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Abstract

The rapid expansion of large language models (LLMs) re-
quires the development of extensive GPU clusters, with com-
panies deploying clusters with tens to hundreds of thousands
of GPUs. This growth significantly expands the design space
for LLM training systems, requiring thorough exploration of
different parallelization strategies, communication parame-
ters, congestion control, fabric topology, etc. Current methods
require up to 10k simulation experiments to identify opti-
mal configurations, with inadequate exploration leading to
significant degradation of training performance.

In this paper, we tackle the overlooked problem of effi-
ciently conducting parallel simulation experiments for design
space exploration. Our analysis and experiments show that
Single-process Multi-experiment (SPME) achieves superior
performance by reducing scheduling overhead and optimiz-
ing resource utilization, yet remains insufficient for current
AI cluster scales. To enhance SPME’s efficacy, we introduce
Multiverse, a novel GPU-based AI training simulator. Multi-
verse leverages the computing throughput of GPUs efficiently
with optimizations such as a pull-based synchronization, high-
fidelity intra-server communication, and a kernel-fusion tech-
nique. Extensive experiments validate the accuracy and effi-
ciency of Multiverse, demonstrating less than 3.0% discrep-
ancy with real-world LLM training on clusters of up to 54,000
GPUs, achieving 43.1→73.2↑ speedup over state-of-the-art
CPU-based simulators in various use cases.

1 Introduction

The growth of the scale of LLM models requires large train-
ing systems [4, 27]. Companies like Tesla and Meta are build-
ing clusters with more than 24 thousand GPUs [16, 30] with
O(100k) GPU clusters on the horizon. As a consequence,
the design space of the LLM training becomes wider and
deeper [15, 28, 54], encompassing the parallelization strat-
egy, parameters of collective communication primitives, con-
gestion control algorithms and parameters, fabric topology

Figure 1: Four types of multi-experiment parallel strategies.

design, and others (see §2.1). As all of these options can in-
teract in complex and unpredictable ways, discovering the
optimal design point for a training system requires a mas-
sive number of simulation experiments with different option
combinations, to fully search the design space. For example,
exploring the optimal parallel group size requires ↓100 exper-
iments, while identifying the optimal topology for connecting
large-scale GPUs requires over 10k experiments. Insufficient
exploration of the design space can lead to suboptimal opera-
tional regimes, for instance, employing a suboptimal topology
could result in a 3.4↑ longer training iteration time [58, 59].

Fortunately, we observe that the experimental runs for dif-
ferent points in the design space are generally embarrassingly
parallel, which we can leverage to reduce the end-to-end ex-
ploration time. How do we best parallelize these experiments?
The obvious answer — running n experiments on n CPU cores
— falls short of current performance needs, especially when
considering that competition for shared resources like mem-
ory capacity and low-level cache of CPUs mean that scaling is
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sublinear. We believe that, by considering all the experiments
at the same time, we can do better.

Our intuition is that batch processing a significant num-
ber of experiments aligns well with GPU architecture, which
relies on a Single Instruction, Multiple Data (SIMD) exe-
cution model. We note that recent work has taken a similar
approach to speed up single-experiment network simulation,
using a technique called Data-Oriented Design (DOD) [18].
In a DOD-based simulator like DONS [21], users pack data,
e.g., packets, in a way where the simulation framework can
process steps of the simulation procedure in unison (e.g., run-
ning all of ingress pipelines of all switches at the same time)
for parallelism and cache efficiency benefits.

We propose to extend the SIMD abstraction to multi-
experiment simulation using a strategy in which users run
multiple experiments in a single simulation process, a strategy
we call SPME. Akin to the advantages of Deep Learning and
DONS, the advantage of this approach is a substantial reduc-
tion in process-inherent overhead and duplicate cache/mem-
ory usage. A major additional benefit is that SPME is more
amenable to deployment on actual GPUs, whose vastly supe-
rior core count and specialization for SIMD provide sizable
performance benefits for this type of application.

In this paper, we present Multiverse, the first GPU-based AI
training simulator. Multiverse is a DOD-based simulator, but
the first to characterize an Entity-Component-System (ECS)
model for AI training systems, the first to apply a SPME ex-
ecution strategy, and the first to adapt all of the above to the
constraints of GPU execution. For the latter in particular, Mul-
tiverse incorporates three novel techniques for GPU-based
AI training simulation: a pull-based synchronization method
for lock-free data transfer, a high-fidelity intra-server com-
munication model, and a kernel-fusion technique to greatly
improve GPU efficiency.

We perform extensive experiments to confirm the speed
and accuracy of SPME and Multiverse. For SPME, our ap-
proach occupies a new point in the design space shown in
Figure 1. On one axis, we have an existing, well-known crite-
rion: whether to use a single process (SP)1 or try to accelerate
it with multiple processes (MP). On the other axis: running a
single experiment in a single process (SE) or running multiple
experiments in a single process (ME). We implement all four
types of parallel strategies using state-of-the-art simulators
(§2.2) and find that on both GPUs and CPUs, SPME achieves
the best performance among the four (MP↔E suffers from syn-
chronization overhead, while ↔PSE is inefficient in resource
utilization).

For Multiverse as a whole, results show that it can achieve
43.1→73.2↑ speedup over the state-of-the-art across various
use cases (from 50 to 10k simulation experiments) and cluster
scales (from 128 to 54k GPUs). Further, the simulation results,
such as iteration time, align closely with actual LLM training

1SP can utilize multi-cores on a single server with multi-threading [8,21].

in real clusters with 1,024 H100 GPUs, exhibiting a difference
of less than 3.0%.

We summarize the contributions of this paper as follows:

• We identify the need for parallel experimentation in the
design space exploration of large LLM training systems.
We then conduct an in-depth analysis and testing of vari-
ous strategies for parallelizing multiple experiments. The
results indicate that the SPME approach outperforms oth-
ers. We believe that the superior performance of SPME
can be attributed to its reduction in process scheduling
overhead and its cache-friendly nature.

• We further discover that the DOD principle and the GPU
can maximize the potential of the SPME approach. The
operational mode of DOD enables parallel execution of
identical simulation logic across experiments and devices,
such as the forwarding in switches and flow control at
the hosts, closely resembling the Single Instruction, Mul-
tiple Data (SIMD) tasks that GPUs excel at. We design
Multiverse, an AI training simulator, and propose three
optimization techniques.

• We evaluate Multiverse on a real testbed, and Multiverse
can achieve up to 73.2↑ speedup over other methods,
across various use cases and cluster scales. For simu-
lation accuracy, the training performance metrics out-
put by our simulator closely match the real-world re-
sults on a cluster with 1,024 H100 GPUs, showing a
discrepancy of <3.0%. Multiverse is open sourced at
https://github.com/NASP-THU/multiverse.

2 Background and Motivation

2.1 Exploring the LLM Training Design Space

LLMs require specialized AI training infrastructure, lever-
aging dozens to 10s/100s of thousands of GPUs that work
in concert to complete pre-training or fine-tuning tasks [15,
16, 30, 54]. Constructing large-scale infrastructure to support
efficient training involves navigating a deep and broad de-
sign space, as illustrated in Figure 2. Mainstream training
frameworks such as Megatron [54] and DeepSpeed [48] offer
efficient implementations of various parallelization strategies,
Data Parallelism (DP), Pipeline Parallelism (PP), and Tensor
Parallelism (TP), to utilize large amounts of GPUs efficiently.
Collective communication plays a pivotal role in facilitat-
ing result interactions among GPUs, utilizing operations like
allreduce for gradient synchronization and allgather for full
parameter access. The transport protocols and physical net-
work topology underpin the operation of the aforementioned
software layers, exerting a fundamental influence on the train-
ing performance of LLMs.

Navigating such a vast design space requires extensive
exploratory experiments based on simulators, which serve as
a crucial tool to validate system designs due to their lower
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Figure 2: Design space and the number of explorations of LLM training systems.

cost compared to physical testbeds and their higher accuracy
relative to analytical models [21,34,62]. We list two practical
cases to demonstrate how simulation can be utilized to explore
optimal design choices for LLM training.

Topology search: There are tons of ways to connect a large
number of GPU servers, with classic topologies such as Rail-
Optimized Fattree (ROFT) [43], Torus [29], BCube [22], Fat-
tree [5], and Dragonfly [31]. However, these well-known
topologies may fall short when faced with the evolution of
model architectures and training techniques. For example, al-
though ROFT can provide strong all-reduce performance, its
all-to-all performance remains less than optimal. Researchers
usually try to change parameters such as layers, port numbers,
connection relationships, and more in the classic topologies,
conduct >10k simulation experiments to compare them, and
finally find the most suitable topology for LLM training. For
instance, deploying a superior topology can yield a 3.4↑ in-
crease in training speed [58, 59].

Parallel group size optimization: Allocating GPUs into
TP/PP/DP group is also a crucial design decision [26, 42],
because TP demands high bandwidth regions while PP needs
the avoidance of bubbles. The comparison of group sizes
typically requires almost one hundred simulation experiments,
depending on the model size and the hardware topology [36].

Although the optimization process can be divided into two
distinct phases—a long-term phase for GPU topology search
and a short-term phase for other optimizations—to reduce
the number of required experiments, a significant number of
experiments are still needed in the short-term phase when
considering parallel strategy search and collective communi-
cation algorithm search. Thus, enhancing simulation speed
continues to be an essential objective.

2.2 Multi-experiment Parallelization

We taxonomize the parallelization strategy of multiple inde-
pendent simulation experiments into four types along two
axes: (1) using a single-process or multi-processes to execute
one simulation program, and (2) running a single experiment
or multiple experiments within one simulation program.

1. Single-Process Single-Experiment (SPSE): This is the
most commonly used method during design space ex-
ploration, where multiple processes are initiated, each
executing a single experiment. For a given experiment,
NS-3 [49] and OMNeT++ [57] default to using a sin-
gle process with a single thread, whereas DONS [21]
and UNISON [8] utilize multi-threading (multi-core) to
accelerate a single experiment.

2. Multi-Process Single-Experiment (MPSE): This ap-
proach uses multiple processes to run a single simulation
experiment, like NS-3 or OMNeT++ with MPI [20].

3. Single-Process Multi-Experiment (SPME): Within one
program, this strategy extends the single experiment in
SPSE to multiple experiments to economize on the in-
herent overhead of processes.

4. Multi-Process Multi-Experiment (MPME): Similarly,
this approach employs multiple processes to execute one
program in SPME. For instance, NS-3 utilizes various
processes to accelerate a single program, which encom-
passes several independent topologies running different
experiments.

We implement these four parallel strategies based on state-
of-the-art simulation technology, and conduct extensive ex-
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Figure 3: The performance comparison of four multi-
experiment parallel strategies.

periments to verify their respective performance. The experi-
mental scenario involves searching for the optimal collective
communication algorithm for a cluster with 128 GPU servers,
aimed at training a GPT-3 13B model. The simulated topology
is Fattree with k=8 (Fattree8), which has 80 switches and 384
links with 100 Gbps. We test these strategies by measuring
the time simulators required to complete 1 to 500 indepen-
dent experiments on a machine, equipped with 80 CPU cores
and one H100 GPU. The GPU cache configuration includes
1.3MB L1, 40MB L2, and 55MB L3. Experiments were im-
plemented using C++. The experimental results are depicted
in Figure 3, leading us to the following four conclusions.

1. High synchronization overhead in MP↔E: Both MPSE
and MPME (the number of processes is set to the optimal
value that maximizes CPU utilization) exhibited the poor-
est performance, necessitating 2k hours to complete 500 ex-
periments. Process-based parallelization cannot share data
without incurring context-switching overhead. Experimental
results show that high synchronization overhead among multi-
ple processes degrades simulation performance, this problem
has been demonstrated in previous literature [21, 62].

2. High cache miss rate in SPSE: We use UNISON and DONS
to assess the performance of SPSE. UNISON [8] introduces
an efficient multi-threading parallelism technique for NS-3
and claims to achieve super-linear speedup as the number of
CPU cores increases, making it the strongest variant to date.
DONS [21], leveraging the Data-Oriented Design (DOD) con-
cept, restructures the architecture of the network simulator,
achieving improved performance on multi-core CPUs. In
both methods, we set the optimal number of cores for each
experiment (↓24 cores for Fattree8) to achieve the highest
super-linear speedup ratio (↓30↑). Consequently, both ex-
hibit superior performance compared to the multi-process
versions. However, under multiple experiments, this approach
that naively parallelizes by running copies of the simulators
will prolong the time of each experiment spent (i.e., the scal-
ing of this dimension is sublinear), due to frequent CPU con-
text switches and severe cache misses.

3. SPME has better performance: We realize the SPME con-

cept by configuring multiple topologies (↓16) within UNI-
SON and DONS. The results show that the performance of
both UNISON and DONS improves, benefiting from lower
cache misses and process scheduling overhead across experi-
ments. However, DONS with SPME still require significant
time (↓370 hours) to complete this case; when used as an
exploratory tool, this slow speed is not simply acceptable.
4. Unlocking the potential of SPME requires DOD and GPU:
SPME offers a significant performance enhancement for
DOD-based DONS. DOD disentangles logic from data, al-
lowing logic to concurrently manipulate the same type of
data across all entities. This enables SPME+DOD to identify
cross-experiment batching and parallelization opportunities
that existing methods ignore. Moreover, this pattern aligns
seamlessly with the Single Instruction Multiple Data (SIMD)
characteristics of GPUs. The extensive cores within GPUs
can further accelerate parallelism across multiple experiments.
As a comparison and a preview, Figure 3 illustrates the per-
formance of SPME+DOD+GPU, which surpasses the best
available solutions on CPUs by more than 70 times.

2.3 Realizing and Accelerating SPME+DOD

for AI Training Systems

With the above observations, we believe that SPME+DOD
represents a viable path towards realizing high-performance
exploration tools. DOD can improve the execution efficiency
of the SPME parallel strategy by separating simulation logic
from data as mentioned earlier. Thus, this paper introduces
Multiverse, a simulator that realizes SPME+DOD for simulat-
ing AI training systems, centered around three key ideas.
1. ECS modeling to enable SPME+DOD for AI train-

ing systems. Multiverse uses the Entity-Component-System
(ECS) architecture [3, 17] to realize the DOD principle. ECS
decomposes objects into separate logic (named system) and
data (named component), and it is currently the default way
to realize DOD. We choose ECS because it is easy to develop
and prior work, namely DONS [21], has proven its perfor-
mance benefits. We describe the ECS-based modeling for AI
training systems in §3.2.
2. Realizing the SPME+DOD simulation in GPU.

SPME+DOD allows multi-experiment simulators to exploit
parallelism and coherence (both instruction and data) across
experiments to achieve high efficiency on a high-throughput
parallel processor like a GPU. To make Multiverse a practical
tool for multi-experiment exploration, we delegate all aspects
of the simulation to GPUs (§3.3). We centrally manage stor-
age within the GPUs and compile all ECS logic into the GPU,
which will adaptively utilize all cores to execute the same
simulation logic across all experiments.
3. Optimizing the GPU-based LLM training simulator

with three techniques. In the process of developing Multi-
verse, we see plenty of room to improve performance. Firstly,
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Figure 4: Multiverse’s architecture.
executing network simulations with multithreading frequently
led to many-to-one write conflicts. To reduce the overhead
associated with locks, we implement a pull-based synchro-
nization method. For example, one egress port actively pulls
packets from the corresponding ingress ports. Secondly, the
communication protocols between NVIDIA GPUs within a
single server are not open source. Through extensive profiling
experiments, we build an analytical model to estimate the
time that GPUs take to execute various collective communica-
tion operations. Lastly, we propose a kernel-fusion technique
to significantly improve GPU efficiency, compiling the sim-
ulation functions, along with wrapper code for component
management, into a unified GPU megakernel [45].

3 Multiverse Design

We first overview the architecture of Multiverse and then de-
scribe its ECS-based modeling for the AI training system.
Finally, we show how to map the ECS models to the GPU.
We present the optimization techniques for Multiverse in §4.

3.1 Architecture

Figure 4 shows the key components in Multiverse. Users only
need to write the application code, set up an AI training sys-
tem, including workload, CCL parameters, topology, etc. , and
specify multiple experiments to run; then Multiverse automat-
ically perform multi-experiment simulations on GPUs.

System Simulator. The system simulator controls and sched-
ules the process of AI training simulation. Its input is
the model workload [2], similar to the input in ASTRA-
sim [47], which characterizes the computation graph per
GPU. Its node is computation operations (such as Embedding,
Attetion_linear, and MLP_linear) or collective commu-
nication operations (such as Allreduce, Allgather). We
assume that the computation operations are already anno-
tated with the computation times, as the workload produced
by Chakra [2]. Multiverse supports typical parallel strategies
(e.g., TP, PP, and DP).

For inter-server collective communication operations, the

system simulator generates a series of point-to-point send and
receive flows by implementing the collective communication
algorithms (CCAs) of NCCL [23]. However, within a given
CCA, the inherent overhead of the NCCL software stack in-
fluences the start time of each flow. To improve the simulation
accuracy, we hijack the NCCL APIs to profile the start and
end time of each communication in a CCA operation. Conse-
quently, we calibrate the simulation of inter-server collective
communications by introducing the measured overhead.

Intra-server Communication Simulator. For an intra-server
collective communication operation among GPUs (e.g., TP
communications), Multiverse simulates it directly based on
the proposed analytical model, which has different empirical
parameters according to the operator type and GPU type. This
model provides both fast and accurate intra-server communi-
cation simulation.

Inter-server Network Simulator. The system simulator reg-
isters many point-to-point cross-network communication de-
mands in this network simulator, which would conduct a
discrete-event simulation (DES) to rigorously enforce packet-
level events and guarantee correctness, like NS-3 [49]. The
system simulator is notified when the flow is completed.

GPU Memory Simulator. Since some experimental setups
(e.g., the parallel group sizes) may exceed the GPU memory
space, Multiverse supports the simulation of GPU memory us-
age. Before the actual simulation, Multiverse checks whether
the parallel strategy and other settings respect the memory
size limits. If not, Multiverse generates an OOM error.

GPU Runtime. The runtime utilizes ECS abstractions to
efficiently allocate multi-experiment simulation tasks to the
GPU. Multiverse firstly compiles the ECS system functions,
along with wrapper code for component management, into
a unified GPU megakernel. Then, the execution graph of
ECS systems is transferred to the GPU and processed by the
megakernel in every simulation step. The system execution
graph informs the runtime that identical systems are executed
in each simulation step, and then the GPU adaptively uses
all cores to process this system for the corresponding entities
across all experiments.
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Figure 5: Archetypes and Systems (simplified) in LLM training systems.

Figure 6: The system execution graph of Multiverse. The
terms marked in blue refer to entities.

3.2 ECS Modeling for an AI Training System

Multiverse models the AI training process using Entity-
Component-System (ECS) abstractions to realize a high-
performance multi-experiment simulator.

Entities and Components. In the context of AI training, we
retain the network entities in DONS, such as Sender, Ingress-
Port, EgressPort, and Receiver, while introducing pivotal new
entities like training Task, and Flow. The state of an entity is
characterized by the values of its components. For instance,
as shown in Figure 5, the components defining a Task en-
tity encompass type (computation or communication), load
(computation time or communication volume), predecessor
nodes, and successor nodes. The Flow entity is distinguished
by components that include its state, congestion control vari-
ables, and sending buffer. Entities of the same kind that have
the same components are said to share an archetype. Figure 5
illustrates three archetypes of AI training system, as well as
example component values for 4 entities of each archetype.
Other entities and components are consistent with DONS.

Systems and Queries. Systems represent the data-parallel
computations (i.e., simulation logics) executed on collections
of entities. A system is delineated by a query that specifies the
component data included in the input and a function that is
executed on these data. Queries are designed to select entities

that possess a predetermined set of components.
For instance, the Schedule system in Figure 5 is executed

per Task. At each step, it checks the completion status of the
predecessor nodes, and activates the successor task nodes.
For computation tasks, it increases the simulation clock to
advance the simulation process; For inter-server commu-
nication tasks, it inputs new flows in the packet-level Net-
work Simulator; For intra-server communication tasks, the
AnalyticalSys system executes the analytical model to esti-
mate the communication time.

System execution graph. This graph defines the entire set
of ECS systems needed to execute in a simulation step, as
illustrated in Figure 6. Nodes in the graph represent systems,
and edges represent the execution order.

In a simulation step, Multiverse executes eight sys-
tems: Schedule, AnalyticalSys, SendSys, NICSndSys,
ForwardSys, TransmitSys, NICRcvSys, and ACKSys. After
Task entities execute the Schedule system, the intra-server
communication is simulated by AnalyticalSys, then new
flows (new SndFlow entities are created) are injected into the
network simulator, where SndFlow entities execute the Send
system to send packets to the corresponding destinations.
Then packets traverse NIC and a forwarding path comprised
of consecutive IngressPort entities and EgressPort entities.
Finally, the packets arrive at the RcvFlow entity, which sends
back an acknowledgment (ACK) if needed. After the round,
Multiverse starts the next simulation step until the simulation
ends. As proved in DONS, this mode of execution ensures
the simulation correctness if the length of one simulation step
is set reasonably (§5).

3.3 Multi-experiment Simulation in GPUs

The system execution graph enables the runtime to recognize
that all experiments will utilize the same systems during sim-
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ulations. This understanding allows for safe and efficient par-
allel execution. By having clear knowledge of execution and
data types, Multiverse gains significant control over how simu-
lation logic is assigned to GPUs, leading to high-performance
simulations. Multiverse compiles all ECS systems along with
the necessary wrapper code for component access into a sin-
gle GPU megakernel [45]. Then, this megakernel executes the
system execution graph for each step of the simulation. No-
tably, archetypes and their components are set up as column
stores in GPU memory.

Management of Component Storage across Experiments.

In multi-experiment simulations, Multiverse centrally over-
sees the storage of all component data. It constructs a single
in-memory table that holds component data for entities shar-
ing the same archetype across all experiments, as illustrated
in Figure 5. To facilitate efficient access to consecutive com-
ponents, these tables are organized as column stores, with
component data stored in contiguous memory, adhering to
standard ECS practices [3]. To handle the per-experiment
state when processing entities, Multiverse includes an implicit
ExpID component in each table, which allows for quick re-
trieval of experiment-specific data for each entity.

This cross-experiment storage approach improves the cache
miss rate of Multiverse. During execution, neighboring GPU
threads that process consecutive entities in a table can access
component data coherently, even if those entities belong to
different experiments. If separate tables were maintained for
each experiment, data access would become incoherent when
only a few entities per experiment matched an ECS query, as
neighboring threads would access data from different tables.

Executing ECS Systems in GPUs. At a higher level of ab-
straction, Multiverse uses the NVIDIA CUDA C++ compiler
to compile these systems for execution on the GPU. Each
system invocation is mapped directly to a single GPU thread,
utilizing the single instruction multiple threads (SIMT) pro-
gramming model. To facilitate the parallelization of entity
updates and data flow across the execution graph, ECS sys-
tems are structured as functions that take the components of
individual entities as inputs. When an ECS system is inte-
grated into the execution graph, Multiverse uses the provided
ECS query to identify all matching archetypes and their corre-
sponding column indices for each accessed component. This
information enables Multiverse to generate the necessary code
for managing component access and to invoke the ECS sys-
tem function across multiple GPU threads for each entity that
matches the criteria.

For example, in Figure 5, the Send system requires data
from columns 3 and 4 in the Flow table. Using this informa-
tion, Multiverse creates a system entry function that links GPU
threads to table row indices and supplies the retrieved com-
ponent data to the ECS system function. Given a table with
N rows, Multiverse would call the system entry function N
times, with each call resulting in a single GPU thread execut-

(a) Bandwidth (!). (b) Latency (∀).

Figure 7: Calibrated bandwidth and latency parameters in the
analytical model.

ing the ECS system function. In the case of the Send system,
if the query identifies N rows in the Flow table, Multiverse
would invoke the entry function N times, providing the first
N invocations with column pointers for the Flow table.

4 Multiverse Optimization

4.1 Intra-server Communication Simulation

In LLM training systems, TP traffic among intra-server GPUs
constitutes a significant proportion of the aggregate network
load, rendering the precise simulation of TP traffic necessary
to accurately simulate LLM training. TP traffic predominantly
transfers through high-bandwidth, intra-server conduits such
as NVLink and PCIe. Existing simulation methodologies,
however, grapple with accurately modeling TP traffic. Dedi-
cated packet-level simulators (e.g., NS-3 [49], DONS [21]) for
inter-server networks face challenges in accurately simulating
intra-server communication due to the fundamentally differ-
ent communication protocols involved. Existing AI training
simulators employ analytical models (e.g., ASTRA-sim [47])
to estimate this communication: y=∀+comm_size/!, where
∀ and ! represent the communication latency and bandwidth,
respectively. And comm_size denotes the total communica-
tion volume for a GPU during the collective communication
operation. The advantage is the speed of simulation. However,
a significant drawback is the inaccuracy of the model param-
eters, as they fail to capture the overhead introduced by the
NCCL software stack.

Through extensive empirical testing, we discover that the
parameters within analytical models cannot remain static.
Deploying a server equipped with 8 A100 GPUs intercon-
nected via 300GB/s NVLink, we use the analytical model
from ASTRA-sim to estimate the completion time of TP
yields an error margin ranging from 20% to 72%. We identify
that the issue does not lie with the linear model itself, but
rather with the need for its parameters to vary according to
different scenarios. To encapsulate this pattern, we conduct
tests to examine the relationship between the communication
size and the completion time of various collective communi-
cation operators. By fitting a linear model to the results, we
are able to derive revised parameters.

As shown in Figure 7, the analytical model we proposed
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(a) Multiple-to-one write conflict. (b) Pull-based sync.

Figure 8: Resolute the multiple-to-one write conflict with
pull-based synchronization.

meticulously adjusts specific parameters (∀ and !) for each
collective communication operation, contingent upon the
number and type of GPU (e.g., A100/H100) within a server.
The bandwidth values deviated from officially documented
metrics, and the latency can be 70us to 200us. This calibrated
approach facilitates the accurate simulation of intra-server
communication; evaluation results reveal that the error is
merely 0.7%→1%. Crucially, this modeling approach enables
a significant enhancement in speed without compromising
accuracy. This attribute is beneficial for augmenting the com-
pute throughput of ECS architectures within GPUs, affording
a substantial uplift in the simulation performance.
Simulating the overlap of communication and computa-

tion. Furthermore, the computation time can be significantly
influenced by the degree of overlap with communication due
to resource contention, such as streaming multiprocessors
(SM) and high-bandwidth memory (HBM) bandwidth. To
address that, Multiverse adjusts the computation time based
on the overlap between computation and communication. Ini-
tially, Multiverse specifies the duration of each computation
operator without overlap in the input file. During the simula-
tion, this duration is modified according to the overlap ratio
between computation and communication operators and the
extent to which the computation duration is extended due to
this overlap. To determine the overlap ratio, the duration of
the communication operator is obtained using either a scale-
out package-level network simulator or a scale-up analytical
model. By comparing the durations of the communication
and computation operators, the overlap ratio is calculated.
Additionally, an empirical modeling approach is used to eval-
uate the extent to which computation time is extended when
the computation operator overlaps with the communication
operator. This model considers various factors, including the
model type, the computational operator, and the GPU type.

4.2 Pull-based Data Synchronization

In Multiverse, the nic_forward and forward systems exten-
sively perform multiple-to-one write operations, a scenario
where current ECS frameworks (like Unity ECS [56]) exhibit
significant limitations due to the lack of atomic operations.
As a workaround, these frameworks are compelled to accumu-

(a) Kernel-based. (b) Megakernel-based.

Figure 9: The execution of the ECS systems in GPU.

late all send events in a global buffer, subsequently process-
ing them sequentially in the main thread. This methodology
severely compromises parallel efficiency. The key challenge
is managing concurrent writes without resorting to the con-
ventional lock-based synchronization techniques.

We adopt a pull-based data synchronization strategy
to enhance parallel efficiency. This approach bifurcates
the multi-to-one writing process within the system into
two distinct phases: set_write_plan and write. In the
set_write_plan phase, packets slated for dispatch are pre-
liminarily listed in a to-do queue. Then, in the write phase,
each destination actively retrieves the packets intended for it
from the source. For example, we divide the forward system
into two subsystems: set_forward_plan, and the forward.
In the former, a to-do list (realized as a bitmap) is maintained
for each ingress port within the current switch, earmarking im-
pending forward events. Subsequently, in the forward, each
egress port independently pulls the packet from the ingress
ports based on its to-do list one by one, as illustrated in Fig-
ure 8b. This method allows all ports to execute the forward
system in a lock-free manner, improving parallel efficiency.

4.3 Execution with Megakernel

A crucial aspect of Multiverse setup is the execution of the
entire system execution graph. The straightforward method
would be to run each system as an individual CUDA kernel.
However, this strategy has a significant problem. In GPU,
initiating a kernel is a time-consuming process because it
needs to be initialized by the CPU. As shown in Figure 9a,
Multiverse consists of numerous ECS systems, leading to a
high amount of CPU-GPU synchronization overhead, which
notably decreases GPU efficiency.

As shown in Figure 9b, Multiverse uses a GPU-driven
method with a large-scale kernel design [45]. Multiverse com-
piles all systems in the execution graph into a single CUDA
kernel, i.e., megakernel. This kernel is initiated by the CPU
once per batch simulation and completes the entire execution
graph before returning to the CPU. To manage both the ex-
ecution of systems defined by the application and necessary
engine-level operations, such as evaluating ECS queries and
sorting tables, Multiverse creates a task graph. This graph
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outlines the full execution of each batch simulation step. Mul-
tiverse uses a simple task graph scheduling policy in which all
GPU threads work on the same node together before moving
to the next node in the task graph. While this approach could
lead to low GPU utilization if there is not enough work per
node, large-batch simulations of multi-experiment typically
provide a significant amount of work per node. So we can
easily fully utilize all the GPU cores with a megakernel.

5 Implementation

We base Multiverse on the Madrona framework [52]. Multi-
verse ’s current core code base has ↓13k lines of C++ code,
which we release for the networking community. Currently,
Multiverse supports both TP (Tensor Parallelism) and DP
(Data Parallelism) parallelization strategies, along with col-
lective communication algorithms including Ring Allreduce,
Allgather, and Reducescatter. Additionally, Multiverse inte-
grates multiple congestion control algorithms such as DC-
QCN, HPCC, and DCTCP, as well as load balancing algo-
rithms like ECMP and packet spraying. Here we briefly de-
scribe the length of a step in Multiverse, and how it use multi-
ple GPUs.
The length of one simulation step. Multiverse traverses the
execution graph in one simulation step, advancing the simula-
tion clock incrementally. Given that the execution of distinct
systems within the execution graph is sequential, prolonged
step length can lead to temporal errors. This step length ef-
fectively corresponds to the notion of lookahead concept in
parallel DES [20]. Taking inspiration from DONS [21], we
set min{link_delay} as the lookahead. Because event prop-
agation between servers and switches inherently involves at
least one link delay.
Using multiple GPUs. Given the finite resources within a sin-
gle GPU, evaluation reveals that the number of experiments
that one GPU can simultaneously run is limited, when each
experiment is of substantial scale. Multiverse can leverage mul-
tiple GPUs for parallel exploration experiments. Upon user
configuration of available GPUs, Multiverse will assess the ne-
cessity of reallocating certain independent experiments across
different GPUs. If necessary, Multiverse will automatically
balance the workload among multiple GPUs to maximize sim-
ulation speed. The execution across GPUs are independent.

6 Evaluation

We evaluate Multiverse’s simulation speed, accuracy, and scal-
ability. We summarize our results as follows:
Key Results.

• Simulation speed: Multiverse can achieve a 57.4-73.2!
speedup over the state-of-the-art across various use cases,
ranging from 50 to 10,000 simulation experiments, and
cluster sizes, from 128 to 8,192 GPUs.

• Scalability: Using only one GPU, Multiverse can run one
simulation experiment for a cluster of up to 54,000 GPUs
and achieve up to 43.1! speedup over other methods. And
Multiverse can parallel run 52 simulation experiments for
a cluster of 1,024 GPUs and 13 simulation experiments
for a cluster of 8,192 GPUs.

• Fidelity: Multiverse’s simulation results, such as itera-
tion time, align closely with real-world LLM training on
testbeds, with a difference of <3.0%, even at 1,024 GPUs.

Alternatives. We select existing state-of-the-art simulators
for AI training systems as our comparisons.

• ASTRA-sim+UNISON: ASTRA-sim [47, 60] is a com-
prehensive AI training simulator. To enhance its simu-
lation speed, we improve the network simulator using
UNISON [8], a recently proposed multi-threading sim-
ulation kernel. This approach can utilize the SPSE and
SPME manners, denoted as ASTRA-sim+UNISON (SPSE)
and ASTRA-sim+UNISON, respectively.

• ASTRA-sim+DONS: We incorporate ASTRA-sim with
another state-of-the-art network simulator, DONS, to im-
plement an accelerated ASTRA-sim. This method can
utilize the SPSE and SPME manners, denoted as ASTRA-
sim+DONS (SPSE) and ASTRA-sim+DONS, respectively.

• Multiverse (SPSE): This approach takes Multiverse to fol-
low the SPSE manner. And it employs all the optimization
technologies we proposed.

Setup. We conduct experiments with these alternatives on a
Linux server configured with one NVIDIA H100 GPU, an
80-core Intel CPU@2.10GHz, and 256GB of memory.

To verify Multiverse’s accuracy, we run real LLM train-
ing jobs (with LLaMA 65B and GPT-3 175B model) on a
cluster, which is based on the Fattree, inter-host RoCEv2 net-
work. The cluster consists of 128 servers, each equipped with
eight NVIDIA H100 GPUs and eight Mellanox ConnectX-7
NICs (2 ↑ 200Gbps). Intra-server GPUs are interconnected
via NVLink, providing 900GBps bandwidth. The clusters
include two kinds of scale: 128 GPUs and 1,024 GPUs.

We take four real use cases of design space exploration to
test the performance of Multiverse, as shown in Table 1. These
use cases span a comprehensive spectrum, including topology
search, collective communication enhancement, fine-tuning
of parallel group sizes, and the assessment of congestion con-
trol algorithms. These cases cover a wide range of cluster
scales (ranging from 128 to 54,000 GPUs) and model sizes
(from 13 billion to 175 billion parameters). We obtain the
approximate number of experiments required for these four
explorations from the production datacenters. For instance,
topology search needs varying layers, switch radixes, and con-
nectivity configurations to generate a myriad of topologies,
requiring 10k simulation experiments.
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Use case GPU scale Topology Workload Explored parameters # of independent exp.

#1: Topology optimization 128 GPUs Fattree-like GPT-3 13B Set different layers, switch radix, connections,
etc.

10k

#2: Collective communication optimiza-

tion

1,024 GPUs Fattree k=16 LLaMA 65B Set different flow priority and load balancing
strategies.

500

#3: Selection of TP/DP/PP group size 8,192 GPUs Fattree k=32 GPT-3 175B Set different TP/DP/PP group size. 100

#4: Comparing congestion control algo-

rithms

54,000 GPUs Fattree k=60 GPT-dense 175B Set different CC algorithm, such as DC-
QCN [63], HPCC [35].

4

Table 1: The detailed setting for the four different use cases in evaluation.

(a) The total spent time of multiple simulation experi-
ments for a cluster with 128 GPUs (use case #1).

(b) The total spent time of multiple simulation experi-
ments for a cluster with 1,024 GPUs (use case #2).

(c) The total spent time of multiple simulation experi-
ments for a cluster with 8,192 GPUs (use case #3).
Figure 10: The comparison of simulation speed.

6.1 Multiverse is Fast

We first compare the simulation speed of Multiverse, with
other techniques across 3 use cases in Table 1. As depicted
in Figure 10, Multiverse consistently outperforms all other
methods, achieving speed increases of up to 73.2!, 67.6!,
and 57.4! compared to other alternatives when simulating a
cluster with 128 GPUs, 1,024 GPUs, and 8,192 GPUs, respec-
tively. Furthermore, Multiverse surpasses Multiverse (SPSE),
with speed improvements reaching up to 7.3!, 2.4!, and 1.7!,
respectively. These speed enhancements can be attributed to
the reduced cache miss ratio, as shown in Figure 11, a result of
the DOD paradigm and batch and parallel simulation across
multiple experiments. Additionally, Multiverse benefits from

Figure 11: Cache miss ratio in use case #2.

Figure 12: The speed comparison in simulating a large-scale
cluster with 54k GPUs (use case #4).

reduced memory overhead as it distributes the inherent mem-
ory cost in all experiments. Together, these factors improve
the parallel efficiency of Multiverse.

ASTRA-sim+DONS performs better than ASTRA-
sim+UNISON, achieving a speedup of approximately 1.9→
2.1↑, as ECS programming abstractions are well suited for
creating novel multi-experiment simulators. These ECS ab-
stractions also provide essential structure over custom logic
and state, enabling simulators to efficiently manage memory,
distribute work, and identify coherent parallel computations
within and across different experiments.

Multiverse also outperforms ASTRA-sim+DONS, with
speed improvements of up to 25.1→47.2↑. This is because
ASTRA-sim+DONS, despite using batch simulation across
multiple experiments to achieve good performance against
ASTRA-sim+DONS (SPSE), has its parallelism constrained
by the number of CPU cores. In contrast, Multiverse can lever-
age the extensive number of GPU cores to further accelerate
the simulation. Moreover, Multiverse uses pull-based synchro-
nization for lock-free data transfer, a fast analytical model,
and a megakernel technique to enhance GPU efficiency.

Maximum scale. We test the maximum cluster that Multiverse
can simulate using a single GPU. Subject to the constraints
imposed by the GPU memory size in our testbed, Multiverse
can simulate an LLM training cluster that includes up to 54k
GPUs, 4.5k switches, and 162k links. This scale surpasses
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(a) GPU memory usage. (b) GPU memory usage running 1 exp. (c) GPU utilization.

Figure 13: The performance of Multiverse.

Figure 14: The time cost of intra-server collective communi-
cation operations.

(a) LLaMA 65B model on the
cluster with 128 GPUs

(b) GPT3 175B model on the
cluster with 128 GPUs.

(c) LLaMA 65B model on the
cluster with 1,024 GPUs

(d) GPT3 175B model on the
cluster with 1,024 GPUs.

Figure 15: The iteration time of different workloads running
on ASTRA-sim, Multiverse, and real clusters.

that of most LLM training systems. Even under these con-
ditions, Multiverse can significantly outperform alternative
methods, achieving a speedup factor between 28.6! to 43.1!,
as depicted in Figure 12.

The memory consumption and GPU utilization of Multi-
verse are illustrated in Figure 13. With the use of a single
GPU, Multiverse can execute one simulation for a cluster with
up to 54k GPUs at a time, this being limited by the GPU
memory size, as demonstrated in Figure 13b. Furthermore,
Multiverse can concurrently run 520 simulation experiments
for a cluster of 128 GPUs, 70 simulation experiments for a

cluster of 1,024 GPUs, and 5 simulation experiments for a
cluster of 8,192 GPUs.

In terms of GPU utilization, Multiverse can fully engage
all GPU cores when running a single simulation experiment
for a cluster with more than 8,192 GPUs. Multiverse can also
fully utilize all the GPU cores when running more than 30
simulation experiments for a cluster with 128 GPUs, and more
than 10 simulation experiments for a cluster with 1,024 GPUs.

6.2 Multiverse is Accurate

The precision of intra-server communication simulation.

As depicted in Figure 14, we evaluate the accuracy of Multi-
verse in simulating different sizes (2-2560MB) of collective
communication on a server with 8 A100 GPUs(300GBps
NVLink and PCIe5.0). For smaller communication sizes,
ASTRA-sim can deviate by as much as 72.1% from the ac-
tual values. We test the accuracy of both NVLink and PCIe
connected, respectively. Although this error decreases with
increasing communication size, it remains above 22.0%. In
contrast, Multiverse shows an error of 1.0-1.2% for small com-
munication sizes, but this discrepancy reduces to less than
0.8% as the communication size increases.

From an end-to-end simulation perspective, the accuracy
of intra-server communication for both ASTRA-sim and Mul-
tiverse improves with larger communication sizes, as seen in
Figure 15. This is particularly noticeable with the collective
communication operations of GPT-3 175B, which are larger
and thus more accurately simulated. However, ASTRA-sim
can still exhibit an error greater than 20.0% even when simu-
lating GPT-3 175B, while Multiverse reduces the error to less
than 1.0% for both LLaMA 65B and GPT-3 175B.

The precision of inter-server network simulation. As seen
in Figure 15, due to the precision of DES, both using Multi-
verse and ASTRA-sim, the inter-server communication time
closely approximates the real-world LLM training.

The precision of end-to-end simulation. We test the accu-
racy of Multiverse by examining its end-to-end metric across
various workload and cluster sizes. Figure 15 demonstrates
that the iteration time for all workloads when using Multi-
verse closely matches that of real LLM training tasks. The
difference is less than 3.0%, even at the scale of 1,024 GPUs.
Moreover, as the model size increases (for instance, from
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Figure 16: Performance breakdown of Multiverse.

LLaMA 65B to GPT-3 175B), Multiverse’s accuracy improves
correspondingly, because the message sizes of the collective
communication operations in GPT-3 175B are larger.

6.3 Ablation Study of Multiverse

In Figure 16, we perform an ablation study to assess the im-
pact of key features of Multiverse on its overall performance.

The term Multiverse (without analytical model) refers to
the method that employs a packet-level DES to simulate intra-
server communications, where all intra-server GPUs are inter-
connected via a switch. Compared to this method, Multiverse
can achieve a speedup of 1.7-1.8!, because the calibrated
analytical model has lighter computational loads.

Multiverse (without pull-based synchronization) uses the
global synchronization method typically utilized in existing
ECS frameworks. Compared to this approach, Multiverse can
achieve a speedup of 3.2-5.4!. This is because pull-based
synchronization allows all ports to execute the forward sys-
tem in a lock-free parallel manner, significantly enhancing
parallelism efficiency.

Lastly, Multiverse (without megakernel) is a method by
which each ECS system is initialized as an independent ker-
nel function in the GPU. Compared to this method, Multiverse
can reduce the simulation time by 16.6%-18.6%, as shown in
Figure 16. This is because using megakernel can substantially
decrease the number of times the CPU needs to launch a ker-
nel, resulting in lower CPU-GPU synchronization overhead.

7 Related Work

AI training simulation. ASTRA-sim [47, 60] is a compre-
hensive AI training simulator, which aims to simulate the
software and hardware co-design stack of distributed train-
ing systems. Building upon ASTRA-sim, SimAI [7] enhances
simulation accuracy, Dally [53] additionally simulates modern
networking hardware. Approaches like [1,9,19] adopt a more
coarse-grained simulation paradigm, such as operator-level
or task-level, to achieve faster simulation speeds with the sac-
rifice of accuracy. SimBricks [34] and SplitSim [33] achieve
end-to-end network system simulation by integrating multi-
ple simulators, such as NS-2/3 [24, 49] and gem5 [6, 12, 41].
While they can be extended to simulate AI/LLM training,
their performance is constrained. Notably, they fail to fully

leverage the fine-grained parallelism opportunities provided
by SPME.
Network simulation. Existing network simulators can be
divided into three categories: discrete-event simulation
(DES) [24, 38, 49, 57], mathematical model estimation [32,
39, 46] and AI-based estimation [50, 61, 62]. DES simula-
tors offer high-fidelity packet-level simulation. Some work
leverage parallel and distributed DES (PDES) [20, 25] ap-
proaches to accelerate simulation. However, multiple pro-
cesses often come with poor performance and complex con-
figurations. UNISON [8] introduces fine-grained partition-
ing and load-adaptive scheduling to enable efficient multi-
threading. DONS [21] uses the data-oriented design to reduce
cache miss and can be automatically parallelized.
Entity-Component-System (ECS). The ECS architecture
has gained recent popularity through implementations in ma-
jor game engines such as Unity [3] and Unreal [17], as well
as a wide array of open-source implementations of the archi-
tecture [14, 40, 52]. The ECS architecture has been shown to
provide performance benefits due to data access efficiency
and parallelism [13, 56].
GPU-based DES. Many efforts employ GPUs to accelerate
DES of queuing networks [44, 51, 55, 62], P2P networks [37],
and mobile networks [10, 11]. However, they are still rooted
in conventional PDES techniques, lacking the utilization of
ECS architecture to optimize performance.

8 Conclusion

This paper demonstrate that the parallel strategy of Single-
process Multi-experiment (SPME) achieves superior perfor-
mance by reducing scheduling overhead and optimizing re-
source utilization, yet remains insufficient for current AI
cluster scales. To enhance SPME’s efficacy, we introduce
Multiverse, a novel GPU-based AI training simulator. Us-
ing DOD/ECS modeling, Multiverse leverages the comput-
ing throughput of GPUs efficiently with optimizations such
as a pull-based synchronization method, high-fidelity intra-
server communication model, and a megakernel technique.
Extensive experiments validate Multiverse ’s accuracy and ef-
ficiency, achieving 43.1→73.2↑ speedup over state-of-the-art
CPU-based AI training simulators.
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