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ABSTRACT

Deep learning has achieved significant success by training on balanced datasets.
However, real-world data often exhibit long-tailed distributions. Empirical studies
have revealed that long-tailed data skew data representations, where head classes
dominate the feature space. Many methods have been proposed to empirically
rectify the skewed representations. However, a clear understanding of the under-
lying cause and extent of this skew remains lacking. In this study, we provide a
comprehensive theoretical analysis to elucidate how long-tailed data affect feature
distributions, deriving the conditions under which centers of tail classes shrink
together or even collapse into a single point. This results in overlapping feature
distributions of tail classes, making features in the overlapping regions inseparable.
Moreover, we demonstrate that merely empirically correcting the skewed represen-
tations of the training data is insufficient to separate the overlapping features due to
distribution shifts between the training and real data. To address these challenges,
we propose a novel long-tailed representation learning method, FeatRecon. It re-
constructs the feature space in order to arrange features from different classes into
symmetricial and linearly separable regions. This, in turn, enhances the model’s
robustness to long-tailed data. We validate the effectiveness of our method through
extensive experiments on the CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, and
iNaturalist 2018 datasets.

1 INTRODUCTION

Deep learning models have achieved significant success by training on large-scale, artificially balanced
datasets (i.e., ImageNet (Deng et al., 2009)). However, in real-world scenarios, datasets often exhibit
long-tailed distributions, characterized by highly imbalanced class distribution (i.e., the sample
sizes of different classes). A few classes (called head classes) have a large number of samples,
whereas many other classes (called tail classes) contain only a few samples. Training on such datasets
distorts a model’s feature representations and decision boundaries, limiting the model’s generalization
capability and performance on test data.

Our understanding of balanced data representation has advanced significantly. For example, using
the powerful representation learning tool, contrastive learning (Khosla et al., 2020), it has been
shown (Graf et al., 2021) that for balanced data, when the supervised contrastive loss (SC loss)
reaches its minimum, the feature representations of each class converge at their respective class
centers, and all class centers collectively form a regular simplex (see Theorem 1 and Fig. 1a). This
highly symmetrical configuration ensures separation among different classes, resulting in strong
classification performance.

However, the optimal representation configuration for imbalanced data remains poorly understood.
Empirical studies have revealed that, when data follow a long-tailed distribution, the optimal represen-
tations form an asymmetrical configuration, with head classes dominating the feature space. Although
several methods (Zhu et al., 2022; Kang et al., 2021; Li et al., 2022) have attempted to correct
this asymmetry, they primarily rely on empirical adjustments. Crucially, none of these methods
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Figure 1: The geometry of the optimal representation configuration for four classes with different
imbalance factors, ω. Centers of the four classes (z̄1, . . . , z̄4) are positioned on a unit hypersphere.
Assume classes 2, 3 and 4 have the same size, N2 = N3 = N4. Class 1’s size is their size multiplied
by ω, N1 = ωN2. (a): when class 1 is empty (N1 = 0), classes 2, 3 and 4 form a regular simplex.
(b) to (e): As ω increases and N1 increases, z̄2, z̄3 and z̄4 are pushed away from the equator and
eventually collapse. (c): when ω = 1, all four classes form a regular simplex. R is the critical constant
at which the collapse happens (see Sec. 3 for details). ε1 is the angle between the head class center
and tail class centers, and ε2 is the angle between tail classes.

provides a theoretical explanation of why and to what extent head classes dominate the feature space.
Understanding this phenomenon could offer deeper insights into learning better representations of
long-tailed data and inspire novel methods.

In this paper, we study the long-tailed data representation. We begin with establishing the first
theoretical framework (in Theorem 2) to analyze the geometry of the optimal representation config-
uration, i.e., the arrangement of class centers when the SC loss is minimized, under different class
distributions. In particular, we derive the analytical relationship between the imbalance factor, i.e., the
ratio of sample sizes between head and tail classes, and the angles between different class centers at
the optimal configuration. We show that as the imbalance factor increases, the head class increasingly
dominates the feature space, pushing centers of the tail classes closer together. Beyond a certain
critical threshold, centers of the tail classes collapse into a single point. Fig. 1 illustrates the optimal
configuration of four classes. From Fig. 1a to Fig. 1e, as the imbalance factor continuously increases,
the center of the head class (z̄1) pushes the other three tail classes’ centers (z̄2, z̄3 and z̄4) closer and
eventually collapse (Fig. 1e).1

Our theory provides insights into how long-tailed data hurts the representation learning. Without
any mitigation strategy, tail classes are pushed close to one another or even collapse, resulting in
overlapping feature distributions and poor separability between them. To address this issue, existing
methods often readjust the empirical tail class centers to a symmetric configuration. However, due to
the limited sample sizes of tail classes, these approaches may overcorrect the issue, forcing the true
centers of the tail classes to be too close to the head class, leading to overlapping distributions and
poor separability between head and tail classes.

In this paper, we introduce FeatRecon, a novel method for learning long-tailed representations. To
rebalance the skewed feature distributions, this method reconstructs the feature space so that features
from different classes are arranged into symmetrical and linearly separable regions. Inspired by the
theoretical analysis, our method addresses the center skewing issue by rebalancing the sample sizes
across all classes. This is accomplished by generating synthetic features for tail classes and using
them for representation learning. To ensure linear separability, the synthetic features of each class
are constrained within an estimated confidence support, i.e., the feature space region covering the
majority of samples in that class. We derive the necessary conditions for the confidence supports to
ensure they do not overlap at the optimal configuration.

The estimation of confidence support is crucial to our method. Direct estimation of the feature
distributions is challenging due to the non-Euclidean geometry of the normalized feature space and
the limited sample size of tail classes. Instead, we estimate the confidence support by using the
center of each class and a single “central angle” parameter. Since the estimation for tail classes can
be unreliable, the statistics of tail classes are regularized using those of head classes. By iteratively

1For completeness, our analysis encompasses the cases when class 1’s size, N1, is smaller than the others’.
Technically, class 1 is no longer the head class when N1 ↑ N2 = N3 = N3.
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generating synthetic features to fill these confidence supports, adjusting representations, and re-
estimating confidence supports, we can learn a feature space where both head and tail classes are
equally separated, with no overlap between their confidence supports.

Our contributions are summarized as follows:

• We study the geometry of long-tailed data representation and explain how long-tailed data
skew representations and limit a model’s generalization capability.

• We develop a novel algorithm to generate synthetic features to balance the sample sizes
among all classes. The synthetic features are constrained within confidence supports which
are estimated with head classes regularization.

• We propose an iterative approach to learn a symmetric and linearly separable feature
space for long-tailed data. Our method iteratively generating synthetic features, adjusting
representations, and re-estimating confidence support.

• We validate our method with experiments on commonly used datasets. FeatRecon outper-
forms SOTA performance compared to widely adopted long-tailed learning baselines.

2 RELATED WORK

2.1 LONG-TAILED RECOGNITION

Resampling (Byrd & Lipton, 2019) and re-weighting (Cui et al., 2019; Jamal et al., 2020; Chen et al.,
2023) are two classical methods in long-tailed learning. The former method balances the number
of training samples across different classes by either oversampling the tail classes or downsampling
the head classes. The latter method balances the per-class contributions to the loss function by
assigning higher weights to classes with smaller gradients. Other methods emphasize on adjusting
decision boundaries through either post-hoc weight normalization (Dang et al., 2024) or margin

adjustment (Cao et al., 2019; Menon et al., 2021; Khan et al., 2019). The former type adjusts the
decision boundaries by modifying the weight norms of the matrix of classifiers, while the latter type
increases the margins of the tail classes.

Recent works also explore ideas in data augmentation (Ahn et al., 2023; Gao et al., 2024), which
adjusts the strength of class-wise augmentation to help learn class-balanced representations. Transfer

learning (Chen & Su, 2023; Zhang et al., 2023) improve the learning of tail classes by leveraging
information from the nearby head classes. A common way for transfer learning is to assume that data
follow a multivariate Gaussian distribution and transfer distribution statistics. However, the robust
estimation of parameters (i.e., the K → K covariance matrix) can be challenging given the small
sample sizes of tail classes, and the distributional assumption does not hold for normalized features
that contrastive learning deals with.

2.2 CONTRASTIVE LEARNING FOR LONG-TAILED DATA

Contrastive learning (He et al., 2020; Chen et al., 2020; Caron et al., 2020; Chen & He, 2021; Grill
et al., 2020; Wang & Isola, 2020) has made great progress as a tool for representation learning.
Supervised contrastive learning (SCL) (Khosla et al., 2020), by optimizing the supervised contrastive
loss, learns a symmetrical feature space in which the representations of each class collapse to the
vertices of a regular simplex (Graf et al., 2021).

Recent studies in long-tailed learning (LTL) (Wang et al., 2021; Cui et al., 2021; 2023; Xuan & Zhang,
2024) incorporate an SCL module into the LTL framework, aiming to learn better representations and
train most robust classifiers. However, directly using SCL is not ideal, as some (Li et al., 2022; Zhu
et al., 2022) have demonstrated that SCL skews the feature space when training on long-tailed data.
Many methods have since focused on empirically readjusting these skewed representations. TCL (Li
et al., 2022) addresses this by predefining well-separated empirical centers. Other methods rebalance
the number of contrastive pairs in the SC loss, i.e, positive contrastive pairs (Kang et al., 2021),
negative contrastive pairs (Zhu et al., 2022). Our method balances contrastive pairs by generating
new features for the tail classes on the surface of a unit hypersphere which are constrained within
different separable hyperspherical caps.
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3 THEORETICAL ANALYSIS: LONG-TAILED DATA SKEW CONTRASTIVE
FEATURE REPRESENTATIONS

In this section, we study how long-tailed data skew the feature space. To understand how varying
class distributions influence representations, we provide a theoretical framework (in Sec. 3.2) to
investigate the optimal representation configuration when the SC loss is minimized (see Fig. 1).

We show (in Theorem 1), for balanced data, the optimal representations form a regular simplex. This
reveals that representations of different classes are equally separated to the largest extent. However,
for imbalanced data, the optimal representation configuration becomes far more complex. Therefore,
we focus on the simplified one-vs-all scenario. We adjust the sample size of class 1, while assuming
the remaining K ↑ 1 classes have equal and fixed sample size. In Theorem 2, we study the dynamic
of the geometry of the optimal representation configuration as the imbalance factor changes.

3.1 PRELIMINARIES

Suppose we have N training samples, X = (x1, . . . , xN ) ↓ (X )N , randomly drawn from K distinct
classes, with labels Y = (y1, . . . , yN ) ↓ (Y)N and Y = [K] = {1, . . . ,K}. A unit hypersphere
(in Rh) is defined as Sh↑1 =

{
z ↓ Rh : ↔z↔ = 1

}
. An encoder is a map ϑ : X ↗ Rh that extracts

representations from data, denoted as Z = (ϑ (x1) , . . .ϑ (xN )).

In practice, contrastive learning is conducted batch-wise due to memory limitations. To simplify our
analysis, we assume unlimited memory to train on all samples in a single batch. We denote the set of
indices of all samples as B = [N ] = {1, . . . , N}, and the set of indices of samples from the class
k as Bk = {i : i ↓ B, yi = k}. Let Nk be the number of samples from class k, Nk = |Bk| and
N =

∑
K

k=1 Nk. The following definitions are necessary for the study.

Definition 1 (Supervised contrastive loss (SC loss)). Let Z be an N point configuration (assuming

all z’s being normalized), Z = (z1, . . . , zN ) ↓ (Sh↑1)N , with labels Y = (y1, . . . , yN ) ↓ ([K])N ,

and 3 ↘ K ↘ h+ 1. The supervised contrastive loss LSC(·;Y ) : (Sh↑1)N ↗ R is defined as

LSC =
K∑

k=1

∑

i↓Bk

Lk,i

SC, where Lk,i

SC = ↑
1{Nk>1}

Nk ↑ 1

∑

j↓Bk\{i}

log

(
exp (≃zi, zj⇐ /ϖ)∑

l↓B\{i} exp (≃zi, zl⇐ /ϖ)

)

(1)

Definition 2 (Equidistant/regular simplex). Let h,K ↓ N with K ↘ h+ 1. An K point configuration

ϱ = (ϱ1, . . . , ϱK) ↓ (Sh↑1)N form the vertices of an equidistant simplex inscribed in the unit

hypersphere, if and only if the following conditions hold:

(1) ⇒i ↓ [K], ↔ϱi↔ = 1

(2) ⇑d ↓ R, ⇒i, j and 1 ↘ i < j ↘ K, d = ≃ϱi, ϱj⇐

ϱ form the vertices of a regular simplex if and only if (1), (2) and the following condition holds:

(3)
∑

i↓[K] ϱi = 0

3.2 OPTIMAL REPRESENTATION CONFIGURATION

In this subsection, we assume a sufficiently powerful encoder capable of realizing any representation
configuration, and set the temperature parameter (in Eq. (1)) to ϖ = 1.

Optimal Representation Configuration for Balanced Data. When the training data is balanced, The-
orem 1 states that the SC loss attains its minimum if and only if the features of each class converge at
their respective class centers, and the centers of all classes form a regular simplex.

Theorem 1. Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ↓ (Sh↑1)N , with labels Y = (y1, . . . , yN ) ↓ ([K])N , and 3 ↘ K ↘ h+ 1. When Y is

balanced, hence ⇒i ↓ [K], Nk = N

K
, it holds that:
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LSC ⇓ N log

((
N

K
↑ 1

)
+

N(K ↑ 1)

K
exp

(
↑ K

K ↑ 1

))
(2)

where equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ↓ (Sh↑1)K

such that:

(A1) i ↓ Bk, zi = z̄k.

(A2) Z̄ form a regular simplex inscribed in the unit hypersphere.

Remark 1. This theorem has been previously established in Graf et al. (2021). In this paper, we

provide a refined proof (Appendix B.1) that dose not presume Lk,i

SC (in Eq. (1)) to be the same when k

varies, as was done in (S39) of Graf et al. (2021). This allows us to extend the analysis to more general

center configurations, particularly laying the foundation for the imbalanced data case (Theorem 2).

Optimal Representation Configuration for Imbalanced Data. When the training data is imbal-
anced, we first find the tight lower bound function f of LSC, assuming all features having converged
to their respective class centers. f therefore only depends on the center configuration. We then
determine the optimal representation configuration by minimizing f . In the one-vs-all scenario,
Theorem 2 states that the SC loss is minimized if and only if the features of classes 2 to K converge
to the vertices of an equidistant simplex while the features of class 1 converge to the point that is
perpendicular to the equidistant simplex (more explanations in Appendix A.2)

Theorem 2. Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ↓ (Sh↑1)N , with labels Y = (y1, . . . , yN ) ↓ ([K])N , and 3 ↘ K ↘ h + 1. If

⇒k ↓ {2, . . . ,K}, Nk = a2 ⇓ 4, and ⇑ω > 0 such that N1 = a1 = ωa2 > 1, it holds that:

LSC ⇓ f(cos(ε1), cos(ε2)), (3)
where f(·) : R → R ↗ R is defined as:

f(x1, x2) = ωa2 log
(
(ωa2 ↑ 1) + e

↑1 (K ↑ 1) a2 exp (x1)
)

+ (K ↑ 1)a2 log
(
(a2 ↑ 1) + e

↑1 ((K ↑ 2) a2 exp (x2) + ωa2 exp (x1))
)
,

(4)

and equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ↓ (Sh↑1)K

such that:

(A3) i ↓ Bk, zi = z̄k.

(A4) ⇒k, k↔ ↓ {2, . . . ,K} and k ⇔= k
↔
, ≃z̄1, z̄k⇐ = cos(ε1), ≃z̄k, z̄k→⇐ = cos(ε2), and cos(ε2) =

(K↑1) cos2(ω1)↑1
K↑2 .

(A5) (Case 1) ω < 1: ε1 ↓
(
cos↑1(↑ 1

K↑1 ), 0
)

such that f
↔
x1
(cos(ε1)) = 0.

(Case 2) ω = 1: ε1 = cos↑1(↑ 1
K↑1 ).

(Case 3) 1 < ω < R(K, a2): ε1 ↓
(
↑ς, cos↑1(↑ 1

K↑1 )
)

such that f
↔
x1
(cos(ε1)) = 0.

(Case 4) ω ⇓ R(K, a2): ε1 = ↑ς.

Let b1 = (K↑1)(1+e
↑2↑2e2)a2↑2, b2 = 8(1+e

↑2)(K↑1)a2((K↑1)a2↑e
2), then R(K, a2)

defined as:

R(K, a2) =
↑b1 +

√
b
2
1 + b2

2(1 + e↑2)a2
. (5)

Detailed proof is provided in Appendix B.2. We show that ε2 depends on ε1 when the representation
configuration reaches its optimal. Let g(cos(ε1)) = f(cos(ε1),

(K↑1) cos2(ω1)↑1
K↑2 ) and we prove that

g is a convex function of cos(ε1). Therefore, g has one and only one minimal value within a given
domain. We also show that g↔ is an increasing function of ω. So as ω increases, ε1 increases and ε2

decreases. Here, ε1 measures the extent of dominance of the head class.
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Figure 2: Numerical example. The sample size ratio is 10:1:1 in Example A and 100:1:1 in
Example B. (a) g(x) of Example A. (b) g(x) of Example B. (c) Representations of Example A. (d)
Representations of Example B. Stars are empirical centers. Circles are available samples, triangles
are missing samples. Black boxes are overlapping regions.

Remark 2. R(K, a2) in Eq. (5) can be roughly simplified as a linear function only respect to K:

R
↔(K) = (K ↑ 1)

↑(1 + e
↑2 ↑ 2e2) +

√
(1 + e↑2 ↑ 2e2)2 + 8(1 + e↑2)

2(1 + e↑2)
↖ 12.16(K ↑ 1) (6)

R
↔(K) provides an approximate estimate to distinguish Case 3 and Case 4 in Theorem 2.

Numerical Examples. To quantify the extent that long-tailed data skew the feature space, we consider
two examples with K = 3 classes. Assume that tail classes in both samples have N2 = N3 = 50
samples. In Example A, set ωA = 10, and the head class having N

A

1 = 500 samples. In Example
B, set ωB = 100 and N

B

1 = 5000. We have ωA < R
↔(3) < ωB . All samples are mapped to a unit

circle (S1). Then ε
A

1 = 149.19↗, εA2 = 61.63↗, εB1 = 180↗ and ε
B

2 = 0↗ can be found when g is
minimized. Fig. 2 visualizes values of the lower bound function f and the empirical representations
of both examples.

4 METHOD

4.1 CHALLENGES IN LONG-TAILED REPRESENTATION LEARNING

In this subsection, we discuss the challenges faced in long tailed representation learning.

Skewed Center Configuration. Theorem 2 reveals that long-tailed data force tail classes’ centers to
shrink or even collapse. We refer to this phenomenon as the skewed center configuration. This leads to
the feature distributions of the tail classes partially (Fig. 2c) or fully (Fig. 2d) overlapping. As a result,
samples in the overlapping regions become inseparable and cannot be distinguished by a classifier.

Figure 3: long-tailed data representa-
tions. Left: Before center correction.
Right: After center correction with dis-
tribution shifts. To save space, we defer
the legend to Fig. 4.

Distribution Gap. One may consider rearranging the
center configuration back to the symmetrical one to sep-
arate the overlapping features. This approach implicitly
assumes that the distribution of training data, Ptrain, is the
same with the true distribution of the underlying data, Ptrue.
However, due to the limited sample sizes of tail classes, a
discrepancy often exists between Ptrain and Ptrue. We refer
to this phenomenon as distribution gap. When it occurs,
rearranging the empirical center configuration can sepa-
rate the training data but cannot ensure the separation of
testing data. And doing this may even causes overlapping
distributions between head and tail classes (as depicted
in Fig. 3).

4.2 FEATRECON

To address the problems discussed above, we designed our method to rebalance the skewed feature
distributions of long-tailed data to be symmetric and linearly separable.
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Empirical Centers

Available Features
Missing Features
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True Distributions

Head Classes
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Decision Boundaries

Figure 4: One iteration of our algorithm. (a) Estimation of the confidence supports with training data.
The supports are drawn in dashed magenta circles. (b) Regularization of the support by head class
statistics. (c) Generating synthetic features to fill the supports (cross markers). (d) Optimization of
the SC loss separates the tail classes and their supports.

Theorem 2 suggests that balancing the sample sizes across all classes can correct the center configu-
ration. To achieve this, we directly generate synthetic features in the feature space. Since all features
are normalized (i.e, Z ↓ Sh↑1), it is reasonable to assume that the features of each class fall within a
hyperspherical cap on Sh↑1, parameterized by a center and a “radius” – a fixed central angle. Thus,
for each class, we estimate its confidence support as a hyperspherical cap that contains the majority
of features. We then sample synthetic features from these supports. Each support is filled with real
and synthetic features, and features from nearby classes are pushed away as training progresses.

However, since tail classes have limited sample sizes, their estimated supports are unreliable. To
prevent missing features of tail classes from falling outside their respective supports and overlapping
with the features of the head classes, we regularize tail classes’ estimation with the statistics of
neighboring head classes. Since synthetic samples encourage the learned representations to be
symmetrical, as long as the central angle of any confidence support is sufficiently small (at most
1
2 cos

↑1(↑ 1
K↑1 )), these confidence supports are guaranteed to be linearly separable when training

reaches the optimal.

The procedure is illustrated in Fig. 4. In Fig. 4a, we estimate the confidence support based on limited
training samples. In Fig. 4b, the confidence supports of tail classes are regularized using the head
class statistics. In Fig. 4c, we generate synthetic samples that fill these confidence supports. Finally,
by minimizing the SC loss, class centers are moved to equal distance from each other, and the supports
are guaranteed to be linearly separable (Fig. 4d). In practice, we repeat the procedure iteratively.

Confidence Supports Estimation. A hyperspherical cap can be characterized by its center and a
central angle. For class k, we estimate these parameters as follows:

µ̂k =
1

Nk

∑

i↓Bk

zi, and ε̂k = Qε{cos↑1(zi ·
µ̂k

||µ̂k||
)|yi = k}, (7)

where Qε denotes the φ quantile.

Head Class Regularization. For tail classes, the statistics are regularized using the statistics of
Ptrue from head classes, which are estimated more accurately due to sufficient training samples. This
improves the robustness of tail class parameter estimation. Specifically, for a tail class k, we select
the top q head classes (Ch) with the highest similarities to its class center µ̂:

Cq

k
=

{
i | µ̂i · µ̂k ↓ top

q
(Sk)

}
, where Sk = {µ̂i · µ̂k | i ↓ Ch} , (8)

and regularize its statistics using those from the selected head classes Cq

k
as follows:

µ̂
↔
k
= (1↑ ↼)

∑
↽
c

k
µ̂c + ↼µ̂k and ε̂

↔
k

= (1↑ ↼)
∑

↽
c

k
ε̂c + ↼ε̂k (9)

where ↽
c

k
= Nkµ̂i·µ̂k∑

j↑Cq
k
Nj µ̂i·µ̂j

is the regularization weight, and ↼ is the regularization magnitude.

Feature Generation. The estimated confidence support of class k is defined as:

Z̃k =

{
z̃ ↓ Sh↑1 | z̃↘ µ̂

↔
k

||µ̂↔
k
|| ⇓ cos(ε̄k)

}
, where ε̄k = min{ε̂↔

k
,
1

2
cos↑1(↑ 1

K ↑ 1
)}. (10)
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Table 1: Top-1 accuracy of ResNet-32 on CIFAR-10/100-LT datasets with different imbalance factors.

Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance Ratio (ω) 100 50 10 100 50 10
CE 70.4 74.8 86.4 38.3 43.9 55.7
Focal Loss (Lin et al., 2017) 70.4 76.7 86.7 38.4 44.3 55.8
CB-Focal (Cui et al., 2019) 74.6 79.3 87.1 39.6 45.2 58.0
LDAM-DRW (Cao et al., 2019) 77.0 81.0 88.2 42.0 46.6 58.7
CB-DA-LDAM (Jamal et al., 2020) 80.0 82.2 87.4 44.1 49.2 58.0
CE-OTmix (Gao et al., 2024) 78.3 83.4 90.2 46.4 40.7 61.6
DWR-OTmix (Cao et al., 2019; Gao et al., 2024) 83.1 86.4 90.6 48.0 52.60 62.7
SCL (Khosla et al., 2020) - - - - 42.1 45.2 54.8
Hybrid-SC (Wang et al., 2021) 81.4 85.4 91.1 46.7 51.9 63.5
Hybrid-PSC (Wang et al., 2021) 78.8 83.9 91.0 45.0 48.9 62.7
KCL (Kang et al., 2021) 77.6 81.7 88.0 42.8 46.3 57.6
TSC (Li et al., 2022) 79.7 82.9 88.7 43.8 47.4 59.0
BCL (Zhu et al., 2022) 84.3 87.2 91.1 51.8 56.6 64.9
SBCL (Hou et al., 2023) - - - - 44.9 48.7 57.9
FeatRecon 85.2 87.8 91.6 52.5 57.0 65.3

And we sample Ngen features for each class from the respective confidence support. Temperature
Adjustment. Previous works (Wang & Liu, 2021) have revealed how temperature parameter ϖ affects
representation learning. A larger ϖ places more emphasis on inter-class separation, allowing head
classes, which have more samples, to learn more accurate class boundaries where tail classes should
remain distant Inspired by this, we adjust temperature for class k as:

ϖk =

(
1↑ 0.5

(
1 + cos

(
ς

Nk ↑Nmin

Nmax ↑Nmin

)))
→ (ϖ+ ↑ ϖ↑) + ϖ↑ (11)

where ϖ+, ϖ↑ denote the upper and lower bounds of ϖ , respectively. Also, Khosla et al. (2020) shows
that ϖ also controls the gradient scale: the larger ϖ , the smaller the gradient. Therefore, we rebalance
the gradient scale of samples by adjusting the weight of Lk,i

SC
with a scalar parameter ϑk

ϑ↓
.

Training Framework. Our training framework follows (Zhu et al., 2022). The model consists of:
1) a base encoder f : X ↗ h that extracts latent embeddings; 2) a prediction head l : h ↗ p that
produces model predictions p = l ↙ f(X ); 3) a projection head g : h ↗ z that generates normalized
representations z = g ↙ f(X ).

The prediction head is optimized using the training data with the cross entropy loss and logit
compensation (Menon et al., 2021). Let P(y) be class priors and ⇀y = logPy . Then the Lx is:

Lx(y, l ↙ f(x)) = ↑ log
exp (py + ⇀y)∑

y→↓[Y] exp (py→ + ⇀y→)
(12)

The projection head is optimized with both real and synthetic features with the supervised contrastive
loss LSC . The final objective is:

L = ⇁xLx + ⇁cLSC (13)
where ⇁x and ⇁c are hyperparameters that control relative strength among different losses.

5 EXPERIMENTS

5.1 DATASET AND IMPLEMENTATION DETAILS.

Dataset. CIFAR-10-LT and CIFAR-100-LT are the imbalanced subsets of the original CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009), following (Kang et al., 2021; Li et al., 2022; Zhu et al.,
2022). We set the imbalance factor ω = Nmax/Nmin to be 100, 50, and 10.

ImageNet-LT (Liu et al., 2019) is the subset of the original ImageNet (Deng et al., 2009), with the
training set sampled with a Pareto distribution with power value φ = 0.6 and testing set unchanged.
The imbalance factor is 256, with the most frequent class having 1280 samples and the least frequent
one having 5 samples.
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Table 2: Top-1 accuracy of ResNet-32 on CIFAR-100-LT
with imbalance factor equaling 100.

Methods Many Medium Few All

20
0

ep
oc

hs

Hybrid-SC (Wang et al., 2021) - - - 46.7
DRO-LT (Samuel & Chechik, 2021) 64.7 50.0 23.8 47.3
RIDE(3 experts) (Wang et al., 2020) 68.1 49.2 23.9 48.0
BCL (Zhu et al., 2022) 67.0 52.9 33.2 51.8
FeatRecon (Ours) 68.2 53.3 34.0 52.5

40
0

ep
oc

hs Balanced Softmax (Ren et al., 2020) - - - 50.8
PaCo (Cui et al., 2021) - - - 52.0
GPaCo (Cui et al., 2023) - - - 52.3
BCL (Zhu et al., 2022) 69.6 53.8 33.3 53.4
FeatRecon (Ours) 70.0 53.9 35.5 54.0

iNaturalist 2018 (Van Horn et al.,
2018) is a large-scale long-tailed
dataset that contains 437.5K images
from 8,142 classes with an extremely
imbalanced distribution.

Following (Zhu et al., 2022), we train
our model on the long-tailed training
sets and evaluate on the balanced test-
ing sets. We divide the testing sets
into three subsets: many (with more
than 100 instances), medium (with 20
to 100 instances), and few (with less
than 20 instances) splits.

Implementation Details. Our imple-
mentation follows (Zhu et al., 2022).
For both CIFAR-10-LT and CIFAR-100-LT, we adopt the ResNet-32 as the backbone. The projection
head is a 2-layer MLP that generates 128-dimensional embeddings. Dimension of the hidden layer is
512. Our model is trained for 200 epochs with a batch size of 256 and with a SGD optimizer. The mo-
mentum is 0.9 and the weight decay is 5e↑4. The learning rate warms up 0.15 in the first 5 epochs and
decay by 0.1 at the 160th and 180th epochs. For data augmentation, we adopt AutoAug (Cubuk et al.,
2019) and Cutout (DeVries & Taylor, 2017) for the classification head, and adopt SimAug (Chen
et al., 2020) for the projection head. For hyperparameters, we set ⇁x = 2.0, ⇁c = 0.6, φ = 0.99, and
ϖ↑ = 0.1, ϖ+ is scheduled by training epoch between 0 and 1 using method in Kukleva et al. (2023).
We also train our model for 400 epochs for finer comparisons on CIFAR-100-LT. In this case, the
learning rate warms up in the first 10 epochs and decay at the 360th and 380th epochs.

Table 3: Top-1 accuracy of ResNet-50 on ImageNet-LT
dataset and iNaturalist 2018 dataset.

Methods ImageNet-LT iNaturalist 2018

CE 41.6 61.7
Focal Loss (Lin et al., 2017) 43.7 61.3
LDAM-DRW (Cao et al., 2019) 49.8 64.6
cRT (Kang et al., 2020) 47.3 65.2
ω -norm (Kang et al., 2020) 46.7 65.6
LWS (Kang et al., 2020) 47.7 65.9
Area (Chen et al., 2023) 49.5 68.4
CE-OTmix (Gao et al., 2024) 52.0 69.5
DRW-OTmix (Gao et al., 2024) 53.4 71.1
IWB (Dang et al., 2024) 55.2 71.5

SCL (Khosla et al., 2020) 49.8 66.4
KCL (Kang et al., 2021) 51.5 68.6
TSC (Li et al., 2022) 52.4 69.7
BCL (Zhu et al., 2022) 56.0 71.8
SBCL (Hou et al., 2023) 53.4 70.8

FeatRecon 56.8 72.9

We adopt ResNet-50 (He et al., 2016)
as the model backbone for both
ImageNet-LT and iNaturalist 2018.
The projection head is a 2-layer MLP
that generates 1024-dimensional em-
beddings. Dimension of the hidden
layer is 2048. For data augmentation,
we switch the strategy for the projec-
tion head to RandAug (Cubuk et al.,
2020). Our model is trained for 90
epochs for ImageNet-LT and 100 for
iNaturalist 2018 epochs with a batch
size of 256 and with a SGD optimizer.
The momentum is 0.9 and the weight
decay is 5e↑4 for ImageNet-LT and
1e↑4 for iNaturalist 2018. The learn-
ing rate is 0.1 for ImageNet-LT and
0.2 for iNaturalist 2018 with a cosine
scheduler. Additionaly, we train our
model for 90 epochs using ResNeXt-
50-32x4d (Xie et al., 2017) as the
backbone. For hyperparameters, we
set ⇁x = 1, ⇁c = 0.35, φ = 0.99, and ϖ↑ = 0.07, ϖ+ is scheduled by training epoch between 0.07
and 1 using method in Kukleva et al. (2023)..

5.2 RESULTS

CIFAR-LT Tab. 1 shows experiment results on CIFAR-10/100-LT datasets with imbalance factor
varying among 10, 50, and 100. For baselines, we select methods that only work with classifiers (Lin
et al., 2017; Cui et al., 2019; Cao et al., 2019; Jamal et al., 2020; Gao et al., 2024) and methods that
work with both representations and classifiers (Khosla et al., 2020; Wang et al., 2021; Kang et al.,
2021; Li et al., 2022; Zhu et al., 2022; Hou et al., 2023). We can see that FeatRecon outperforms

9
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baseline models in all settings. Moreover, our model achieves larger performance gain as the
imbalance factor increases, proving the effectiveness of our method for long-tailed data. Additionally,
in Tab. 2, we provide shot-wise results on CIFAR-100-LT data with imbalance factor of 100. The
model is trained for both 200 epochs and 400 epochs for fair comparisons with baselines that are
trained under different settings. The results demonstrate the superiority of our approach, especially
for the few-shot classes.

Table 4: Top-1 accuracy of ResNeXt-50 on ImageNet-
LT dataset.

Method Many Med Few All

Focal Loss (Lin et al., 2017) 64.3 37.1 8.2 43.7
ϖ -norm (Kang et al., 2020) 59.1 46.9 30.7 49.4
LWS (Kang et al., 2020) 60.2 47.2 30.3 49.9
IWB (Dang et al., 2024) 64.2 52.2 40.2 55.2
BCL (Zhu et al., 2022) 67.2 53.9 36.5 56.7

Ours 67.9 54.7 37.8 57.5

ImageNet-LT Tab. 3 shows the results
of the experiments on the ImageNet-LT
dataset using ResNet-50 as the model back-
bone. Tab. 4 shows the results of the exper-
iments using ResNeXt-50 as model back-
bone. We report the overall Top-1 accuracy
as well as the Top-1 accuracy of Many-shot,
Medium-shot, and Few-shot classes. Sim-
ilar to the experiments on CIFAR-LT, we
select methods that only work with clas-
sifiers (Lin et al., 2017; Cao et al., 2019;
Kang et al., 2020; Chen et al., 2023; Gao
et al., 2024; Dang et al., 2024) and methods that work with both representations and classifiers (Khosla
et al., 2020; Kang et al., 2021; Li et al., 2022; Zhu et al., 2022; Hou et al., 2023) for baselines. Re-
sults show that our method outperforms baselines in terms of overall accuracy, demonstrating the
effectiveness of our approach for learning classes with synthetic features.

iNaturalist 2018 Tab. 3 also lists experiment results on iNaturalist 2018 dataset. Similar to results on
ImageNet-LT, our method outperforms baselines on the accuracy of tail classes and overall accuracy,
highlighting our model’s capability of learning from few samples.

5.3 ABLATION STUDY

Table 5: Ablating model components.

Exp LC SC Up Sam Feat Gen Temp Adj Accuracy !

1 ↭ 50.2
2 ↭ ↭ 51.1 +0.9

3 ↭ ↭ ↭ 51.2 +1.0
4 ↭ ↭ ↭ 52.3 +2.1
5 ↭ ↭ ↭ ↭ 52.5 +2.3

We evaluate the design of
FeatRecon through an ablation
study on CIFAR-100-LT dataset,
with an imbalance factor of 100.
Each model runs for 200 epochs.
Results are displayed in Tab. 5.
Exp. 1 provides the baseline
by training a classifier with logit
compensation (LP) (Menon et al.,
2021). Exp. 2 introduces an ad-
ditional projection head and trains feature representations with the SC loss (Khosla et al., 2020). This
design brings a 0.9% performance improvement, underscoring the benefit of representation learning.
In Exp. 3, we balance the sample size across different classes by naively upsampling (Up Sam) the
existing features for representation learning. However, this approach has no significantly positive
effect. It highlights the effectiveness of our synthetic feature generation method (Feat Gen), shown
in Exp. 4, that brings a 2.1% performance gain. In Exp. 5, we validate the benefit of training with
temperature adjustment (Temp Adj), which leads to a total 2.3% performance increase.

6 CONCLUSION

In this paper, we establish a theoretical framework to investigate the optimal representation configu-
ration for long-tailed data. We prove that centers of tail classes either shrink or collapse. Building
on this analysis, we explore the challenges associated with long-tailed representations, identifying
two key issues: skewed center configurations and distribution shifts. Inspired by our findings, we
introduce a novel method for long-tailed representation learning. Our method reconstructs the feature
space for long-tailed data, arranging the representations of each class into symmetric and linearly
separable regions. We demonstrate the effectiveness of our approach on several benchmark datasets,
and the results show that our method achieves state-of-the-art performance.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent a new approach to self-supervised learning. In NeurIPS, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast for
Unsupervised Visual Representation Learning. In CVPR, 2020.

Chengkai Hou, Jieyu Zhang, Haonan Wang, and Tianyi Zhou. Subclass-balancing contrastive learning
for long-tailed recognition. In ICCV, 2023.

Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan Yang, Liqiang Wang, and Boqing Gong.
Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation
perspective. In CVPR, 2020.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. In ICLR, 2020.

Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng. Exploring balanced feature spaces for
representation learning. In ICLR, 2021.

Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and Ling Shao. Striking the right
balance with uncertainty. In CVPR, 2019.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In NeurIPS, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
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A APPENDIX A

A.1 PSEUDO ALGORITHMS

A.1.1 TRAINING PROCESS

In this section, we first present the training procedure of FeatRecon. FeatRecon is a heuristic
method that iteratively generates synthetic features, adjust representations, and re-estimate confidence
supports at each step of the training process.

Algorithm 1: FeatRecon Algorithm
Input: Available training samples D = {xi, yi}i↓Bk from K classes, the quantile parameter φ,

the regularization magnitude ↼ and m which controls the total number of synthetic
features.

1 for t = 1, . . . , T do
2 Sample a mini-batch {xi, yi}Bi=1 from D ;
3 for k = 1, . . . , K do
4 Estimate batch-wise support centers and update with epoch-wise estimation ;
5 if class k is a tail class then
6 Regularize all statistics as Eq. (8) and Eq. (9);
7 end
8 Generate Ngen synthetic features for class k ;
9 end

10 Compute the cross entropy loss Lx (Eq. (12)) with training data ;
11 Compute the supervised contrastive loss LSC (Eq. (1));
12 Update model with loss L = ⇁xLx + ⇁cLSC ;
13 Estimate confident supports as Eq. (7) for all classes
14 end
15 Return Trained model

A.1.2 SYNTHETIC FEATURE GENERATION

Next, we present the pseudo-algorithms of synthetic feature generation. This part follows the core
idea of Su (2021). Suppose that the angles between the samples of class k and their respective center
µ follow a given distribution pk(ε;µ). To generate synthetic features within the confidence support
of the class k, we first sample angles from pk(ε; µ̃↔

k
) but only retain samples that satisfy 0 ↘ ε ↘ ε̄k.

So we have:

”k = {ε ∝ pk(ε; µ̃
↔
k
); ε < ε̄k} (14)

Then we can generate samples whose angle to the center is ε via:

x = cos(ε)→ µ̃
↔
k
+ sin(ε)→ ν

where ν ∝ U(Sh↑2) and ν · µ̃↔
k
= 0

(15)

Here, ν are sampled from the uniform distribution on the surface of a h↑ 2 hypersphere Sh↑2 that is
perpendicular to µ̃

↔
k
. And we can sample ν via

s ∝ N (0, Ih)

ν =
s↑ ≃s, µ̃↔

k
⇐ → µ̃

↔
k

↔s↑ ≃s, µ̃↔
k
⇐ → µ̃

↔
k
↔

(16)

And we can verify that the samples generated via the above method fall within the confidence support
and their angles to the class centers follow a truncated version of pk(ε; µ̃↔

k
).

The entire procedure can be summarized by Algorithm. 2
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Algorithm 2: Synthetic Feature Generation Algorithm
Input: Parameters of the estimated confidence support {µ̂↔

k
, ε̄

↔
k
}, angle distributions pk(ε; µ̃↔

k
),

numbers of generated samples Gk, where k ↓ [K]
1 for k = 1, . . . , K do
2 Sample Nk iid. {εk} as described in Eq. (14) ;
3 Sample Nk iid. {νk} as described in Eq. (16) ;
4 Calculate {xk} as described in Eq. (15) ;
5 end
6 Return {xk}k↓[K]

In terms of generating synthetic features, we sample ε from the normal distribution. This evolves to
estimate two more parameters, the center and the variance of ε. We estimate both parameters once
every epoch and regularize them at each mini-batch.

A.2 MORE EXPLANATION OF THEOREM 2

In this subsection, we provide more detailed mathematical explanation with respect to Theorem 2.

It states the necessary and sufficient conditions on the representation configuration for the SC loss
attaining its minimal. (A3) states representations of each class converge to the respective class centers.
(A4) states that the centers of class 2 to K form an K ↑ 2 equidistant simplex, the angles between
whose vertices all equal ε2. (A4) also states the vector between the spherical center and the center of
class 1 is perpendicular to the equidistant simplex, and the angle between class 1’s center and other
classes’ center all equal ε1. And cos(ε2) =

(K↑1) cos2(ω1)↑1
K↑2 . (A5) depicts the whole dynamic of the

configuration of all centers as ω increases from 0 to +′.

More specifically, (A5) shows:

(Case 1) 0 < ω < 1: ϖ

2 < ε1 < cos↑1(↑ 1
K↑1 ) < ε2 < cos↑1(↑ 1

K↑2 )

(Case 2) ω = 1: it becomes a data balance case where ε1 = ε2 = cos↑1(↑ 1
K↑1 ). This indicates

all class centers form a K ↑ 1 regular simplex.
(Case 3) 1 < ω < R(K, a2): as ω continues to increase, it becomes a long-tailed problem. The

head class (1st) increasingly dominates the feature space as ς > ε1 > cos↑1(↑ 1
K↑1 ) >

ε2 > 0. At this stage, centers of the tail classes increasingly shrinks together.
(Case 4) ω > R(K, a2): centers of the tail classes collapses with ε2 = 0 and ε1 = ς

In both long-tailed cases, ε1 measures the extent that a head class dominate the feature space.
Also, Theorem 1 is a special case of Theorem 2 (Case 2).

A.3 LIMITATIONS

While our theoretical framework opens a door to study long-tailed representation, it’s currently
limited to the simple one vs. all case. The solution for more general cases remains unsolved.

To solve this problem, it is crucial to identify the numerical relationships among the angles between
different class centers. As suggested in Lemma 5, if there are K classes with M distinct sample sizes,
there will be

(
M

2

)
distinct angles. Determining the numerical relationships among these angles poses

a significant challenge.

However, while our theory primarily addresses the one-vs-all scenario, it unveils a crucial insight into
how the head classes dominate the feature space, and provides guidance on algorithm design.
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A.4 REPRESENTATION VISUALIZATION

In Fig. 5, we visualize the learned representations of CIFAR-10 testing images with imbalance factor
equaling 100 using t-SNE (Van Der Maaten & Hinton, 2008). Results show that, with the help of
synthetic features generated by FeatRecon, the resulting testing distributions of different classes are
more separated.

Figure 5: t-SNE visualization of CIFAR-10 testing set. (left) Learned representations without
synthetic features. (Right) Learned representations with synthetic features generated by FeatRecon.
Numbers in the legend after class names represents the numbers of training samples from this class.
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B APPENDIX B

B.1 PROOF OF THEOREM 1

In this section, we provide proofs for Theorem 1 proposed in Sec. 3.2. Our proof is different from
what’s shown in (Graf et al., 2021; Zhu et al., 2022) in order to take long-tailed distribution into
account. For the convenience of your reading, let’s recall some related notions and definitions.

• h,N,K ↓ N

• Z = Rh

• Sh↑1 =
{
z ↓ Rh : ↔z↔ = 1

}

• Y = {1, . . . ,K} = [K]

• B = {1, . . . , N} = [N ]

• Bk = {i : i ↓ B, yi = k}
• Nk = |Bk|

Definition 1 (Supervised contrastive loss) Let Z be an N point configuration (assuming all zs
being normalized), Z = (z1, . . . , zN ) ↓ (Sh↑1)N , with labels Y = (y1, . . . , yN ) ↓ ([K])N , and
K ↘ h + 1. Let B = [N ], Bk = {i : i ↓ B, yi = k} and Nk = |Bk|. The supervised contrastive
loss LSC(·;Y ) : (Sh↑1)N ↗ R is defined as:

LSC =
K∑

k=1

∑

i↓Bk

Lk,i

SC, where Li

SC = ↑
1{Nk>1}

Nk ↑ 1

∑

j↓Bk\{i}

log

(
exp (≃zi, zj⇐)∑

l↓B\{i} exp (≃zi, zl⇐)

)
.

Definition 3 (Equidistant/regular Simplex) Let h,K ↓ N with K ↘ h+ 1. An K point configuration
ϱ = (ϱ1, . . . , ϱK) ↓ (Sh↑1)N form the vertices of an equidistant simplex inscribed in the unit
hypersphere, if and only if all of the following conditions hold:

(1) ⇒i ↓ [K], ↔ϱi↔ = 1

(2) ⇑d ↓ R, ⇒i, j and 1 ↘ i < j ↘ K, d = ≃ϱi, ϱj⇐

And ϱ form the vertices of a regular simplex inscribed in the unit hypersphere, if and only if (1), (2)
and the following condition holds:

(3)
∑

i↓[K] ϱi = 0

Theorem 1 Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ↓ (Sh↑1)N , with labels Y = (y1, . . . , yN ) ↓ ([K])N , and K ↘ h+ 1. Let B = [N ],
Bk = {i : i ↓ B, yi = k} and Nk = |Bk|. When Y is balanced, hence ⇒i ↓ [K], Nk = N

K
, it holds

that:
LSC ⇓ N log

((
N

K
↑ 1

)
+

N(K ↑ 1)

K
exp

(
↑ K

K ↑ 1

))
,

where equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ↓ (Sh↑1)K

such that:

(A1) i ↓ Bk, zi = z̄k.
(A2) Z̄ form a regular simplex inscribed in the unit-hyperspher.

17
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B.1.1 STEPS OF PROOF

First let’s rewrite Lk,i

SC and LSC (assuming ⇒k ↓ [K], Nk > 1).

Lk,i

SC = ↑ 1

Nk ↑ 1

∑

j↓Bk\{i}

log

(
exp (≃zi, zj⇐)∑

l↓B\{i} exp (≃zi, zl⇐)

)

=
1

Nk ↑ 1

∑

j↓Bk\{i}

log

(∑
l↓B\{i} exp (≃zi, zl⇐)
exp (≃zi, zj⇐)

)

=
1

Nk ↑ 1
log





(∑
l↓B\{i} exp (≃zi, zl⇐)

)Nk↑1


j↓Bk\{i} exp (≃zi, zj⇐)





= log




∑

l↓B\{i} exp (≃zi, zl⇐)

exp
(∑

j↓Bk\{i} ≃zi, zj⇐
) 1

Nk↓1





= log




∑

l↓B\{i} exp (≃zi, zl⇐)

exp
(

1
Nk↑1

∑
j↓Bk\{i} ≃zi, zj⇐

)



 ,

(17)

and hence

LSC =
K∑

k=1

∑

i↓Bk

Lk,i

SC

Lemma 2
⇓

K∑

k=1

Nk log



(Nk ↑ 1) + e
↑1

∑

k
→↓[K]
k
→ ≃=k

Nk→ exp (≃z̄k, z̄k→⇐)



 ,

(18)

where z̄k = 1
Nk

∑
i↓Bk

zi. When Y is balanced, ⇒i ↓ [K], Nk = N

K
, then

LSC ⇓
K∑

k=1

N

K
log





(
N

K
↑ 1

)
+ e

↑1N

K

∑

k
→↓[K]
k
→ ≃=k

exp (≃z̄k, z̄k→⇐)





Lemma 3
⇓ N log

((
N

K
↑ 1

)
+ e

↑1N(K ↑ 1)

K
exp (β)

)
,

(19)

and equality is attained if and only if all of the following conditions hold:

(B1) ⇒i ↓ Bk, zi = z̄k.

(B2) ⇒k ↓ [K] and k
↔ ↓ [K]\{k}, ≃z̄k, z̄k→⇐ = β.

(B3) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (B2) holds.

(Case 1) K = h+ 1: β = ↑ 1
K↑1 or β = 1

(Case 2) K < h+ 1: ↑ 1
K↑1 ↘ β ↘ 1

When a, b > 0, f(x) = log (a+ be
x) is a strictly increasing function. And Eq. (19) suggests that the

lower bound of LSC is a strictly increasing function of β. When β reaches its minimal value so does
LSC. When K ↘ h+ 1, βmin = ↑ 1

K↑1 , then we have:

18
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LSC ⇓ N log

((
N

K
↑ 1

)
+ e

↑1N(K ↑ 1)

K
exp

(
↑ 1

K ↑ 1

))

= N log

((
N

K
↑ 1

)
+

N(K ↑ 1)

K
exp

(
↑ K

K ↑ 1

))
.

(20)

When β = ↑ 1
K↑1 , Lemma 1 shows that (B2) and (B3) imply Z̄ = (z̄1, . . . , z̄K) form a regular

simplex. Thus, the conditions for equality can be summarized as: there exists a configuration of
Z̄ = (z̄1, . . . , z̄K) ↓ (Sh↑1)K such that:

(A1) i ↓ Bk, zi = z̄k.
(A2) Z̄ form a regular simplex inscribed in the unit-hyperspher.

B.1.2 LEMMAS PART 1

In this section,we provide definitions and proofs of lemmas that are used for the proof of Theorem 1.
Lemma 1. Let Z be an K point configuration (assuming all zs being normalized), Z =
(z1, . . . , zK) ↓ (Sh↑1)K . If ⇑β ↓ R, ⇒i, j ↓ [K] and i ⇔= j such that all inner products ≃zi, zj⇐ = β

are equal, then one of the following cases holds:

(Case 1) K > h+ 1: β = 1.

(Case 2) K = h+ 1: β = ↑ 1
N↑1 or β = 1.

(Case 3) K < h+ 1: ↑ 1
N↑1 ↘ β ↘ 1.

And when β = ↑ 1
K↑1 , Z = (z1, . . . , zK) forms a regular simplex.

Proof. As explained in (Delsarte et al., 1977), there are at the most h+ 1 equidistant points on Sh↑1

(The size of a spherical 1-distance set ↘ h+1 (Delsarte et al., 1977)). When N > h+1, all N points
collapse into a single point and β = 1, which is the Case 1. When N = h+ 1, these points either
form into a regular simplex or collapse into a single point, which is the Case 2. When N < h+ 1,
these points form into a regular/non-regular equidistant simplex or collapse into a single point, which
is the Case 3.

Next we will show why when K < h+ 1, ↑ 1
K↑1 ↘ β ↘ 1 (Case 3) and when Z = (z1, . . . , zK) ↓

(Sh↑1)K forms a regular simplex, β = ↑ 1
K↑1 (Case 2). Given that



∑

k↓[K]

zk



2

=


∑

k↓[K]

zk,

∑

k↓[K]

zk



=
∑

k↓[K]

≃zk, zk⇐+
∑

n↓[K]
m↓[K]\{i}

≃zn, zm⇐

= K +K(K ↑ 1)β

⇓ 0,

(21)

this shows ↑ 1
K↑1 ↘ β. Since β is the dot product of two unit vectors, β ↘ 1. Then we have:

↑ 1

N ↑ 1
↘ β ↘ 1. (22)

When Z = (z1, . . . , zK) ↓ (Sh↑1)K forms a regular simplex, we have
∑

k↓[K] zk = 0. Then
K +K(K ↑ 1)β = 0 and β = ↑ 1

K↑1 .

19
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Now we prove when β = ↑ 1
K↑1 , Z = (z1, . . . , zK) forms a regular simplex. Recall that ⇒i, j ↓ [K]

and i ⇔= j, we have ↔zi↔ = 1, and ≃zi, zj⇐ = β. When β = ↑ 1
K↑1 , Eq. (22) shows

∑
k↓[K] zk = 0.

Then Z forms a regular simplex.

Lemma 2. Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ↓ (Sh↑1)N , with labels Y = (y1, . . . , yN ) ↓ ([K])N . Let B = [N ], Bk = {i :
i ↓ B, yi = k}. ⇒k ↓ [K],

∑
i↓Bk

Lk,i

SC is bounded below by:

∑

i↓Bk

Lk,i

SC ⇓ Nk log



(Nk ↑ 1) + e
↑1

∑

k
→↓[K]
k
→ ≃=k

Nk→ exp (≃z̄k, z̄k→⇐)



 , (23)

where z̄k = 1
Nk

∑
i↓Bk

zi, and equality is attained if and only if the following condition holds:

(B1) ⇒i ↓ Bk, zi = z̄k.

Proof. According to Eq. (17):

Lk,i

SC = log




∑

l↓B\{i} exp (≃zi, zl⇐)

exp
(

1
Nk↑1

∑
j↓Bk\{i} ≃zi, zj⇐

)





= log





∑
l↓Bk\{i} exp (≃zi, zl⇐) +

∑
k
→↓[K]
k
→ ≃=k

∑
m↓Bk→ exp (≃zi, zm⇐)

exp
(

1
Nk↑1

∑
j↓Bk\{i} ≃zi, zj⇐

)



 .

(24)

There are three terms in Eq. (24). Let’s check their lower bounds one by one. Applying Jensen’s
inequity, the first term can be bounded below:

∑

l↓Bk\{i}

exp (≃zi, zl⇐) ⇓ (Nk ↑ 1) exp



 1

(Nk ↑ 1)

∑

l↓Bk\{i}

≃zi, zl⇐



 , (25)

where equality is attained if and only if all of the following conditions hold:

(C1) ⇒k ↓ [K] and ⇒i ↓ Bk, ⇑φ(k, i) such that ⇒j ↓ Bk\{i}, all inner products ≃zi, zj⇐ = φ(k, i)
are equal.

Let z̄k = 1
Nk

∑
i↓Bk

zi. Similarly, the second term can be bounded below:

∑

m↓Bk→

exp (≃zi, zm⇐) ⇓ Nk→ exp



 1

Nk→

∑

m↓Bk→

≃zi, zm⇐



 = Nk→ exp





zi,

1

Nk→

∑

m↓Bk→

zm



 ,

= Nk→ exp (≃zi, z̄k→⇐)
(26)

where equality is attained if and only if all of the following conditions hold:

(C2) ⇒k ↓ [K] and ⇒i ↓ Bk, ⇑φ(k, i, k↔) such that k↔ ↓ [K]\{k} and m ↓ Bk→ , all inner products
≃zi, zm⇐ = φ

↔(k, i, k↔) are equal. And φ
↔(k, i, k↔) = ≃zi, z̄k→⇐.
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Using Cauchy-Schwarz inequality, the third term can be bounded below:

1

exp
(

1
Nk↑1

∑
j↓Bk\{i} ≃zi, zj⇐

) ⇓ 1

exp
(

1
Nk↑1

∑
j↓Bk\{i} ↔zi↔ ↔zj↔

) = e
↑1

, (27)

where equality is attained if and only if the following condition holds:

(C3) ⇒k ↓ [K] and ⇒i, j ↓ Bk, zi = zj = z̄k.

It’s obvious to see that when condition (C3) holds, all samples from the same class collapse into
their class center (denoted by z̄k). In this case, and thus condition (C1) and (C2) hold as well where
φ(k, i) = 1 and φ

↔(k, i, k↔) = ≃zk, z̄k→⇐. So (C3) is a sufficient condition for (C1) and (C2). Now we
have:

∑

i↓Bk

Lk,i

SC =
∑

i↓Bk

log





∑
k↓Bk\{i}} exp (≃zi, zl⇐) +

∑
k
→↓[K]
k
→ ≃=k

∑
l↓Bk→ exp (≃zi, zl⇐)

exp
(

1
Nk↑1

∑
j↓Bk\{i} ≃zi, zj⇐

)





Eq. (25)
⇓

∑

i↓Bk

log





(Nk ↑ 1) exp
(

1
(Nk↑1)

∑
l↓Bk\{i} ≃zi, zl⇐

)
+
∑

k
→↓[K]
k
→ ≃=k

∑
l↓Bk→ exp (≃zi, zl⇐)

exp
(

1
Nk↑1

∑
j↓Bk\{i} ≃zi, zj⇐

)





=
∑

i↓Bk

log



(Nk ↑ 1) +

∑
k
→↓[K]
k
→ ≃=k

∑
l↓Bk→ exp (≃zi, zl⇐)

exp
(

1
Nk↑1

∑
j↓Bk\{i} ≃zi, zj⇐

)





Eq. (26)
⇓

∑

i↓Bk

log



(Nk ↑ 1) +

∑
k
→↓[K]
k
→ ≃=k

Nk→ exp (≃zi, z̄k→⇐)

exp
(

1
Nk↑1

∑
j↓Bk\{i} ≃zi, zj⇐

)





Eq. (27)
⇓

∑

i↓Bk

log



(Nk ↑ 1) + e
↑1

∑

k
→↓[K]
k
→ ≃=k

Nk→ exp (≃z̄k, z̄k→⇐)





= Nk log



(Nk ↑ 1) + e
↑1

∑

k
→↓[K]
k
→ ≃=k

Nk→ exp (≃z̄k, z̄k→⇐)



 ,

(28)

where equality is attained if and only if the following condition holds:

(B1) ⇒i ↓ Bk, zi = z̄k.

Here (B1) and (C3) express the same condition.
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Lemma 3. Let Z̄ be an K point configuration (assuming all z̄s being normalized), Z̄ =
(z̄1, . . . , z̄K) ↓ (Sh↑1)K , and K ↘ h+ 1, it holds that:

K∑

k=1

a log



(a↑ 1) + b




∑

k
→↓[K]
k
→ ≃=k

exp (≃z̄k, z̄k→⇐) + c







 ⇓ Ka log ((a↑ 1) + b ((K ↑ 1) exp (β) + c)) ,

(29)

where a > 1, b, c > 0, and equality is attained if and only if all of the following conditions hold:

(B2) ⇒k ↓ [K] and k
↔ ↓ [K]\{k}, ≃z̄k, z̄k→⇐ = β.

(B3) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (B2) holds.

(Case 1) K = h+ 1: β = ↑ 1
N↑1 or β = 1

(Case 2) K < h+ 1: ↑ 1
N↑1 ↘ β ↘ 1

Proof. Since f(x) = exp(x) is a convex function, applying Jensen’s inequality, we have

∑

k
→↓[K]
k
→ ≃=k

exp (≃z̄k, z̄k→⇐) ⇓ (K ↑ 1) exp




1

K ↑ 1

∑

k
→↓[K]
k
→ ≃=k

≃z̄k, z̄k→⇐





= (K ↑ 1) exp




1

K ↑ 1

∑

k
→↓[K]
k
→ ≃=k

βk





= (K ↑ 1) exp (βk) ,

(30)

where equality is attained if and only if all of the following conditions hold:

(C4) ⇒k ↓ [K] and k
↔ ↓ [K]\{k}, ≃z̄k, z̄k→⇐ = βk.

(C5) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (C4) holds.

When a > 1, b, c > 0, f(x) = log ((a↑ 1) + b (exp (x) + c)) is also a convex function. By Jensen’s
inequality, we have

K∑

k=1

a log ((a↑ 1) + b (exp (βk) + c)) ⇓ Ka log

(
(a↑ 1) + b

(
exp

(
1

K

K∑

k=1

βk

)
+ c

))

= Ka log

(
(a↑ 1) + b

(
exp

(
1

K

K∑

k=1

β

)
+ c

))

= Ka log ((a↑ 1) + b (exp (β) + c)) ,

(31)

where equality is attained if and only if all of the following conditions hold:

(C6) ⇒k ↓ [K] and k
↔ ↓ [K]\{k}, βk = βk→ = β.

(C7) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (C6) holds.
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Note that when (C6) and (C7) hold, (C4) and (C5) hold too. And according to Lemma 1, when
K ↘ h+ 1, Case 2 and Case 3 in Lemma 1 satisfy (C7). And hence

K∑

k=1

a log



(a↑ 1) + b




∑

k
→↓[K]
k
→ ≃=k

exp (≃z̄k, z̄k→⇐) + c







 ⇓ Ka log ((a↑ 1) + b ((K ↑ 1) exp (β) + c)) ,

(32)

where equality is attained if and only if all of the following conditions hold:

(B2) ⇒k ↓ [K] and k
↔ ↓ [K]\{k}, ≃z̄k, z̄k→⇐ = β.

(B3) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (B2) holds

(Case 1) K = h+ 1: β = ↑ 1
N↑1 or β = 1

(Case 2) K < h+ 1: ↑ 1
N↑1 ↘ β ↘ 1
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B.2 PROOF OF THEOREM 2

In this section, we provide proofs for Theorem 2 proposed in Sec. 3.2. For the convenience of your
reading, let’s recall some related notions and definitions.

• h,N,K ↓ N

• Z = Rh

• Sh↑1 =
{
z ↓ Rh : ↔z↔ = 1

}

• Y = {1, . . . ,K} = [K]

• B = {1, . . . , N} = [N ]

• Bk = {i : i ↓ B, yi = k}
• Nk = |Bk|

Definition 1 (Supervised contrastive loss) Let Z be an N point configuration (assuming all zs
being normalized), Z = (z1, . . . , zN ) ↓ (Sh↑1)N , with labels Y = (y1, . . . , yN ) ↓ ([K])N , and
K ↘ h + 1. Let B = [N ], Bk = {i : i ↓ B, yi = k} and Nk = |Bk|. The supervised contrastive
loss LSC(·;Y ) : (Sh↑1)N ↗ R is defined as:

LSC =
K∑

k=1

∑

i↓Bk

Lk,i

SC, where Li

SC = ↑
1{Nk>1}

Nk ↑ 1

∑

j↓Bk\{i}

log

(
exp (≃zi, zj⇐)∑

l↓B\{i} exp (≃zi, zl⇐)

)
.

Theorem 2 Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ↓ (Sh↑1)N , with labels Y = (y1, . . . , yN ) ↓ ([K])N , and 3 ↘ K ↘ h + 1. If
⇒k ↓ {2, . . . ,K}, Nk = a2 ⇓ 4, and ⇑ω > 0 such that N1 = a1 = ωa2 > 1, it holds that:

LSC ⇓ f(cos(ε1), cos(ε2)),

where f(·) : R → R ↗ R is defined as:

f(x1, x2) = ωa2 log
(
(ωa2 ↑ 1) + e

↑1 (K ↑ 1) a2 exp (x1)
)

+ (K ↑ 1)a2 log
(
(a2 ↑ 1) + e

↑1 ((K ↑ 2) a2 exp (x2) + ωa2 exp (x1))
)
,

and equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ↓ (Sh↑1)K

such that:

(A3) i ↓ Bk, zi = z̄k.
(A4) ⇒k, k↔ ↓ {2, . . . ,K} and k ⇔= k

↔, ≃z̄1, z̄k⇐ = cos(ε1), ≃z̄k, z̄k→⇐ = cos(ε2), and cos(ε2) =
(K↑1) cos2(ω1)↑1

K↑2 .

(A5) (Case 1) ω < 1: ε1 ↓
(
cos↑1(↑ 1

K↑1 ), 0
)

such that f ↔
x1
(cos(ε1)) = 0.

(Case 2) ω = 1: ε1 = cos↑1(↑ 1
K↑1 ).

(Case 3) 1 < ω < R(K, a2): ε1 ↓
(
↑ς, cos↑1(↑ 1

K↑1 )
)

such that f ↔
x1
(cos(ε1)) = 0.

(Case 4) ω ⇓ R(K, a2): ε1 = ↑ς.

Let b1 = (K↑1)(1+e
↑2↑2e2)a2↑2, b2 = 8(1+e

↑2)(K↑1)a2((K↑1)a2↑e
2), then R(K, a2)

defined as:

R(K, a2) =
↑b1 +

√
b
2
1 + b2

2(1 + e↑2)a2
.
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B.2.1 STEPS OF PROOF

Following Eq. (17), Eq. (18) and Lemma 2 in Appendix B.1.1, we have

LSC

Lemma 2
⇓

K∑

k=1

Nk log



(Nk ↑ 1) + e
↑1

∑

k
→↓[K]
k
→ ≃=k

Nk→ exp (≃z̄k, z̄k→⇐)



 . (33)

where equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ↓ (Sh↑1)K

such that:

(A3) i ↓ Bk, zi = z̄k.

When 3 ↘ K ↘ h+ 1, ⇒k ↓ {2, . . . ,K}, Nk = a2 ⇓ 4, and ⇑ω > 0 such that N1 = a1 = ωa2 > 1,
following Lemma 5, we have:

LSC ⇓
K∑

k=1

Nk log



(Nk ↑ 1) + e
↑1

∑

k
→↓[K]
k
→ ≃=k

Nk→ exp (≃z̄k, z̄k→⇐)





Lemma 5
⇓ f(β1),

(34)

where f(x) is:

f(x) = ωa2 log
(
(ωa2 ↑ 1) + e

↑1 (K ↑ 1) a2 exp (x)
)

+ (K ↑ 1)a2 log

(
(a2 ↑ 1) + e

↑1

(
(K ↑ 2) a2 exp

(
(K ↑ 1)x2 ↑ 1

K ↑ 2

)
+ ωa2 exp (x)

))
,

(35)

and equality is attained if and only if all of the following conditions hold:

(A4) ⇒k, k↔ ↓ {2, . . . ,K} and k ⇔= k
↔, ≃z̄1, z̄k⇐ = cos(ε1), ≃z̄k, z̄k→⇐ = cos(ε2), and cos(ε2) =

(K↑1) cos2(ω1)↑1
K↑2 .

(A5) (Case 1) ω < 1: ε1 ↓
(
cos↑1(↑ 1

K↑1 ), 0
)

such that f ↔
x1
(cos(ε1)) = 0.

(Case 2) ω = 1: ε1 = cos↑1(↑ 1
K↑1 ).

(Case 3) 1 < ω < R(K, a2): ε1 ↓
(
↑ς, cos↑1(↑ 1

K↑1 )
)

such that f ↔
x1
(cos(ε1)) = 0.

(Case 4) ω ⇓ R(K, a2): ε1 = ↑ς.

Here b1 = (K↑1)(1+e
↑2↑2e2)a2↑2 and b2 = 8(1+e

↑2)(K↑1)a2((K↑1)a2↑e
2). R(K, a2)

is given by:

R(K, a2) =
↑b1 +

√
b
2
1 + b2

2(1 + e↑2)a2
. (36)
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B.2.2 LEMMAS PART 2

In this section,we provide definitions and proofs of lemmas that are used for the proof of Theorem 2.
Lemma 4. Let Z̄ be an K point configuration (assuming all z̄s being normalized), Z̄ =
(z̄1, . . . , z̄K) ↓ (Sh↑1)K , and 3 ↘ K ↘ h + 1. If ⇒k, k↔ ↓ {2, . . . ,K} and k ⇔= k

↔
such that

≃z̄k, z̄k→⇐ = β2 and β1 = minc{c : ≃z̄1, z̄k⇐ = c}, it holds that:

β2 =
(K ↑ 1)β2

1 ↑ 1

K ↑ 2
, where ↑ 1 ↘ β1 ↘ 0 and ↑ 1

K ↑ 2
↘ β2 < 1. (37)

Proof. Without loss of generality, we assume (z̄2, . . . , z̄K) form an equidistant simplex in the
southern hemisphere of Sh↑1 and then z̄1 is at the north pole. Let l = ↔ 1

K↑1

∑
K

k=2 zk↔, we have
l = |β1|, then

↔l↔2 =


1

K ↑ 1

K∑

k=2

zk



2

=


1

K ↑ 1

K∑

k=2

zk,
1

K ↑ 1

K∑

k=2

zk



=
1

(K ↑ 1)2




K∑

k=2

zk ≃zk, zk⇐+
K∑

k,k
→=2

k ≃=k
→

≃zk, zk→⇐





=
1

(K ↑ 1)2
((K ↑ 1) + (K ↑ 1) (K ↑ 2)β2)

= |β1|2,

(38)

so we have

β2 =
(K ↑ 1)β2

1 ↑ 1

K ↑ 2
. (39)

According to Lemma 1, ↑ 1
K↑2 ↘ β2 < 1 and so ↑1 ↘ β1 ↘ 0.

Lemma 5. Let Z̄ be an K point configuration (assuming all z̄s being normalized), Z̄ =
(z̄1, . . . , z̄K) ↓ (Sh↑1)K , and 3 ↘ K ↘ h + 1. Let B = [N ], Bk = {i : i ↓ B, yi = k}
and Nk = |Bk|. Let J (·) : (Sh↑1)K ↗ R is defined as:

J (Z̄) =
K∑

k=1

Nk log



(Nk ↑ 1) + e
↑1

∑

k
→↓[K]
k
→ ≃=k

Nk→ exp (≃z̄k, z̄k→⇐)



 , (40)

If ⇒k ↓ {2, . . . ,K}, Nk = a2 ⇓ 4, and ⇑ω > 0 such that N1 = a1 = ωa2 > 1, it holds that:

J (Z̄) ⇓ f(β1), (41)

where f(·) : R ↗ R is defined as:

f(x) = ωa2 log
(
(ωa2 ↑ 1) + e

↑1 (K ↑ 1) a2 exp (x)
)

+ (K ↑ 1)a2 log

(
(a2 ↑ 1) + e

↑1

(
(K ↑ 2) a2 exp

(
(K ↑ 1)x2 ↑ 1

K ↑ 2

)
+ ωa2 exp (x)

))
,

(42)

and equality is attained if and only if all of the following conditions hold:
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(B4) ⇒k, k↔ ↓ {2, . . . ,K} and k ⇔= k
↔
, ≃z̄1, z̄k⇐ = β1 and ≃z̄k, z̄k→⇐ = β2 = (K↑1)ϱ2

1↑1
K↑2 .

(B5) (Case 1) ω < 1: x̂ ↓ (↑ 1
K↑1 , 0).

(Case 2) ω = 1: x̂ = ↑ 1
K↑1 .

(Case 3) 1 < ω < R(K, a2): x̂ ↓ (↑1,↑ 1
K↑1 ).

(Case 4) ω ⇓ R(K, a2): x̂ = ↑1.

Here b1 = (K↑1)(1+e
↑2↑2e2)a2↑2 and b2 = 8(1+e

↑2)(K↑1)a2((K↑1)a2↑e
2). R(K, a2)

is given by:

R(K, a2) =
↑b1 +

√
b
2
1 + b2

2(1 + e↑2)a2
. (43)

Proof. When N1 = a1, ⇒k ↓ {2, . . . ,K}, Nk = a2, a1 = ωa2, then

J (Z̄) =
K∑

k=1

Nk log



(Nk ↑ 1) + e
↑1

∑

k
→↓[K]
k
→ ≃=k

Nk→ exp (≃z̄k, z̄k→⇐)





= a1 log

(
(a1 ↑ 1) + e

↑1
K∑

k→=2

a2 exp (≃z̄1, z̄k→⇐)
)

+
K∑

k=2

a2 log



(a2 ↑ 1) + e
↑1




K∑

k
→=2

k
→ ≃=k

a2 exp (≃z̄k, z̄k→⇐) + a1 exp (≃z̄k, z̄1⇐)







 .

(44)

According to Eq. (30) in the Lemma 3, the first term can be bounded low:

a1 log

(
(a1 ↑ 1) + e

↑1
K∑

k→=2

a2 exp (≃z̄1, z̄k→⇐)
)

⇓ a1 log
(
(a1 ↑ 1) + e

↑1 (K ↑ 1) a2 exp (β1)
)

= f1(β1).

(45)

Similarly, the second term can be bounded low:

K∑

k=2

a2 log



(a2 ↑ 1) + e
↑1




K∑

k
→=2

k
→ ≃=k

a2 exp (≃z̄k, z̄k→⇐) + a1 exp (≃z̄k, z̄1⇐)









⇓ (K ↑ 1)a2 log
(
(a2 ↑ 1) + e

↑1 ((K ↑ 2) a2 exp (β2) + a1 exp (β1))
)

= f2(β1).

(46)

Combining Eq. (45), Eq. (46) and Lemma 4, we have

J (Z̄) ⇓ ωa2 log
(
(ωa2 ↑ 1) + e

↑1 (K ↑ 1) a2 exp (β1)
)

+ (K ↑ 1)a2 log

(
(a2 ↑ 1) + e

↑1

(
(K ↑ 2) a2 exp

(
(K ↑ 1)β2

1 ↑ 1

K ↑ 2

)
+ ωa2 exp (β1)

))

= f1(β1) + f2(β1) = f(β1),
(47)
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where ↑1 ↘ β1 ↘ 0 and equality is attained if and only if the following condition holds:

(C8) ⇒k, k↔ ↓ {2, . . . ,K} and k ⇔= k
↔, ≃z̄1, z̄k⇐ = β1 and ≃z̄k, z̄k→⇐ = β2 = (K↑1)ϱ2

1↑1
K↑2 .

To find the minimal value of f(x) when ↑1 ↘ x ↘ 0, we need to find the critical value of f ↔(x) = 0
and the sign of f ↔(x). Direct computation of these value is difficult but can be found with scientific
computation software once we know all parameters in a specific case. For analytical purpose, we
investigate the general form. Let 3 ↘ K ↘ h+ 1, ω > 0, a1 = ωa2 > 1, a2 ⇓ 4 and ↑1 ↘ x ↘ 0.

We first study key properties of f(x).

(P1) We start by analyzing the derivatives of f(x). The first and the second derivative of f1(x) are:

f
↔
1(x) = e

↑1(K ↑ 1)a22
ωe

x

(ωa2 ↑ 1) + e↑1(K ↑ 1)a2ex
> 0, (48)

and

f
↔↔
1 (x) = e

↑1(K ↑ 1)a22
(ωa2 ↑ 1) ωex

((ωa2 ↑ 1) + e↑1(K ↑ 1)a2ex)2
> 0. (49)

Here f ↔
1(x) and f

↔↔
1 (x) are strictly positive because every term of them is positive. The First derivative

of f2(x) is:

f
↔
2(x) = e

↑1(K ↑ 1)a22
2(K ↑ 1)x exp

(
(K↑1)x2↑1

K↑2

)
+ ωe

x

(a2 ↑ 1) + e↑1
(
(K ↑ 2)a2 exp

(
(K↑1)x2↑1

K↑2

)
+ ωa2e

x

) . (50)

The second derivative of f2(x) is difficult to calculate directly. We instead do it in another way. If we
take y(x) = exp( (K↑1)x2↑1

K↑2 ) as a variable, we have:

dy(x)

dx
=

2(K ↑ 1)x

K ↑ 2
exp(

(K ↑ 1)x2 ↑ 1

K ↑ 2
) < 0. (51)

It holds because every term but x (negative) in dy(x)
dx

is positive. And f
↔
2(x) can be written as:

f
↔
2(x) = G(x, y) = e

↑1(K ↑ 1)a22
ωe

x + 2(K ↑ 1)xy

(a2 ↑ 1) + e↑1ωa2e
x + e↑1(K ↑ 2)a2y

= c1
c2 + c3y

c4 + c5y
,

(52)

where c1 = e
↑1(K ↑ 1)a22 > 0, c2 = ωe

x, c3 = 2(K ↑ 1)x, c4 = (a2 ↑ 1) + e
↑1

ωa2e
x,

c5 = e
↑1(K ↑ 2)a2 and ↑1 ↘ x ↘ 0. Then the partial derivative of G to y is:

▷G(x, y)

▷y
=

c1

(c4 + c5y)2
(c3c4 ↑ c2c5)

=
c1

(c4 + c5y)2
(
(2(K ↑ 1)x↑ (K ↑ 2)) e↑1

ωa2e
x + (a2 ↑ 1)2(K ↑ 1)x

)

< 0.

(53)

Here ςG

ςy
is strictly negative because (2(K ↑ 1)x↑ (K ↑ 2)) and x are negative while all other terms

are positive. Similarly, f ↔
2(x) can be written as:
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f
↔
2(x) = G(x, y) = e

↑1(K ↑ 1)a22
2(K ↑ 1)yx+ ωe

x

(a2 ↑ 1) + e↑1(K ↑ 2)a2y + e↑1ωa2e
x

= c1
c6x+ c7e

x

c8 + c9e
x
,

(54)

where c1 = e
↑1(K↑1)a22, c6 = 2(K↑1)y, c7 = ω, c8 = (a2 ↑ 1)+e

↑1(K↑2)a2y, c9 = e
↑1

ωa2

and ↑1 ↘ x ↘ 0. Here c1, c6, c7, c8, c9 > 0. Then the partial derivative of G to x is:

▷G(x, y)

▷x
=

c1

(c8 + c9e
x)2

((1↑ x)c6c9e
x + c7c8e

x + c6c8) > 0. (55)

Here ςG

ςx
is strictly positive because every term of it is positive. Combining Eq. (51), Eq. (53)

and Eq. (55), we have:

f
↔↔
2 (x) =

▷G(x, y)

▷x
+

▷G(x, y)

▷y
· dy(x)

x
> 0. (56)

Thus, according to Eq. (49) and Eq. (56), the second derivative of f(x) is:

f
↔↔(x) = f

↔↔
1 (x) + f

↔↔
2 (x) > 0. (57)

This reveals that f(x) is a convex function.

(P2) Next, we analyze how ω affects f ↔(x). If we view ω as a variable instead of a constant, we have

f
↔
1(x) = H1(x, ω) = e

↑1(K ↑ 1)a22e
x

ω

a2ω+ e↑1(K ↑ 1)a2ex ↑ 1

= c1
ω

a2ω+ c2
,

(58)

where c1 = e
↑1(K ↑ 1)a22e

x
> 0, c2 = e

↑1(K ↑ 1)a2ex ↑ 1. Then the partial derivative of H1 to
ω is given by:

▷H1(x, ω)

▷ω
= c1

c2

(a2ω+ c2)2
= c1

e
↑1(K ↑ 1)a2ex ↑ 1

(a2ω+ c2)2

> c1
e
↑1(3↑ 1)a2e↑1 ↑ 1

(a2ω+ c2)2
= c1

2e↑2
a2 ↑ 1

(a2ω+ c2)2

> 0.

(59)

When K ⇓ 3 and ↑1 ↘ x ↘ 0, e↑1(K ↑ 1)a2ex > 2e↑2
a2. So as long as a2 ⇓ 4 >

e
2

2 holds,
c2 > 0 holds. Similarly, we also have:

f
↔
2(x) = H2(x, ω) = e

↑1(K ↑ 1)a22e
x

ω+ 2(K ↑ 1)xe↑x exp
(

(K↑1)x2↑1
K↑2

)

e↑1a2e
xω+ (a2 ↑ 1) + e↑1(K ↑ 2)a2 exp

(
(K↑1)x2↑1

K↑2

)

= c1
ω+ c3

c4ω+ c5
,

(60)

where c1 = e
↑1(K ↑ 1)a22e

x ¿ 0, c3 = 2(K ↑ 1)xe↑x exp
(

(K↑1)x2↑1
K↑2

)
, c4 = e

↑1
a2e

x and

c5 = (a2 ↑ 1) + e
↑1(K ↑ 2)a2 exp

(
(K↑1)x2↑1

K↑2

)
. Then the partial derivative of H2 to ω is:
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▷H2(x, ω)

▷ω
= c1

c5 ↑ c3c4

(c4ω+ c5)2
= c1

(a2 ↑ 1) + e
↑1

a2 (↑Kx) exp
(

(K↑1)x2↑1
K↑2

)

(c4ω+ c5)2

> 0.

(61)

It holds because every term in ςH2
ςφ

is positive. Combining Eq. (58) to Eq. (61), we have

f
↔(x) = f

↔
1(x) + f

↔
2(x)

= H1(x, ω) +H2(x, ω) = H(x, ω),
(62)

and

▷H(x, ω)

▷ω
=

▷H1(x, ω)

▷ω
+

▷H2(x, ω)

▷ω
> 0. (63)

So f
↔(x) = H(x, ω) is an increasing function with respect to ω.

With the above 2 key properties of f(x) in hand. Now, let’s check some important values.

(V1). When x = 0, we have:

f
↔(0) =

e
↑1(K ↑ 1)ωa22

(ωa2 ↑ 1) + e↑1(K ↑ 1)a2
+

e
↑1(K ↑ 1)ωa22

(a2 ↑ 1) + e↑1
(
(K ↑ 2)a2 exp

(
↑ 1

K↑2

)
+ ωa2

)

> 0.

(64)

It holds because every term in f
↔(0) is positive. This case shows that, when samples from K ↑ 1

equal-sized classes are well-trained, they form a K ↑ 2 regular simplex (β1 = 0 and β2 = ↑ 1
K↑2 ).

Once there comes samples from the K
th class, the original K ↑ 2 simplex starts to shrink as the loss

goes down when β1 decreases and β2 increases.

(V2). When x = ↑ 1
K↑1 , we have:

f
↔(↑ 1

K ↑ 1
) = H(↑ 1

K ↑ 1
, ω)

=
e
↑1(K ↑ 1)a22e

↑ 1
K↓1 ω

(ωa2 ↑ 1) + e↑1(K ↑ 1)a2e
↑ 1

K↓1

+
e
↑1(K ↑ 1)a22e

↑ 1
K↓1 (ω↑ 2)

(a2 ↑ 1) + e↑1a2e
↑ 1

K↓1 ((K ↑ 2 + ω)
,

(65)

and

H(↑ 1

K ↑ 1
, 1) = 0. (66)

According to Eq. (62) and Eq. (63), H(↑ 1
K↑1 , ω) is an increasing function with respect to ω. Recalling

that f(x) is a convex function, with Eq. (65) and Eq. (66), we can conclude that:

(C9) When ω < 1: f
↔(↑ 1

K↑1 ) < H(↑ 1
K↑1 , 1) = 0. Since f

↔(0) > 0, according to the
intermediate value theorem, there exists a critical point x̂ ↓ (↑ 1

K↑1 , 0), such that f ↔(x̂) = 0,
and f(x) attains its minimal value at x = x̂. If ω increases, f ↔(x̂) increases too. It leads to
f
↔(x̂) > 0, then there comes a new critical point x̃ ↓ (↑ 1

K↑1 , x̂) where f
↔(x̃) = 0.

(C10) When ω = 1: f ↔(↑ 1
K↑1 ) = H(↑ 1

K↑1 , 1) = 0. So x̂ = ↑ 1
K↑1 is the critical point and f(x)

attains its minimal value at x = ↑ 1
K↑1 .
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(C11) When ω > 1: f
↔(↑ 1

K↑1 ) > H(↑ 1
K↑1 , 1) = 0. And ⇒x ↓ [↑ 1

K↑1 , 0], f
↔(x) > 0 and

f(x) ⇓ f(↑ 1
K↑1 ).

(V3). When x = ↑1, from (C7) and (C8) we know that f ↔(↑1) < 0 if ω ↘ 1. Now let’s only consider
the case when ω > 1.

f
↔(↑1) =

e
↑2(K ↑ 1)a22ω

(ωa2 ↑ 1) + e↑2(K ↑ 1)a2
+ (K ↑ 1)a22

↑2(K ↑ 1) + e
↑2

ω

(a2 ↑ 1) + (K ↑ 2) a2 + e↑2ωa2

= e
↑2(K ↑ 1)a22

(
ω

a2ω+ e↑2(K ↑ 1)a2 ↑ 1
+

ω↑ 2(K ↑ 1)e2

e↑2a2ω+ (K ↑ 1) a2 ↑ 1

)

= e
↑2(K ↑ 1)a22

(
ω

a2ω+ c1
+

ω+ c2

e↑2a2ω+ c3

)

=
e
↑2(K ↑ 1)a22

(a2ω+ c1)(e↑2a2ω+ c3)

(
(1 + e

↑2)a2ω
2 + (c1 + c3 + a2c2)ω+ c1c2

)

=
(K ↑ 1)e↑2

a
2
2

(a2ω+ c1)(e↑2a2ω+ c3)
· L(ω),

(67)

where c1 = e
↑2(K ↑ 1)a2 ↑ 1, c2 = ↑2(K ↑ 1)e2, c3 = (K ↑ 1) a2 ↑ 1 and:

L(ω) = (1 + e
↑2)a2ω

2 + (c1 + c3 + a2c2)ω+ c1c2

= (1 + e
↑2)a2ω

2 + ((K ↑ 1)(1 + e
↑2 ↑ 2e2)a2 ↑ 2)ω↑ 2(K ↑ 1)((K ↑ 1)a2 ↑ e

2).
(68)

When K ⇓ 3, as long as a2 ⇓ 4 >
e
2

2 holds, c1 > 2e↑2
a2 ↑ 1 > 0. Also c3 > 0, so we have

(K↑1)e↓2
a
2
2

(a2φ+c1)(e↓2a2φ+c3)
> 0, then f

↔(↑1) ⇓ 0 ∞ L(ω) ⇓ 0. To solve this inequality, let’s first take a
look the value:

M = (c1 + c3 + a2c2)
2 ↑ 4(1 + e

↑2)a2c1c2

> ↑4(1 + e
↑2)a2c1c2

= 8(1 + e
↑2)a2(K ↑ 1)e2c1

> c1 > 0.

(69)

Let b1 = c1 + c3 + a2c2 = (K ↑ 1)(1 + e
↑2 ↑ 2e2)a2 ↑ 2 < 0, b2 = ↑4(1 + e

↑2)a2c1c2 =
8(1 + e

↑2)(K ↑ 1)a2((K ↑ 1)a2 ↑ e
2) > 0 and M = b

2
1 + b2 > 0. Then the solution for L(ω) > 0

and also f
↔(↑1) > 0 is:

ω ↘ ↑b1 ↑
√
b
2
1 + b2

2(1 + e↑2)a2
or ω ⇓ ↑b1 +

√
b
2
1 + b2

2(1 + e↑2)a2
. (70)

Since b2 > 0, then
√
b
2
1 + b2 > ↑b1 and so ↑b1 ↑

√
b
2
1 + b2 ¡ 0. As we only consider the case

where ω > 1. We retain the right part of Eq. (70).

Combined with (C11), now we can conclude that: when K ⇓ 3 and a2 ⇓ 4, let

R(K, a2) =
↑b1 +

√
b
2
1 + b2

2(1 + e↑2)a2
, (71)

where b1 = (K↑1)(1+e
↑2↑2e2)a2↑2 < 0 and b2 = 8(1+e

↑2)(K↑1)a2((K↑1)a2↑e
2) > 0

31



Published as a conference paper at ICLR 2025

(C12) When 1 < ω < R(K, a2): f ↔(↑1) < 0. Since ⇒x ↓ [↑ 1
K↑1 , 0], f

↔(x) > 0, according to
the intermediate value theorem, there exists a critical point x̂ ↓ (↑1,↑ 1

K↑1 ), such that
f
↔(x̂) = 0 and f(x) attains its minimal value when x = x̂. If ω increases, f ↔(x̂) increases too.

It leads to f
↔(x̂) > 0, then there comes a new critical point x̃ ↓ (↑1, x̂) where f

↔(x̃) = 0.

(C13) When ω ⇓ R(K, a2): f ↔(↑1) ⇓ 0. Then ⇒x ↓ [↑1, 0], f ↔(x) ⇓ 0. f(x) attains its minimal
value when x = ↑1

Combining (C8) to (C13), we conclude that: J (Z̄) reach its minimal if and only if all of the following
conditions hold:

(B4) ⇒k, k↔ ↓ {2, . . . ,K} and k ⇔= k
↔, ≃z̄1, z̄k⇐ = β1 and ≃z̄k, z̄k→⇐ = β2 = (K↑1)ϱ2

1↑1
K↑2 .

(B5) (Case 1) ω < 1: x̂ ↓ (↑ 1
K↑1 , 0).

(Case 2) ω = 1: x̂ = ↑ 1
K↑1 .

(Case 3) 1 < ω < R(K, a2): x̂ ↓ (↑1,↑ 1
K↑1 ).

(Case 4) ω ⇓ R(K, a2): x̂ = ↑1.
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B.3 PROOF OF REMARK 2

Proof. Recall that:

R(K, a2) =
↑b1 +

√
b
2
1 + b2

2(1 + e↑2)a2
. (72)

where b1 = (K ↑ 1)(1 + e
↑2 ↑ 2e2)a2 ↑ 2, b2 = 8(1 + e

↑2)(K ↑ 1)a2((K ↑ 1)a2 ↑ e
2). b1 and

b2 in Eq. (72) can be roughly simplified as

b1

a2
= (K ↑ 1)(1 + e

↑2 ↑ 2e2)↑ 2

a2
↖ (K ↑ 1)(1 + e

↑2 ↑ 2e2) = (K ↑ 1)b↔1

b2

a
2
2

= 8(1 + e
↑2)(K ↑ 1)((K ↑ 1)↑ e

2

a2
) ↖ 8(1 + e

↑2)(K ↑ 1)2 = (K ↑ 1)2b↔2,
(73)

where b
↔
1 = (1 + e

↑2 ↑ 2e2) and b
↔
2 = 8(1 + e

↑2). Then we can roughly simplifies R(K, a2) as a
function only respect to K as:

R(K, a2) =
↑b1 +

√
b
2
1 + b2

2(1 + e↑2)a2
=

↑ b1
a2

+


( b1
a2
)2 + b2

a
2
2

2(1 + e↑2)

↖ (K ↑ 1)
↑b

↔
1 +


b
↔
1
2 + b

↔
2

2(1 + e↑2)

= (K ↑ 1)
↑(1 + e

↑2 ↑ 2e2) +
√
(1 + e↑2 ↑ 2e2)2 + 8(1 + e↑2)

2(1 + e↑2)

= R
↔(K)

↖ 12.16(K ↑ 1)

(74)
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