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This research explores how undergraduate students interpret mathematical symbols in new 
contexts when reading diverse mathematical texts across various subareas. Collaborating with 
experts in mathematical sciences, we collected proof-texts aligned with their specialized areas. 
These proof-texts were presented to undergraduate transition-to-proof students who had studied 
logic for mathematical proof while their experience of proofs in advanced mathematics topics 
was limited. Task-based interviews were conducted outside their regular classroom. This paper 
examined student encounters with curly bracket symbols in a graph theory context. Our findings 
suggest the nuanced relationship students have with symbols in proof- texts. While possessing 
familiarity with certain symbols, this pre-existing student knowledge could influence their 
accessibility to symbols introduced in unfamiliar contexts. 

Keywords: Reasoning and proof, Mathematical Representations, Undergraduate Education 

Introduction 
Mathematical symbols serve as a fundamental language for mathematical representations, 

abstraction, argumentation, and communication (Cobb et al., 2000; Eckman, 2023; Harel & 
Kaput, 1991; Pape & Tchoshanov, 2001). Conventional symbols particularly play a crucial role 
in communication among individuals by representing normative meanings of mathematical 
ideas, formulas, and relationships (Pimm, 1995). Teachers and students can use conventional 
symbols to engage in a shared discourse in the mathematics classroom (Goos, 2004).  

Despite the importance of symbolic representations in mathematics, numerous studies 
indicate that undergraduate students encounter challenges when confronted with reading 
mathematical expositions and proofs that include mathematical symbols (Dawkins & Zazkis, 
2021; Inglis & Alcock, 2012; Shepherd & van de Sande, 2014; Weber & Mejia-Ramos, 2014). 
Mathematical texts often employ conventional symbols, especially those presenting theorem 
statements and their proofs. Moreover, advanced mathematics courses at the undergraduate level 
introduce new symbols for novel concepts or extend known ones in a different or broader 
context. Students may find these symbols challenging either because they represent newly 
introduced concepts or because their meanings are expanded to cover new areas. These 
challenges, arising from potentially unfamiliar or expanded-meaning symbols, may impact 
students' comprehension of the theorem statements and their proof-texts. This perspective 
resonates with the broader concept of 'symbol sense' discussed by Arcavi (1994, 2005), involving 
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an individual's understanding, familiarity, and flexible use of (conventional) mathematical 
symbols.   

In line with this standpoint, we address the following research question: To what extent do 
undergraduate transition-to-proof students perceive and respond to mathematical symbols when 
encountering the familiar symbols in unfamiliar subareas of mathematics while reading proof-
texts? This question reflects earlier concerns about students' potential struggles in interpreting 
conventional symbols in proof-oriented mathematics courses. By investigating the awareness and 
responsiveness of undergraduate students to conventional symbols across different mathematical 
subareas, we aim to provide insights into the challenges students face. This study could also offer 
valuable implications for instructional practices and curriculum development for transition-to-
proof mathematics courses. 

Theoretical Framework 
Our perspective on students' interpretation of conventional symbols aligns with radical 

constructivism, positing that symbols gain significance only when individuals attribute meanings 
shaped by their previous experiences (Glasersfeld, 1995). When facing a familiar symbol in an 
unfamiliar context, students assimilate, incorporating new information into their existing 
cognitive structures based on their past experiences. If assimilation proves insufficient, students 
engage in accommodation, adjusting their cognitive structure to integrate subtle distinctions in 
the meaning of the familiar symbol in the unfamiliar context. This perspective suggests that 
students who are not the creators of mathematical symbols may not bring the same meaning to 
symbols as the creator, especially when those symbols are introduced by authoritative creators, 
such as mathematicians, their classroom instructors, or textbook authors. In this situation, 
students may face challenges with what Hiebert (1988) suggested as the procedure of connecting 
symbols with mathematical objects or operations. Specifically, when students encounter a new 
conventional symbol for the first time, they may not have a connection with the mathematical 
objects or operations the symbol represents. Students face the challenge of deciphering the 
intended meaning behind conventional symbols, often without the opportunity to negotiate their 
meanings (Eckman & Roh, 2024). Far from indicating deficits, the interplay of assimilation and 
accommodation in response to these cognitive challenges serve as opportunities for deeper 
comprehension as students actively construct and expand the meaning of the symbols. 

To comprehend students' cognitive processes of interpreting conventional mathematical 
symbols in proof-texts, we introduce the construct of Symbol Sensitivity. Symbol sensitivity 
involves being aware of and responding to mathematical symbols, requiring a nuanced 
understanding of the semantic subtleties within mathematical contexts. There are empirical 
studies illustrating student challenges of symbol sensitivity, where students may not be sensitive 
to distinguishing various mathematical symbols and, therefore, not perceive the resulting 
semantic differences the authors of the given mathematical expositions intend to convey through 
the symbols (Eckman, 2023; Roh & Lee, 2011; Sellers et al., 2017).  

In contrast, this paper focuses on another critical aspect of symbol sensitivity that we will call 
symbol contextual interpretation (SCI), which is an individual's ability to perceive and interpret 
distinct meanings of a symbol in different contexts. In certain instances, the same mathematical 
symbol is employed to convey different semantic nuances across various sub-areas of 
mathematics. It becomes crucial for individuals to recognize and interpret these distinct 
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meanings based on the specific context in which the symbol is used. For instance, a student may 
encounter the equal symbol (=) in a mathematical expression involving two functions, f and g. 
While the equal symbol itself is not new to the student as they have been using it between two 
numerical values, its usage in the symbolic expression 𝑓 = 𝑔 may introduce a new context. In 
this situation, students need to be aware that the equal sign in the function context conveys a 
different meaning than the equality between two numerical values. However, students may not 
always be sensitive to these variations when encountering a familiar symbol (=) in an unfamiliar 
mathematical context (functions). In some ways, this parallels McGowen and Tall's (2010) 
notion of met-before. That is, meanings often change in mathematics as new contexts are 
encountered, and a student's met-befores can serve to support or hinder. McGown and Tall (2010) 
illustrate this with the subtraction symbol (-), which is initially associated with a "take away" 
meaning; however, that meaning is not conveyed in other contexts, such as when dealing with 
negative numbers. 

This paper centers explicitly on exploring students' symbol contextual interpretation (SCI) 
across various areas of mathematics. By closely examining students' SCI, we aim to gain 
valuable insights into student challenges in reading comprehension of mathematical texts 
involving mathematical symbols. 

Methodology 
Data Collection 

As part of a more extensive project (NSF DUE #2141925) focused on curriculum 
development for transition-to-proof courses at the undergraduate level, we created twenty-eight 
(28) proof-texts by collaborating with nine researchers across various mathematical sciences sub-
areas. In preparation for implementing these proof-texts in a classroom, we first tested them 
through task-based clinical interviews (Hunting, 1997) with undergraduate students at two large 
public universities in the United States during the Spring of 2023. Participants were students 
chosen from transition-to-proof courses or proof-oriented courses to ensure students' 
understanding of logic for mathematical proof while maintaining limited exposure to proofs 
across diverse subareas in mathematics. The students are encountering diverse subareas in 
mathematics for the first time, with proof-texts authored by experts from these new subareas. 
This presents a dual challenge, as students not only face unfamiliar subareas but also grapple 
with challenging and novel proof-texts for the first time. We paired students whenever possible 
to foster meaningful interaction between students and promote dynamic discourse. Each 
interview extended over 90 minutes, maintaining independence from the participants' course 
instructors. 
Interview Tasks 

In each interview, we provided students with one or two proof-texts, each spanning 2-3 
pages, encompassing three main components: background information (e.g., definitions, 
notations, and examples), the theorem statement to be proven, and a proof of the theorem. The 
interviews were divided into dedicated sections: background information discussion, theorem 
statement exploration, proof analysis, and a collective reflection post-reading.  

The interviewer initiated each component by inviting students to read independently and 
collaboratively discuss the proof-text with their peers. Students were encouraged to pose 
questions and use tablets as scratch paper whenever they wanted. Subsequently, the interviewer 
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posed targeted questions that drew inspiration from the proof comprehension assessment model 
developed by Mejia-Ramos et al. (2012). These questions encompassed both local and holistic 
comprehension questions. The former involved inquiries about the meaning of terms and 
statements, identification of the proof framework, and the explicit explanation of implicit 
warrants in the proof. The latter focused on summarizing the proof, identifying the modular 
structure of the proof, transferring general ideas or methods to different contexts, and providing 
illustrations with examples. The primary goal of the interviews was to investigate ways to 
support students in making sense of these new and challenging proof-texts. 

Data Analysis and Results 
Our analysis commenced with a thorough review of video recordings of the interview data. 

The primary objective of the analysis was to identify instances where students encountered 
challenges while engaging with reading the proof-texts. Through an exhaustive examination of 
the entire video dataset, we discerned persistent instances where students observed notational 
usage within proof-texts, akin to recognizing misuses or typographical errors in the proof-texts.  

In this data analysis process, a recurrent theme emerged – several students faced similar 
challenges with understanding, interpreting, and using symbolic expressions in the given proof-
texts. These challenges with symbols introduced in the proof-texts occurred multiple times, as 
exhibited in one of the universities part of the project (24 students with 14 interviews conducted), 
especially as students read to understand the background information such as definitions, 
theorems, and examples preceding a theorem to be proven and its proof. The symbols we focused 
on were those not unfamiliar to the students, but their appearance in unfamiliar contexts created 
student challenges.  

In this paper, we suggest our construct, symbol contextual interpretation (SCI), as a type of 
symbol sensitivity. We use it to analyze an individual student's perception and responsiveness to 
distinct meanings of such symbols in varying proof-texts. We further delineated contextual 
awareness and contextual adaptation as characteristics of SCI. We refer to contextual awareness 
as an individual's awareness that a symbol can have multiple meanings in different contexts; and 
contextual adaptation as an individual's fluency in adapting a relevant meaning of a symbol in 
varying contexts. These characteristics laid the foundation for establishing three categories of 
student symbol sensitivity in recognizing and interpreting the same symbol's distinct meanings in 
different mathematics subareas. Table 1 summarizes the characteristics of each category with the 
number of instances where students exhibited the SCI category.  
 

Table 1. Three Categories of Symbol Contextual Interpretation (SCI) 
 

SCI  Contextual 
Awareness 

Contextual 
Adaptation 

Description  
#(Instances)  

SCI.0 X X An individual adapts only one meaning 
for a symbol, regardless of the various 
contexts in which the symbol is used, without 
indicating potentially different meanings. 

9 

SCI.1 O X An individual is aware that a symbol can 
convey different meanings in different 

6 
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contexts but has not developed the normative 
meaning in the relevant specific context. 

SCI.2 O O An individual is aware a symbol can 
convey different meanings in different 
contexts and exhibits fluency in adapting its 
normative meanings in varying contexts.   

9 

 

Results 
In the rest of this section, we present an illustrative episode from an interview with Ernie and 

Sally. These students worked together to comprehend a theorem in graph theory, describing the 
condition for the degrees of the vertices of a graph that can determine the connectedness of a simple 
graph. As background information before the theorem statement, the proof-text introduced 
definitions pertinent to the theorem, such as graphs, vertices, edges, loops, parallel edges, degrees 
of vertices, etc. The curly brackets, {}, were also presented as symbols for the set of vertices, an 
edge, and the set of edges of a graph. A diagram of graph was provided as another representation, 
along with the symbolic expression of an example graph G, its vertex set 𝑉(𝐺) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 
edge set 𝐸(𝐺) = {{𝑎, 𝑏}, {𝑎, 𝑑}, {𝑐, 𝑑}, {𝑐, 𝑑}, {𝑏, 𝑐}, {𝑏}} (see Figure 1). The diagram illustrated 
five dots, labeled as 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒, representing five distinct vertices and 5 segments, 
representing 5 distinct edges of the example graph. Two of the edges connected the same vertices 
c and d, corresponding to the duplicates of two identical curly bracket symbols, {𝑐, 𝑑}, in the edge 
set 𝐸(𝐺). The example graph 𝐺 also included a loop, as an edge having one endpoint b, 
corresponding to the singleton set notation {𝑏}, and a vertex, 𝑒, not connected to any of the other 
vertices of the graph.   
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Figure 4 The Excerpt from the Background Information in a Graph Theory Proof-text 

The curly brackets, { }, were not new to Ernie and Sally because they had already been 
acquainted with the symbol when the concept of a set was introduced in transition-to-proof 
courses that they had taken. However, the proof-text in graph theory introduced the curly 
brackets in an unfamiliar context to the students, i.e., graph theory. We selected this episode from 
an earlier moment of the interview to illustrate how Ernie and Sally perceived and responded 
when encountering the symbol in an unfamiliar context.  

Ernie and Sally grappled with the concept of parallel edges represented in the edge set 
(which uses curly brackets) with repeated pairs. Specifically, unfamiliar with using this symbol 
to denote "parallel edges" in graph theory, these students found it challenging to interpret 
instances of the symbol occurring twice in the edge set 𝐸(𝐺). Ernie expressed concern about the 
repetition, while Sally imputed the repetition to two distinct curved segments in the diagram of 
the graph 𝐺, as representing distinct edges, which shared the endpoints 𝑐 and 𝑑. See the 
transcript below for the students' utterances at the moment. 

[1] Ernie: What I don't get, though, is how parallel edges work. If E [𝐸(𝐺)] is a set, right, 
then we can't have duplicate items [{𝑐, 𝑑}] in a [the] set [𝐸(𝐺)]. 

[2] Sally: (Grabs tablet and begins writing and speaking) Cause maybe one of them is like 
pointing from c to d (motions writing instrument counterclockwise from the top half of 
their imaginary circle) and the other is d to c (traces the lower half of the circle in the 
same counterclockwise direction). 
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[3] Ernie: But that's not ordered pairs though (points to notation of edges on the proof-text). I 
guess it isn't a relation like that, so we don't have a vector, right? 

Ernie's SCI regarding Contextual Awareness. Ernie interpreted the letter '𝐸' in the symbol 
𝐸(𝐺) for 'the edge set' as the name of a set and extended his understanding of the curly brackets 
symbol to the definitions and the given example set 𝐺 (see Figure 1). Ernie was also familiar 
with conventional rules for using curly brackets in mathematics to denote a set, including the 
avoidance of repeated elements within the same set or the consideration of repeated elements as 
representing the same elements (e.g., {𝑐, 𝑑}  =  {𝑐, 𝑑, 𝑐}). This suggests that Ernie associated the 
curly brackets with a mathematical meaning, viewing them as a conventional symbol for 
denoting a set. Despite grasping the mathematical symbol, Ernie encountered difficulties when 
transferring his principles with the curly brackets symbol to the graph theory context. 
Specifically, Ernie exhibited a limited awareness regarding specific conceptual nuances within 
the context. This limited contextual awareness is evident through three distinct instances. 

Firstly, from the video recording, we noticed that Ernie directed his attention solely toward 
the curly brackets symbol in the provided example graph 𝐺, while overlooking the 
accompanying diagram (Figure 1). He did not exhibit any utterances or gestures to establish a 
representational connection between the two distinct edges in the diagram of the example graph 
𝐺 to the edges in the duplicated symbols {𝑐, 𝑑} in the edge set 𝐸(𝐺). Ernie's exclusive focus on 
the curly brackets did not position him to leverage the diagram, which may have provided more 
contextual information about the meaning of the edge set. In this instance, the presence of 
duplicates of the same symbol in the (edge) set was a barrier to supporting Ernie's 
comprehension of the concept of edges, rather than aiding his understanding of parallel edges.  

Secondly, in the transcript, line 1, Ernie demonstrated a non-conventional principle to the 
curly brackets when denoting a set. Ernie noticed that in the example graph G, the symbol 
"{𝑐, 𝑑}" was repeated twice in the symbol for the edge set of G, 𝐸(𝐺), and he asserted, "we can't 
have duplicate items [{𝑐, 𝑑}] in a set." Ernie's utterance indicates that the edge set notation in the 
proof-text did not adhere to the conventional curly bracket rules for sets in set theory that he was 
familiar with. He was interpreting the curly brackets in the example not within the graph theory 
context but rather in the context of the transition-to-proof course where the students at his 
university initially learned about sets. Ernie is reasonable, bringing in his prior knowledge about 
avoiding duplicates within set notation. It is unlikely that he had experienced this requirement as 
a flexible conventional practice aimed at representing unique elements in a set.  

Finally, in the transcript, line 3, Ernie responded to Sally's explanation of directional 
notations involving vertices c and d, by noting that {𝑐, 𝑑} is not an ordered pair or a vector from 
point 𝑐 to point 𝑑. This suggests that Ernie expected Sally's directional interpretation to adhere to 
vector notation conventions rather than the use of curly brackets symbol {𝑐, 𝑑}. Ernie would not 
allow duplicating an ordered pair, vector symbol, or any symbol within a set notation.    

Sally's SCI regarding Contextual Awareness. In contrast to Ernie, Sally exhibited 
contextual awareness when encountering the duplicates of the same symbol {𝑐, 𝑑} in the edge set 
notation. Sally's awareness of the graph theory context was evident in her consideration of both 
the curly brackets symbol and the diagram depicting the example graph 𝐺 in Figure 1. By using 
both representations as resources to understand the parallel edges, she exhibited her nuanced 
understanding of the symbol in the graph theory context. Her remark in the transcript, line 2, 
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accompanied by hand motions tracing each path in the diagram of the example graph 𝐺, 
illustrated awareness of the context by attending to the curly brackets and bracketed elements in 
relation to graph theory (and the diagram). Sally recognized that although both edges in the 
diagram share the same endpoints, they are distinct, the top edge "from 𝑐 to 𝑑," and the other 
edge "from 𝑑 to 𝑐." That is, they have directionality. Therefore, duplicating the symbol {𝑐, 𝑑} 
within the edge set 𝐸(𝐺) aligns with Ernie's rule, as each curly brackets symbol represents a 
distinct edge within the graph 𝐺. 

Sally's SCI regarding Contextual Adaptation. While Sally demonstrated contextual 
awareness when encountering duplicates of the curly brackets symbol {𝑐, 𝑑} in the graph theory 
context, she exhibited potential interpretative challenges in adapting her interpretation of the 
symbol to a different graph theory context. Although Sally did not explicitly recognize this 
potential challenge, evidence of it emerged through her gestures and word choices in this 
episode. During her examination of the example graph 𝐺, Sally's hand motion traced two edges 
parallel to one another on the diagram for the graph 𝐺, attributing a distinct direction to each of 
them with the same pair of vertices (endpoints). In addition, she correlated these movements with 
the curly brackets symbols {𝑐, 𝑑} found in the edge set notation accompanying the diagram of 
graph 𝐺. Thus, Sally interpreted each instance of the symbol {𝑐, 𝑑} in the edge set symbol as 
representing a separate edge: one for the top edge and another for the bottom edge in the 
diagram. Sally's use of the phrase "from [c] to [d] … and from [d] to [c]" indicates that she may 
conceptualize edges as directed, with each edge having a specific associated direction. Sally 
appeared to be drawing on the same notions of set as Ernie, but perhaps adding this additional 
feature made the distinction between the same symbolically represented edge clear. As this is a 
non-normative distinction, Sally would likely need to continue to expand her contextual meaning 
if encountering a graph with more than two parallel edges.    

A Couple More Examples While a detailed examination was conducted with two students to 
illustrate contrasting aspects of SCI, Table 2 provides a broader perspective by presenting 
concise examples across various subareas of mathematics. The table showcases instances of 
students with different SCI categories, each accompanied by a brief description explaining why 
their specific case corresponds to the identified SCI. This compilation not only enriches our 
understanding of SCI but also offers a valuable resource for educators and researchers seeking 
insights into the diverse manifestations of students' potential challenges with interpreting familiar 
symbols in unfamiliar mathematical contexts for the first time. 
 

Table 2. More Examples of Students' SCI  
 

Stu
dent 

Context Symbo
l  

Contextual Interpretation SCI  

Patt
y 

Combinat
orics 

{ } Perceived the notation within the context of the 
combinatorics proof-text and described the symbol's 
meaning using the objects from the combinatorial context, 
showing adaptivity from her previous transition to proof 
context to the new combinatorics context. 

SCI
.2 

Nat
han 

Combinat
orics 

{ } Described the use and meaning of the symbol within 
the contexts of a transition-to-proof course as opposed to 
the new combinatorics context. 

SCI
.1 
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Spe
ncer 

Topology one-to-
one 

Perceived this term, a symbol, as it was used to 
describe functions in the context of Topology.  

SCI
.2 

Ca
de 

Topology one-to-
one 

Described this term, a symbol, within the context of a 
ratio using the symbol colon (:).  

SCI
.0 

Ro
nnie 

Combinat
orics 

power 
set symbol 
P 

Described the symbol script P as a power set as it has 
been denoted in transition-to-proof contexts.  

SCI
.0 

Conclusion and Discussion 
In the results section, we delve into the challenges experienced by Ernie and Sally as they 

grappled with a familiar symbol encountered in an unfamiliar context for the first time. 
Navigating novel situations beyond their prior experiences, the students faced challenges that 
demanded a nuanced understanding of symbols. We analyzed the students' Symbol Contextual 
Interpretation (SCI) to understand their sensitivity toward symbols in these contexts. Noteworthy 
is the collaborative effort exhibited by Ernie and Sally in making sense of these new symbols. 
This collaborative success suggests the viability of incorporating such challenging proof-texts 
into a transition-to-proof course. For mathematics education researchers, understanding students' 
comprehension of notation is crucial for informing the effective implementation of proof-texts in 
these courses. A key insight from our study emphasizes that introducing students to new symbols 
extends beyond providing them with texts and definitions; it requires careful consideration of 
their prior experiences and explicit elucidation of how symbols may take on different meanings. 
This study highlights the misconception that assumes students in mathematics courses can 
seamlessly discard prior meanings of symbols, emphasizing the need for a thoughtful approach 
to incorporating notations when used in new mathematical contexts.  

To emphasize this point further, we reference a quote by Kershner and Wilcox (1950): 
Whenever nonbasic mathematical words are introduced, they will, of course, be explicitly 
defined. Whenever technical use is made of these words, the reader must carefully eliminate 
any preconceptions concerning their meaning and think only of their definitions. This will be 
difficult, but it is absolutely necessary. Unless all suggestions conveyed by these words from 
past associations are persistently ignored, a multiplicity of meanings may arise. Our 
mathematical definitions will be unambiguous and complete (p. 17).  

This statement, though seemingly psychologically absurd, reflects expectations placed on 
students in mathematics courses. It highlights student challenges with isolating definitions from 
their past associations. Ernie's case exemplifies this challenge as he drew upon his prior 
understanding of the symbol "{ }" to interpret a new proof-text intending a different meaning. 
This situation underscores the importance of acknowledging the subtlety and complexity of 
interpreting symbols across various mathematical subareas in mathematics education literature. 
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