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Abstract

The propensity of large language models (LLMs)

to generate hallucinations and non-factual con-

tent undermines their reliability in high-stakes do-

mains, where rigorous control over Type I errors

(the conditional probability of incorrectly classi-

fying hallucinations as truthful content) is essen-

tial. Despite its importance, formal verification

of LLM factuality with such guarantees remains

largely unexplored. In this paper, we introduce

FACTTEST, a novel framework that statistically

assesses whether an LLM can provide correct an-

swers to given questions with high-probability

correctness guarantees. We formulate hallucina-

tion detection as a hypothesis testing problem

to enforce an upper bound of Type I errors at

user-specified significance levels. Notably, we

prove that FACTTEST also ensures strong Type

II error control under mild conditions and can

be extended to maintain its effectiveness when

covariate shifts exist. FACTTEST is distribution-

free and and model-agnostic. It works for any

number of human-annotated samples and applies

to any black-box or white-box LM. Extensive ex-

periments demonstrate that FACTTEST effectively

detects hallucinations and enable LLMs to abstain

from answering unknown questions, leading to an

over 40% accuracy improvement. Code is here.

1. Introduction

Large Language Models (LLMs) like ChatGPT (Ouyang

et al., 2022; OpenAI, 2024a) have demonstrated substan-

tial advancements across various domains. However, their

outputs cannot be fully trusted due to their propensity to gen-

erate inaccurate and non-factual information with seemingly
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high fluency and natural grounding, a challenge known as

hallucination (Maynez et al., 2020b; Huang et al., 2023; Ji

et al., 2023). This tendency undermines the reliability and

trustworthiness of the generated content, highlighting the

critical need for robust mechanisms to verify the factuality

and correctness of LLM outputs.

Existing approaches to hallucination detection like retrieval-

based methods (Thorne et al., 2018b; Gou et al., 2024; Chen

et al., 2024) and training-based approaches (Zhang et al.,

2023) either rely on external databases or resource-intensive

fine-tuning processes, which are often impractical or costly.

Therefore, uncertainty estimation has emerged as a zero-

resource alternative for hallucination detection (Varshney

et al., 2023; Xiong et al., 2024), operating under the premise

that hallucinations are intrinsically tied to the model’s un-

certainty (Huang et al., 2023). However, none of these

methods can provide theoretical guarantees for detection,

a critical requirement for deploying LLMs in high-stakes

domains (Kumar et al., 2023) where precise control of Type

I errors (incorrectly flagging a hallucination as truthful con-

tent) is needed for decision-making. For instance, incorrect

medical diagnoses or the provision of uncertain legal advice

could result in detrimental consequences.

To address these limitations, we introduce FACTTEST, a

framework that statistically evaluates whether an LLM can

reliably generate correct answers to given questions with

provable correctness guarantees. We formulate the factuality

testing within a hypothesis testing framework to theoreti-

cally control the Type I error while minimizing the Type

II error. Leveraging the fundamental connection between

Neyman-Pearson (NP) classification and statistical testing

(Tong et al., 2018; Tong, 2013; Scott & Nowak, 2005), we

define a score function to quantify correctness and deter-

mine an appropriate threshold based on a calibration dataset.

This allow LLMs to refuse unknown questions and control

the false positive rate for any score function.

Our theoretical analysis shows that FACTTEST achieves

strong power control when the score function effectively

captures output correctness, ensuring not only Type I error

control but also a low Type II error. We also establish a

formal connection between NP classification and PAC-style

conformal prediction (Vovk, 2012) within our framework,
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unifying two seemingly distinct methodologies and expand-

ing the applicability of conformal prediction. On the other

hand, recognizing that the i.i.d. assumption underlying sta-

tistical tests may not always hold in practice, we enhance

the robustness of our framework by incorporating an ex-

tension to handle covariate shifts through the estimation

of density ratios and the use of rejection sampling. Our

approach is model-agnostic and does not rely on specific

data distribution assumptions, making it broadly applicable

to any language model. Importantly, it is easy to use and

works for any number of human-annotated samples.

To the best of our knowledge, this study is the first to in-

troduce statistical factuality testing for large language mod-

els. Evaluation of our proposed framework on question-

answering (QA) benchmarks demonstrate several key ad-

vantages of our approach: (1) it consistently outperforms

base models by a substantial margin without requiring ad-

ditional training or external data sources; (2) it surpasses

fine-tuned baselines by a large margin while utilizing only

half of the training data; and (3) it maintains superior perfor-

mance on out-of-distribution testing data. Notably, the the-

oretical guarantees of our method remain valid even when

the i.i.d. assumption is violated. We summarize the main

contributions below.

• We propose FACTTEST, a novel statistical testing frame-

work that evaluates the factuality of LLMs while enabling

them to decline unknown questions with user-specified

Type I error guarantees.

• We establish the first formal connection between NP clas-

sification and PAC-style conformal prediction within factu-

ality testing, providing a unified framework with rigorous

guarantees.

• We prove that FACTTEST achieves strong power control

under mild conditions, ensuring a low Type II error. This

power analysis is broadly applicable to standard NP classi-

fication problems, not limited to this setting.

• We extend FACTTEST to accommodate covariate shifts by

approximating density ratios and employing rejection sam-

pling, enhancing its robustness for real-world applications.

• We demonstrate that FACTTEST effectively detects halluci-

nations while maintaining Type I error below user-specified

significance levels, achieving an over 40% improvement in

accuracy compared to base models without any fine-tuning.

Additionally, it surpasses training-based baselines by 30%

using only half of the fine-tuning data.

2. Statistical Factuality Testing

In this section, we formulate the evaluation of factuality in

LLMs as a hypothesis testing problem and introduce our

FACTTEST framework to overcome hallucination issues.

2.1. Problem Formulation

We consider a text generation task in which a language

model M will generate its answers M(q) based on a ques-

tion q. Our goal is to statistically evaluate whether M can

correctly answer q. We formulate this objective as a hypoth-

esis testing problem with the following hypotheses:

H0 : The model M does not answer the question q correctly.

H1 : The model M answers the question q correctly.

For any question-answer pair (q, a) with a to be one of the

correct answer for question q, we apply M to generate an an-

swer M(q). The question-generated answer pair (q,M(q))
is deemed correct if the null hypothesis H0 is rejected, i.e.,

M(q) aligns with a; otherwise, it is deemed incorrect. Let

P0 represent the distribution of (q,M(q)) given M(q) dif-

fers from the correct answer, and let P1 denote the distribu-

tion of (q,M(q)) when M(q) aligns with the correct answer.

Given a dataset {(q1, a1), ..., (qn, an)} ¢ Q×A
i.i.d.
∼ Pq,a

comprising n question-answer pairs with Q,A to be the

set of all possible questions and answers, respectively, and

Pq,a is a distribution of Q × A, we apply M to gener-

ate answers for all the n questions, resulting in the set

D = {(q1,M(q1), a1), . . . , (qn,M(qn), an)}. Since the

distribution PM(q)|q of M(q) produced by M given the

question q is fully determined by M and independent of

a, we know D
i.i.d.
∼ Pq,M(q),a = Pq,aPM(q)|q. Then our

goal is to construct a predictor f̂³ : Q × A → {0, 1} that

classifies a pair (q,M(q)) as correct (output 1) or incorrect

(output 0) while ensuring that the false positive rate, or Type

I error, does not exceed a pre-specified significance level ³.

Formally, we seek f̂³ such that the error of predicting incor-

rect (q,M(q)) as correct is below level ³ with probability

at least 1− ¶, i.e.,

PD(P(q,M(q))∼P0
(f̂³(q,M(q)) = 1) > ³) f ¶. (1)

where ¶ denotes the allowable probability of exceeding ³.

Note that given any question q, the answer M(q) generated

by M is randomized. While the distribution of M(q) is fully

determined by q, the realization M(q) involves additional

sampling randomness independent of q. Taking (q,M(q))

as input to f̂³, we enable the predictor to utilize information

from the question q, the distribution of M(q) (by asking

M the same question q multiple times), and the current

realization M(q) of the produced answer.

2.2. Finite-sample and Distribution-free Type I Error

Control

Calibration Dataset Construction. Following the method-

ology of Zhang et al. (2023), we adopt a supervised iden-

tification strategy to partition the dataset D into a correct

subset D1 and an incorrect subset D0.

Specifically, for each question-generated answer pair
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(qi,M(qi)) in D, we define an indicator variable yi ∈ {0, 1}
to indicate the correctness of M(qi) such that

yi =

{

1, if M(qi) aligns with the true answer ai,

0, otherwise.

Based on these indicators, the dataset is divided into:

D1 = {(qi,M(qi)) ∈ Q×A : yi = 1, i ∈ [n]},

D0 = {(qi,M(qi)) ∈ Q×A : yi = 0, i ∈ [n]}.

Note that the construction of the indicator vari-

able y = I(M(q) aligns with a) for (q,M(q), a) ∼
Pq,M(q),a defines a distribution Pq,M(q),a,y, then the data

{(qi,M(qi), yi)}
n
i=1 are i.i.d. samples from Pq,M(q),y over

all possible combinations of (q,M(q), y), and the distri-

butions of D0 and D1 are P0 = Pq,M(q)|y=0 and P1 =
Pq,M(q)|y=1, respectively.

Correctness Predictor based on Score Function. Suppose

there is a score function ˆ̧ : Q × A → R that measures

the correctness of (q,M(q)). The value is expected to be

large if M has the ability to provide a factual answer. The

predictor f̂³(q,M(q)) can then be defined as:

f̂³(q,M(q)) = I(ˆ̧(q,M(q)) > Ä̂³) (2)

where I is the indicator function and Ä̂³ is a threshold to be

determined. The task thus reduces to selecting a threshold

Ä̂³ that satisfies the requirement in Eq. 1:

PD(P(q,M(q))∼P0
(ˆ̧(q,M(q)) > Ä̂³) > ³) f ¶. (3)

Calibration and Threshold Selection To determine the ap-

propriate threshold Ä̂³, we utilize the calibration subset D0.

Denote the n0 samples in D0 by D0 = {(q
(0)
i ,M(q

(0)
i )) :

i ∈ [n0]}. For each calibration sample (q
(0)
i ,M(q

(0)
i )) ∈

D0, we compute the score Ti = ˆ̧(q
(0)
i ,M(q

(0)
i )). We then

order these scores in ascending order to obtain the order

statistics T(1) f . . . f T(n0), and set T(n0+1) = +∞. Mo-

tivated by the seminal works (Vovk, 2012) on the PAC-style

conformal prediction and (Tong et al., 2018) on Neyman-

Pearson classification, if we set the threshold Ä̂³ to be the

kth smallest score T(k), the probability for f̂³ to have type I

error greater than ³ can be controlled in a distribution-free

and finite-sample manner,

PD(P(q,M(q))∼P0
(ˆ̧(q,M(q)) > T(k)) > ³)

f

n0
∑

j=k

(

n0

j

)

(1− ³)j³n0−j △
= v(k), k ∈ [n0 + 1],

(4)

when k = n0+1, v(k) is defined to be 0. We then determine

k̂ as

k̂ = min{k ∈ [n0 + 1] : v(k) f ¶}, (5)

The threshold is then set to: Ä̂³ = T(k̂). Note that Ä̂³ is

well defined for any n0, ensuring Type I error control ir-

respective of the calibration sample size n. Specifically,

when n0 is small such that v(n0) > ¶, the threshold be-

comes Ä̂³ = T(n0+1) = +∞, causing f̂³ to conservatively

classify all pairs (q,M(q)) as incorrect, thereby abstaining

from answering any question. The derivation is deferred to

Appendix. A.

Theorem 2.1. For any n ∈ N+, with probability at least

1− ¶, the constructed classifier f̂³ has type I error below

³, i.e.,

PD

(

P(q,M(q))∼P0
(f̂³(q,M(q)) = 1) f ³

)

g 1− ¶.

With the determined threshold Ä̂³, the predictor

f̂³(q,M(q)) = I(ˆ̧(q,M(q)) > Ä̂³) is formally de-

fined. This classifier ensures that, for a given significance

level ³, the Type I error is controlled below ³ with high

probability 1 − ¶. Consequently, when ˆ̧(q,M(q)) g Ä̂³,

we reject the null hypothesis H0 and assert that the model

M can answer the question q correctly. Otherwise, the

model will output an acknowledgment of uncertainty.

2.3. Type II Error Control

The effectiveness of FACTTEST not only hinges on Type I

error control but also on ensuring sufficient statistical power

to detect true positives. We then analyze the Type II error

of the constructed classifier, which is the probability of

misclassifying correct (q,M(q)) from P1 as incorrect.

Denote ¸(q,M(q)) = Py∼Py|q,M(q)
(y = 1|q,M(q)) to be

the conditional probability that M(q) aligns with the correct

answer a given any question q and the generated answer

M(q). Note that a question q may have multiple correct

answers and a is just one realization from Pa|q . Therefore, a,

and thus y, may still be random given (q,M(q)), implying

¸(q,M(q)) may take value in (0, 1). For any classifier

f , we set R0(f) = P(q,M(q))∼P0
(f(q,M(q)) = 1) (resp.

R1(f) = P(q,M(q))∼P1
(f(q,M(q)) = 0)) to be the Type I

error (resp. Type II error). It follows from Theorem 1 in

(Tong, 2013) that the Bayes optimal classifier f∗
³

f∗
³ ∈ argmin

f :Q×A→{0,1}

R1(f) s.t. R0(f) f ³

has the form f∗
³(q,M(q)) = I(¸(q,M(q)) > Ä³) for some

Ä³ ∈ [0, 1]. Therefore, f∗
³ is the optimal rule for detecting

incorrect answers and ¸ is an optimal choice of the score

function.

Suppose there exist an increasing function H and ϵ¸ > 0
such that ∥H ◦ ˆ̧− ¸∥∞ f ϵ¸, where H ◦ ˆ̧(q,M(q)) =
H(ˆ̧(q,M(q))) is the composition of H and ˆ̧. Let py =
Py∼Py

(y = 1) denote the marginal probability that M is

correct. We define:
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À³ =
Ä³(1− py)

(1− Ä³)py
, ³′ = ³− c

√

³

n0
log

1

¶
,

ϵÄ = Ä³′ − Ä³ + ϵ¸,

for some constant c > 0. If we denote G³(ϵ) =
P(q,M(q))∼P0

(|¸(q,M(q)) − Ä³| f ϵ) to be the probabil-

ity measure around the classification boundary of f∗
³, then

the following theorem states that as long as the score func-

tion ˆ̧ measures the level of correctness of M , the type II

error of our algorithm is small.

Theorem 2.2. If ˆ̧(q,M(q)) is a continuous random vari-

able with (q,M(q)) ∼ P0, ³ ≳
log 1/¶

n0
and Ä³+ϵÄ+ϵ¸ < 1,

then with probability at least 1− 2¶, we have

R1(f̂³)−R1(f
∗
³)

≲À³

√

³

n0
log

1

¶
+

(1− py)(ϵÄ + ϵ¸)

py(1− Ä³ − ϵÄ − ϵ¸)2
G³(ϵÄ + ϵ¸).

3. Extension of FACTTEST to Covariate Shifts

The threshold selection procedure developed in Section

2 relies on the assumption that the calibration dataset

D0 = {(qi,M(qi)) ∈ Q | yi = 0} follows the target

distribution P0 of incorrect question-generated answer pairs.

However, labeled samples from the target distribution may

not always be available in practice. Instead, people may use

the labeled data that they believe to be similar to the target

distribution, which necessitates methods to handle distribu-

tion shifts. In this section, we study the case of covariate

shift, where the distribution of the question-generated an-

swer pairs in the calibration data differs from that in the

target distribution, while the conditional distribution of y

given (q,M(q)) remains the same.

3.1. Setup

Suppose we observe n samples D = {(qi,M(qi), yi) : i ∈
[n]} from the source distribution P̃q,M(q),y. We assume

Py|q,M(q) = P̃y|q,M(q) but Pq,M(q) ̸= P̃q,M(q), i.e., the

distribution of questions changes but the oracle rule of de-

tecting incorrect answers remains. Following Section 2, we

split D into a correct subset D1 = {(qi,M(qi)) : yi =

1, i ∈ [n]} = {(q
(1)
i ,M(q

(1)
i )) : i ∈ [n1]} and an in-

correct subset D0 = {(qi,M(qi)) : yi = 0, i ∈ [n]} =

{(q
(0)
i ,M(q

(0)
i )) : i ∈ [n0]}. We denote the distribution of

D0,D1 to be P̃0, P̃1, respectively. We further denote the

density ratio between the target distribution P0 of incorrect

question-generated answer pair and the source distribution

P̃0 to be w(q,M(q)) = dP0

dP̃0
(q,M(q)). In this section, we

assume w is known and satisfies w(q,M(q)) f B for all

(q,M(q)) ∈ Q×A.

3.2. Type I Error Control under Covariate Shift

To extend the procedure in Section 2 to the covariate shift

setting, we take an additional step to transform the sam-

ples in D0 from P̃0 to P0 distributed random variables by

rejection sampling.

In the first step, we generate n0 uniform random vari-

ables U1, . . . , Un0

i.i.d.
∼ Unif[0, B] and select the indexes

I = {i ∈ [n0] : Ui f w(q
(0)
i ,M(q

(0)
i ))}. If we collect

all the samples in D0 with indexes in I to form D̃0 =

{(q
(0)
i ,M(q

(0)
i )) : i ∈ I}

△
= {(q̃i,M(q̃i)) : i ∈ [ñ0]}.

Then it will be shown in Appendix A that given the selec-

tion I by rejection sampling, the selected samples D̃0 follow

the target distribution P0 i.e., D̃0 | I
i.i.d.
∼ P0.

In the second step, we apply the procedure introduced in

Section 2 to the incorrect subset D̃0. Specifically, given

the incorrect subset D̃0, we calculate the scores T̃i =
ˆ̧(q̃i,M(q̃i)) and order them in increasing order to get

T̃(1) f . . . f T̃(ñ0), and set T̃(ñ0+1) = +∞. Then we

set the threshold Ä̂³ to be T̃(k̂), with k̂ satisfies

k̂ = min{k ∈ [ñ0 + 1] : ṽ(k) f ¶},

ṽ(k) =

ñ0
∑

j=k

(

ñ0

j

)

(1− ³)j³ñ0−j , ṽ(ñ0 + 1) = 0.

Since D̃0 | I
i.i.d.
∼ P0, theoretical results in Section 2 can be

directly applied here. Due to limited space, we control the

Type I error as follows.

Theorem 3.1. With probability at least 1−¶, the constructed

classifier f̂³(q,M(q)) = I(ˆ̧(q,M(q)) > T̃(k̂)) has type I

error below ³, i.e.

PD(P(q,M(q))∼P0
(f̂³(q,M(q)) = 1) f ³) g 1− ¶.

4. Connection with Conformal Prediction

In Sec. 2, we formulate our method within the NP classifica-

tion framework by defining an NP classifier for error control.

In this section, we explore the inherent relationship between

NP classification (Tong et al., 2018) and PAC-style confor-

mal prediction (Vovk, 2012), demonstrating that FACTTEST

can also be formulated within the lens of conformal pre-

diction. To the best of our knowledge, this work presents

the first formal articulation of the connection between NP

classification and PAC-style conformal prediction.

Challenges of conventional conformal prediction. Recent

works applying conformal prediction to LLMs (Kumar et al.,

2023; Quach et al., 2024; Li et al., 2024) have primarily

focused on answer set coverage guarantee. A naive appli-

cation of prediction sets to hallucination detection might

involve verifying whether outputs fall within the prediction

set. However, this approach is fundamentally flawed for
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the hallucination control problem formulated in Section 2.1,

because enforcing (1−³) coverage guarantee inherently tol-

erates incorrect answers within the prediction set, leading to

large Type I errors. In an extreme scenario, ensuring 100%

coverage would require including all possible answers, re-

sulting in a 100% Type I error rate. More empirical results

can be seen in App. D.1.

PAC-style conformal prediction. Suppose we are given a

dataset Dcp = {Xi : i ∈ [n]}
i.i.d.
∼ P

cp
X , where each sample

Xi ∈ X follows the distribution P
cp
X . PAC-style conformal

prediction (Vovk, 2012) aims to construct a predictive set Γ
for an independent random element X ∼ P

cp
X such that

PDcp

(

PX∼P cp
X
(X ̸∈ Γ) > ³

)

f ¶. (6)

To this end, (Vovk, 2012) proposes to use a conformity score

A : X → R for measuring how well X conforms to the

dataset Dcp. Given any conformity score A, we define the

conformity scores of samples Xi in Dcp as Si = A(Xi).
Then a p-value p(X) is defined by

p(X) =
|{Si : Si f S(X)}|+ 1

n+ 1
.

Finally, for some ϵ > 0, the predictive set Γ is defined by

Γϵ(Dcp) = {x ∈ X : p(x) > ϵ}. (7)

It follows from (Vovk, 2012) that as long as

+ϵ(n+1)−1,
∑

j=0

(

n

j

)

³j(1− ³)n−j f ¶,

the coverage guarantee 6 is satisfied.

Duality of PAC-conformal prediction and FACTTEST.

If we set the conformity score A to be −ˆ̧, where ˆ̧ is

introduced in Sec. 2.2 and construct the predictive set Γϵ

defined in 7 using data Dcp = D0, then the predictive set

Γϵ(D0) for (q,M(q)) and the classifier f̂ in Sec. 2.2 are

closely related as stated in the following lemma:

Lemma 1. If we set ϵ such that +ϵ(n0 + 1)− 1, = n0 − k̂,

then

f̂³(q,M(q)) = I
(

(q,M(q)) ̸∈ Γϵ(D0)
)

.

The proof of this lemma is straightforward and thus omitted.

This equivalence highlights that NP classification-based

threshold selection aligns with the membership determina-

tion in PAC-style conformal prediction, which is akin to the

well-known duality between confidence interval and hypoth-

esis testing. Under our setting, conformal prediction aims

to construct a confidence set for (q,M(q))|y = 0, while

Neyman-Pearson classification aims to test whether y = 0
or not given (q,M(q)).

Distinctive Features of FACTTEST. To the best of our

knowledge, we are the first to introduce statistical factuality

testing for LLMs. In addition, while FACTTEST can be

interpreted through both NP classification and PAC-style

conformal prediction, our key distinction lies in our detailed

analysis of Type II error, enabling the control of both Type I

and II errors. Further, we identify the optimal score function

for constructing the best classifier with minimal Type II er-

ror, a topic that has not been explored in the PAC conformal

prediction literature.

5. Experiments

In this section, we empirically investigate FACTTEST in

addressing the hallucination problem of LLMs, focusing

on the following questions: Q1: Can FACTTEST improve

the accuracy and lead to more factual LLMs? Q2: Can

FACTTEST effectively control the Type I error? Q3: Can

FACTTEST generalize well when covariate shifts exist?

5.1. Experimental Setups

Datasets. Following R-Tuning (Zhang et al., 2023), we con-

duct experiments on knowledge-extensive QA tasks, catego-

rized into two generation tasks. More details are provided

in Appendix C.2.

• Question-Answering: Given a question, the model di-

rectly predicts its answer. We include ParaRel (Elazar

et al., 2021) and HotpotQA (Yang et al., 2018). For

experiments considering distirbution shifts, we utilize

ParaRel-OOD as the testing dataset, which comprises

questions from different domains compared with ParaRel.

• Multiple-Choice: Given a question with several choices,

the model chooses one option among A, B and C. We

include WiCE (Kamoi et al., 2023) and FEVER (Thorne

et al., 2018a).

Evaluating whether M(q) aligns with the answer a depends

on the datasets. For question-answering datasets, we verify

whether the first few tokens contain a. For multiple-choice

datasets, we check whether M(q) matches exactly a.

Score Functions. We can fit a model to predict correctness

or use any off-the-shelf function to serve as ˆ̧. Particularly,

we introduce three entropy-based certainty functions. De-

tails about the score functions are deferred to Appendix C.3.

• Vanilla Entropy (VE): We query the model M k times

and calculate the entropy across k answers.

V E(q,M(q)) = −
k

∑

j=1

p(M(q)j |q) log p(M(q)j |q),

ˆ̧(q,M(q)) = −V E(q,M(q)).
(8)

where p(M(q)j |q) is the frequency of a predicted answer

5



FACTTEST: Factuality Testing in Large Language Models with Statistical Guarantees

Table 1: The accuracy performance (%) of FACTTEST compared to baselines on question-answering and multiple-choice datasets using a
significance level of α = 0.05. For brevity, FACTTEST is abbreviated as FTEST. The notation FTEST-ve15 denotes the use of a vanilla
entropy score function with 15 generated outputs.

Dataset Model Base SelfCheckGPT FTEST-ve5 FTEST-ve10 FTEST-ve15 FTEST-se5 FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel

OpenLLaMA-3B 36.66 53.60 60.54 66.75 67.28 60.10 62.50 67.26 78.45

OpenLLaMA-7B 40.38 60.05 74.92 79.87 80.29 65.53 71.40 65.23 76.83

OpenLLaMA-13B 42.21 59.62 77.37 77.31 79.41 73.49 68.89 73.09 83.84

HotpotQA

OpenLLaMA-3B 25.72 36.42 50.81 55.19 53.75 45.37 52.55 52.66 55.35

OpenLLaMA-7B 28.63 39.16 56.06 59.69 60.67 51.48 53.75 56.56 60.66

LLaMA-13B 30.83 41.78 51.49 54.41 49.74 55.41 57.18 60.69 54.49

WiCE

OpenLLaMA-3B 64.72 66.36 67.65 75.00 68.18 64.71 85.71 66.67 –

OpenLLaMA-7B 72.96 75.00 50.00 55.88 47.37 90.00 100.0 90.00 –

LLaMA-13B 56.89 57.39 63.33 45.45 44.44 100.0 82.35 90.00 –

FEVER

OpenLLaMA-3B 39.74 41.97 60.24 62.50 41.72 82.40 79.23 83.90 –

LLaMA-7B 35.99 40.89 43.92 50.94 51.38 28.69 33.12 33.27 –

LLaMA-13B 32.15 41.25 38.74 42.48 46.07 49.92 54.17 52.23 –

Table 2: The Type I error of FACTTEST on question-answering and multiple-choice datasets when α = 0.05.

Dataset Model FTEST-ve5 FTEST-ve10 FTEST-ve15 FTEST-se5 FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel

OpenLLaMA-3B 0.0508 0.0467 0.0513 0.0479 0.0520 0.0486 0.0342

OpenLLaMA-7B 0.0225 0.0093 0.0145 0.0393 0.0394 0.0435 0.0400

OpenLLaMA-13B 0.0192 0.0087 0.0302 0.0341 0.0477 0.0337 0.0331

HotpotQA

OpenLLaMA-3B 0.0242 0.0247 0.0272 0.0289 0.0319 0.0297 0.0309

OpenLLaMA-7B 0.0273 0.0298 0.0295 0.0344 0.0298 0.0308 0.0266

LLaMA-13B 0.0200 0.0226 0.0367 0.0278 0.0300 0.0286 0.0353

WiCE

OpenLLaMA-3B 0.0325 0.0089 0.0207 0.0175 0.0029 0.0118 –

OpenLLaMA-7B 0.0694 0.0579 0.0617 0.0077 0.0 0.0039 –

LLaMA-13B 0.0266 0.0290 0.0363 0.0 0.0072 0.0024 –

FEVER

OpenLLaMA-3B 0.0164 0.0005 0.0217 0.0570 0.0471 0.0496 –

LLaMA-7B 0.0598 0.0081 0.0329 0.0392 0.0495 0.0495 –

LLaMA-13B 0.0172 0.0383 0.0293 0.0459 0.0518 0.0552 –

M(q)j given a question q.

• Semantic Entropy (SE): Kuhn et al. (2023) measures

uncertainty in natural language generation by accounting

for the probability distribution over distinct meanings

rather than individual token sequences.

• Kernel Language Entropy (KLE): Nikitin et al. (2024)

quantifies uncertainty by using semantic similarity kernels

between generated answers, allowing for a more nuanced

estimation of uncertainty. Notably, this function does not

apply to multiple-choice datasets and we only employ it

on ParaRel and HotpotQA.

Models. In main experiments, we focus on distribution-free

settings, where models do not make specific assumptions

about the underlying distribution. We include Base and Self-

checkgpt (Manakul et al., 2023) as baselines. Base evaluates

the original model on the entire test set without any modifica-

tions, while Selfcheckgpt and FACTTEST are assessed only

on questions for which they can confidently provide answers.

We utilize three score functions to implement 9 variants of

FACTTEST. Specifically, FACTTEST-vek, FACTTEST-sek
and FACTTEST-klek correspond to using VE, SE and KLE

as score functions, respectively, where k denotes the number

of sampled outputs for a given question.

To facilitate comparison with training-based methods, we

randomly split our training dataset, allocating half for

instruction-tuning and the remaining half to construct the

calibration dataset. We use 15-generation SE as the score

function, referring to this variant as FACTTEST-t. For com-

parative analysis, we include R-Tuning (Zhang et al., 2023)

as our primary baseline, evaluating it on the subset of ques-

tions that it is willing to answer. We also consider Finetune-

All and Finetune-Half, which undergo instruction-tuning

using the entire and half of the original training dataset,

respectively, and are evaluated on the entire test set.

To evaluate the applicability of our framework on black-

box APIs, we further implement FACTTEST on GPT-4o

Mini, GPT-4o (OpenAI, 2024b), Gemini-1.5 and Claude-

3.5 (Anthropic, 2024).

Metrics. For models that could only output either the an-

swer or an unknown expression, we calculate accuracy on

questions that the model is willing to answer:

Acc =
# of correctly and willingly answered questions

# of willingly answered questions
.

(9)

Besides, we also include Type I error (False Positive Rate,

FPR), and Type II error (False Negative Rate, FNR), as our
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(c) FEVER-3B

Figure 1: FACTTEST can control the Type I error given a significance level ³. The caption of each sub-figure consists of the

dataset name and the model size.

evaluation metrics.

Implementation. We choose LLaMA-7B, LLaMA-

13B (Touvron et al., 2023), OpenLLaMA-3B, OpenLLaMA-

7B, OpenLLaMA-13B (Geng & Liu, 2023) as base models

in our main text. Experiments involving Mistral-7B (Jiang

et al., 2023), LLaMA-3.2-3B-Instruct (Dubey et al., 2024)

and Tulu2-7B (Ivison et al., 2023) are deferred to App. D.6.

The temperature is set to 0 for evaluation and 0.7 for calcu-

lating score functions. We follow Zhang et al. (2023) to use

LMFlow (Diao et al., 2023) to conduct instruction tuning,

setting epoch to 1 and learning rate to 2e−5. All experiments

are implemented on 4 Nvidia H100-80GB GPUs.

5.2. Main Experimental Results

We first conduct in-distribution experiments on QA datasets

ParaRel, HotpotQA, WiCE and FEVER.

Main Performance. The accuracy results are presented

in Table 1, where the significance level ³ for FACTTEST

is set to 0.05. Additional experimental results for other

significance levels (e.g., ³ = 0.10) are provided in Ap-

pendix D.2. Analysis of the results reveals that FACTTEST

significantly outperforms baselines by a substantial margin

in terms of accuracy on the questions it is willing to answer.

Notably, FACTTEST can yield an over 40% accuracy im-

provement on WiCE and FEVER. These results demonstrate

that FACTTEST is more reliable when making predictions

and is capable of refusing unknown answers.

Type I Error. Table 2 represents the Type I error, or FPR,

of FACTTEST when ³ is set to 0.05. Figure 1 depicts the

FPR-³ curve. For a given significance level ³, we enforce

an upper bound on the FPR at ³ with a high probability guar-

antee. Analysis of these figures confirms that our method

reliably controls the Type I error, thereby validating the the-

oretical results presented in Section 2.2. Additional error

control analysis including FNR and more FPR results for

FACTTEST are available in Appendix D.4.

Maximizing Accuracy. Given a significance level ³, we

can determine the threshold Ä̂³ that minimizes the Type II

(a) ParaRel

(b) WiCE

Figure 2: The Accuracy-Threshold curve. The title of each

sub-figure consists of the dataset name, the model size and

the certainty function.

error while ensuring that the Type I error remains within

the specified upper bound. For Ä̂ > Ä̂³, the Type I er-

ror decreases monotonically, whereas the Type II error in-

creases monotonically. Figure 2 presents the accuracy-Ä̂

curve, where Ä̂ begins at Ä̂0.1. This curve can be utilized

to maximize accuracy, which does not follow a monotonic

trend as the threshold Ä̂ increases, while ensuring that the

Type I error is controlled below 0.10.

5.3. Comparing with Finetuned Models

Figure 3 illustrates the accuracy performance of FACTTEST-

t compared to the baseline methods R-Tuning, Finetune-All,

and Finetune-Half. We randomly divide D into two equal

parts: DI for instruction-tuning and DC for constructing the

calibration dataset. The pretrained model is finetuned on

DI to obtain Finetune-Half, while Finetune-All is obtained

by training on the entire dataset D. For R-Tuning, we also

utilize the entire dataset to finetune the model. It is evident

that FACTTEST-t consistently outperforms R-Tuning by a

large margin, while utilizing only half of the available train-

ing data, thereby reducing training costs by 50%. Notably,
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Figure 3: The Accuracy performance (%) of FACTTEST trained on half of the data, comparing with training-based baselines.

Both R-Tuning and Finetune All utilize all training data for finetuning, while Finetune Half uses the same half of the

finetuning data as FACTTEST.

(a) (b) (c)

Figure 4: (a) The Accuracy performance (%) of FACTTEST on ParaRel-OOD testing dataset. (b)(c) FACTTESTO maintains

its ability to control Type I error given a significance level ³ when distribution shifts exist.

FACTTEST-t yields 34% and 28% accuracy improvement

over R-Tuning on HotpotQA and FEVER, respectively. De-

spite the reduced size of the calibration dataset, FACTTEST-t

maintains effective control over Type I error, with further

details provided in Appendix D.4.

5.4. Extension to Covariate Shifts

In this subsection, we evaluate the extension of our frame-

work, denoted as FACTTESTO (FACTTEST for Out-of-

distribution domains), on dataset with distribution shifts.

Setup. We utilize ParaRel for training, consistent with the

aforementioned experiments. We randomly split ParaRel-

OOD into a validation dataset comprising 1,000 samples and

a testing dataset containing 12k samples. To calculate the

density ratio in Section 3 between the target distribution and

the source distribution, we employ the training data from

the source domain and the validation data from the target

domain to train a binary classifier and utilize the predicted

probability to approximate density ratios. Subsequently, we

select B as the µ upper quantile of density ratios to filter out

anomalous values. We set the default value of µ as 90%.

Experimental Results. Figure 4 depicts the performance

of FACTTESTO on the ParaRel-OOD testing dataset, along-

side the Type I error-³ curve. The results demonstrate that

FACTTESTO-t significantly outperforms baseline methods

by a large margin. Notably, when utilizing OpenLLaMA-

3B as the pretrained model, both FACTTESTO-se and

FACTTESTO-kle outperform training-based methods with-

Table 3: The accuracy performance (%) of FACTTEST ap-

plied to GPT-4o-mini. The significance level is chosen as

5%. The number in parentheses is Type I error. GPT +

7B/13B means utilizing OpenLLaMA-7B/13B to calculate

certainty scores for GPT-4o mini.

Dataset Model FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel

GPT-4o mini 52.83

GPT + 7B 77.78 (0.03) 77.31 (0.03) 83.88 (0.05)

GPT + 13B 76.91 (0.04) 77.67 (0.05) 85.84 (0.04)

WiCE

GPT-4o mini 75.67

GPT + 7B 81.82 (0.02) 76.67 (0.03) –

GPT + 13B 86.95 (0.01) 81.77 (0.02) –

out fine-tuning. Additionally, FACTTESTO effectively en-

forces the upper bound on the Type I error, thereby main-

taining its efficacy in out-of-distribution scenarios.

5.5. Extension to Black-box APIs

We further evaluate our framework on black-box models to

broaden the applicability of our framework. While score

functions like SE and KLE require token probabilities,

which are unavailable for black-box APIs, we utilize open-

source models to calculate the scores on calibration datasets

constructed by black-box models. Table 3 illustrates the

performance of FACTTEST on GPT-4o Mini. The results

demonstrate that the scores derived from open-source mod-

els are effective for black-box APIs, achieving a 33% accu-

racy improvement on ParaRel and an 11% improvement on

WiCE, while maintaining control over Type I error. These
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findings illustrate that our framework provides a practical

and effective solution for detecting hallucinations in closed-

box models. More results involving Claude-3.5, Gemini-1.5

and GPT-4o are provided in App. D.6.

6. Related Work

We review the progress on LLM Factuality and distribution-

free and finite-sample inference. More related work is de-

ferred to App. B

Factuality of LLMs. The factuality of LLMs is a major

problem and of significant research interest (Ji et al., 2023;

Maynez et al., 2020a; Li et al., 2023) , including halluci-

nation detection, mitigation and evaluation (Huang et al.,

2023; Wang et al., 2023). Our work relates more to hal-

lucination detection, which is imperative for assuring the

reliability of the generated content. Kadavath et al. (2022)

proposes self-evaluation to verify the prediction. ? trains

a classifier based on hidden layer activations. Lee et al.

(2023) uses factual and nonfactual prompts and creates a

benchmark for measuring the factuality of generations. Man-

akul et al. (2023) introduces SelfCheckGPT to fact-check

the responses of LLMs in a zero-resource fashion. Zhang

et al. (2023) instructs LLMs to refuse unknown questions

by refusal-aware instruction tuning. However, none of these

works have provided theoretical guarantees.

Distribution-Free and Finite-Sample Inference. Recent

works have extended conformal prediction to provide guar-

antees on the outputs of LLMs (Kang et al., 2024; Quach

et al., 2024; Mohri & Hashimoto, 2024). While these meth-

ods focus on improving model outputs, FACTTEST is de-

signed to verify correctness and decline unknown questions.

Our framework leverages principles from Neyman-Pearson

(NP) classification. The NP classification paradigm dif-

fers from standard classification and cost-sensitive learning,

which aim at minimizing a weighted combination of Type

I and II errors. Instead, it prioritizes controlling the Type

I error while minimizing the Type II error, ensuring that

the Type I error remains below a user-specified threshold

³. Rigollet & Tong (2011) and Scott & Nowak (2005) pro-

posed using empirical risk minimization, and Tong (2013)

employed plug-in approaches to construct NP classifiers.

A more related work by Tong et al. (2018) introduced an

umbrella algorithm that achieves Type I error control for

any pretrained classifier, while similar techniques were also

proposed in the PAC-style conformal prediction literature

(Vovk, 2012). However, the methods in Tong et al. (2018)

and Vovk (2012) do not provide Type II error guarantees.

Our work takes an initial step to use the NP classification

idea to conduct factuality testing for LLMs. Furthermore,

the Type II error analysis of our method can be directly

applied to the standard NP umbrella algorithm, which is of

independent interest. Additionally, we extend the NP classi-

fication framework to account for covariate shifts, enabling

it to address more practical, real-world problems.

7. Conclusion: Summary and Limitations

In this paper, we introduce FACTTEST that leverages the

principles of NP classification to provide statistical guar-

antees for LLMs. By formulating hallucination detection

as a hypothesis testing problem, FACTTEST enforces an

upper bound on Type I errors. It ensures strong power con-

trol under mild conditions and can be extended to maintain

its effectiveness in the presence of covariate shifts. These

theoretical analyses can be seamlessly integrated with the

standard NP umbrella algorithm, not limited to our frame-

work. Our approach is distribution-free and finite-sample. It

applies to any LLM including closed-box models. Empirical

evaluations have demonstrated that FACTTEST consistently

outperforms baselines and maintains superior performance

under distribution shifts. Additionally, our framework effec-

tively enhances the reliability of black-box APIs.

One limitation of our work is the implementation of a lim-

ited number of score functions. Exploring additional score

functions could further enhance the performance. Further-

more, our framework constructs the predictor in an offline

manner. Future work could extend FACTTEST to support on-

line testing, thus enabling real-time factuality assessments.
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A. Derivation and Proof

Proof of Equation 4. Assume that when (q,M(q)) ∼ P0, ˆ̧(q,M(q)) has CDF F . We denote the 1− ³ quantile of F as

F−1(1− ³) = inf{x ∈ R | F (x) g 1− ³}. Then we can show that:

PD(P(q,M(q))∼P0
(ˆ̧(q,M(q)) > T(k)) > ³) = PD(T(k) < F−1(1− ³)) (10)

Considering the property of the order statistics, we have that

PD(T(k) < F−1(1− ³)) = PD

(

n0
∑

i=1

I

(

ˆ̧(q
(0)
i ,M(q

(0)
i )) < F−1(1− ³)

)

g k

)

(11)

f

n0
∑

j=k

(

n0

j

)

(1− ³)j³n−j △
= v(k) (12)

where I(·) is the indicator function, defined as:

I(ˆ̧(q
(0)
i ,M(q

(0)
i )) < Qα) =

{

1 if ˆ̧(q
(0)
i ,M(q

(0)
i )) > Qα

0 otherwise

Proof of Theorem 2.1. Theorem 2.1 follows from the definition of k̂.

Lemma 2 (Theorem 1 in (Skorski, 2023)). Suppose X1, . . . , Xn are i.i.d. continuous random variables with CDF F , denote

ϵk =
4(n− 2k + 1)

3(n+ 1)(n+ 3)
log

2

¶
( 0 +

√

2k(n− k + 1)

(n+ 1)2(n+ 2)
log

2

¶
,

then

P

(

F (X(k))−
k

n+ 1
f ϵk

)

g 1− ¶.

Proof of Theorem 2.2. At first, to simplify the notations in the proof, we argue that the function H can be assumed to be

identity without the loss of generality. To see this, note that k̂ does not depend on the choice of ˆ̧ and I(ˆ̧ > T(k̂)) =

I(H ◦ ˆ̧ > (H(T ))(k̂)) with (H(T ))(k̂) to be the k-th smallest order statistic of {H(Ti) : i ∈ [n0]}, therefore, f̂α is invariant

if we replace ˆ̧ in Section 2 by H ◦ ˆ̧. Consequently, without the loss of generality, we assume H is the identity function.

Then the proof of Theorem 2.2 consists of three parts.

1) Firstly, we show that R0(f̂α) is not much smaller than ³. To see this, since we assume ˆ̧(q,M(q)) with (q,M(q)) ∼ P0

is a continuous random variable, it follows from the definition of k̂ that

P(F (T(k̂−1)) < 1− ³) = P
(

P(q,M(q))∼P0
(ˆ̧(q,M(q)) > T(k̂−1)) > ³

)

> ¶.

Here we only consider the case where k̂ > 1, as will be shown in Equation (13), it holds as long as n0 is not too small. Since

k̂ is deterministic given n0, it follows from Lemma 2 that

P

(

F (T(k̂−1)) f
k̂ − 1

n0 + 1
− ϵ

k̂−1

)

f ¶.

Therefore we have

k̂ − 1

n0 + 1
− ϵ

k̂−1 < 1− ³.

Denote the event E1 as

E1 =

{

F (T(k̂)) f
k̂

n0 + 1
+ ϵ

k̂

}

,
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it follows from Lemma 2 that P(E1) g 1− ¶. Under E1, we know

F (T(k̂)) f
k̂

n0 + 1
+ ϵ

k̂
< 1− ³+

1

n0 + 1
+ ϵ

k̂−1 + ϵ
k̂
,

which implies

P(q,M(q))∼P0
(ˆ̧(q,M(q)) > T(k̂)) = 1− F (T(k̂)) > ³−

1

n0 + 1
− ϵ

k̂−1 − ϵ
k̂
.

Similarly, since

P(F (T(k̂)) g 1− ³) g 1− ¶, P

(

F (T(k̂)) f
k̂

n0 + 1
+ ϵ

k̂

)

g 1− ¶,

we know

1− ³ f
k̂

n0 + 1
+ ϵ

k̂
,

which concludes that

k̂ ≳ (1− ³)n0. (13)

Thus we have

ϵ
k̂−1 + ϵ

k̂
≲

√

³

n0
log

1

¶
,

and

P(q,M(q))∼P0
(ˆ̧(q,M(q)) > T(k̂)) > ³− c

√

³

n0
log

1

¶
. (14)

2) Secondly, we show T(k̂) is close to Äα. Denote ³′ = ³− c
√

α
n0

log 1
δ

, it follows from Equation (14) that under E1, we

have

P(q,M(q))∼P0

(

ˆ̧(q,M(q)) > T(k̂)

)

> ³′ = P(q,M(q))∼P0

(

¸(q,M(q)) > Äα′

)

g P(q,M(q))∼P0

(

ˆ̧(q,M(q)) > Äα′ + ϵη
)

,

so

T(k̂) < Äα′ + ϵη.

Denote E2 as

E2 = {P(q,M(q))∼P0
(ˆ̧(q,M(q)) > T(k̂)) f ³},

we know P(E2) g 1− ¶. Under E2, we have

P(q,M(q))∼P0
(ˆ̧(q,M(q)) > T(k̂)) f ³ = P(q,M(q))∼P0

(¸(q,M(q)) > Äα)

f P(q,M(q))∼P0
(ˆ̧(q,M(q)) > Äα − ϵη),

so

T(k̂) g Äα − ϵη.

Then we conclude that

|T(k̂) − Äα| f Äα′ − Äα + ϵη = ϵτ .

3) Now we are able to control the excess risk of f̂α. For any (q,M(q)), if we use Y = 0 (resp. Y = 1) to denote the model

M is uncertain (resp. certain) of q, and denote py = P(Y = 1) to be the marginal distribution for M to be certain, then

dP1

dP0
(q,M(q)) =

¸(q,M(q))(1− py)

(1− ¸(q,M(q)))py
,

which is increasing in ¸(q,M(q)). Denote Àα =
τα(1−py)
(1−τα)py

, if |¸(q,M(q))− Äα| f ϵτ + ϵη and Äα + ϵτ + ϵη < 1, then

∣

∣

∣

∣

dP1

dP0
(q,M(q))− Àα

∣

∣

∣

∣

f
(1− py)(ϵτ + ϵη)

py(1− Äα − ϵτ − ϵη)2
.
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Then under E1 ∩ E2, we can control the excess risk as

R1(f̂α)−R1(f
∗
α)

=E(q,M(q))∼P0

dP1

dP0
(q,M(q))

(

I(ˆ̧(q,M(q)) f T(k̂))− I(¸(q,M(q)) f Äα)

)

=E(q,M(q))∼P0

(

dP1

dP0
(q,M(q))− Àα

)(

I(ˆ̧(q,M(q)) f T(k̂))− I(¸(q,M(q)) f Äα)

)

+ ÀαE(q,M(q))∼P0

(

I(ˆ̧(q,M(q)) f T(k̂))− I(¸(q,M(q)) f Äα)

)

=E(q,M(q))∼P0

∣

∣

∣

∣

dP1

dP0
(q,M(q))− Àα

∣

∣

∣

∣

∣

∣

∣

∣

I(ˆ̧(q,M(q)) f T(k̂))− I(¸(q,M(q)) f Äα)

∣

∣

∣

∣

+ Àα

(

R0(f
∗
α)−R0(f̂α)

)

fE(q,M(q))∼P0

∣

∣

∣

∣

dP1

dP0
(q,M(q))− Àα

∣

∣

∣

∣

I

(

|¸(q,M(q))− Äα| f ϵτ + ϵη

)

+ cÀα

√

³

n0
log

1

¶

≲
(1− py)(ϵτ + ϵη)

py(1− Äα − ϵτ − ϵη)2
Gα(ϵτ + ϵη) + Àα

√

³

n0
log

1

¶
.

Proof of Theorem 3.1. Note that once we show D̃0 | I
i.i.d.
∼ P0, then similar to Theorem 2.1,

PD(P(q,M(q))∼P0
(f̂α(q,M(q)) = 1) f ³ | I) g 1− ¶.

Taking expectation with respect to I concludes the result.

It remains to prove D̃0 | I
i.i.d.
∼ P0. To this end, it suffices to show (q,M(q))|{U f w(q,M(q))} ∼ Pq,M(q)|y=0 = P0

with (q,M(q)) ∼ P̃0. For any measurable set C ¢ Q×A, the conditional distribution of (q,M(q))|{U f w(q,M(q))}
can be expressed as

P
(

(q,M(q)) ∈ C|U f w(q,M(q))
)

=
P
(

(q,M(q)) ∈ C,U f w(q,M(q))
)

P
(

U f w(q,M(q))
)

=
E

w(q,M(q))
B

I
(

(q,M(q)) ∈ C
)

E
w(q,M(q))

B

=P(q,M(q))∼Pq,M(q)|y=0

(

(q,M(q)) ∈ C
)

,

where we have use the facts that P(U f w(q,M(q))|q,M(q)) = w(q,M(q))
B

, E(q,M(q))∼P̃0
w(q,M(q)) = 1 and

E(q,M(q))∼P̃0
w(q,M(q))I((q,M(q)) ∈ C) = P(q,M(q))∼P0

((q,M(q)) ∈ C).

B. More Related Works

Uncertainty Quantification and Confidence Calibration. Our work relates to a line of work on uncertainty quantification

(UQ) for LLMs, as we can employ these functions to assess models’ ability to reliably give an answer. Predictive entropy

that measures the entropy of the model’s predicted token distribution has been used as a simple baseline for UQ in

LLMs (Braverman et al., 2019). Kuhn et al. (2023) introduced Semantic Entropy, which incorporates linguistic invariances

to measure uncertainty. Most recently, Nikitin et al. (2024) introduced Kernel Language Entropy (KLE), which defines

positive semidefinite unit trace kernels and quantifies uncertainty using the von Neumann entropy. Lin et al. (2024) identifies

that existing methods treat all tokens equally when estimating uncertainty and proposed a simple supervised approach for

uncertainty estimation in black-box LLMs using labeled datasets. Duan et al. (2024) proposes jointly shifting attention

to more relevant (SAR) components. Besides, recent research on confidence calibration for LLMs has explored several

innovative approaches. For example, Tian et al. (2023) elicits verbalized confidences to improve calibration. Huang et al.

(2024) proposes confidence elicitation methods for long-form generations. Multicalibration (Detommaso et al., 2024)

aims to ensure LLM confidence scores accurately reflect the true likelihood of predictions being correct. These works are
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complementary to ours, as our contribution is a meta-algorithm that works with any uncertainty quantification method to

serve as score functions. Future developments in this line of work can greatly improve the performance of our framework.

Conformal Prediction. Conformal prediction enables the construction of confidence sets that contain the true outcome with

a specified probability (Shafer & Vovk, 2007; Angelopoulos & Bates, 2022; Barber et al., 2023). It has been successfully

applied to various black-box machine learning models (Angelopoulos & Bates, 2022) but has limited application in language

models (LMs). Specifically, Kumar et al. (2023) provides conformal guarantees on multiple-choice datasets. C-RAG (Kang

et al., 2024) provides conformal risk analysis for RAG models and certifies an upper confidence bound. CLM (Quach et al.,

2024) extends conformal prediction for LLM generations and provide coverage guarantees. TRAQ (Li et al., 2024) uses

conformal prediction to construct prediction sets both for retrieved sets and prediction sets to provide guarantees for RAG.

Conformal Factuality (Mohri & Hashimoto, 2024) enables the application of conformal prediction in improving model

performance. However, traditional CP methods in LLMs focus primarily on coverage guarantees without differentiating

between correct and incorrect samples, thereby lacking explicit error rate controls essential for hallucination detection.

In contrast, FACTTEST differs from those works in that it aims to evaluate the model’s ability to answer correctly, detect

hallucinations and explicitly control both Type I and Type II errors.

C. Implementation Details

C.1. Details about Baselines

We provide a detailed explanation of the settings used for the baseline.

• SAPLMA: We follow the original settings and implement SAPLMA (Azaria & Mitchell, 2023) to serve as a training-free

baseline. SAPLMA trains a classifier to predict statement truthfulness. We evaluate models on questions that the model’s

answer is considered as truthful. The corresponding results are shown in Appendix D.5.

• SelfCheckGPT: We implement SelfCheckGPT with NLI (Manakul et al., 2023) as recommended by the authors. It

utilizes Natural Language Inferencce (NLI) model to predict entailment or contradiction. We sample five answers and

the model will output a probability of contradiction from 0 to 1. We evaluate the base models on questions with the

contradiction score less than 0.5.

• R-Tuning: We follow the settings in the original paper (Zhang et al., 2023): We first construct a refusal-aware dataset

by adding prompt ‘Are you sure you accurately answered the question based on your internal knowledge?’ and the

corresponding ‘Sure’ or ‘Unsure’ to each question-answer pair, and then finetune the model on this dataset. We evaluate

the finetuned model on questions that the model is certain.

C.2. Details about Datasets

We conduct our experiments on four datasets and follow the same train/test split in Zhang et al. (2023), which are described

as follows.

• ParaRel (Elazar et al., 2021): This dataset comprises factual knowledge with various prompts and relations initially

designed for mask prediction. It is utilized to evaluate the model’s ability to comprehend paraphrased relational facts. To

adapt ParaRel for autoregressive models, Zhang et al. (2023) reformatted it into a question-answering format. Duplicate

prompts with different templates but identical entities were removed for our question-answering task, resulting in 25,133

prompt-answer pairs across 31 domains. Zhang et al. (2023) divided ParaRel into two subsets: the first 15 domains serve

as in-domain data, and the remaining 16 domains as out-of-domain data (13974 samples). The in-domain data is further

split equally into training and testing sets, consisting of 5575 and 5584 samples.

• HotpotQA (Yang et al., 2018): It is a question-answering dataset that necessitates complex reasoning across multiple

documents. We evaluate the model by providing the relevant context documents and questions to assess its ability to

generate correct answers. The development set is used as the testing set for our evaluations. The training set contains 10K

samples randomly selected from the original dataset while the testing set contains 7405 samples.

• WiCE (Kamoi et al., 2023): It is a natural language inference (NLI) dataset focused on textual entailment. Each data

sample consists of an evidence statement and a claim, and the model must determine whether the evidence supports,

partially supports, or does not support the claim. We utilize this dataset as multiple-choice questions with three options

for each question. The training and testing sets contain 3470 and 958 samples, respectively.

• FEVER (Thorne et al., 2018a): FEVER consists of claims paired with supporting evidence from Wikipedia. Each

claim is classified as SUPPORTED, REFUTED, or NOT ENOUGH INFO. This dataset is employed to assess the
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models’ capability to verify the factual accuracy of statements against Wikipedia documents. We utilize FEVER as a

multiple-choice NLI task with three options for each question: (A) SUPPORTED, (B) REFUTED, (C) NOT ENOUGH

INFO. The training set contains 10K samples randomly selected from the original dataset while the testing set contains

9999 samples.

Detailed information about the original datasets and the data preprocessing procedures can be found in Zhang et al. (2023).

In Figure 5, we illustrate the distribution of correct and incorrect data within the constructed datasets D0, D1.

C.3. Details about Score Functions

We implement our framework with three entropy-based certainty functions. Details are described as follows.

• Vanilla Entropy: The frequency of a predicted answer M(q)j in Equation. 8 is calculated by m
k

, where m is the number

of times M(q)j exists in k generations.

• Semantic Entropy: Semantic entropy is an entropy which incorporates linguistic invariances created by shared mean-

ings (Kuhn et al., 2023), which is computed by the probability distribution over meanings.

SE(q,M(q)) = −
∑

c

p(c|q) log p(c|q) = −
∑

c

(

(

∑

∈c

p(| q)
)

log
[

∑

∈c

p(| q)
]

)

(15)

where c represents possible meaning-class and p(|q) is the probability of the entire answer sequence, that is, the product

of the conditional probabilities of new tokens given past tokens. This can be approximated by:

SE(q,M(q)) ≈ −|C|−1

|C|
∑

i=1

log p(Ci | q), ˆ̧(q,M(q)) = −SE(q,M(q)). (16)

We follow (Kuhn et al., 2023) to estimate the expectation of 16 given that we cannot have access to all possible c. We

query M k times and divide the answers into semantic classes C based on semantic equivalence.

Notably, for multiple-choice datasets including WiCE and FEVER, the outputs are among three choices. In this case,

we view different tokens as having different semantic meanings, and the semantic entropy is thus reduced to predictive

entropy.

• Kernel Language Entropy: Kernel language entropy (KLE) is a generalization of semantic entropy (Nikitin et al.,

2024), providing more detailed uncertainty estimates by considering pairwise semantic dependencies between answers

or semantic clusters. It quantifies uncertainty by constructing a semantic kernel from the model’s k generated answers

and computing its von Neumann entropy. Specifically, for a given input q, we generate k responses, build a positive

semidefinite semantic kernel Ksem that captures the semantic relationships among these answers, and then calculate the

von Neumann entropy (VNE) of this kernel. The KLE can be defined as:

KLE(q,M(q)) = VNE(Ksem) = −[Ksem logKsem], ˆ̧(q,M(q)) = −KLE(q,M(q)). (17)

where, Ksem is the semantic kernel which can be implemented from semantic graphs over the LLM outputs.

C.4. Details about FACTTESTO

In order to approximate the density ratio, we randomly split 1000 samples from ParaRel-OOD as validation samples and the

remaining 12k samples as testing samples. We then utilize the supervised identification strategy to divide the validation

samples into D
′

0 and D
′

1, and the training dataset into D0 and D1. We extract the features from the questions in D
′

0, D0 by a

TfidfVectorizer, and label them as 1 (target data) and 0 (source data). We then utilize logistic regression to train a binary

classifer and use the predicted probability to approximate density ratios.

D. More Experiemnt Results

In this section, we provide more experiment results, including experiments with more significance levels, answer rate

analysis, more error control analysis, experiments with more base models and certainty distribution visualizations.
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D.1. Ablation Study

As is demonstrated in Sec. 4, FACTTEST can also be formulated with PAC-style conformal prediction (CP) conditioned on

y = 0. As illustrated in Sec. 4, directly checking whether outputs fall within the conformal prediction set does not work for

hallucination detection. In this part, we implement two variants with conformal prediction that could control Type I errors

to some extent and compare them with FACTTEST to further illustrate the efficacy of our method. Unlike previous works

that consider prediction sets for LLM generated outputs, we consider conformal prediction sets around a binary classifier

that takes X = (q,M(q)) as inputs and outputs whether the generated answer is correct (y = 1) or incorrect (y = 0). The

model will abstain from answering the question if y = 0 is included in the prediction set. We then set the non-conformity

score s(X, y) to be Sigmoid(ˆ̧) when y = 0 and 1− Sigmoid(ˆ̧) when y = 1.

• Standard Conformal Prediction. The prediction set satisfies marginal coverage:

P(ytest ∈ CStandard(Xtest)) g 1− ³.

The standard conformal prediction set is given by:

CStandard(Xtest) = {y : s(Xtest, y) f q̂},

where

q̂ = Quantile

(⌈

(N + 1)(1− ³)

N

⌉

, {si}
N
i=1

)

• Class-conditional Conformal Prediction. The prediction set satisfies class-conditional coverage:

P(ytest ∈ CClasswise(Xtest) | ytest = 0) g 1− ³

Suppose there are n0 samples where y = 0. The class-conditional conformal prediction set is given by:

CClasswise(Xtest) = {y : s(Xtest, y) f q̂(0)},
where

q̂(0) = Quantile

(⌈

(n0 + 1)(1− ³)

n0

⌉

, {si}
n0
i=1

)

Table 4: The accuracy performance (%) of FACTTEST on ParaRel. The ³ for FACTTEST and two variants are all set to 0.05.

The percentages inside the parentheses are the Type I error. We use 15-generation SE as score function.

Dataset Base Model Class-Conditional CP FACTTEST-se15

ParaRel

OpenLLAMA-3B 65.54 (0.05) 67.26 (0.05)

OpenLLaMA-7B 63.20 (0.05) 65.23 (0.04)

OpenLLaMA-13B 71.45 (0.05) 73.09 (0.03)

FEVER

OpenLLAMA-3B 83.17 (0.06) 83.90 (0.05)

LLaMA-7B 31.71 (0.06) 33.27 (0.05)

LLaMA-13B 50.41 (0.07) 52.23 (0.05)

Results. Standard CP leverages the full calibration dataset D while Class-conditional CP as well as FACTTEST exclusively

utilize D0. We observe that standard CP exhibits excessive conservatism due to its requirement to satisfy coverage guarantees

for both y = 0 and y = 1 simultaneously. This often results in rejection of all the questions, leading to 0% predictive

accuracy in practice. Table. 4 demonstrates the accuracy and Type I error performance of FACTTEST compared with

class-conditional CP variant. Class-conditional CP aims at controlling the average type I error, while FACTTEST enforces

stricter control by bounding the ¶-quantile of all type I errors. Therefore, FACTTEST provides statistically more stringent

guarantees than class-conditional CP, as demonstrated by its lower empirical Type I error rates while maintaining competitive

accuracy.

D.2. More significance levels.

Table 5 presents the accuracy performance of FACTTEST in comparison with base pretrained models at a significance level

of ³ = 0.10. Similarly, Table 6 reports the corresponding Type I error rates under the same significance level. The results
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Table 5: The accuracy performance (%) of FACTTEST compared to Pretrained models on question-answering and multiple-

choice datasets using a significance level of ³ = 0.10.

Dataset Model Pretrained FTEST-ve5 FTEST-ve10 FTEST-ve15 FTEST-se5 FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel

OpenLLaMA-3B 36.66 60.54 67.22 67.10 61.01 62.32 63.05 75.51

OpenLLaMA-7B 40.38 74.92 77.84 76.89 69.00 68.78 64.97 75.36

OpenLLaMA-13B 42.21 77.37 75.17 79.25 68.93 68.45 68.82 79.55

HotpotQA

OpenLLaMA-3B 25.72 50.81 49.84 51.68 45.41 45.23 46.88 52.70

OpenLLaMA-7B 28.63 56.06 56.23 55.77 51.10 51.63 52.33 56.73

LLaMA-13B 30.83 51.49 51.45 51.61 53.42 53.12 55.38 53.34

WiCE

OpenLLaMA-3B 64.72 67.65 64.40 76.27 61.54 64.71 64.86 –

OpenLLaMA-7B 72.96 50.00 63.77 57.32 83.33 85.71 74.19 –

LLaMA-13B 56.89 63.33 50.00 57.14 75.00 67.44 77.42 –

FEVER

OpenLLaMA-3B 39.74 60.24 53.06 52.00 80.71 82.00 82.29 –

LLaMA-7B 35.99 43.92 43.33 47.73 28.69 31.49 32.82 –

LLaMA-13B 32.15 38.74 42.48 46.79 51.95 53.01 50.92 –

Table 6: The Type I error of FACTTEST on question-answering and multiple-choice datasets, with a significance level

³ = 0.10.

Dataset Model FTEST-ve5 FTEST-ve10 FTEST-ve15 FTEST-se5 FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel

OpenLLaMA-3B 0.0455 0.0732 0.0783 0.0851 0.0865 0.0905 0.0795

OpenLLaMA-7B 0.0225 0.0240 0.0348 0.0799 0.0886 0.0829 0.0781

OpenLLaMA-13B 0.0192 0.0226 0.0325 0.0849 0.0706 0.0589 0.0709

HotpotQA

OpenLLaMA-3B 0.0276 0.0585 0.0521 0.0660 0.0678 0.0651 0.0605

OpenLLaMA-7B 0.0295 0.0597 0.0637 0.0631 0.0643 0.0616 0.0590

LLaMA-13B 0.0222 0.0556 0.0675 0.0611 0.0675 0.0503 0.0667

WiCE

OpenLLaMA-3B 0.0325 0.0621 0.0414 0.0443 0.0355 0.0325 –

OpenLLaMA-7B 0.0694 0.0965 0.1151 0.0347 0.0154 0.0308 –

LLaMA-13B 0.0266 0.0532 0.0799 0.0169 0.0338 0.0169 –

FEVER

OpenLLaMA-3B 0.0164 0.0418 0.0600 0.1039 0.1053 0.1042 –

LLaMA-7B 0.0598 0.0617 0.0556 0.0928 0.1027 0.1091 –

LLaMA-13B 0.0172 0.0828 0.0709 0.0944 0.1059 0.1136 –

Table 7: The answer rate and accuracy performance (%) of FACTTEST-t. The number in parenthese is Answer Rate, which

means the percentage of willingly answered questions.

Dataset Model Finetuned R-Tuning FTEST-t (³ = 0.15) FTEST-t (³ = 0.10) FTEST-t (³ = 0.05)

ParaRel
OpenLLaMA-3B 61.73 ( 100% ) 87.42 ( 37% ) 89.91 ( 46% ) 92.73 ( 31% ) 94.26 ( 17% )

LLaMA-7B 67.73( 100% ) 89.65 ( 42% ) 92.76 ( 47% ) 95.04 ( 31% ) 96.01 ( 18% )

FEVER
OpenLLaMA-3B 65.56 ( 100% ) 67.19 ( 11% ) 92.58 ( 38% ) 94.88 ( 36% ) 97.82 ( 33% )

LLaMA-7B 66.24 ( 100% ) 66.19 ( 49% ) 95.41 ( 28% ) 95.83 ( 24% ) 96.79 ( 16% )

show that Type I error remains effectively controlled with the adjusted ³. While the accuracies at ³ = 0.10 are slightly

lower than those at ³ = 0.05, FACTTEST continues to significantly outperform base models and maintains a lower Type II

error rate.

D.3. Answer Rate Analysis

Table 7 presents the answer rate and corresponding accuracy performance (%) of FACTTEST-t in comparison with baseline

methods across multiple datasets and models. The findings demonstrate that FACTTEST-t consistently achieves higher

accuracy while effectively managing the answer rate through varying significance levels (³). Specifically, FACTTEST-t with

³ = 0.15 answers 47% questions on ParaRel and acheives 92.76% accuracy, outperforming R-Tuning, which answers 42%

of the questions with an accuracy of 89.65%. Similarly, FACTTEST-t maintains superior accuracy performance on FEVER

compared to baseline models while managing the answer rate through different significance levels.
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Table 8: The accuracy performance (%) of FACTTEST compared to baselines on question-answering and multiple-choice datasets using a
significance level of α = 0.05. For brevity, FACTTEST is abbreviated as FTEST.

Dataset Model Base SelfCheckGPT SAPLMA FTEST-ve15 FTEST-se15 FTEST-kle15 FTEST-saplma

ParaRel

OpenLLaMA-3B 36.66 53.60 67.33 67.28 67.26 78.45 84.77

OpenLLaMA-7B 40.38 60.05 76.18 80.29 65.23 76.83 88.99

OpenLLaMA-13B 42.21 59.62 69.62 79.41 73.09 83.84 88.16

HotpotQA

OpenLLaMA-3B 25.72 36.42 25.13 53.75 52.66 55.35 31.96

OpenLLaMA-7B 28.63 39.16 24.00 60.67 56.56 60.66 31.96

LLaMA-13B 30.83 41.78 38.91 49.74 60.69 54.49 38.69

WiCE

OpenLLaMA-3B 64.72 66.36 64.40 68.18 66.67 – 65.67

OpenLLaMA-7B 72.96 75.00 72.50 47.37 90.00 – 73.33

LLaMA-13B 56.89 57.39 57.67 44.44 90.00 – 41.67

FEVER

OpenLLaMA-3B 39.74 41.97 93.21 41.72 83.90 – 93.21

LLaMA-7B 35.99 40.89 74.05 51.38 33.27 – 63.88

LLaMA-13B 32.15 41.25 - 46.07 52.23 – 49.81

D.4. Error Control Analysis

Type II Error. Figure 6 shows the FNR-³ curve. In this paper, we minimize the Type II error while enforcing the upper

bound of Type I error at ³. The performance of Type II error cannot be fully controlled, which mainly depends on how well

the score function can quantify model’s ability to answer correctly.

Figure 7 illustrates the error control analysis on HotpotQA, highlighting FACTTEST’s capability to control the Type I error

effectively. Figure 8 presents the Type I error calibration results of FACTTEST-t across four datasets, complementing the

experiments discussed in Section 5.3.

D.5. Additional Results with More Baselines

We include SAPLMA as an additional baseline and further exploit its classifier logit as a classifier-based scoring function,

which we denote as FTEST-saplma. For FTEST-saplma, we train the classifier on half of the training set and use the

remaining samples for calibration; for the SAPLMA baseline, we train on the full dataset. Table 8 compares FACTTEST ’s

performance against all the baselines. Note that we omit SAPLMA’s accuracy on FEVER with LLaMA-13B, as it classifies

all predictions as incorrect in that setting.

D.6. Additional Results with More Base Models

To further verify the effectiveness of FACTTEST, we additionally evaluate the performance of FACTTEST on more base

models, including more pretrained models, instruction-tuned models and black-box models.

Table 9: The accuracy performance (%) of FACTTEST on four question-answering datasets using Mistral-7B as the base

model. The significance level for FACTTEST is set to 0.1. The percentages inside the parentheses are the Type I error.

Dataset Base SelfCheckGPT FACTTEST-ve15 FACTTEST-se15 FACTTEST-kle15

ParaRel 39.79 57.01 (0.25) 65.63 (0.07) 70.20 (0.08) 72.78 (0.08)

HotpotQA 36.48 46.01 (0.46) 61.81 (0.06) 63.06 (0.05) 65.59 (0.05)

FEVER 35.47 41.76 (0.05) 22.99 (0.08) 51.05 (0.08) -

WiCE 55.85 56.24 (0.47) 68.81 (0.08) 68.64 (0.08) -

• Pretrained Model. In Table 9, we employ Mistral-7B (Jiang et al., 2023) as the pretrained base model to supplement the

results in Table 1.

• Instruction-tuned Model. In Table 10, we employ LLaMA-3.2-3B-Instruct (Dubey et al., 2024) and Tulu2-7B (Ivison

et al., 2023) as base models to evaluate the performance of FACTTEST on instruction-tuned models.

• Black-box Model. In Table 11, we employ Claude-3.5-Sonnet (Anthropic, 2024) and GPT-4o (OpenAI, 2024b) as base

models to evaluate the performance of FACTTEST, with OpenLLaMA-3B serving as the open-source model to calculate
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Table 10: The accuracy performance (%) of FACTTEST using Llama-3.2-3B-Instruct and Tulu-2-7B as base models. The ³

is set to 0.10. The percentages inside the parentheses are the Type I error.

Dataset Model Base FACTTEST-se15 FACTTEST-kle15

ParaRel Llama-3.2-3B-Instruct 39.34 72.79 (0.08) 80.01 (0.08)

ParaRel Tulu-2-7B 43.89 75.47 (0.06) 78.49 (0.07)

HotpotQA Llama-3.2-3B-Instruct 33.40 57.75 (0.06) 60.38 (0.07)

HotpotQA Tulu-2-7B 32.91 53.54 (0.05) 45.89 (0.10)

WiCE Llama-3.2-3B-Instruct 55.11 75.16 (0.09) -

WiCE Tulu-2-7B 57.20 63.22 (0.08) -

FEVER Llama-3.2-3B-Instruct 33.33 68.48 (0.10) -

FEVER Tulu-2-7B 47.87 69.40 (0.09) -

Table 11: The accuracy performance (%) of FACTTEST on ParaRel using OpenLlama-7B as an open-source model. The

significance level is set to 0.1. The percentages inside the parentheses are the Type I error.

Model Base SelfCheckGPT FACTTEST-se15 FACTTEST-kle15

Claude-3.5-Sonnet 58.25 58.96 (0.92) 73.29 (0.08) 79.86 (0.08)

Gemini-1.5-Flash-8B 64.23 65.92 (0.86) 76.87 (0.07) 80.01 (0.08)

GPT-4o 66.39 69.71 (0.83) 80.70 (0.07) 82.76 (0.08)

scores.

Our findings reveal that incorporating FACTTEST significantly reduces hallucinations, achieving an average accuracy

improvement of 24% while maintaining Type I errors below the specified ³.

D.7. Additional Results with More Score Functions

Table 12: The accuracy and answer rate performance (%) of FACTTEST with a significance level ³ = 0.1 using 5-generation

and 10-generation KLE as score functions.

Dataset Model Base FACTTEST-kle5 FACTTEST-kle10

ParaRel OpenLLAMA-3B 36.66 71.65 (18%) 74.72 (20%)

ParaRel OpenLLAMA-7B 40.38 72.99 (20%) 75.90 (20%)

Hotpot OpenLLAMA-3B 25.72 52.34 (11%) 51.82 (12%)

Hotpot OpenLLAMA-7B 28.63 52.45 (11%) 55.92 (13%)

In this section, we present results using additional score functions, including FACTTEST-kle5 and FACTTEST-kle10, to

complement the findings in Table 1.

Besides, we implement FACTTEST-scgpt to illustrate how our framework can integrate various uncertainty or hallucination

quantification methods. For FACTTEST-scgpt, we utilize the negative value of the SelfCheckGPT-NLI score as the score

function. The accuracy and Type I error performance for this implementation are summarized in Table 14.

Moreover, to highlight that our framework extends beyond uncertainty-based approaches, we develop a classifier-based

variant, FACTTEST-cls, and compare it with uncertainty-based ones in Table 15. This variant employs a random forest

classifier trained on hidden layer activations from both the question and answer, along with probabilistic statistics of the

generated answer, to predict the correctness of question-generated answer pairs. The results indicate that FactTest-cls

achieves competitive accuracy, maintains Type I error below the specified threshold, and demonstrates improved Type II

error rates compared to uncertainty-based score functions.
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Table 13: The Type I Error of FactTest with a significance level ³ = 0.1 using 5-generation and 10-generation KLE as score

functions.

Dataset Model FACTTEST-kle5 FACTTEST-kle10

ParaRel OpenLLAMA-3B 0.0783 0.0778

ParaRel OpenLLAMA-7B 0.0880 0.0787

Hotpot OpenLLAMA-3B 0.0656 0.0643

Hotpot OpenLLAMA-7B 0.0643 0.0654

Table 14: The accuracy and Type I Error performance of FACTTEST-scgpt evaluated on ParaRel with OpenLLaMA-3B

serving as the base model.

³ 0.05 0.1 0.2

Accuracy 61.82 62.92 59.26

Type I error 0.04 0.09 0.17

D.8. Additional Analysis about Unwilling Answered Questions

We perform additional analyses to evaluate the effectiveness of FACTTEST. Table 16 presents the performance of base

models on subsets of questions that the model is either unwilling or willing to answer on ParaRel, using FACTTEST-kle15.

Notably, the results for the ”Willing” subset correspond directly to the performance of FACTTEST-kle15. The results

show that accuracy on unwilling samples is significantly lower than on the entire dataset and willing samples, highlighting

FACTTEST’s capability to decline unknown questions effectively.

D.9. Score Distribution

Figure 9 represents the certainty distributions of correct subset and incorrect subset using semantic entropy as the score

function.
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Table 15: The accuracy, Type I Error and Type II Error performance of FACTTEST-cls evaluated on ParaRel with ³ = 0.05.

Base Model Metric FACTTEST-ve15 FACTTEST-se15 FACTTEST-cls

OpenLLAMA-3B

Accuracy (%) 67.28 67.26 85.13

Type I error 0.05 0.05 0.04

Type II error 0.86 0.85 0.35

OpenLLAMA-7B

Accuracy (%) 80.29 65.23 89.50

Type I error 0.01 0.04 0.03

Type II error 0.92 0.87 0.44

OpenLLAMA-13B

Accuracy (%) 79.41 73.09 88.37

Type I error 0.03 0.03 0.04

Type II error 0.91 0.87 0.42

Table 16: The accuracy performance (%) of base models on the subset of questions that the model is unwilling or willing to

answer on ParaRel using FACTTEST-kle15. The ³ is set to 0.1.

Model Base Unwilling Willing

OpenLlama-3B 36.66 27.90 75.51

OpenLlama-7B 40.38 32.93 75.36

OpenLlama-13B 42.21 32.81 79.55
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Correct Incorrect

Figure 5: The certain and uncertain data distribution of the originated datasets obtained from supervised identification

strategy. The title of each sub-figure consists of the dataset name and the size of the pre-trained model used to evaluate.
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(b) WiCE-3B
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(c) FEVER-3B

Figure 6: The Type II error, or FNR, of FACTTEST given different significance levels. The caption of each sub-figure

consists of the dataset name and the model size.
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(b) FNR-α curve on HotpotQA

Figure 7: The Type I error and Type II error of FACTTEST given different significance levels on HotpotQA using semantic

entropy as the score function. The legend represents the base pretrained model.
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(a) FACTTEST-t-3B
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(b) FACTTEST-t-7B

Figure 8: The Type I error calibration results of FACTTEST-t given different significance levels using semantic entropy as

the certainty function. The legend represents the dataset name.
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Figure 9: The certainty distribution of the training datasets on certain set and uncertain set. The title of each sub-figure

consists of the dataset name, the size of the pre-trained model used to evaluate, the certainty function and the number of

generations.
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