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Abstract

The recent emergence of Medical Large Vi-

sion Language Models (Med-LVLMs) has en-

hanced medical diagnosis. However, current

Med-LVLMs frequently encounter factual is-

sues, often generating responses that do not

align with established medical facts. Retrieval-

Augmented Generation (RAG), which utilizes

external knowledge, can improve the factual

accuracy of these models but introduces two

major challenges. First, limited retrieved con-

texts might not cover all necessary information,

while excessive retrieval can introduce irrele-

vant and inaccurate references, interfering with

the model’s generation. Second, in cases where

the model originally responds correctly, apply-

ing RAG can lead to an over-reliance on re-

trieved contexts, resulting in incorrect answers.

To address these issues, we propose RULE,

which consists of two components. First, we

introduce a provably effective strategy for con-

trolling factuality risk through the calibrated

selection of the number of retrieved contexts.

Second, based on samples where over-reliance

on retrieved contexts led to errors, we curate

a preference dataset to fine-tune the model,

balancing its dependence on inherent knowl-

edge and retrieved contexts for generation. We

demonstrate the effectiveness of RULE on med-

ical VQA and report generation tasks across

three datasets, achieving an average improve-

ment of 47.4% in factual accuracy. We pub-

licly release our benchmark and code in https:

//github.com/richard-peng-xia/RULE.

1 Introduction

Artificial Intelligence (AI) has showcased its poten-

tial in medical diagnosis, including disease iden-

tification, treatment planning, and recommenda-

tions (Tăuţan et al., 2021; Wang et al., 2019; Ye

et al., 2021; Xia et al., 2024b; Hu et al., 2024b,a).

In particular, the recent development of Medical

Large Vision Language Models (Med-LVLMs) has
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Figure 1: (a) An example of factuality issue in Med-

LVLM. (b) Utilizing either too few or too many retrieved

contexts as references may not provide effective guid-

ance for the model’s generation. Calibrating the number

of retrieved contexts can effectively control the risk

of factual inaccuracies. (c) Med-LVLMs often overly

rely on retrieved contexts, leading to incorrect responses

even when the original answers are correct without RAG.

A stronger fine-tuned model can effectively balance its

own knowledge with the retrieved contexts.

introduced more accurate and customized solutions

to clinical applications (Li et al., 2023; Moor et al.,

2023; Zhang et al., 2023; Wu et al., 2023). While

Med-LVLMs have demonstrated promising perfor-

mance, they remain prone to generating responses

that deviate from factual information, potentially

resulting in inaccurate medical diagnoses. This

susceptibility to hallucination underscores the need

for enhanced mechanisms to ensure factual align-

ment in critical medical applications (see an exam-

ple in Figure 1(a)) (Royer et al., 2024; Xia et al.,

2024a)). Such errors pose a significant risk to clini-

cal decision-making processes and can lead to ad-

verse outcomes.
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Recently, Retrieval-Augmented Generation

(RAG) (Gao et al., 2023; Qu et al., 2024a,b) has

emerged as a promising method for enhancing the

factual accuracy of responses from Med-LVLMs.

By integrating external, reliable data sources, RAG

guides the model in producing factual medical re-

sponses, enriching its knowledge base with sup-

plementary information. For example, RAG has

been used in tasks such as visual question answer-

ing (VQA) (Yuan et al., 2023) and report gen-

eration (Kumar and Marttinen, 2024; Tao et al.,

2024). However, as illustrated in Figure 1(b) and

Figure 1(c), directly applying RAG strategy to Med-

LVLMs presents two significant challenges: (1) A

small number of retrieved contexts may not cover

the reference knowledge required for the question,

thus limiting the model’s factual accuracy. Con-

versely, a large number of retrieved contexts may

include low-relevance and inaccurate references,

which can interfere with the model’s generation;

(2) Med-LVLMs may overly rely on the retrieved

information. In this situation, the model might

correctly answer on its own, but incorporating the

retrieved contexts could lead to incorrect responses.

To tackle these challenges, we propose the

Reliable mUltimodaL RAG called RULE for MEd-

LVLMs. First, RULE introduces a provable strat-

egy for factuality risk control through calibrated

selection of the number of retrieved contexts k, en-

suring that Med-LVLMs provably achieve high ac-

curacy without the need for additional training (An-

gelopoulos et al., 2021). Specifically, this strategy

modifies the Med-LVLM through a post-processing

step that performs hypothesis testing for each k
to determine whether the risk can be maintained

above an acceptable threshold. This process be-

gins by calculating the p-value for each k. Fixed

sequence testing is then used to determine which k
values can be accepted. Second, to mitigate over-

reliance on retrieved knowledge, we introduce a

knowledge balanced preference fine-tuning strat-

egy. This strategy harmonizes the model’s internal

knowledge with retrieved contexts during medi-

cal response generation. Here, we identify sam-

ples where the model initially responds correctly

but gives incorrect answers after incorporating re-

trieved contexts as dispreferred samples, indicat-

ing retrieval over-dependence. Conversely, ground-

truth responses are considered as preferred samples.

The curated preference data is then utilized for fine-

tuning the preferences in Med-LVLMs.

Our primary contributions of this paper is RULE,

which introduces an innovative approach to en-

hance retrieval-based Med-LVLMs. RULE not

only controls factual risk by calibrating the selec-

tion of reference contexts but also balances the

model’s knowledge and retrieved contexts through

preference fine-tuning using a curated preference

dataset. Across three medical Visual Question An-

swering (VQA) and report generation benchmarks,

including radiology and ophthalmology, our empir-

ical results demonstrate that RULE effectively im-

proves the factual accuracy of Med-LVLMs, achiev-

ing a 14.46% improvement over the best prior meth-

ods for mitigating hallucination. In addition, em-

pirically verify the effectiveness of the proposed

components and demonstrate the compatibility of

RULE.

2 Preliminaries

In this section, we will provide a brief overview of

Med-LVLMs and preference optimization.

Medical Large Vision Language Models. Med-

LVLMs connects the LLMs and medical visual

modules, enabling the model to use medical im-

ages xv and clinical queries xt as inputs x. This

allows the model to autoregressively predict the

probability distribution of the next token. The text

output of Med-LVLMs is denoted as y.

Preference Optimization. Preference optimiza-

tion has achieved remarkable results in efficiently

fine-tuning LLMs, significantly aligning their be-

havior with the goals. Typically, give an input x,

a language model policy πθ can produce a condi-

tional distribution πθ(y | x) with y as the output

text response. The recently popular DPO (Rafailov

et al., 2023) utilizes preference data achieve ob-

jective alignment in LLMs. The preference data

is defined as D = {x(i), y
(i)
w , y

(i)
l }

N
i=1, where y

(i)
w

and y
(i)
l represent preferred and dispreferred re-

sponses given an input prompt x. The probably

of obtaining each preference pair is p(yw { yl) =

Ã(r(x, yw)−r(x, yl)), where σ(·) is the sigmoid func-

tion. In DPO, the optimization can be formulated

as classification loss over the preference data as:

LDPO(Ãθ;Ãref) = −E(x,yw,yl)∼D
[

log Ã
(

³ log πθ(yw|x)
πref(yw|x)

− ³ log πθ(yl|x)
πref(yl|x)

)]

.
(1)

where πθ represents the reference policy, which is

the LLM fine-tuned through supervised learning.
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Figure 2: The framework of RULE comprises two main components: (1) a factuality risk control strategy through

the calibrated selection of k; (2) knowledge-retrieval balance tuning. During the tuning phase, we initially construct

a preference dataset from samples where the model errs due to excessive reliance on retrieved contexts. We

subsequently fine-tune the Med-LVLM using this dataset by employing preference optimization.

3 Methodology

In this section, as illustrated in Figure 2, we will

introduce RULE as an efficient solution for improv-

ing factuality of Med-LVLMs. Specifically, our ap-

proach consists of three main modules that work to-

gether to optimize the model’s performance. First,

we apply the retrieval strategy to Med-LVLMs, en-

hancing the model’s ability to leverage retrieved

information. Second, we implement a statistical

method to control the factuality risk through cal-

ibrated selection of retrieved contexts. Third, we

develop a preference optimization method to bal-

ance the model’s reliance on its own knowledge

and the retrieved contexts. Next, we will detail

these three key modules in detail as follows:

3.1 Context Retrieval for Reference

Med-LVLMs often generate non-factual responses

when dealing with complex medical images. RAG

can provide the model with external knowledge as a

reference, thereby effectively enhancing the factual

accuracy. In the multimodal knowledge retrieval

stage, RULE retrieves textual descriptions/reports

that are most similar to the features of the target

medical images. These references contain a wealth

of image-based medical facts and serve to guide

the generation of responses for the medical image.

Following the design of CLIP (Radford et al.,

2021), the retriever will first encode each image and

the corresponding reports into embeddings using

a vision encoder and a text encoder, respectively.

Specifically, all medical images Ximg are encoded

into image representations Vimg ∈ R
N×P by a

vision encoder Eimg (i.e., Vimg = Eimg(Ximg)),
where N is the number of medical images that

need to be retrieved, and P is the dimension of

the embedding. Similarly, we generate text embed-

dings Vtxt ∈ R
N×P for all corresponding medical

reports Xtxt by applying a text encoder Etxt, i.e.,

Vtxt = Etxt(Xtxt). Subsequently, to adapt the gen-

eral vision and text encoders to the medical domain,

we fine-tune the encoders using the training data

with a contrastive learning loss, defined as:

L =
Limg + Ltext

2
,

where Limg = −
1

N

N
∑

i=1

log
exp(Si,i)

∑N

j=1 exp(Si,j)
,

Ltext = −
1

N

N
∑

i=1

log
exp(Si,i)

∑N

j=1 exp(Sj,i)
,

(2)

where S ∈ R
N×N represents the similarity matrix

between image and text modalities, calculated as:

S =
Vimg

|Vimg |
· ( Vtxt

|Vtxt|
)T , where each element Si,j

represents the similarity between the image repre-

sentation of example i and the text representation

of example j. Equation (2) aims to learn the repre-

sentations by maximizing the similarity of text and

image modalities representing the same example,
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while minimizing the similarity of text and image

modalities representing different examples.

After fine-tuning the image and text encoders,

during inference, when faced with a target medical

image xt requiring the generation of its medical re-

port, we extract the top-K similar medical reports

TopKj∈{1...N}St,j . We then use the retrieved med-

ical report to guide the generation of the medical

report for the target medical image. with the follow-

ing prompt guidance: "You are provided with

a medical image, a image-related question

and a reference report. Please answer the

question based on the image and report.

[Question] [Reference Report] [Image]".

3.2 Factuality Risk Control Through

Calibrated Retrieved Context Selection

For the RAG strategy, the top-3/5 result is typically

used as a reference (Gao et al., 2023). However, it

sometimes fails to encompass all relevant retrieved

contexts, especially when facing the fine-grained

features of medical images. Additionally, an exces-

sive amount of retrieved contexts may introduce

low-relevance and inaccurate references, which can

interfere with the model’s generation. Thus, an

algorithm that can automatically determine the op-

timal number of retrieved contexts, based on the

risk of factual errors, is particularly crucial.

In this section, motivated by (Angelopoulos

et al., 2021), we propose the following strategy

to choose a subset Λ̂ for the number of retrievals

k from a candidate set CK ¦ N such that the fac-

tuality risk FR(k) can be provably controlled for

any k ∈ Λ̂. Specifically, first, for each k ∈ CK , the

strategy first calculates the factuality risk FR(k),
computed as 1 − ACC(M(x, (q, Tk))), where x
denotes the target medical image, q denotes the

question, Tk means the selected top-K retrieved

contexts, and ACC(·) measures the ratio of correct

answers provided by the Med-LVLM M to the to-

tal number of answers. Next, two probabilities pk1
and pk2 are computed as:

pk1 = exp(−nh1(FR(k) ' α, α)),

pk2 = e · P(Bin(n, α) f +nFR(k),),
(3)

where h1(a, b) := a log(a/b) + (1 − a) log((1 −
a)/(1− b)) is the Kullback-Leibler divergence be-

tween two Bernoulli distributions and α denotes

risk upper bound. pk2 representing the probabil-

ity that, in a binomial distribution with param-

eters n and α, denoted by Bin(n, α), the ob-

served value is less than or equal to +nFR(k),.

Then, the minimum of these two probabilities

pk = min (pk1, pk2) is taken. Finally, we use any

family-wise error rat (FWER)-controlling proce-

dure, such as Bonferroni correction (Van der Vaart,

2000) or sequential graphical testing (Bretz et al.,

2009), to choose Λ̂. For example, for Bonferroni

correction, if pk is less than or equal to δ/|CK |,
where δ denotes tolerance level, then k is added

to the set Λ̂. The proposed strategy calculates the

model’s factuality risk under different k values,

computes the corresponding probabilities using two

approaches, and selects those k values that meet

the risk tolerance to control the overall factuality

risk.

We have the following result that ensures with

probability at least 1 − δ, the factuality risk pro-

duced is controlled by α.

Proposition 1 Let α, δ ∈ (0, 1). If the training

dataset DMed = {xi, yi, qi}
N
i=1

is i.i.d. and the

output of the above algorithm Λ̂ ̸= ∅, then

PDMed
(sup
k∈Λ̂

FR(k) f α) g 1− δ.

In practice, we calibrate the selection of k on the

validation sets of each dataset to minimize factual-

ity risk. Consequently, the optimal k calibrated by

this algorithm can be directly used on the test sets.

3.3 Knowledge Balanced Preference Tuning

In addition to selecting the optimal number k of

retrieved contexts, it is likely that these contents

often fail to fully capture the details of every le-

sion or normal area in medical images. Therefore,

when the retrieved contexts is inaccurate, a reliable

Med-LVLM is expected to remain unaffected by

the unreliable information and independently use

its own knowledge to answer medical questions.

However, empirically, as illustrated in Table 1, ap-

proximately half of all incorrect responses by the

retrieval-augmented Med-LVLM are due to an over-

reliance on retrieved contexts. This significantly

affects the application of the retrieval augmented

generation strategy to Med-LVLMs.

Table 1: Over-Reliance Ratio (%) of Med-LVLM with

retrieval, which is the proportion of errors due to over-

reliance on retrieved contexts relative to the total number

of incorrect answers.

IU-Xray FairVLMed MIMIC-CXR

47.42 47.44 58.69
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To address this issue, we propose a Knowledge-

Balanced Preference Tuning (KBPT) strategy

to mitigate over-reliance on retrieved contexts

and enhance factuality in medical content gen-

eration. Specifically, we select samples D =

{x(i), y(i), q(i)}Ni=1 from the a separate set with sam-

ples are not used to fine-tune the retriever in Sec-

tion 3.1, where x, y, q denotes input medical image,

ground-truth answer and question, respectively. We

identify responses ab = M(x, q) where the model

originally answers (i.e., ab = y) correctly but gives

incorrect answers af = M(x, (q, t)) after incorpo-

rating retrieved contexts as dispreferred responses,

as they indicate over-dependence on the retrieval.

Conversely, ground-truth answers y are considered

preferred responses. We denote the preference

dataset as Do = {x(i), y
(i)
w,o, y

(i)
l,o}

N
i=1, where y

(i)
w,o, y

(i)
l,o

are represented as preferred and dispreferred re-

sponses, respectively.

Based on the curated preference data, we fine-

tune the Med-LVLM using direct preference opti-

mization. Following Eqn. (1), the loss is calculated

as follows:

Lkbpt = −E(x,yw,o,yl,o)∼D
[

log Ã
(

³ log
πθ(yw,o|x)

πo(yw,o|x)
− ³ log

πθ(yl,o|x)

πo(yl,o|x)

)]

.
(4)

Algorithm 1: Reliable Multimodal RAG

for Factuality (RULE)

Input: D = {x(i), y(i), q(i)}Ni=1: Dataset; Ãθ:
Parameters of the Med-LVLM; Do:
Preference dataset; Med-LVLM:M(·, ·);
Retriever: R(·); Do: Preference dataset.

Output: Ãref: Parameters of the reference model.
1 ▷ Training Stage
2 Initialize Do with an empty set
3 foreach (x, y, q) ∈ D do
4 Generate retrieved contexts t← R(x)
5 Get the predictions of the model w/o retrieval

ab ←M(x, q)
6 Get the predictions of the model w/ retrieval

af ←M(x, (q, t))
7 if ab = y and af ̸= y then
8 Select the preferred response yw,o ← y
9 Select the dispreferred response yl,o ← af

10 Put {x, yw,o, yl,o} into Do;

11 foreach (x, yw,o, yl,o) ∈ Do do
12 Compute the losses Lo following Eqn. (4)
13 Update Ãref by minimizing Lo

14 ▷ Inference Stage
15 foreach test sample (x, q) do
16 Select top-k retrieved contexts of calibrated

algorithm Tk ← R(x)
17 Get the predictions of the model w/ KBPT and

retrieval a←M(x, (q, Tk))

4 Experiment

In this section, we evaluate the performance of

RULE, aiming to answer the following questions:

(1) Can RULE effectively improve the factuality

of Med-LVLMs compared to other baselines and

open-sourced Med-LVLMs? (2) Do all proposed

components boost the performance? (3) How does

RULE change attention weights of retrieved con-

texts to balance model knowledge and retrieved

contexts? (4) How do different types of data or

models influence DPO fine-tuning?

4.1 Experimental Setups

Implementation Details. We utilize LLaVA-Med-

1.5 7B (Li et al., 2023) as the backbone model.

During the preference optimization process, we

adapt LoRA fine-tuning (Hu et al., 2021). For

the training of retriever, the vision encoder is a

ResNet-50 (He et al., 2016), and the text encoder

is a bio-BioClinicalBERT (Alsentzer et al., 2019).

We use the AdamW optimizer with a learning rate

of 10−3, weight decay of 10−2 and a batch size of

32. The model is trained for 360 epochs. For more

detailed information on training hyperparameters

and training data, please see Appendix A and C.

Baselines. We compare RULE with LVLM hal-

lucination mitigation methods that have already

shown promising results in natural images, includ-

ing Greedy Decoding, Beam Search (Sutskever

et al., 2014), DoLa (Chuang et al., 2023),

OPERA (Huang et al., 2023), VCD (Leng et al.,

2023). These methods manipulate the logits of the

model’s output tokens to enhance factual accuracy.

Furthermore, we compare the performance with

other open-source Med-LVLMs, including Med-

Flamingo (Moor et al., 2023), MedVInT (Zhang

et al., 2023), RadFM (Wu et al., 2023).

Evaluation Datasets. To ensure that the re-

trieved report content is relevant to the visual

question content and to facilitate experimentation,

we utilize three medical vision-language datasets,

i.e., MIMIC-CXR (Johnson et al., 2019), IU-

Xray (Demner-Fushman et al., 2016), and Harvard-

FairVLMed (Luo et al., 2024), encompassing radi-

ology and ophthalmology. The training set is split

into two parts: one part is used to train the retriever

(Section 3.1), and the other part is used to construct

the preference dataset for KBPT (Section 3.3).

Additionally, we construct VQA pairs for KBPT

and evaluation. Specifically, the reports from train-

ing set for preference dataset and reports from orig-
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Table 2: Factuality performance (%) of Med-LVLMs on the three VQA datasets. Notably, we report the accuracy,

precision, recall, and F1 score. The best results and second best results are bold and underlined, respectively.

Models
IU-Xray Harvard-FairVLMed MIMIC-CXR

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

LLaVA-Med-1.5 75.47 53.17 80.49 64.04 63.03 92.13 61.46 74.11 75.79 81.01 79.38 80.49

+ Greedy 76.88 54.41 82.53 65.59 78.32 91.59 82.38 86.75 82.54 82.68 81.73 85.98
+ Beam Search 76.91 54.37 84.13 66.06 80.93 93.01 82.78 88.08 81.56 83.04 84.76 86.36
+ DoLa 78.00 55.96 82.69 66.75 76.87 92.69 79.40 85.53 81.35 80.94 81.07 85.73
+ OPEAR 70.59 44.44 100.0 61.54 71.41 92.72 72.49 81.37 69.34 72.04 79.19 76.66
+ VCD 68.99 44.77 69.14 54.35 65.88 90.93 67.07 77.20 70.89 78.06 73.23 75.57

RULE (Ours) 87.84 75.41 80.79 78.00 87.12 93.57 96.69 92.89 83.92 87.01 82.89 87.49

Table 3: Factuality performance (%) of Med-LVLMs on the three report generation datasets. Notably, we report the

average BLEU, ROUGE-L, METEOR.

Models
IU-Xray MIMIC-CXR Harvard-FairVLMed

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

LLaVA-Med-1.5 9.64 12.26 8.21 12.11 13.05 11.16 18.11 11.36 10.75

+ Greedy 11.47 15.38 12.69 16.63 14.26 14.19 17.98 11.49 13.77
+ Beam Search 12.10 16.21 13.17 16.97 14.74 14.43 18.37 12.62 14.50
+ DoLa 11.79 15.82 12.72 17.11 14.89 14.81 18.26 12.51 14.51
+ OPERA 10.66 14.70 12.01 15.40 12.52 13.72 16.59 11.47 13.63
+ VCD 10.42 14.14 11.59 15.18 12.30 13.38 16.73 11.38 13.89

+ RULE (Ours) 27.53 23.16 27.99 18.61 15.96 17.42 22.35 14.93 17.74

inal test set are input into GPT-4 (OpenAI, 2023)

to create closed-ended VQA data with yes or no an-

swers, e.g., "Is there any pulmonary nodule?". By

sampling segments from a medical report, we can

generate a sequence of concise, closed-ended ques-

tions posed to the model, each with accurate an-

swers. The questions are in yes/no format, making

it easier to analyze errors caused by over-reliance

on retrieved contexts compared to open-ended ques-

tions. The detailed construction process and dataset

statistics are provided in the Appendix A.

Evaluation Metrics. For Med-VQA task, we

use Accuracy as the primary metric and, for de-

tailed comparisons, we also adopt Precision, Re-

call, and F1 Score. For report generation task, we

use BLEU Score (Papineni et al., 2002), ROUGE-

L (Lin, 2004) and METEOR (Banerjee and Lavie,

2005) as the metrics.

4.2 Results

In this section, we provide comprehensive compar-

ison results with different baseline methods and

other open-sourced Med-LVLMs.

Comparison with Baseline Methods. We present

the results of a comparison between RULE and

various hallucination reduction methods in Table 2.

According to these results, RULE demonstrates

the best overall performance, effectively and accu-

rately diagnosing diseases with an average accu-

racy improvement of 47.4% on two tasks across

all datasets. We also observe that RULE per-

forms notably better on the IU-Xray and Harvard-

FairVLMed compared to MIMIC-CXR. This differ-

ence is attributed to the excessive length of the re-

ports available for retrieval in MIMIC-CXR, where

overly long references tend to confuse the Med-

LVLM. Even when dealing with the relatively niche

ophthalmology data (i.e., Harvard-FairVLMed),

RULE demonstrates superior results, significantly

enhancing the factual accuracy of the Med-LVLM.

In contrast, the performance of decoding meth-

ods is quite unstable, showing significant rates

of missed or incorrect diagnoses across different

datasets, as indicated by the precision and recall

values.

Comparison with Other Med-LVLMs. In Ta-

ble 4, we present the comparison with different

open-sourced Med-LVLMs. RULE demonstrates

state-of-the-art (SOTA) performance across all

datasets. Although the second-best model, Med-

VInT, outperforms other models, RULE achieves

an average accuracy improvement of 47.4% over it.

Whether in radiology or ophthalmology, RULE

demonstrates remarkable performance, signifi-

cantly surpassing other open-source Med-LVLMs.

This indicates that RULE is generally applicable

and effective in the medical multimodal diagnosis,

providing consistent improvements across various

medical image modalities.
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Datasets w/o w/

IU-Xray
Error 22.85 15.93

ORR 47.42 27.16

FairVLMed
Error 33.79 15.19

ORR 47.44 22.43

MIMIC-CXR
Error 32.65 19.86

ORR 58.69 31.35

Figure 3: Comparison of over-reliance metrics and attention maps. After optimizing the model with knowledge

balanced preference tuning, first, (a) the Med-LVLM’s error (1-acc) and over-reliance ratio significantly decrease.

Second, (b) the attention scores for the latter half of the text tokens, i.e., the retrieved contexts, are significantly

reduced, while the attention scores for the first half of the text tokens, i.e., the questions, have increased. It indicates

that RULE effectively mitigates the model’s over-reliance on retrieved contexts and enhances factual accuracy.

Table 4: Comparison with other open-sourced Med-

LVLMs. Here “FairVLMed": Harvard-FairVLMed.

Models IU-Xray FairVLMed MIMIC-CXR

Med-Flamingo 26.74 42.06 61.27
MedVInT 73.34 35.92 66.06
RadFM 26.67 52.47 69.30

RULE (Ours) 87.84 87.12 83.92

4.3 How Does RULE Improve the

Performance?

In this section, we conduct a set of analyses demon-

strate how different components contribute to the

performance and illustrate how RULE enhances

overall performance, which are details as follows:

Ablation Studies. To further illustrate the effec-

tiveness of the components of RULE, we conduct

ablation experiments on three datasets. The results

are shown in Table 5. We find that the basic RAG

strategy ("R") slightly improves factual accuracy on

two datasets but decreases it on MIMIC-CXR. The

limited retrieved contexts can not cover the fine-

grained features of medical images, resulting in

unstable factual accuracy improvements. With the

aid of the factuality risk control strategy ("FRC"),

retrieval performance see a stable increase, out-

performing the original Med-LVLM. Considering

the model’s over-reliance on retrieved contexts, the

knowledge balanced preference tuning ("KBPT")

further enhances the model’s reliability and signif-

icantly improves its performance. Ultimately, by

combining these two strategies, RULE achieves

optimal performance.

How does RULE Mitigate the Issue of Over-

Reliance on Retrieved Contexts? To better un-

derstand how RULE mitigates the Med-LVLM’s

Table 5: Results of ablation study. Here, “R": retrieval;

“FRC": factuality risk control, “KBPT": knowledge

balanced preference tuning.

Models IU-Xray FairVLMed MIMIC-CXR

LLaVA-Med-1.5 75.47 63.03 75.79
+ R 77.15 66.21 67.35
+ FRC 78.62 80.61 76.54
+ KBPT + R 84.07 84.81 80.14
+ KBPT + FRC (Ours) 87.84 87.12 83.92

over-reliance on retrieved contexts, we measure

the Med-LVLM’s error and over-reliance ratios,

and visualize the text and image attention maps

of the models before and after fine-tuning using

a randomly selected case, as shown in Figure 3.

The quantitative results in Figure 3(a) demonstrate

the significant positive impact of RULE in mitigat-

ing the model’s over-reliance on retrieved contexts,

with the error rate and over-reliance rate decreasing

by an average of 42.9% and 47.3%, respectively.

Attention maps Figure 3(b) illustrate the model’s

attention scores for text and image tokens. We find

that, on the text side, the model with knowledge

balanced preference tuning shows a significantly

reduced focus on retrieved contexts, effectively mit-

igating over-reliance on such information. The

model focuses more on the question and leverages

its own knowledge to answer, rather than relying

solely on the retrieved contexts, effectively enhanc-

ing factual accuracy.

Analyzing Preference Data Type in KBPT. We

further conduct a thorough analysis of the data

types used in constructing preference data for

KBPT. Three formats are considered: medical

image captioning (prompted as “Please describe
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Figure 4: Results of RULE on different backbones.

“KBPT": knowledge balanced preference tuning.

this medical image"), visual question-answering

(VQA), and a mixture of both. The selected data

are samples where the model makes errors due to

over-reliance on retrieved contexts. The results

are shown in Table 6. We observe that models

fine-tuned using VQA data perform the best across

all three datasets. This indicates that when re-

trieved contexts are incorporated into VQA ques-

tions, the Med-LVLM, through KBPT, can learn

this paradigm of integrating and balancing its own

knowledge with retrieved context to maximize fac-

tual accuracy. However, when the data is in the

form of captioning, it may enhance the model’s

ability to describe medical facts, but it merely dis-

tances the model’s answers from the retrieved con-

texts. The model fails to understand how to balance

retrieval content with its own knowledge.

Table 6: Results of models fine-tuned on different for-

mats of data.

Format IU-Xray FairVLMed MIMIC-CXR

LLaVA-Med-1.5 75.47 63.03 75.79
Captioning 81.61 67.49 77.42
VQA 84.07 84.81 80.14
Merged 76.33 67.96 78.99

4.4 Compatibility Analysis

To demonstrate the compatibility of RULE, we

conduct KBPT on LLaVA-Med-1.0 as well. The

experimental results on three datasets are shown

in Figure 4. We find that our knowledge balanced

preference tuning method demonstrates good com-

patibility across different models, significantly im-

proving factual accuracy across multiple datasets.

Based on LLaVA-Med-1.0, RULE increases accu-

racy by an average of 16.7%. This indicates that

RULE has a noticeable positive effect on mitigating

over-reliance on retrieved contexts, thereby enhanc-

ing the Med-LVLM’s factual accuracy.

4.5 Case Study

Figure 5 presents two representative case results,

demonstrating that RULE can effectively enhance

the factual accuracy of med-LVLMs. In case 1,

Figure 5: Illustrations of factuality enhancement by

RULE in radiology and ophthalomology.

LLaVA-Med provides a factually incorrect answer.

After applying the RAG strategy, the model still

exhibits factual issues, whereas our method effec-

tively addresses this and improves accuracy. In

case 2, LLaVA-Med initially provides a correct

answer, but due to the model’s over-reliance on

retrieved contexts, it subsequently produces an in-

correct response. RULE balances the weight of

inherent knowledge and retrieved contexts, enhanc-

ing factual accuracy.

5 Related Work

Factuality in Med-LVLMs. The rapid devel-

opment of Large Vision and Language Models

(LVLMs) (Liu et al., 2023b,a; Zhu et al., 2023;

Alayrac et al., 2022; Zhou et al., 2024a,b; Xia et al.,

2024c, 2023) has begun to impact medical diag-

nosis. A series of Med-LVLMs (Li et al., 2023;

Moor et al., 2023; Wu et al., 2023; Zhang et al.,

2023), represented by LLaVA-Med, have emerged,

demonstrating impressive performance across var-

ious medical image modalities. However, Med-

LVLMs still exhibit significant factual errors, pro-

ducing medical responses that conflict with the

visual medical information (Xia et al., 2024a; Su

et al., 2024). This could potentially lead to mis-

diagnoses or missed diagnoses. Recently, several

benchmarks (Royer et al., 2024; Xia et al., 2024a)

have been established to evaluate the accuracy of

Med-LVLMs in tasks such as VQA or report gen-

eration. Beyond evaluating factuality, improving

the factual accuracy of Med-LVLMs remains an

underexplored area.

Retrieval Augmented Generation. RAG has

recently been recognized as a promising solu-

tion (Gao et al., 2023; Sun et al., 2024). It enhances
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the model’s ability to generate accurate facts by in-

corporating contextual information from external

datasets. In medical multimodal analysis, the RAG

approach has been applied to various tasks such

as medical VQA (Yuan et al., 2023) and report

generation (Kumar and Marttinen, 2024; Tao et al.,

2024; He et al., 2024). However, in Med-LVLMs,

applying RAG-based approaches overlook two crit-

ical issues: the number of retrieved contexts and

whether the model overly relies on these reference.

These factors can significantly affect the model’s

performance and may even degrade it. In RULE,

we systematically address these challenges and en-

hance the factuality of Med-LVLMs.

6 Conclusion

In this work, we aim to enhance the factuality of

Med-LVLM by addressing two key challenges in

medical RAG. Specifically, we first introduce a

provably effective strategy for controlling factu-

ality risk through the calibrated selection of re-

trieved contexts. Second, we develop a preference

optimization strategy that addresses errors stem-

ming from the model’s excessive dependence on

retrieved contexts, aiming to balance its intrinsic

knowledge and the retrieved information. Experi-

ments on three medical imaging analysis datasets

demonstrate the effectiveness of RULE.

Limitations

This work explores a reliable multimodal RAG

method for Med-LVLMs to enhance factual accu-

racy. Our primary focus is on factual accuracy.

Future research can explore other issues related to

deploying Med-LVLMs in clinical settings, such as

safety, fairness, robustness, and privacy.
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A Data

A.1 Data statistics

The quantities of all the data used are shown in

Table 7 and Table 8. It is notable to note that for

training the retriever, this refers to the number of

image-text pairs; for fine-tuning, it refers to the

number of QA items. “All" represents the total

quantity used to construct the preference dataset,

where only the samples with correct original an-

swers that become incorrect after adding retrieved

contexts are included in the training of knowledge

balanced preference tuning (“KBPT").

Dataset Train (R) All (KBPT) Train (KBPT)

IU-Xray 1035 6761 1579
FairVLMed 7000 6271 2259
MIMIC-CXR 3000 4951 1106

Table 7: Data statistics of training set. Here, the number

of data for the training of retriever (“R") means the

number of image-caption pairs. The number of data for

knowledge balanced preference tuning (“KBPT") means

the number of question-answering pairs. FairVLMed:

Harvard-FairVLMed.

Dataset # Images # QA Items

IU-Xray 589 2573
Harvard-FairVLMed 713 4285
MIMIC-CXR 700 3470

Table 8: Data statistics of test set. # Images and #

QA items mean the number of images and QA pairs,

respectively.

A.2 Instructions

We convert the medical reports into a series of

closed-ended questions with yes or no answers. To

ensure the quality of the VQA data, we perform a

round of self-checks using GPT-4 (OpenAI, 2023).

Finally, we conduct an round of manual filtering

to remove questions with obvious issues or those

related to multiple images or patient histories. The

prompt templates used are shown in Table 9.

A.3 Involved Datasets

We utilize three open-source medical vision-

language datasets, i.e., MIMIC-CXR (Johnson

et al., 2019), IU-Xray (Demner-Fushman et al.,

2016), Harvard-FairVLMed (Luo et al., 2024).

• MIMIC-CXR (Johnson et al., 2019) is a large

publicly available dataset of chest X-ray images

Instruction [Round1]
You are a professional medical expert. I will provide
you with some medical reports. Please generate some
questions with answers (the answer should be yes or
no) based on the provided report. The subject of the
questions should be the medical image or patient, not
the report.
Below are the given report:
[REPORT]
Instruction [Round2]
Please double-check the questions and answers, includ-
ing how the questions are asked and whether the answers
are correct. You should only generate the questions with
answers and no other unnecessary information.
Below are the given report and QA pairs in round1:
[REPORT]
[QA PAIRS R1]

Table 9: The instruction to GPT-4 for generating QA

pairs.

in DICOM format with associated radiology re-

ports.

• IU-Xray (Demner-Fushman et al., 2016) is a

dataset that includes chest X-ray images and cor-

responding diagnostic reports.

• Harvard-FairVLMed (Luo et al., 2024) focuses

on fairness in multimodal fundus images, con-

taining image and text data from various sources.

It aims to evaluate bias in AI models on this mul-

timodal data comprising different demographics.

B Evaluated Models

We evaluate four open-source Med-LVLMs,

i.e., LLaVA-Med (Li et al., 2023), Med-

Flamingo (Moor et al., 2023), MedVInT (Zhang

et al., 2023), RadFM (Wu et al., 2023). The se-

lected models are all at the 7B level.

• LLaVA-Med (Li et al., 2023) is a vision-language

conversational assistant, adapting the general-

domain LLaVA (Liu et al., 2023b) model for

the biomedical field. The model is fine-tuned

using a novel curriculum learning method, which

includes two stages: aligning biomedical vocabu-

lary with figure-caption pairs and mastering open-

ended conversational semantics. It demonstrates

excellent multimodal conversational capabilities.

• Med-Flamingo (Moor et al., 2023) is a mul-

timodal few-shot learner designed for the

medical domain. It builds upon the Open-

Flamingo (Alayrac et al., 2022) model, contin-

uing pre-training with medical image-text data

from publications and textbooks. This model
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aims to facilitate few-shot generative medical

visual question answering, enhancing clinical ap-

plications by generating relevant responses and

rationales from minimal data inputs.

• RadFM (Wu et al., 2023) serve as a versatile

generalist model in radiology, distinguished by

its capability to adeptly process both 2D and 3D

medical scans for a wide array of clinical tasks. It

integrates ViT as visual encoder and a Perceiver

module, alongside the MedLLaMA (Wu et al.,

2024) language model, to generate sophisticated

medical insights for a variety of tasks. This de-

sign allows RadFM to not just recognize images

but also to understand and generate human-like

explanations.

• MedVInT (Zhang et al., 2023), which stands for

Medical Visual Instruction Tuning, is designed

to interpret medical images by answering clin-

ically relevant questions. This model features

two variants to align visual and language under-

standing (Wu et al., 2024): MedVInT-TE and

MedVInT-TD. Both MedVInT variants connect

a pre-trained vision encoder ResNet-50 adopted

from PMC-CLIP (Lin et al., 2023), which pro-

cesses visual information from images. It is an

advanced model that leverages a novel approach

to align visual and language understanding.

C Implementation Details

Following the settings of CLIP (Radford et al.,

2021), we adopt the same architecture and hy-

perparameters for the vision and text encoders.

The vision encoder is a ResNet-50 (He et al.,

2016), and the text encoder is a bio-bert-based

model (Alsentzer et al., 2019). We use the AdamW

optimizer with a learning rate of 10−3, weight de-

cay of 10−2 and a batch size of 32. The model

is trained for 360 epochs. The reports available

for retrieval are from the training set of the corre-

sponding dataset. In our experiments, we apply

cross-validation to tune all hyperparameters with

grid search. All the experiments are implemented

on PyTorch 2.1.2 using four NVIDIA RTX A6000

GPUs. It takes roughly 2.5 and 4 hours for fine-

tuning CLIP and LLaVA-Med-1.5 7B, respectively.

D Proofs

Proof of Proposition 1: According to the definition,

M(·, ·) denotes the Med-LVLM. {Tk}
N

i=1
denotes

the topk retrieved contexts. The dataset is DMed =

{xi, yi, qi}
N

i=1
, where xi is the target image, yi is

the ground-truth answer, qi is the target question.

By the definition of FR(k),

FR(k) =1− ACC(M(x, (q, {Tk}
N

i=1)))

=1−
1

N

N∑

i=1

1{M(xi, (qi, {Tk}
N

i=1))

=yi}

=
1

N

N∑

i=1

(1− 1{M(xi, (qi, {Tk}
N

i=1))

=yi})

Therefore, FR(k) can be written as the average

value of a function evaluated at each data point

(xi, yi, qi) in DMed. Then, by combining Theorem

1, Proposition 1 and Proposition 2 of (Angelopou-

los et al., 2021), we finish the proof.
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