: {rationale r}

Figure 6: Prompt for rationale generation on HotPotQA and 2WikiMultiHopQA

System Prompt: You are a useful assistant. I will provide one question, several knowledge (may
related or unrelated to the question), and the answer to the question. Please show the think process
about how to get the answer. If the given knowledge is insufficient, you can guess. Do not tell me
Unknown. Your output should be in one paragraph within four sentences.

User Prompt: Knowledge: Kq

Question: q
Answer: a∗

Assistant Prompt: Let’s think step by step.

Output: {rationale r}

//If rationale r shows it can not conclude the answer

System Prompt: You are a useful assistant. I will provide one question and the answer to the
question. Please show the reasoning process about how to get the answer. Please use your own
memorized knowledge to do reasoning. Do not mention the given answer explicitly in your
reasoning. Your output should be in one paragraph with several sentences.

User Prompt: Question: q
Answer: a∗

Model Output: {rationale rwk}

Output: {rationale r+However, we can answer the question based on known knowledge.+rwk}

Figure 7: Prompt for rationale generation on StrategyQA.



System Prompt: You are a useful assistant. You should answer the following question quickly and
accurately based on given knowledge. Provide your reasoning in few sentences and answer in one
or few words. Please begin your final answer with ’So the answer is’.

User Prompt: Knowledge:Mr. Big (film) | Mr. Big is a 2007 documentary directed and produced
by Tiffany Burns and edited by Alec MacNeill Richardson. The documentary examines the "Mr.
Big" undercover methods used by the Royal Canadian Mounted Police (RCMP). In these operations,
RCMP officers pose as gang criminals and develop a relationship with the target in the hope of
eventually determining what, if any, knowledge the target has of the crime being investigated. "Mr.
Big" operations have been credited with securing difficult convictions in a large number of cases,
but concerns have been raised that they involve a risk of false confessions and wrongful convictions.
It Might Get Loud | It Might Get Loud is a 2008 American documentary film by filmmaker Davis
Guggenheim. It explores the careers and styles of prominent rock musicians Jimmy Page, The
Edge, and Jack White. The film received a wide release on August 14, 2009 in the U.S. by Sony
Pictures Classics.
Question:Are It Might Get Loud and Mr. Big both Canadian documentaries?

Assistant Prompt: Let’s think step by step. Mr. Big is a 2007 documentary which examines the
"Mr. Big" undercover methods used by the Royal Canadian Mounted Police. However, Are It
Might Get Loud is a 2008 American documentary film. So the answer is no.

User Prompt: Knowledge:Leslie H. Martinson | Leslie Herbert "Les" Martinson (January 16, 1915
– September 3, 2016) was an American television and film director.
László Benedek | László Benedek (] ; March 5, 1905 – March 11, 1992; sometimes "Laslo
Benedek") was a Hungarian-born film director and cinematographer, most notable for directing
"The Wild One" (1953).
Question:Were László Benedek and Leslie H. Martinson both film directors?

Assistant Prompt: Let’s think step by step. László Benedek was a Hungarian-born film director
and Leslie H. Martinson was an American film director. So the answer is yes.

User Prompt: Knowledge:Lucium | Lucium was the proposed name for an alleged new element
found by chemist Prosper Barrière in 1896 in the mineral monazite. Later, William Crookes
confirmed that the new element was actually an impure sample of yttrium.
William Crookes | Sir William Crookes ( ; 17 June 1832 – 4 April 1919) was an English chemist and
physicist who attended the Royal College of Chemistry in London, and worked on spectroscopy.
He was a pioneer of vacuum tubes, inventing the Crookes tube which was made in 1875. Crookes
was the inventor of the Crookes radiometer, which today is made and sold as a novelty item. Late
in life, he became interested in spiritualism, and became the president of the Society for Psychical
Research.
Question:Lucium was confimed to be an impure sample of yttrium by an English chemist who
became the president of what?

Assistant Prompt: Let’s think step by step. Lucium was confimed to be an impure sample of
yttrium by William Crookes. William Crookes is Sir William Crookes. Sir William Crookes
became the president of the Society for Psychical Research. So the answer is Society for Psychical
Research.
User Prompt: Knowledge: Kq

Question: q

Assistant Prompt: Let’s think step by step.

Figure 8: Prompt for HotPotQA



System Prompt: You are a useful assistant. You should answer the following question quickly and
accurately based on given knowledge. Provide your reasoning in few sentences and answer in one
or few words. Please begin your final answer with ’So the answer is’.

User Prompt: Knowledge:Valentin the Good | Valentin the Good (Czech: "Valentin Dobrotivý" )
is a 1942 Czech comedy film directed by Martin Frič.
The Falcon (film) | Banović Strahinja (Serbian Cyrillic: , internationally released as The Falcon) is
a 1981 Yugoslavian adventure film written and directed by Vatroslav Mimica based on Strahinja
Banović, a hero of Serbian epic poetry. It entered the section "Officina Veneziana" at the 38th
Venice International Film Festival.
Martin Frič | Martin Frič (29 March 1902 – 26 August 1968) was a Czech film director, screenwriter
and actor. He had more than 100 directing credits between 1929 and 1968, including feature films,
shorts and documentary films. Vatroslav Mimica | Vatroslav Mimica (born 25 June 1923) is a
Croatian film director and screenwriter.
Question:Do both films The Falcon (Film) and Valentin The Good have the directors from the same
country?

Assistant Prompt: Let’s think step by step. The Falcon (Film) is directed by Martin Frič. Martin
Frič was a Czech film director. Valentin The Good is directed by Vatroslav Mimica. Vatroslav
Mimica is a Croatian film director. Czech is different from Croatia. So the answer is no.

User Prompt: Knowledge:Wedding Night In Paradise (1950 film) | Wedding Night in Paradise
(German: Hochzeitsnacht im Paradies) is a 1950 West German musical comedy film directed by
Géza von Bolváry and starring Johannes Heesters, Claude Farell and Gretl Schörg .
Géza von Bolváry | Géza von Bolváry (full name Géza Maria von Bolváry-Zahn; 26 December 1897
– 10 August 1961) was a Hungarian actor, screenwriter and film director, who worked principally
in Germany and Austria.
Question:What nationality is the director of film Wedding Night In Paradise (1950 Film)?

Assistant Prompt: Let’s think step by step. Wedding Night In Paradise (1950 film) is directed by
Géza von Bolváry. Géza von Bolváry was a Hungarian actor, screenwriter and film director. So the
answer is Hungarian.

User Prompt: Knowledge:Rhescuporis I (Odrysian) | Rhescuporis I (Ancient Greek: ) was a king
of the Odrysian kingdom of Thrace in 240 BC - 215 BC, succeeding his father, Cotys III.
Cotys III (Odrysian) | Cotys III (Ancient Greek: ) was a king of the Odrysian kingdom of Thrace in
ca. 270 BC, succeeding his father, Raizdos.
Question:Who is Rhescuporis I (Odrysian)’s paternal grandfather?

Assistant Prompt: Let’s think step by step. The father of Rhescuporis I (Odrysian) is Cotys III.
The father of Cotys III is Raizdos. So the answer is Raizdos.
User Prompt: Knowledge: Kq

Question: q

Assistant Prompt: Let’s think step by step.

Figure 9: Prompt for 2WikiMultiHopQA



System Prompt: You are a useful assistant. You should answer the following question quickly
and accurately based on given knowledge. If the information provided is insufficient to answer,
please respond based on your own knowledge. Provide your reasoning in few sentences first and
then show the final answer which should always be either Yes or No, and NOTHING ELSE. Please
begin your final answer with ’So the answer is’.

User Prompt: Knowledge:Laxative | Laxatives, purgatives, or aperients are substances that loosen
stools and increase bowel movements. They are used to treat and/or prevent constipation.
Question:Do people take laxatives because they enjoy diarrhea?

Assistant Prompt: Let’s think step by step. Laxatives are substances that loosen stools and increase
bowel movements. People take laxatives to treat and/or prevent constipation. So the answer is No.

User Prompt: Knowledge:Durian (disambiguation) | Durian is a large odorous spike-covered fruit
of several southeast Asian tree species belonging to the genus "Durio".
Durian | The durian ( ) or is the fruit of several tree species belonging to the genus Durio. The
name "durian" is derived from the Malay languages word for duri or "spike", a reference to the
numerous spike protuberances of the fruit, together with the noun-building suffix -an. There are
30 recognised "Durio" species, at least nine of which produce edible fruit, and over 300 named
varieties in Thailand and 100 in Malaysia. " Durio zibethinus" is the only species available in the
international market: all other species are sold only in their local regions. There are hundreds of
durian cultivars; many consumers express preferences for specific cultivars, which fetch higher
prices in the market.
Question:Could Durian cause someone’s stomach to feel unwell?

Assistant Prompt: Let’s think step by step. Durian has a pungent odor that many people describe
as being similar to feet and onions. Unpleasant smells can make people feel nauseous. So the
answer is Yes.

User Prompt: Knowledge:Monty Python and the Holy Grail | Monty Python and the Holy Grail is
a 1975 British absurdist comedy film concerning the Arthurian legend, written and performed by
the Monty Python comedy group (Graham Chapman, John Cleese, Terry Gilliam, Eric Idle, Terry
Jones, and Michael Palin), and directed by Gilliam and Jones. It was conceived during the hiatus
between the third and fourth series of their BBC television series "Monty Pythonś Flying Circus".
Question:Did the swallow play a role in a famous film about King Arthur?

Assistant Prompt: Let’s think step by step. Monty Python and the Holy Grail was a famous film
about King Arthur. In Monty Python and the Holy Grail, swallows are mentioned several times. So
the answer is Yes.
User Prompt: Knowledge: Kq

Question: q

Assistant Prompt: Let’s think step by step.

Figure 10: Prompt for StrategyQA
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