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Abstract

Large language models (LLMs) have achieved

remarkable performance on various natural lan-

guage tasks. However, they are trained on static

corpora and their knowledge can become outdated

quickly in the fast-changing world. This moti-

vates the development of knowledge editing (KE)

to update specific knowledge in LLMs without

changing unrelated others or compromising their

pre-trained capabilities. Previous efforts sought

to update a small amount of parameters of a LLM

and proved effective for making selective updates.

Nonetheless, the edited LLM often exhibits de-

graded ability to reason about the new knowledge.

In this work, we identify a key issue: heteroge-

neous token overfitting (HTO), where the LLM

overfits different tokens in the provided knowl-

edge at varying rates. To tackle this, we propose

OVERTONE, a token-level smoothing method that

mitigates HTO by adaptively refining the target

distribution. Theoretically, OVERTONE offers bet-

ter parameter updates with negligible computa-

tion overhead. It also induces an implicit DPO

but does not require preference data pairs. Ex-

tensive experiments across four editing methods,

two LLMs, and diverse scenarios demonstrate the

effectiveness and versatility of our method.

1. Introduction

Language models (LMs) parameterized by deep neural

networks (Vaswani et al., 2017; Lewis et al., 2019; Rad-

ford et al., 2019; Brown et al., 2020) demonstrate strong

generalizability across various natural language genera-

tion and classification tasks (See et al., 2019; Raffel et al.,

2020; Ji et al., 2023). These successes underscore their
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versatility, establishing them as new foundations for nat-

ural language processing applications (Bommasani et al.,

2021; Zhou et al., 2023). Furthermore, with model sizes

continually increasing, large language models (LLMs) ex-

hibit emerging abilities to follow natural language instruc-

tions (Dong et al., 2022b; Ouyang et al., 2022), which em-

powers their zero-shot adaptations to unseen tasks (Kojima

et al., 2022), paving the way towards artificial general intel-

ligence (Bubeck et al., 2023).

Despite this remarkable potential, the real-world LLM de-

ployment remains largely unresolved: LLMs are capable

of comprehending a wide range of human instructions and

queries, but they can only provide feedback based on their

static knowledge from the data they were trained on. In

a fast-changing world, most knowledge quickly becomes

outdated. For example, the updated knowledge about the

president of United States would refer to Donald Trump

rather than Joe Biden. Failing to maintain update-to-date

knowledge could amplify critical issues such as making

factual fallacy (De Cao et al., 2021) or producing harmful

generations (Hartvigsen et al., 2022). However, the signifi-

cant computational cost of retraining makes it impractical

to frequently incorporate new knowledge.

As a remedy, knowledge editing (KE), whose goal is to

update an LLM with some specific knowledge without hurt-

ing irrelevant others and general ability, is proposed (Wang

et al., 2023b; Zhang et al., 2024c). Full fine-tuning of LLMs

proved ineffective as it severely disrupted irrelevant knowl-

edge (Wang et al., 2023b), leading to an editing-locality

trade-off. Here locality refers to the ability to maintain

knowledge unrelated to the update, such as the prime min-

ister of Canada for the previous case. To achieve a good

locality, model updates need to be selective and should rely

on a small fraction of parameters (Wang et al., 2023b). Fol-

lowing this principle, parameter-efficient fine-tuning (PEFT)

methods such as LoRA (Hu et al., 2021) have achieved good

performance (Wu et al., 2023). On the other hand, Huang

et al. (2023); Dong et al. (2022a) restricted the updates to

some pre-specified feed-forward network (FFN) layer that

serves as knowledge storage (Dai et al., 2021). Meng et al.

(2022a;b) refined the process by introducing a locating stage

to identify which layer the target knowledge is stored. These

fine-grained manners have demonstrated impressive success
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in maintaining high locality (Zhang et al., 2024c).

Nevertheless, existing methods still suffered from losing

LLM generalizability, especially when dealing with tasks

that involve the edited knowledge, due to the so-called over-

fitting of KE (Zhang et al., 2024a). Specifically, KE often

involves one piece of new knowledge to edit at a time, which

entails updating (selected) parameters with single training

instance. Consequently, edited LLMs tend to pay excessive

attention to the edited subject, but fail to reason about the

new knowledge (Zhong et al., 2023; Zhang et al., 2024a).

Previous works highlighted this challenge, and quantified

this ability with a new metric known as portability (Zhong

et al., 2023; Wang et al., 2024f). However, the underlying

causes of overfitting and their relationship to the KE pro-

cess remain under-explored, leaving if KE overfitting can be

solved in a principled manner an open question.

In this work, we take the first step toward a deeper under-

standing of this overfitting, and pave the way for a princi-

pled solution to mitigate it. We first provide strong evidence

that KE overfitting leads to catastrophic degradation of an

LLM’s reasoning ability. In particular, we showed that as

the LLM is edited with new knowledge, the probability of

correct reasoning consistently decreases. To quantify this,

we investigated the portability loss at each fine-tuning step

(lower indicates better reasoning ability). We observed that

while portability loss initially decreased, it grew up quickly

thereafter. In addition, the final loss was significantly higher

than the initial value. This finding confirms that overfitting

is a direct cause of suboptimal portability.

To understand this overfitting, we checked how new knowl-

edge is fitted during the KE process. Based on our findings,

KE may only require learning a few pivotal tokens (words),

as many tokens already exhibit small initial loss values. In-

tuitively, an LLM’s pre-trained knowledge may enable it

to infer remaining parts base on pivotal tokens. However,

existing methods overlook this token-level difference in KE.

Even when selectively updating parameters, these meth-

ods aim to maximize the likelihoods of the entire sentence

describing the new knowledge, which boils down to maxi-

mizing the probability of all tokens indiscriminately (Ben-

gio et al., 2000; Radford et al., 2019; Brown et al., 2020).

As a result, this coarse-grained training paradigm leads to

varying degrees of overfitting across tokens. We term this

phenomenon heterogeneous token overfitting (HTO) in KE.

Sec 2 details our new insight on KE overfitting and its influ-

ence on portability. This is our first main contribution.

In light of how HTO roots at a token level, we propose

OVERTONE, a new KE training paradigm to tackle it.

OVERTONE assigns each token an adaptive training target

according to its (over)fitting state. An efficient solution is

proposed to construct these training objectives in a dynamic

way that allows to maintain much pre-trained knowledge if

possible. The theoretical advantage of our method lies in

three folds. First, our solution induces negligible computa-

tion cost compared to standard training (much cheaper than

a LLM forward). Second, our solution provides a better pa-

rameter update through the lens of importance function (Koh

& Liang, 2017). Finally, OVERTONE has a close connec-

tion to direct preference optimization (DPO), a widely-used

framework for LLM post-training (Rafailov et al., 2024;

Zhang et al., 2024d), but does not require additional pref-

erence data pairs. Sec 3 covers these aspects in details.

The proposed OVERTONE and our theoretical analysis is

another main technical contribution of this work. Remark-

ably, OVERTONE can be of interest to other tasks such

as machine unlearning, where selective updates of LLMs

are desired. Moreover, when the training text is long, as

the number of tokens to learn grows, we expect HTO to

exacerbate, and OVERTONE to be helpful.

Our paper is organized as follows. Sec 2 and Sec 3 details

the new overfitting phenomenon in KE and our proposed

OVERTONE for mitigation respectively. Extensive experi-

mental results in Sec 4 demonstrate the superiority of our

solution. In the remaining part of this paper, we review

related works in Sec 5, and conclude the paper in Sec 6.

2. Overfitting Issue in Knowledge Editing

This section presents a new token-dependent overfitting

phenomenon in knowledge editing (KE) that has been over-

looked in the literature. Background of KE is also provided.

2.1. Preliminaries

Given a text x = (x1, . . . , xn), where each xi ∈ V is a

token from vocabulary V , a large language model (LLM)

parameterized by ¹ computes probability Ãθ(x) based on

chain rule (Bengio et al., 2000):

Ãθ(x) =
n∏

i=1

Ãθ(xi | x1, . . . , xi−1) ≜
n∏

i=1

Ãθ(xi | x<i),

where Ãθ(xi | x<i) is the predicted distribution of token xi

given previous x<i. The LLM is usually trained with max-

imum likelihood estimation (Hochreiter, 1997; Sutskever,

2014; Cho et al., 2014). To generate a sentence x, the LLM

computes Ãθ(xi | x<i) and draws xi from it; then xi is

combined with x<i as new inputs for future steps. This pro-

cess completes if a special token that marks the end of the

sentence is returned, or if the maximum length is reached.

Knowledge Editing (KE) aims to update specific knowl-

edge in a pre-trained LLM while preserving unrelated others.

A knowledge can be represented by natural language (x,y),
x describes the subject and relation, and y entails corre-

sponding object. For instance, suppose x is The president

of United States is, y can be Donald Trump. KE asks the
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LLM to respond given x with new y, while satisfying the

following criteria meanwhile (Zhang et al., 2024c): (1) Gen-

erality: the edited model should generalize to all equivalent

inquires about the US president. (2) Portability: questions

reasoned from the new knowledge such as the first lady of

United States should be answered correctly. (3) Locality:

unrelated knowledge such as the prime minister of Canada

should be unchanged. These requirements of precisely up-

dating specific knowledge proves non-trivial (Wang et al.,

2023b; Zhang et al., 2024c).

2.2. Overfitting in Knowledge Editing

In response to precise KE requirements, existing attempts

restrict the updates to only a minimal amount of parameters.

This design establishes remarkable progress in maintain-

ing good locality (Zhang et al., 2024c; Wang et al., 2024d).

However, it proves insufficient to maintain good general-

izability (generalilty and portability) due to the so-called

overfitting issue (Zhong et al., 2023; Zhang et al., 2024a).

Namely, many KE tasks involve one piece of new knowledge

at a time, requiring to fine-tune an LLM on single training

instance. In such challenging scenarios, the LLM often

encounters severe overfitting even only a few parameters are

updated. This greatly restricts its ability to generalize the

edited knowledge. As shown in Zhong et al. (2023); Zhang

et al. (2024a), edited LLMs usually pay excessive attention

to the edited subject, but fail to address multi-hop reasoning

questions involving the new knowledge. As a result, this

limitation results in suboptimal portability.
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Figure 1. Loss (average) change of ground truth answers to gener-

ality (rephrased, left) and portability (reasoning, right) questions.

As a direct evidence, Fig 1 shows the change of generality

and portability loss1 at different iterations from fine-tuning

LLaMA2 7B (Touvron et al., 2023) with LoRA, a represen-

tative KE baseline method (Zhang et al., 2024c). As the

training goes on, the generality loss decreases. However,

the portability loss decreases at the beginning of training,

but starts to increase later. This confirms the existence of

overfitting. More importantly, the ultimate portability loss

is significantly larger than before editing, indicating that the

reasoning ability is in fact undermined by the KE process,

1The perplexity loss of the ground truth answer to a question.

2.3. Heterogeneous Token Overfitting
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Figure 2. Token-level initial loss and UD (negative indicates over-

fitted). Dashed lines mark the mean values.

Towards a deeper understanding of this overfitting phe-

nomenon, we check the loss of each token, and find that

different tokens tend to have distinct initial loss values. As

depicted in Fig 2a, before editing LLaMA2, only certain

tokens (e.g., the beginning) have significant loss values. On

the other hand, some tokens take small loss value and are

initially-fitted by nature. As an intuitive explanation, con-

sider the previous US president example. No matter a user

wants to edit the answer to Donald Trump or Joe Biden,

after seeing the first word Donald or Joe as a hint, the LLM

is expected to be capable of infer the remaining part based

on its pretrained knowledge.

Nonetheless, existing KE methods overlook this token-level

difference. Consequently, they tend to overfit tokens that

have varied losses at different speeds. For verification, we

compute the pre-edited log-likelihood of tokens generated

by the model with greedy decoding, and that of the editing

instance during the KE process. Note that our choice of

greedy decoding is on purpose, as it reflects the unedited

model’s most confident knowledge proper that was valid in

the past. By comparing the loss of the two, we can measure

if a token is overfitted. Specifically, we define underfitting

degree (UD) as the difference between the pre-edited and

running log-likelihoods. Here negative UD indicates an

overfitting. Fig 2b shows UD of different tokens when half

of them are overfitted. Strong pattern of UD varies across

different tokens confirms our concern. We dub this issue as

heterogeneous token overfitting (HTO) of KE.

HTO’s direct cause lies in the training paradigm. Formally,

given editing instance (x,y = [y1, . . . , ym]) where y con-

tains m tokens, many KE methods resort to a conventional

LLM training objective2. In particular, they seek to maxi-

mize likelihood of Ãθ(y | x) by minimizing an averaged

2We restrict our study to the widely-used teacher-forcing mech-
anism (Lamb et al., 2016).
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cross-entropy (CE) loss with gradient descent on

ℓCE(¹) ≜
m
∑

i=1

CE[¶yi
(y)∥Ãθ(y | x· y<i)] (1)

= −

m
∑

i=1

log Ãθ(yi | ci)

∇θℓCE(¹) = −

m
∑

i=1

∇θ log Ãθ(yi | ci).

Here ci = x· y<i denotes the context for token yi, ¶yi
(y)

is the Kronecker delta function3, and CE[·∥·] computes CE

between two distributions.

During training, gradient ∇θℓCE(¹) maximizes the proba-

bility of yi whiling minimizing the probabilities of all other

candidates. When the model is repeatedly updated using gra-

dient(s) from the single datapoint, as in KE, the probabilities

of initially-fitted tokens become disproportionately large,

while tokens with high initial loss values are gradually fit-

ted. That is to say, HTO lies in indiscriminately optimizing

CE loss of all tokens, without considering their difference.

Existing attempts for mitigating overfitting such as early

stopping (Yao et al., 2007) and label smoothing (Szegedy

et al., 2016; Müller et al., 2019) also ignore this token-level

difference, making them conceptually less suitable for HTO.

3. Propose Method

Given the importance of token-level difference in HTO, we

propose OVERTONE to offer a granular control that applies

to various KE methods, theoretical analysis is also provided.

3.1. Counteract HTO with OVERTONE

We present OVERTONE, a token-level strategy for HTO

mitigation. Our method smooths y’s distribution for fit-

ting in an adaptive way. Specifically, we replace each delta

distribution ¶yi
(y) with a unique smoothed target distribu-

tion Ãtar(y | ci), and refine the cross entropy by a clipped

forward KL divergence. Our complete loss is given by

ℓOVERTONE(¹) ≜

m
∑

i=1

max(DKL[Ãtar(y | ci)∥Ãθ(y | ci)], ϵ),

(2)

where clipped max(·, ϵ) imposes a token-level early stop-

ping when predicted Ãθ is close enough to Ãtar.

Principles of Ãtar design. We note that two principles

should be met in order to make Ãtar a good distribution

to target on. First, Ãtar should convey that ground truth to-

ken yi is most probable, otherwise, the objective may lead

3¶yi(y) = 1 if y = yi else 0.

to incorrect knowledge. Second, compared to uniform prior

that smooths all tokens equally, the model’s own pre-trained

knowledge is a better prior to help mitigate forgetting prob-

lem (Zhang & Sabuncu, 2020; Lee et al., 2022).

In light of the two principles, we use ¶yi
and the LLM’s

current knowledge from its predicted distribution Ãθ to con-

struct target Ãtar. However, as will be verified later, directly

use Ãθ can be suboptimal due to the non-negligible noise it

carries (Hewitt et al., 2022; Tang et al., 2024). Specifically,

Tang et al. (2024) argued that Ãθ mixes a distinct subset of

informative tokens, and a subset of noisy tokens associating

with small logits that fall outside nÃ-distant away from the

maximal value. By filtering out noisy tokens in Ãθ, the LLM

performance can be boosted at inference time. We bring this

insight to the training (editing) phase and mix the filtered

distribution4 Ã
(i)
flt with ¶yi

by

Ã
(i)
tar ≜







Ãcan
tar ≜ ¼¶yi

+ (1− ¼)Ã
(i)
flt if yi = argmaxy Ã

can
tar ,

¶yi
otherwise,

(3)

where ¼ is a hyper-parameter. Namely, we adopt the candi-

date mixture Ãcan
tar if it correctly assigns the maximal prob-

ability to yi, otherwise, we skip the mixing and use ¶yi
.

This skip mechanism helps reduce potential knowledge con-

flicts by discarding Ã
(i)
flt (from Ãθ) when it heavily relies on

outdated knowledge, which often happens in the first few

training steps, empirical benefit is shown in Sec 4.4. Algo 1

outlines the process of our solution.

3.2. Theoretical Advantages of OVERTONE

This section provides theoretical analysis on key factors that

merit OVERTONE for KE. All proofs and more in-depth

technical background are deferred to App A.

Merit 1. OVERTONE is universal and efficient.

While seemingly distinct, OVERTONE is in fact a general-

ization of CE loss. Moreover, our choice of Ãtar makes it

computationally efficient, with computation overhead negli-

gible compared to LLM forward operation.

Proposition 3.1. OVERTONE loss generalizes CE loss and

reduces to the latter when ϵ = 0, ¼ = 1.

Proposition 3.2. Using Alg 1, the additional computation

complexity induced by OVERTONE is O(|V|) when fitting a

token, where |V| is the vocabulary size.

Merit 2. OVERTONE provides better updates.

OVERTONE leads to more effective parameter updates, as

demonstrated through the lens of the influence function (Koh

4For brevity Ã
(i)
flt = Ãflt(y | ci), Ã

(i)
tar is defined similarly. Plain

Ãflt and Ãtar will be used when discussing the general idea.
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Algorithm 1 OVERTONE Training Paradigm

1: Input: Editing data (x,y = [y1, . . . , ym]), LM pa-

rameters ¹0, mixing hyper-parameter ¼, early-stopping

threshold ϵ, filtering threshold n, total training steps T .

2: Initialize: ¹ = ¹0.

3: for t = 1, . . . , T do

4: # Inner loop is parallelized in practice, unroll for

better readability.

5: for i = 1, . . . ,m do

6: Set context ci = x· y<i.

7: Compute logits from the LM as s(i) = fθ(ci) ∈

R
|V|. Take softmax and get Ã

(i)
θ .

8: Top nÃ-filter (Tang et al., 2024): Compute s
(i)
max =

maxk s
(i), Ã = std(s(i)). Define filtered logit

s̃
(i)
k = −∞ if s

(i)
k f s

(i)
max − nÃ else s̃

(i)
k = s

(i)
k .

9: Take softmax on filtered s̃ and get filtered Ã
(i)
flt .

10: Compute target Ã
(i)
tar based on Eq (3).

11: Compute loss

ℓ
(i)
OVERTONE

= max(DKL[Ã
(i)
tar ∥Ã

(i)
θ ], ϵ).

12: end for

13: Compute sample loss

ℓOVERTONE(¹) =

m
∑

i=1

ℓ
(i)
OVERTONE

.

14: Update with learning rate ³

¹ ← ¹ − ³∇θℓOVERTONE(¹)

15: end for

output Edited parameter ¹.

& Liang, 2017), outlined in the following informal theorem.

Due to page limitations, the formal version and correspond-

ing assumptions are deferred to Appendix A.3.

Theorem 3.3 (Informal). Under regularity conditions, com-

pared to optimizing the vanilla CE loss, OVERTONE pro-

vides a more favorable update direction for the parameters

and has less influence on unrelated knowledge.

Merit 3. OVERTONE has close connection to DPO and

other constrained optimizations.

One might question whether OVERTONE is conceptually su-

perior to constrained optimization approaches, such as fine-

tuning only a small set of specific parameters (Dong et al.,

2022a; Dai et al., 2021), limiting update magnitudes (Zhu

et al., 2020), or employing low-rank updates (Hu et al.,

2021). We emphasize that OVERTONE introduces a new

objective that can be solved with any optimization meth-

ods, regardless of whether constraints are imposed. In other

words, OVERTONE can be seamlessly combined with exist-

ing constrained optimization-based solutions for KE.

Below theorem draws a connection between OVERTONE

and direct preference optimization (DPO), which has shown

superior performance of maintaining pretrained knowledge

in LLM post-training (Wang et al., 2023a).

Theorem 3.4. Let ϵ = 0, optimizing OVERTONE can be

seen as optimizing an unbiased estimate of a DPO objective

plus some additional KL penalty.

Compared with conducting explicit DPO, OVERTONE does

not require collecting preference data, and is more efficient

thereof. Furthermore, as highlighted in Rozner et al. (2024),

another challenge of applying DPO to KE is that determin-

ing win-loss data pairs can be unstraightforward in KE. In

contrast, OVERTONE walks around this challenge by re-

fraining from treating any token as unpreferred, and instead

acts on a distribution level.

4. Experiments

We evaluate the proposed OVERTONE paradigm on four

performant KE methods applying to two representative large

language models (LMs) over five benchmarking datasets.

Ablation studies are also conducted to help understand its

effectiveness. Results show that OVERTONE helps improve

editing performance by a large margin on all methods. More

conceptual discussions can be found in Appendix D.

4.1. Experiment Setup

Base Models. We conduct experiments on two representa-

tive LMs, LLaMA 2-7b-Chat (Touvron et al., 2023) and

LLaMA 3-8b-Instruct (Dubey et al., 2024), which have

been widely studied in the literature (Zhang et al., 2024c;

Wang et al., 2024d). From now on, we refer to the two LMs

as LLaMA 2 and LLaMA 3 for brevity.

Tasks. Following Wang et al. (2023b); Zhang et al. (2024c),

we edit different kinds of knowledge: WikiDatarecent,

WikiDatacounterfact (Cohen et al., 2024), WikiBio (Hartvigsen

et al., 2024), and ZsRE (Yao et al., 2023). Besides the

four popular benchmarks, we also explore more complex

MQuAKE (Zhong et al., 2023; Wang et al., 2024f). Due

to page limitation, we refer readers to Zhang et al. (2024c)

for more benchmark details. When editing an LLM, we

consider two scenarios: (1) Single Editing: one piece of

knowledge is edited at a time. (2) Continual Editing: mul-

tiple pieces of knowledge are edited in a sequential way.

This is more challenging due to forgetting and knowledge

conflicting (Hartvigsen et al., 2024; Wang et al., 2024d).

Editing Methods. We apply OVERTONE to four representa-

tive KE methods from different families that have achieved

state-of-the-art performance (Zhang et al., 2024c; Wang
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et al., 2024e). FT-M (Zhang et al., 2024c) fine-tunes a spe-

cial layer identified by causal-tracing analysis wherein the

knowledge is stored. LoRA (Hu et al., 2021) learns additive

low-rank updates for model parameters on the new knowl-

edge. MELO (Yu et al., 2024) and WISE (Wang et al.,

2024d) incorporates additional parameter copies to learn

new knowledge, along with some gating mechanism to deter-

mine whether original or new knowledge should be used at

inference time. Despite incorporating certain explicit or im-

plicit constraints on the learnable parameters, these methods

are all trained to minimize the CE loss. For better bench-

marking, we also report results from two widely-studied

methods ROME (Meng et al., 2022a) and MEMIT (Meng

et al., 2022b). ROME applies a causal-tracing analysis to

identify the layer wherein the knowledge is stored and then

solves an analytic rank-one update, and MEMIT extends

ROME by identifying a series of layers to edit and finding

the updates as least-squares solutions. To reflect the chal-

lenging nature of KE under data scarcity regime, we focus

on KE methods that do not require a larges-scale hard-to-

access training data, or training additional models. No data

augmentation were applied during the editing.

Evaluation Criteria. We evaluate the performance from

four aspects as discussed in Sec 2: reliability (Rel.), gener-

ality (Gen.), portability (Por.), and locality (Loc.). Due to

page limits we refer readers to Zhang et al. (2024c); Wang

et al. (2024d) for their formulations. We report the average

of different metrics for more complete comparisons.

Implementation Details. All of our experiments are imple-

mented in EasyEdit (Wang et al., 2024e). More details and

hyper-parameters can be found in App B.

4.2. Single Editing Performance

We evaluate the effectiveness of OVERTONE in conducting

Single Editing on ZsRE, WikiDatarecent, WikiDatacounterfact,

and WikiBio with different KE methods. WISE was tested

on ZsRE, the only benchmark that contains additional irrel-

evant data during the editing time that is required by WISE.

Single Editing results are reported in Tab 1. From the ta-

ble, all KE methods gained significant improvement from

the proposed OVERTONE paradigm. Specifically, The four

methods hardly performed comparable to baselines ROME

and MEMIT from normal training, but were capable of ex-

ceeding them when trained with OVERTONE. For instance,

without OVERTONE, ROME achieved the highest and the

second-highest average performance for editing LLaMA 2

and LLaMA 3 respectively on Wikirecent. However, when

equipped with OVERTONE, FT-M, LoRA, and MELO out-

performed ROME on both tasks.

We next check where the improvement was made. From

the table, the first gain was from improved portability. To

see this, note that when editing LLaMA 2 on ZsRE, LoRA

reached a portability that was nearly three times of the base

version. Similarly, MELO also reached an almost dou-

bled portability. More evidence can be found from editing

LLaMA 3 as well. In addition, all methods, especially those

initially fall short in maintaining good locality, achieved ex-

cellent performance in this regard. As an evidence, LoRA’s

reached a nearly five times locality improvements when

editing both LLaMA 2 and LLaMA 3 on Wikicounterfact. We

want to highlight that, all these improvements were made

without compromising editing reliability. That is to say,

all the four methods achieved better trade-offs between re-

liability and reasoning (and locality) from the proposed

OVERTONE. More importantly, this success was established

in a model-agnostic manner, in the sense that OVERTONE is

not specialized for any particular KE method studied here.

Instead, it offers a highly flexible and generic paradigm that

can be combined with existing solutions in a plug-and-play

manner.

More Complex Editing task. To further evaluate how

OVERTONE performs on complex benchmark in the filed

of KE, we test FT-M and LoRA with editing the two LLMs

on MQuAKE-2002 (Wang et al., 2024f)5, following Zhong

et al. (2023). This task requires the edited LLM to answer

single- and multi-hop reasoning questions about the edited

knowledge. Experiment results are reported in Table 2.

As before, OVERTONE was capable of achieving better

portability without hurting the editing performance.

These empirical results echo well with our theoretical anal-

ysis, and confirm the superiority of OVERTONE.

4.3. Continual Editing Performance

We next study the more challenging scenarios, where mas-

sive edits are conducted in a continual (sequential) way.

Experiments were again run on the four benchmarks.

Due to page limit, We defer the complete results to App

C, and visualize the average of reliability, generality, porta-

bility, and locality in Fig 3. Specifically, we evaluate the

performance after new T pieces of knowledge length are

edited sequentially. Different KE methods are represented

in separate colors. Solid boxes indicate normal training

performance, and transparent boxes show results from train-

ing with OVERTONE. The unfilled area within the boxes

quantifies the improvements form OVERTONE.

As in Single Editing scenarios, OVERTONE again improved

the performance of four KE methods, enabling them to

surpass ROME and MEMIT by a large margin across di-

verse settings. Furthermore, on three out of the four bench-

marks (ZsRE, Wikirecent, and Wikicounterfact), the improve-

5This is a cleaned version of MQuAKE by fixing knowledge
conflicts (Wang et al., 2024f).
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Table 1. Single Editing performance. Four KE methods gained improvement from OVERTONE training paradigm. WISE requires

additional irrelevant data for training, which is only available in ZsRE benchmark.

ZsRE Wikirecent Wikicounterfact WikiBio

LLaMA 2-7b-chat

Rel. Gen. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg.

ROME 96.61 83.91 55.7 96.96 83.3 99.02 54.21 55.91 69.71 97.2 56.85 50.4 68.15 96.41 59.14 77.78

MEMIT 94.22 88.2 57.91 98.28 84.65 97.71 52.93 55.05 68.56 96.38 59.34 45.7 67.14 93.78 56.74 75.26

FT-M 99.75 99.33 54.32 93.01 86.60 100.0 62.93 45.92 69.62 100.0 74.7 54.86 76.52 100.0 90.04 95.02

+ Ours 99.75 96.8 57.08 96.54 87.54 100.0 63.91 60.4 74.77 100.0 73.62 75.34 82.99 100.0 93.46 96.73

LoRA 100.0 100.0 23.34 30.44 63.45 100.0 55.41 28.29 61.23 100.0 71.92 9.99 60.64 100.0 48.84 74.42

+ Ours 100.0 94.31 61.16 87.2 85.67 100.0 63.67 58.72 74.13 100.0 73.96 57.85 77.27 97.68 68.45 83.06

MELO 100.0 96.77 27.11 92.35 79.06 99.13 54.04 40.96 64.71 99.0 71.78 55.83 75.54 99.97 80.77 90.37

+ Ours 100.0 93.31 50.36 97.2 85.22 100.0 60.25 66.48 75.58 99.91 71.81 78.09 83.27 99.68 82.58 91.13

WISE 92.42 70.86 54.57 100.0 79.46 - - - - - - - - - - -

+ Ours 97.55 76.09 54.17 100.0 81.95 - - - - - - - - - - -

LLaMA 3-8b-Instruct

Rel. Gen. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg.

ROME 99.17 97.91 58.12 95.9 87.78 98.84 54.76 49.74 67.78 99.94 58.0 42.94 66.96 92.43 72.63 82.53

MEMIT 96.67 92.46 58.78 98.23 86.53 98.51 53.65 48.45 66.87 99.44 57.81 42.73 66.66 96.26 71.23 83.75

FT-M 100.0 99.75 40.43 79.43 79.90 100.0 57.13 30.01 62.38 100.0 72.62 31.47 68.03 100.0 92.96 96.48

+ Ours 100.0 99.75 48.63 94.78 85.79 100.0 60.88 44.67 68.52 100.0 73.5 58.29 77.26 99.99 94.87 97.43

LoRA 100.0 100.0 26.55 38.85 66.35 100.0 52.99 26.46 59.82 100.0 71.1 9.02 60.04 100.0 59.77 79.88

+ Ours 100.0 98.5 51.57 93.13 85.80 100.0 61.46 56.1 72.52 100.0 72.8 57.54 76.78 98.16 77.24 87.7

MELO 100.0 96.84 39.63 98.8 83.82 100.0 59.07 65.78 74.95 100.0 71.55 87.77 86.44 100.0 98.56 99.28

+ Ours 100.0 95.77 43.08 98.8 84.41 100.0 58.72 69.1 75.94 100.0 70.26 89.81 86.69 99.98 98.56 99.27

WISE 71.67 51.29 49.27 100.0 68.06 - - - - - - - - - - -

+ Ours 82.67 62.34 47.54 100.0 73.14 - - - - - - - - - - -

Table 2. Editing performance on MQuAKE.

LLaMA 2-7b-chat LLaMA 3-8b-Instruct

Rel. Sng-Hop. Mlt-Hop. Avg. Rel. Sng-Hop. Mlt-Hop. Avg.

FT-M 100.0 83.0 30.0 71.0 100.0 82.0 24.0 68.67

+ Ours 99.86 89.0 37.0 75.29 100.0 85.0 30.0 71.67

LoRA 100.0 95.0 39.0 78.0 100.0 98.0 35.0 77.67

+ Ours 99.75 93.0 48.0 80.25 100.0 95.0 40.0 78.33

ments were even more pronounced when the editing se-

quence is longer (T = 10, 100). Notably, according to

our results on ZsRE, LoRA (and FT-M) achieved highly

competitive continual editing performance when enhanced

with OVERTONE, on par with specialized continual editing

methods like MELO and WISE. In contrast, in previous

works (Zhang et al., 2024c; Wang et al., 2024d), vanilla

LoRA is generally considered unsuitable for continual edit-

ing unless significant adaptations are implemented.

To conclude, these results clear demonstrated the flexibility

and power of OVERTONE in diverse KE scenarios.

4.4. Ablation Studies

We end this section with an ablation study on OVERTONE to

showcase how each component contributes to its final perfor-

mance. Results from editing LLaMA 2 on ZsRE with LoRA

are presented in Tab 3. According to the table, we note the

following findings. First, pure token-level smoothing (“w/o

clip”) increases both portability and locality, confirming that

overfiting due to CE loss indeed hurts editing performance.

Additionally, the way to smooth target distribution plays a

critical role: using the unedited predicted distributions (“w/o

dyn-Ãflt”) leads to significant drop, due to the conflicts raise

from the outdated internal knowledge. Extra evidence can

be seen from (“w/o chk-Ãflt”), where the mixture (Eq (3)) is

always applied without checking if the probability of label

yi is the largest. Finally, the noise in predicted distribution

Ãθ also hinders the editing process: without filtering them

out (“w/o flt-Ãflt”), both generality and portability decreased.

All empirical results aligns well with our analysis in Sec 3.

Table 3. Ablation studies on OVERTONE, “w/o clip” sets ϵ = 0,

“w/o dyn-Ãflt” uses unedited prediction, “w/o chk-Ãflt” always adopt

the mixture in Eq (3), “w/o flt-Ãflt” uses full Ãθ without filtering

out tail (noisy) regions.

LLaMA 2-7b-chat

Rel. Gen. Por. Loc. Avg.

LoRA 100.0 100.0 23.34 30.44 63.45

w/o clip 100.0 99.75 26.6 41.08 66.86

w/o dyn-Ãflt 99.18 97.67 36.32 51.57 71.18

w/o chk-Ãflt 95.35 86.51 57.92 90.08 82.47

w/o flt-Ãflt 100.0 83.93 58.2 90.36 83.12

+ Ours 100.0 94.31 61.16 87.2 85.67
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Figure 3. Continual Editing performance under different sequence length T . Solid and transparent bars show performance with and

without OVERTONE. Unfilled area marks the performance gap. ROME and MEMIT didn’t use OVERTONE.

5. Related Works

Existing KE methods mainly fall into two classes.

Internal Storage updates model parameters for the adapta-

tion. Early studies fine-tuned a LLM directly but suffered

from severe forgetting problem (Wang et al., 2023b). For

more precise editing, Zhu et al. (2020) imposed a relaxed

ℓ2 norm constraint on parameter updates, and Dong et al.

(2022a); Huang et al. (2023) limited the updates to some

specific feed-forward network (FFN) layer(s), based on find-

ings that knowledge is often stored therein (Dai et al., 2021).

For further refinement, the locate-and-edit paradigm (Meng

et al., 2022a;b) first identifies the layer storing the knowl-

edge, then modifies its parameters in an analytic form or

through least squared solution. On the other hand, PEFT

methods such as LoRA- (Hu et al., 2021; Wang et al.,

2024c) and ReFT-family (Wu et al., 2024; Liu et al., 2025b)

also performed competitive to locating-based solutions (Wu

et al., 2023; Zhang et al., 2024c). In general, these works pri-

marily focus on identifying a small set of parameters most

relevant to the new knowledge. However, these approaches

are typically trained with instance-level loss, overlooking

the token-level differences. Therefore, they remain suscep-

tible to HTO in a similar manner and cannot be mitigated

by advanced PEFT methods (Chen et al., 2024; Miao et al.,

2025). This work addresses HTO, an orthogonal aspect

of the KE process, and complements existing studies in

a model-agnostic manner. Our OVERTONE is established

without assumptions about which parameters are updated, al-

lowing it to be seamlessly integrated with existing methods

without compromising their selective nature. We validate

our approach by showing that OVERTONE enhances the

performance of two representative internal stage methods

across diverse scenarios.

External Storage resorts to external memories without up-

dating original parameters. This category includes meta-

learning-based MEND (Mitchell et al., 2021) and its multi-

task varient InstructEdit (Zhang et al., 2024b), in-context

learning-based IKE (Zheng et al., 2023), retrieval-based

LTE (Jiang et al., 2024), augmentation-based StableKE (Wei

et al., 2024), and proxy model-based SERAC (Mitchell

et al., 2022). Notwithstanding, these methods often re-

quire large-scale, hard-to-access dataset for retrieval (e.g.,

IKE, LTE) as in retrieval-augmented generation (RAG,

(Gao et al., 2023; Wang et al., 2024b; Xu et al., 2024;

Yu et al., 2025; Liu et al., 2025a; Xu et al., 2025)), or

for training auxiliary models (e.g., MEND, InstructEdit,

SERAC). As a result, their practicality is limited, and they

struggle with Continual Editing that needs frequent up-

dates (Wang et al., 2024d). Recently, specialized meth-

ods for Continual Editing have been proposed. These ap-

proaches introduce adapters (GRACE (Hartvigsen et al.,

2024)), LoRAs (MELO (Yu et al., 2024)), or weight copies

(WISE (Wang et al., 2024d)) to memorize new knowledge,

and learn gating mechanism to determine whether to use

original or new knowledge. The gating mechanisms are of-

ten learned through additional representation-distance-based

codebooks (Yu et al., 2024) or distinct margin losses (Wang

et al., 2024d), making external storage methods more com-

plex. However, like internal storage methods, they optimize

editing parameters using instance-level loss functions, ig-

noring token-level differences. Consequently, they may

also suffer from HTO and can benefit from our OVERTONE
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framework. Experiments with two external storage methods

demonstrate that our solution can be straightforwardly in-

corporated to more complex KE methods, highlighting the

flexibility and versatility of OVERTONE.

Overfitting and Mitigation Recent works have identified

different forms of KE overfitting and proposed respective

mitigation solutions. Namely, Zhang et al. (2024a); Qi

et al. (2024) use in-context prompted distribution as the

target distribution to fit, which helps improve generalizabil-

ity (Lampinen et al., 2025), and Ma et al. (2024) focuses on

neighboring knowledge perturbation due to the answer-level

overfitting. In this work, we focus on understanding and

developing generalizable KE. Unlike existing methods, our

OVERTONE resorts the model’s own prediction to maintain

its pretrained knowledge through an adaptive token-level

distribution mixing and early stopping, in light of the token-

level HTO dynamic.

6. Conclusion

We study HTO, a token-dependent overfitting in KE, and

show how it degrades an edited LLM’s reasoning ability.

Inspired by an in-depth analysis on its cause, we propose

OVERTONE, which adaptively assigns each token a unique

smoothed distribution for better control to mitigate HTO.

Our solution enjoys several theoretical advantages, and

achieves superior performance on diverse tasks. Encour-

aged by these promising results, we plan to work on the

following directions in our future work. The first direction

is to understand how HTO will act on broader KE meth-

ods that involves more specialized losses or when facing

free-form editing data. The second topic we would like to

explore is to unify HTO and other types of KE overfitting,

thereby providing a more universal solution. Finally, we

advocate for more rigorous experimental design within the

KE community—specifically, conducting multiple runs per

editing instance—to ensure statistically reliable results.
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A. Omitted Theorems and Proofs

In this section we present the full theoretical analysis. All theorems are (re)stated in a formal manner for the convenience of

reading.

A.1. Notations

For completeness we highlight important notations that will be used. Throughout this paper, we use CE[·∥·] and DKL[·∥·]
to compute cross-entropy and Kullback–Leibler divergence between two distributions respectively. Specifically, given

two discrete distributions p, q, CE[p∥q] =
∑

i −pi log qi, and DKL[p∥q] =
∑

i −pi log
qi
pi

. In addition, 1(·) is the indicator

function such that 1(a) = 1 if event a holds and 0 otherwise. For a ∈ R
p, define the l2 norm as ∥a∥2 =

√∑p
i=1 a

2
i . For

a, b ∈ R
p, define the inner product as ïa, bð = a¦b. Define the cosine similarity cos(a, b) = ïa,bð

∥a∥2∥b∥2
.

A.2. OVERTONE is universal and efficient

The first merit of OVERTONE, as stated in the main body, lies in its universality and efficiency.

Proposition A.1. OVERTONE loss generalizes CE loss and reduces to the latter when ϵ = 0, ¼ = 1.

Proposition A.2. Using Alg 1, the additional computation complexity induced by OVERTONE is O(|V|) when fitting a

token, where |V| is the vocabulary size.

Our proofs rely on the following lemma, which plays a key role in connecting OVERTONE to a regularized loss.

Lemma A.3. Given yi, for an arbitrary token y and context c, and Ãtar = ¼¶yi
(y) + Ãflt(y), we have

CE[Ãtar(y | c)∥Ãθ(y | c)] = ¼CE[¶yi
(y)∥Ãθ(y | c)] + (1− ¼)CE[Ãflt(y | c) | (y | c)]. (4)

Proof. The proof is based on the definition of cross entropy (Cover, 1999).

CE[Ãtar(y | c)∥Ãθ(y | c)]

= −

|V|
∑

i=1

Ãtar(y | c) log Ãθ(y | c)

= −

|V|
∑

i=1

(¼¶yi
(y) + (1− ¼)Ãflt(y | c)) log Ãθ(y | c)

= −



¼

|V|
∑

i=1

¶yi
(y) log Ãθ(y | c) + (1− ¼)

|V|
∑

i=1

Ãflt(y | c) log Ãθ(y | c)





= ¼CE[¶yi
(y)∥Ãθ(y | c)] + (1− ¼)CE[Ãflt(y | c)∥Ãθ(y | c)]. (5)

This completes our proof.

We are ready to prove Prop 3.1.

Proof. The proof is based on the fact that OVERTONE objective minimizes a forward KL-divergence, which is equivalent to

13



Mitigating Heterogeneous Token Overfitting in LLM Knowledge Editing

minimizing cross-entropy (Cover, 1999; Bishop & Nasrabadi, 2006). Namely,

ℓOVERTONE(¹) ≜
m∑

j=1

max(DKL[Ãtar(y | ci)∥Ãθ(y | ci)], ϵ)

=

m∑

j=1

DKL[Ãtar(y | ci)∥Ãθ(y | ci)]1 (DKL[Ãtar(y | ci)∥Ãθ(y | ci)] > ϵ)

(a)
=

m∑

j=1

(

CE[Ã
(j)
tar ∥Ã

(j)
θ ] +H(Ã

(j)
tar )
)

1

(

DKL[Ã
(j)
tar ]∥Ã

(j)
θ ] > ϵ

)

=

m∑

j=1

CE[Ã
(j)
tar ∥Ã

(j)
θ ]1

(

DKL[Ã
(j)
tar ]∥Ã

(j)
θ ] > ϵ

)

+ C. (6)

Starting from step (a), we denote Ã
(j)
tar = Ãtar(y | ci) and Ã

(j)
θ similarly for brevity, C denotes terms that are constant to

learnable parameter ¹. Therefore, setting ϵ = 0 gets us rid of the indicator term. Further plug in Eq (5), we see that setting

¼ = 1 reduces to the standard CE loss. This completes the proof.

In terms of Prop 3.2, the computation overhead can be seen by checking Algo 1.

Proof. The additional computation complexity of OVERTONE is due to line 8-10 in Algo 1. These steps involve finding the

maximal logits, pruning small logits, and compute the probability with softmax function from the pruned logits. All of them

have linear time complexity |V|. This completes our proof.

A.3. OVERTONE provides better updates

We present the formal analysis of how OVERTONE provides better parameters update as outlined in Thm 3.3. Our analysis

is established in the same spirit of influence function (Koh & Liang, 2017).

We first restate Thm 3.3, which outlines the two aspects where OVERTONE is better than training standard CE loss.

Theorem A.4 (Informal). Under regularity conditions, compared to optimizing the vanilla CE loss, OVERTONE provides a

more favorable update direction for the parameters and has less influence on unrelated knowledge.

The formal statement is as follows.

Theorem A.5 (Formal). Let G be the ideal gradient of retraining the LLM using ¹̂old as the initial value, as defined in Eq (8).

Considering the simplified case where ϵ = 0 in Eq (6), under Assumptions A.6 and A.7, there exists some ¼ ∈ [0, 1] such that

cos
(

∇θℓCE(z
new; ¹̂old), G

)

< cos
(

∇θℓOVERTONE(znew; ¹̂old), G
)

.

In other words, using the OVERTONE loss provides a better approximation of the direction of G compared to the standard

CE loss, meaning the gradient direction is closer to G.

Now, denote the new estimator obtained through either ℓCE or ℓOVERTONE by ¹̂new
CE or ¹̂new

O VERTONE, respectively. Let

Zun = (Xun, Y un) be a random vector representing unrelated data. Under Assumptions A.11 and A.13, we have

EZun

[∣
∣
∣Ãθ̂new

O
VERTONE

(Zun)− Ã
θ̂old(Z

un)
∣
∣
∣

]

< EZun

[∣
∣
∣Ãθ̂new

CE
(Zun)− Ã

θ̂old(Z
un)
∣
∣
∣

]

.

This result indicates that updates based on the OVERTONE loss induce smaller deviations in the predicted distribution for

unrelated data compared to updates based on the standard CE loss, thereby better preserving locality.

Theorem A.5 consists of two parts: Theorem A.10 and Theorem A.15. Theorem A.10 states that our method provides a

more effective direction for parameter updates, while Theorem A.15 asserts that our method results in a smaller perturbation

on unrelated knowledge. The assumptions and proofs will be presented in Sections A.3.1 and A.3.2, respectively.
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A.3.1. OUR METHOD GIVES A BETTER DIRECTION OF PARAMETER UPDATES

Without loss of generality, suppose that a LLM is pretrained on some large textual corpus {zn}
N
n=1, each training sample

zn = (xn,yn) where yn = (y1, · · · , ymn
). KE involves updating some knowledge carried by zold = (x,yold) to new

znew = (x,ynew). Let ¹̂old denote the pre-trained LLM parameters. Given this piece of new knowledge, the ideal LLM

should have parameters ¹̂new from a full retraining by solving

minθ
1

N

N∑

n=1

ℓCE(zn; ¹)−
1

N
ℓCE(z

old; ¹) +
1

N
ℓCE(z

new; ¹), (7)

where ℓCE denotes the standard CE loss. In general, we define ℓδ(¹) as

ℓδ(¹) =

n∑

i=1

ℓCE(zi; ¹) + ¶
(
ℓCE(z

new; ¹)− ℓCE(z
old; ¹)

)
.

Moreover define

¹̂δ = argmin
θ

ℓδ(¹).

So we find that ¹̂0 = ¹̂old and ¹̂ 1
N

= ¹̂new. Starting from ¹̂old, when we perform gradient descent by using loss ℓ 1
N

(¹) to

retrain the model, the gradient will be

G ≜ ∇θℓ 1
N

(¹̂old). (8)

So we just take G as the optimal direction to represent that if we retrained the LLM, i.e., the direction of the gradient descent

at ¹̂old.

We make following assumption on ¹̂old such that it is a local the minimizer of ℓ0(¹).

Assumption A.6. The pretrained LLM is converged, namely, ∇θℓ0(¹̂
old) = 0.

For brevity, denote

a = ∇θℓCE(z
new; ¹̂old),

b = −∇θℓCE(z
old; ¹̂old),

c =

m∑

i=1

∇θCE[Ãflt(y | cnew
i )∥Ãθ(y | cnew

i )]

∣
∣
∣
∣
θ=θ̂old

.

(9)

Assumption A.7. cos(b, c) satisfies

cos(b, c) > 1−
∥b∥

2
2

8∥a+ b∥
2
2

(1− cos(a, a+ b))
2
. (10)

Remark A.8 (Interpretation of the Assumption A.7). The Assumption A.7 ensure direction b and c will not be far away.

Roughly speaking, when we take
∥b∥2

2

8∥a+b∥2
2

as some constant. It says that 1 − cos(b, c) < (1 − cos(a, a+ b))2, which

means the directions of b and c are closer compared with a and a + b. When we look it more carefully, Note that a
represents ∇θℓCE(z

new; ¹̂old) and a + b represents the ideal direction G. Since the old knowledge gradient b is present,

directly fine-tuning ℓCE (i.e., the baseline method) results in a deviation compared with the ideal direction G. This directional

deviation is measured by cos(a, a+ b). Let S(i) denote the collection of unfiltered tokens in Ãflt(y | cnew
i ),

b = −∇θℓCE(z
old; ¹̂old) =

m∑

i=1

∇θ log Ãθ(y
old
i | cold

i )

∣
∣
∣
∣
θ=θ̂old

, (11)

c =
m∑

i=1

∇θCE
[
Ãflt(y | cnew

j )∥Ãθ(y | cnew
j )

]
∣
∣
∣
∣
θ=θ̂old

= −
m∑

i=1

∑

y∈S(i)

Ãflt(y | cnew
i )∇θ log Ãθ(y | cnew

i )

∣
∣
∣
∣
θ=θ̂old

. (12)

Given the new knowledge c
new
j , when y ∈ S(i), it implies that y is likely close to yold

i with some probability. Compared to

the scenario where the old knowledge cold
j is given, the gradients ∇θ log Ãθ(y

old
i | cold

i )
∣
∣
θ=θ̂old and ∇θ log Ãθ(y | cnew

i )
∣
∣
θ=θ̂old
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tend to point in opposite directions. This is because both gradients are evaluated at yold or a point close to yold, but the first is

conditioned on c
old
j while the second is conditioned on c

new
j . Equivalently, this implies that b and c are aligned in the same

direction. To ensure that we can find a closer direction, we require b and c to be approximately as close as a and a+ b. Our

goal is to align with the negative gradient direction of the old knowledge. This ensures that when leveraging the information

from c to weight our method, we can identify a direction that closely approximates the ideal optimization direction.

Remark A.9. To elaborate further, we take logistic regression as an example for illustration.

When considering only the k-th token, for a training point zk = (ck, yk), let p(yk | ck) = Ã(yk¹
¦ck), where yk ∈ {−1, 1}

and Ã(t) = 1
1+exp(−t) is the sigmoid function. the gradient of the log-probability with respect to ¹ is given by:

∇θ log p(zk, ¹) = Ã(−yk¹
¦ck)ykck.

Then, we find that:

b = Ã(−yold
k ¹¦cold

k )yold
k cold

k ,

c = −
∑

yk∈S(i)

pyk
Ã(−yk¹

¦cnew
k )ykc

new
k = −poldÃ(−yold

k ¹¦cnew
k )yold

k cnew
k − pnewÃ(−ynew

k ¹¦cnew
k )ynew

k cnew
k .

This follows from the fact that yk ∈ {−1, 1}. Note that cnew
k and cold

k may be far apart, and pold is likely to be large since Ãflt

is a denoised version of Ãθ, meaning it contains less noise (Tang et al., 2024). As a result, the directions of b and c will be

close.

Theorem A.10. Let G be the ideal gradient of retraining the LLM using ¹̂old as the initial value, as defined in Eq (8).

Considering the simplified case where ϵ = 0 in Eq (6), under Assumptions A.6 and A.7, there exists some ¼ ∈ [0, 1] such that

cos
(

∇θℓCE(z
new; ¹̂old), G

)

< cos
(

∇θℓOVERTONE(znew; ¹̂old), G
)

.

In other words, using the OVERTONE loss provides a better approximation of the direction of G compared to the standard

CE loss, in the sense that OVERTONE gradient direction is closer to G.

Proof. First, by definition, the optimal gradient direction G when using ¹old as the initial value is given by

G = ∇θℓ 1
N

(¹̂old)

= ∇θℓ0(¹̂
old) +

1

N

(

∇θℓCE(z
new; ¹̂old)−∇θℓCE(z

old; ¹̂old)
)

(a)
=

1

N

(

∇θℓCE(z
new; ¹̂old)−∇θℓCE(z

old; ¹̂old)
)

,

where (a) holds from the stationary condition of ¹̂old as per Assumption A.6. Note that this optimal direction is inaccessible

since it is infeasible to find the ground truth zold wherefrom the LLM’s old knowledge is learned. In practice, only znew is

available, which is provided by the user.

To see that OVERTONE can provide a better direction, we check the gradient of CE loss ℓCE and our loss ℓOVERTONE. Recall

the definition of a, b, c given by Eq (9), for CE loss, we have

∇θℓCE(z
new; ¹) = −

m∑

i=1

∇θ log Ãθ(y
new
i | cnew

i ) = a, (13)

where c
new
i = x· ynew

<i , as derived in Sec 3 in the main body.
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For OVERTONE loss, according to Eq (5) and Eq (6), we have

∇θℓOVERTONE(znew; ¹) =

m∑

i=1

∇θCE[Ãtar(y | cnew
i )∥Ãθ(y | cnew

i )]

= ¼

m∑

i=1

∇θCE
[
¶ynew

i
(y)∥Ãθ(y | cnew

i )
]
+ (1− ¼)

m∑

i=1

∇θCE[Ãflt(y | cnew
i )∥Ãθ(y | cnew

i )]

= −

(

¼

m∑

i=1

∇θ log Ãθ(yi | c
new
i ) + (1− ¼)

m∑

i=1

−∇θCE[Ãflt(y | cnew
i )∥Ãθ(y | cnew

i )]

)

= ¼a+ (1− ¼)c.

Next, we check cosine similarity cos
(

∇θℓCE(z
new; ¹̂old), G

)

and cos
(

∇θℓOVERTONE(znew; ¹̂old), G
)

. A larger cosine

similarity indicates an update direction that aligns with the ideal G better and is more effective.

Note that

cos
(

∇θℓCE(z
new; ¹̂old), G

)

=
ïa, a+ bð

∥a∥2∥(a+ b)∥2
,

cos
(

∇θℓOVERTONE(znew; ¹̂old), G
)

=
ï¼a+ (1− ¼)c, a+ bð

∥¼a+ (1− ¼)c∥2∥(a+ b)∥2
.

We will show that, there ∃¼ ∈ [0, 1], s.t.

ïa, a+ bð

∥a∥2
<

ï¼a+ (1− ¼)c, a+ bð

∥¼a+ (1− ¼)c∥2
.

We further denote ¶bc =
c

∥c∥2
− b

∥b∥2
which quantifies the directional difference between b and c. We then have:

c =

(
b

∥b∥2
+ ¶bc

)

∥c∥2. (14)

Take ¼ = ∥c∥2

∥b∥2+∥c∥2
, by substituting c by Eq (14) and applying the triangle inequality, we obtain

ï¼a+ (1− ¼)c, a+ bð

∥¼a+ (1− ¼)c∥2
=

〈(
∥c∥2

∥b∥2+∥c∥2

)

a+
(

∥b∥2∥c∥2

∥b∥2+∥c∥2

)(
b

∥b∥2
+ ¶bc

)

, a+ b
〉

∥
∥
∥

(
∥c∥2

∥b∥2+∥c∥2

)

(a+ b) +
(

∥b∥2∥c∥2

∥b∥2+∥c∥2

)

¶bc

∥
∥
∥
2

g
∥a+ b∥

2
2 − ∥a+ b∥2(∥¶bc∥2∥b∥2)

∥a+ b∥2 + ∥b∥2∥¶bc∥2

g
∥a+ b∥2 − ∥b∥2∥¶bc∥2
∥a+ b∥2 + ∥b∥2∥¶bc∥2

∥a+ b∥2.

Therefore, to show OVERTONE provides a larger cosine similarity, it suffices to show that

∥a+ b∥2 − ∥b∥2∥¶bc∥2
∥a+ b∥2 + ∥b∥2∥¶bc∥2

> cos(a, a+ b),

which is equivalent to show

∥¶bc∥2 <
∥b∥2

∥a+ b∥2

(
1− cos(a, a+ b)

1 + cos(a, a+ b)

)

.

Note that ∥¶bc∥
2
2 = 2− 2 cos(b, c), it suffices to show

cos(b, c) > 1−
∥b∥

2
2

2∥a+ b∥
2
2

(
1− cos(a, a+ b)

1 + cos(a, a+ b)

)2

.

Since cos(a, a+ b) f 1, this condition holds from Assumption A.7. This completes our proof.
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A.3.2. OUR METHOD LEADS TO A SMALLER PERTURBATION ON UNRELATED KNOWLEDGE.

Now denote our new estimator obatined through either ℓCE or ℓOVERTONE by ¹̂new
CE or ¹̂new

O VERTONE. After updating the

model parameters to incorporate new knowledge, it is crucial to assess whether this update introduces significant changes to

unrelated data.

Without loss of generality, let zun = (xun,yun) represent a query-answer pair, where xun is an unrelated query and y
un is its

corresponding predicted answer. To ensure good locality, the predicted distribution on z
un should remain unchanged against

modifications introduced by the update, ensuring that the model’s behavior on unaffected regions of the data distribution is

preserved. That means we want to compare

∣
∣
∣Ãθ̂new

CE
(zun)− Ã

θ̂old(zun)
∣
∣
∣ with

∣
∣
∣Ãθ̂new

O
VERTONE

(zun)− Ã
θ̂old(zun)

∣
∣
∣.

Now, treating Zun = (Xun, Y un) as a random vector following a certain distribution, we define

W ≜ ∇θÃθ(Z
un)
∣
∣
∣
θ=θ̂old

.

Since W is a function of Zun, it is also a random vector. In particular, we introduce the following assumption.

Assumption A.11. Assume that W
∥W∥2

and ∥W∥2 are independent. Furthermore, assume that

W

∥W∥2
∼ U(Sd−1),

where U(Sd−1) denotes the uniform distribution on the unit sphere in R
d with d denoting the dimensionality of the parameter

space.

Remark A.12. Since it represents the gradient of the loss evaluated on unrelated data, we lack any prior information about

W . Given that, we assume that W
∥W∥2

is isotropically distributed.

Recall the definition of a, b, c given by Eq (9), we define »R =
∥c∥2

∥a∥2
.

Assumption A.13. We assume that »R < 1.

Remark A.14 (Interpretation of the Assumption A.13). As shown in Eq. (12) and Eq. (13):

a = −
m∑

i=1

∇θ log Ãθ(y
new
i | cnew

i ),

c = −
m∑

i=1

∑

y∈S(i)

Ãflt(y | cnew
i )∇θ log Ãθ(y | cnew

i )
∣
∣
∣
θ=θ̂old

.

This implies that c is a weighted combination of a and contributions from other values of y ∈ S(i). Note that at ¹̂old, given

c
new
i , when y ̸= ynew

i , the other points are closer to yold
i . Since the loss has already reached its minimum, these other points

tend to have smaller gradient norms compared to ynew
i .

Theorem A.15. Let Zun = (Xun, Y un) be a random vector representing unrelated data. Under Assumptions A.11 and A.13,

we have

EZun

[∣
∣
∣Ãθ̂new

O
VERTONE

(Zun)− Ã
θ̂old(Z

un)
∣
∣
∣

]

< EZun

[∣
∣
∣Ãθ̂new

CE
(Zun)− Ã

θ̂old(Z
un)
∣
∣
∣

]

.

This result indicates that updates based on the OVERTONE loss induce smaller deviations in the predicted distribution for

unrelated data compared to updates based on the standard CE loss, thereby better preserving locality.

Proof. Again let ¹̂old denote the pretrained parameters. For any new parameters ¹̃new, the change of Ãθ(z
un) when ¹ moves

from ¹̂old to ¹̃new can be approximated by the first-order Taylor expansion with

Ãθ̃new(z
un)− Ã

θ̂old(z
un) = ∇θÃθ(z

un)

∣
∣
∣
∣

¦

θ=θ̂old

(

¹̃new − ¹̂old
)

+ o
(∥
∥
∥¹̂new − ¹̂old

∥
∥
∥
2

)

.

Note that when we perform one step gradient descent, the parameter change can further be expressed by

¹̃new − ¹̂old = −³∇θℓ(z
new; ¹̂old),
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where ℓ(znew; ¹) can be either CE loss or OVERTONE loss, and ³ denotes the learning rate.

Then to show OVERTONE leads to smaller perturbation in expectation, it suffices to show that there exists ¼ ∈ [0, 1] such

that

E
[∣
∣a¦W

∣
∣
]
> E

[∣
∣¼a¦W + (1− ¼)c¦W

∣
∣
]
.

By triangle inequality, we only need to show

E
[∣
∣a¦W

∣
∣
]
> E

[∣
∣c¦W

∣
∣
]
.

Finally, by Assumption A.11, W
∥W∥2

∼ U(Sd−1) and W
∥W∥2

and ∥W∥2 are independent, we have

E

[∣
∣
∣c¦ W

∥W∥2

∣
∣
∣∥W∥2

]

E

[∣
∣
∣a¦ W

∥W∥2

∣
∣
∣∥W∥2

] =
E

[∣
∣
∣c¦ W

∥W∥2

∣
∣
∣

]

E[∥W∥2]

E

[∣
∣
∣a¦ W

∥W∥2

∣
∣
∣

]

E[∥W∥2]
= »R < 1.

This completes our proof.

A.4. Connection between OVERTONE and DPO

We end up this section by the following analysis on the connection between OVERTONE and direct preference optimization

(Rafailov et al., 2024).

Theorem A.16. Let ϵ = 0, then optimizing OVERTONE directly can be seen as optimizing an unbiased estimate of a DPO

objective plus some additional KL penalty.

Proof. From Prop 3.1 and Lem A.3, at step i, we have the negative loss (objective) to maximize

−ℓOVERTONE,i(¹) = −DKL[Ãtar(y | ci)∥Ãθ(y | ci)]

= − (¼CE[¶yi
(y)∥Ãθ(y | ci)] + (1− ¼)CE[Ãflt(y | ci)∥Ãθ(y | ci)])

= −¼ (CE[¶yi
(y)∥Ãθ(y | ci)]− CE[Ãflt(y | ci)∥Ãθ(y | ci)])− CE[Ãflt(y | ci)∥Ãθ(y | ci)] (15)

= ¼ (log Ãθ(yi | ci) + CE[Ãflt(y | c)∥Ãθ(y | ci)])− CE[Ãflt(y | ci)∥Ãθ(y | ci)] (16)

From the lens of DPO, note that the editing knowledge (x,y) can be seen as a preferred sample drawn from unknown Ã+

(e.g., retraining the LM from scratch). Consequently, Eq (16) is in fact an unbiased estimator of

¼




Ey+∼π+(y|ci)[log Ãθ(y

+ | ci)]
︸ ︷︷ ︸

Preferred distriibution

−Ey−∼πflt(y|ci)[log Ãθ(y
− | ci)]




− CE[Ãflt(y | ci)∥Ãθ(y | ci)]

= ¼Ey+,y−

[

log
Ãθ(y

+ | ci)

Ãθ(y− | ci)

]

− DKL[Ãflt(y | ci)∥Ãθ(y | ci)] + C

(a)
= ¼

(

Ey+,y−

[

log
Ãθ(y

+ | ci)

Ãθ(y− | ci)
− log

Ãflt(y
+ | ci)

Ãflt(y− | ci)

]

+ Ey+ [log Ãflt(y
+ | ci)− Ey− [log Ãflt(y

− | ci)]

)

− DKL[Ãflt(y | ci)∥Ãθ(y | ci)] + C

= ¼



Ey+,y−

[

log
Ãθ(y

+ | ci)

Ãθ(y− | ci)
− log

Ãflt(y
+ | ci)

log Ãflt(y− | ci)

]

+ Ey+ [Ãflt(y
+ | ci)]− Ey− [Ãflt(y

− | ci)]
︸ ︷︷ ︸

constant wrt θ





− DKL[Ãflt(y | ci)∥Ãθ(y | ci)] + C

= Ey+,y−

[

¼ log
Ãθ(y

+ | ci)

Ãflt(y+ | ci)
− ¼ log

Ãθ(y
− | ci)

Ãflt(y− | ci)

]

︸ ︷︷ ︸

DPO with a clipped exponential preference

− DKL[Ãflt(y | ci)∥Ãθ(y | ci)]
︸ ︷︷ ︸

Additional Penalty

+C, (17)

where the first term incorporates a preferred distribution, of which the user-provided new knowledge yi serves an unbiased

estimate. Step (a) plugs in the log-likelihood ratio between the (y+, y−) pair from Ãflt, which is constant with respect to ¹

19



Mitigating Heterogeneous Token Overfitting in LLM Knowledge Editing

and doesn’t affect the objective thereof. In the final step, we treat the first term as a token-level DPO objective using current

Ãflt as the reference model, and the preference model is given by a clipped exponential preference model

Pr(y+ { y− | ci) = min(exp
(
r(ci, y

+)− r(ci, y
−)
)
/Z, 1),

where Z g 1 is some constant. Notably, since our base distribution, Ãflt, is the clipped version of Ãθ, and ¼ ∈ [0, 1], the

difference in probability of y+(y−) given ci is expected small, so that we can impose

0 f ¼ log
Ãθ(y

+ | ci)

Ãflt(y+ | ci)
− ¼ log

Ãθ(y
− | ci)

Ãflt(y− | ci)
f 1,

this allows us to set Z = e and get rid of the clipping operator. Then, the first term becomes

Ey+,y−

[

¼ log
Ãθ(y

+ | ci)

Ãflt(y+ | ci)
− ¼ log

Ãθ(y
− | ci)

Ãflt(y− | ci)

]

=Ey+,y−

[

log

(

exp

(

¼ log
Ãθ(y

+ | ci)

Ãflt(y+ | ci)
− ¼ log

Ãθ(y
− | ci)

Ãflt(y− | ci)

)

/Z

)]

+ logZ

=Ey+,y−

[
log Pr(y+ { y− | ci)

]
+ logZ,

where logZ is constant in parameter ¹. Comparing this equation with Rafailov et al. (2024) draws a connection between

OVERTONE and DPO. The second term of Eq (17), on the other hand, is an additional penalty to push Ãθ stay close to Ãflt

by using a forward KL, which has been explored in preference learning (Wang et al., 2024a).

In conclusion, OVERTONE can be seen as an unbiased estimator of a special DPO problem. This completes our proof.

B. Implementation Details

B.1. Hyperparameters used in KE

We present the implementation details of our algorithms. All of our experiments are run on EasyEdit (Wang et al., 2024e). In

general, we tuned hyperparameters for each KE method basis using to the base version, if the default setting from EasyEdit

showed noticable inferior performance. See below for more details.

FT-M used the following hyperparameters:

• On ZsRE, Wikirecent, Wikicounterfact, and WikiBio: default training parameters from EasyEdit for both LLaMA 2 and

LLaMA 3.

• On MQuAKE: Layers to tune: (20,21,22,23,24). Learning rate: 1e-3. Others unchanged.

LoRA used the following hyperparameters:

• On ZsRE, Wikirecent, Wikicounterfact, and WikiBio: default training parameters from EasyEdit for both LLaMA 2 and

LLaMA 3.

• On MQuAKE: LoRA rank: 12. Iteration numbers: 50. Others unchanged.

MELO used the following hyperparameters:

• We set initial radius for each code in the code-book to 60 for LLaMA 2, and 30 for LLaMA 3. Due to the fact that the

default choice 0.1 was too small to retrieve any edited parameters for rephrased queries or reasoning.

• Others unchanged.

WISE used the following hyperparameters:

• On OVERTONE, we shrunk activation thresholds by 0.6 in consideration of the milder overfitting from our method. We

didn’t tune this shrinkage factor so it can be suboptimal. All other parameters used default values from EasyEdit.
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• We removed data augmentation for better measure HTO influence. This led to significantly faster editing speed (around

5 times speedup).

ROME and MEMIT used default choices from EasyEdit.

Finally, OVERTONE is tuned on a KE model base and applied to both LLMs. We didn’t tune hyper-parameters extensively,

so below ϵ and n can be suboptimal.

• FT-M: ϵ = 0.01, n = 0.5 for nÃ-filtering, ¼ = 0.1 for mixing.

• LoRA: ϵ = 0.05, n = 0.5 for nÃ-filtering, ¼ = 0.1 for mixing.

• MELO: ϵ = 0.05, n = 1 for nÃ-filtering, ¼ = 0.1 for mixing.

• WISE: ϵ = 0.05, n = 1 for nÃ-filtering, ¼ = 0.1 for mixing.

B.2. MQuAKE Experiment Details

MQuAKE benchmark follows a different evaluation pipeline for Single-Hop and Multi-Hop reasoning questions (Zhong

et al., 2023; Wang et al., 2024f) that checks the existence of ground truth answer in LLM’s generation. Our evaluation rubric

followed Zhong et al. (2023). We noted that the reliability of evaluation results heavily relies on the use of a good prompt,

our prompts are given below.

• Single-Hop questions: we used 1-shot prompting to guide the model provide answers directly, the complete prompt is

You are a helpful AI assistant. Answer questions directly.

Always format your response as:

Final answer: [concise and direct final answer]

Question: Who is the spouse of the head of state in United States of America?

Answer: Jill Biden

Question: # Single-Hop question related to the new knowledge #

Answer:

• Multi-Hop questions: Again we used 1-shot prompting to guide the model provide answers based on chain-of-

thought (Wei et al., 2022), the complete prompt is

You are a helpful AI assistant. For each question:

1. Break it down into simpler subquestions

2. Answer each subquestion step by step.

3. Use your answers to provide a final answer after ”Final answer: ”

Always format your response as:

Subquestion: [your subquestion]

Generated answer: [your answer]

Final answer: [concise and direct final answer]

Question: Who is the spouse of the head of state in United States of America?

Subquestion: Who is the head of state in United States of America?

Answer: The head of state in United States of America is Joe Biden.

Subquestion: Who is the spouse of Joe Biden?

Answer: The spouse of Joe Biden is Jill Biden.

Final answer: Jill Biden

Question: # Multi-Hop question related to the new knowledge #

In generation, we set temperature to 0.1. The maximum length was 30 for Single-Hop questions, and 200 for Multi-Hop

questions. Chat templates are applied.

C. More Experiment Results

We present the complete Continual Editing results here. Note that sequence T = 1 reduces to Single Edit results, but we

present them again for completeness.
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Table 4. Continual Editing performance (LLaMA 2). WISE requires additional irrelevant data for training, which is only available in

ZsRE benchmark.

ZsRE Wikirecent Wikicounterfact WikiBio

T = 1

Rel. Gen. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg.

ROME 96.61 83.91 55.7 96.96 83.3 99.02 54.21 55.91 69.71 97.2 56.85 50.4 68.15 96.41 59.14 77.78

MEMIT 94.22 88.2 57.91 98.28 84.65 97.71 52.93 55.05 68.56 96.38 59.34 45.7 67.14 93.78 56.74 75.26

FT-M 99.75 99.33 54.32 93.01 86.60 100.0 62.93 45.92 69.62 100.0 74.7 54.86 76.52 100.0 90.04 95.02

+ Ours 99.75 96.8 57.08 96.54 87.54 100.0 63.91 60.4 74.77 100.0 73.62 75.34 82.99 100.0 93.46 96.73

LoRA 100.0 100.0 23.34 30.44 63.45 100.0 55.41 28.29 61.23 100.0 71.92 9.99 60.64 100.0 48.84 74.42

+ Ours 100.0 94.31 61.16 87.2 85.67 100.0 63.67 58.72 74.13 100.0 73.96 57.85 77.27 97.68 68.45 83.06

MELO 100.0 96.77 27.11 92.35 79.06 99.13 54.04 40.96 64.71 99.0 71.78 55.83 75.54 99.97 80.77 90.37

+ Ours 100.0 93.31 50.36 97.2 85.22 100.0 60.25 66.48 75.58 99.91 71.81 78.09 83.27 99.68 82.58 91.13

WISE 92.42 70.86 54.57 100.0 79.46 - - - - - - - - - - -

+ Ours 97.55 76.09 54.17 100.0 81.95 - - - - - - - - - - -

T = 10

Rel. Gen. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg.

ROME 74.94 69.67 51.12 71.72 66.86 98.14 55.16 54.73 69.34 86.17 47.36 38.99 57.51 40.55 25.98 33.27

MEMIT 68.39 66.26 46.66 84.22 66.38 96.51 54.2 52.56 67.76 89.64 54.71 38.2 60.85 52.2 38.54 45.37

FT-M 89.14 87.43 47.13 84.26 76.99 97.4 56.47 41.4 65.09 96.41 70.32 42.44 69.72 92.96 77.69 85.32

+ Ours 92.8 88.21 55.74 91.06 81.95 96.42 61.65 53.13 70.40 98.72 72.47 65.46 78.88 95.26 84.43 89.84

LoRA 29.25 30.41 19.83 24.81 26.07 35.17 23.8 24.98 27.98 22.64 13.87 10.24 15.58 70.45 46.82 58.64

+ Ours 85.4 81.5 61.03 74.41 75.59 94.55 59.16 49.09 67.60 71.61 51.91 32.65 52.06 74.74 48.35 61.55

MELO 94.13 83.06 50.48 96.5 81.04 91.73 53.02 81.09 75.28 92.52 64.55 99.98 85.68 95.44 97.94 96.69

+ Ours 94.38 81.89 54.92 98.41 82.40 91.69 54.95 93.22 79.95 93.49 63.36 99.98 85.61 95.24 97.77 96.50

WISE 84.5 73.81 53.19 100.0 77.88 - - - - - - - - - - -

+ Ours 86.68 77.24 54.0 100.0 79.48 - - - - - - - - - - -

T = 100

Rel. Gen. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg.

ROME 25.37 22.68 4.73 5.1 14.47 24.99 13.12 8.55 15.56 0.0 0.0 0.0 0.0 2.63 15.74 9.18

MEMIT 2.58 2.88 0.24 2.5 2.05 70.22 41.12 38.43 49.92 0.82 0.97 0.26 0.69 0.0 15.74 7.87

FT-M 88.36 84.51 41.76 54.11 67.19 97.51 53.73 33.88 61.71 95.69 66.23 26.69 62.87 93.56 67.51 80.53

+ Ours 89.38 82.13 52.69 72.39 74.15 96.32 58.28 47.04 67.21 95.93 68.16 44.28 69.46 95.35 74.91 85.13

LoRA 0.67 0.78 1.00 0.03 0.62 0.5 0.5 0.12 0.37 0.67 0.0 0.0 0.22 47.02 27.06 37.04

+ Ours 62.23 58.06 56.62 59.57 59.12 70.49 47.05 49.87 55.80 32.17 28.99 29.19 30.12 52.96 25.73 39.34

MELO 38.13 36.12 53.88 98.08 56.55 26.33 24.98 53.73 35.01 24.87 24.21 78.71 42.60 48.88 97.61 48.88

+ Ours 39.13 37.28 54.75 98.58 57.44 47.95 39.65 86.77 58.12 24.92 25.39 97.12 49.14 52.17 97.44 74.81

WISE 84.59 71.59 54.45 100.0 77.66 - - - - - - - - - - -

+ Ours 92.42 84.22 56.71 100.0 83.34 - - - - - - - - - - -

D. More Discussions

We discuss some more conceptual characteristics and potential problems that future works may work on here.

OVERTONE and ROME/MEMIT. ROME (Meng et al., 2022a) and MEMIT (Meng et al., 2022b) are representative

solutions of KE through the locate-and-editing paradigm that are built upon the causal tracing and explicitly constructed

updated rules. This leads to special KE losses which contains two unique designs other than those being used in the four

backbone methods we studied. First, the impact of auto-regressive loss, which OVERTONE alters, on ROME is weaker, in

the sense that the MSE loss will determine the final parameter update. Second, ROME relies on random prefix augmentation,

which affects overfitting as well. Given these facts, we plan to work on a more principled way to extend OVERTONE, a

augmentation-free end-to-end training paradigm, in light of its principle. That is, we seek a better way to smooth (relax)

different token fitting adaptively with the model’s own knowledge, following the principle of OVERTONE. Therefore, it

would be interesting to bring the idea of OVERTONE to training ROME and MEMIT to boost their generalizability.
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Table 5. Continual Editing performance (LLaMA 3). WISE requires additional irrelevant data for training, which is only available in

ZsRE benchmark.

ZsRE Wikirecent Wikicounterfact WikiBio

T = 1

Rel. Gen. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg.

ROME 99.17 97.91 58.12 95.9 87.78 98.84 54.76 49.74 67.78 99.94 58.0 42.94 66.96 92.43 72.63 82.53

MEMIT 96.67 92.46 58.78 98.23 86.53 98.51 53.65 48.45 66.87 99.44 57.81 42.73 66.66 96.26 71.23 83.75

FT-M 100.0 99.75 40.43 79.43 79.90 100.0 57.13 30.01 62.38 100.0 72.62 31.47 68.03 100.0 92.96 96.48

+ Ours 100.0 99.75 48.63 94.78 85.79 100.0 60.88 44.67 68.52 100.0 73.5 58.29 77.26 99.99 94.87 97.43

LoRA 100.0 100.0 26.55 38.85 66.35 100.0 52.99 26.46 59.82 100.0 71.1 9.02 60.04 100.0 59.77 79.88

+ Ours 100.0 98.5 51.57 93.13 85.80 100.0 61.46 56.1 72.52 100.0 72.8 57.54 76.78 98.16 77.24 87.7

MELO 100.0 96.84 39.63 98.8 83.82 100.0 59.07 65.78 74.95 100.0 71.55 87.77 86.44 100.0 98.56 99.28

+ Ours 100.0 95.77 43.08 98.8 84.41 100.0 58.72 69.1 75.94 100.0 70.26 89.81 86.69 99.98 98.56 99.27

WISE 71.67 51.29 49.27 100.0 68.06 - - - - - - - - - - -

+ Ours 82.67 62.34 47.54 100.0 73.14 - - - - - - - - - - -

T = 10

Rel. Gen. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg.

ROME 43.91 40.14 25.11 31.7 35.22 91.17 51.25 43.67 62.03 86.52 45.37 32.9 54.93 4.01 7.58 5.79

MEMIT 59.74 58.36 37.34 71.06 56.62 98.38 54.42 47.08 66.63 98.61 58.48 36.28 64.46 5.4 1.61 3.5

FT-M 79.54 78.44 25.03 43.97 56.75 87.22 48.12 25.8 53.71 90.13 62.37 13.83 55.44 95.59 87.45 91.52

+ Ours 84.74 81.41 44.2 75.67 71.50 92.77 52.65 38.99 61.47 93.04 66.5 39.99 66.51 96.81 91.17 93.99

LoRA 18.54 17.55 6.63 6.56 12.32 21.7 13.66 11.97 15.78 12.59 5.92 0.69 6.40 51.09 44.45 47.77

+ Ours 73.28 72.39 53.13 69.36 67.04 93.68 56.97 49.34 66.66 71.99 49.52 32.24 51.25 64.26 55.11 59.69

MELO 94.08 80.47 47.97 98.8 80.33 92.56 54.51 86.58 77.88 92.97 63.74 98.3 85.00 94.77 98.56 96.67

+ Ours 94.08 80.94 49.77 98.8 80.90 91.56 54.24 89.16 78.32 92.97 62.69 98.32 84.66 94.91 98.56 96.74

WISE 51.14 43.36 51.0 100.0 61.38 - - - - - - - - - - -

+ Ours 58.21 53.22 49.21 100.0 65.16 - - - - - - - - - - -

T = 100

Rel. Gen. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg.

ROME 7.18 6.02 1.04 2.24 4.12 8.89 1.36 0.31 3.52 3.92 0.99 0.0 1.64 0.88 7.47 4.18

MEMIT 0.0 0.0 0.0 0.0 0.0 0.57 0.92 0.4 0.63 0.81 0.86 0.0 0.56 0.01 23.44 11.73

FT-M 78.79 78.29 13.7 15.42 46.55 94.27 44.09 22.99 53.78 87.47 55.62 2.78 48.62 93.65 85.83 89.74

+ Ours 81.2 77.87 32.65 44.66 59.09 96.19 53.73 32.42 60.78 92.97 62.02 20.71 58.57 94.23 85.83 94.23

LoRA 1.75 1.81 1.29 2.13 1.74 1.33 1.58 0.93 1.28 1.00 0.00 0.00 0.33 15.88 17.61 16.74

+ Ours 51.38 50.3 49.72 35.83 46.81 64.82 42.92 44.27 50.67 25.31 20.18 17.49 20.99 19.03 10.9 14.96

MELO 29.79 28.83 50.01 98.8 51.86 36.71 29.02 83.23 49.65 22.2 22.9 97.85 22.55 52.19 98.56 75.37

+ Ours 29.79 28.73 50.01 98.8 51.83 40.42 34.85 92.67 55.98 22.45 22.9 97.85 47.73 52.15 98.56 75.36

WISE 84.87 74.87 39.24 100.0 74.75 - - - - - - - - - - -

+ Ours 86.83 77.54 34.99 100.0 74.84 - - - - - - - - - - -

Potential Bias in OVERTONE Design. OVERTONE is designed to the model’s own prediction to extract pretrained

knowledge that should be maintained. To avoid misleading knowledge conflict and general noise, OVERTONE incorporates

two mechanisms. First, the unreliable (noisy) part is filtered out. Second, mixing with the model’s prediction is conducted

only if the mixed distribution correctly assigns the ground truth label (i.e., training token) the highest probability. However,

provably solving the potential knowledge conflict and identifying the optimal target distribution for KE are still two open

questions, and we advocate for future studies to work on these two directions towards better KE.
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