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Abstract

Accurately modeling multi-class cell topology is crucial in
digital pathology, as it provides critical insights into tis-
sue structure and pathology. The synthetic generation of
cell topology enables realistic simulations of complex tis-
sue environments, enhances downstream tasks by augment-
ing training data, aligns more closely with pathologists’ do-
main knowledge, and offers new opportunities for control-
ling and generalizing the tumor microenvironment. In this
paper, we propose a novel approach that integrates topolog-
ical constraints into a diffusion model to improve the gener-
ation of realistic, contextually accurate cell topologies. Our
method refines the simulation of cell distributions and inter-
actions, increasing the precision and interpretability of re-
sults in downstream tasks such as cell detection and classi-
fication. To assess the topological fidelity of generated lay-
outs, we introduce a new metric, Topological Fréchet Dis-
tance (TopoFD), which overcomes the limitations of tradi-
tional metrics like FID in evaluating topological structure.
Experimental results demonstrate the effectiveness of our
approach in generating multi-class cell layouts that cap-
ture intricate topological relationships. Code is available
at https://github.com/Melon-Xu/TopoCellGen.

1. Introduction
Deep-learning methods have made substantial advances in
foundational tasks for nuclei analysis, including instance
segmentation [21, 29, 32, 40, 73], classification, and detec-
tion [1, 52]. These tasks provide the basis for downstream
analyses, enabling detailed characterization of tissue archi-
tecture and cellular interactions, which are crucial for di-
agnostic and prognostic applications in pathology [12, 46].
However, accurately annotating multi-class cell arrange-
ments in pathology images is challenging, as distinct cell

types display unique spatial patterns, requiring significant
domain expertise. Although annotated datasets for multi-
ple cell types exist, they often lack the diversity needed for
generalization across various tissues and organs.

To alleviate the burden of manual annotation and en-
hance the efficiency of analysis, there has been growing
interest in utilizing generative models. Early works use
Generative Adversarial Networks (GANs) [20] for auto-
matic generation of pathology images [2, 10, 34]. In re-
cent years, diffusion models [11, 31, 45, 50, 61, 69, 75, 76]
have emerged as much more reliable alternatives, generat-
ing accurate, high-resolution histopathology images [4, 23,
48, 51, 72]. However, all these diffusion models are only
trained to directly generate the histopathology images. De-
spite the impressive visual results, these powerful models
deliver limited insight into the underlying biology. It is
very hard to connect the learned distributions with human
knowledge about tumor microenvionment. This makes it
challenging to validate, generalize, or control these models.

We argue that a key issue is the lack of explicit gener-
ation of cells and their spatial arrangement. The spatial
organization of cells and the interactions across different
cell types are critical for understanding tumor microenvi-
ronments, disease progression, and tissue regeneration [59].
The density and spatial distribution of various cell types
-such as lymphocytes, epithelial cells, and stromal cells-
are essential for pathologists in making accurate diagnoses
and prognoses. For instance, the detection and quantifi-
cation of tumor-infiltrating lymphocytes (TILs), which are
lymphocytes located within the boundaries of invasive tu-
mors [56], have been strongly linked to improved clinical
outcomes [57, 63]. The presence of isolated or small clus-
ters of tumor cells at the invasive front, known as tumor
budding, serves as a prognostic biomarker associated with
a higher risk of lymph node metastasis in colorectal carci-
noma and other solid malignancies [47].

ar
X

iv
:2

41
2.

06
01

1v
2 

 [e
es

s.I
V

]  
25

 M
ar

 2
02

5

https://github.com/Melon-Xu/TopoCellGen


Histopathology Image Intra-class Distribution Histopathology Image Inter-class Relationship

Tumor/Epithelial Lymphocyte Stromal Cell

Figure 1. Illustrations of intra-class distribution and the inter-class
relationship across various cell types. Here we only highlight the
tumor/epithelial, lymphocytes, and stromal cells.

In this paper, we explore the problem of generating cell
spatial layouts, with multiple benefits. First and foremost,
directly modeling cell layouts brings us closer to aligning
with pathologists’ domain knowledge. This enables the di-
rect verification of synthetic data through quantification and
comparison with expert knowledge, facilitating greater ac-
curacy and trust in the generated data. Additionally, it opens
up the possibility of controlling the layout generation pro-
cess, allowing the model to generalize to previously unseen
scenarios. From a data augmentation perspective, generat-
ing cell layouts also enables the creation of histology im-
ages conditioned on these layouts. This capability allows
for the production of synthetic images with cell annotations,
which can significantly aid in the training of models for var-
ious downstream tasks, particularly cell detection and clas-
sification.

Cell topology is the key. To generate accurate cell lay-
outs, we argue that the key is to model the topological re-
lationships between cells, defined by their spatial organiza-
tion, clustering, mixing, and connectivity. These topologi-
cal patterns provide valuable insights into cellular commu-
nication, structural changes, and morphological abnormal-
ities linked to pathological conditions such as cancer, in-
flammation, and fibrosis. Fig. 1 illustrates the significance
of these topological relationships in understanding tissue
organization and disease progression. These relationships
reveal how cells are spatially arranged to form structural
motifs that are crucial for tissue function and stability. For
example, on the left, we show that in healthy glandular tis-
sues, epithelial cells typically organize into circular or tubu-
lar structures, forming acinar units that are essential for se-
cretion and nutrient transport [59]. In tissues with diverse
cell types, topological relationships capture spatial configu-
rations and connectivity patterns that reveal cellular interac-
tions critical for tissue health or disease [74]. For example,
immune cells clustering around tumor cells (Fig. 1 (right))
or specific fibroblast-epithelial arrangements highlight pro-
cesses like immune surveillance, inflammation, and stromal
support. By identifying these patterns, topological methods
offer insights into multi-class cellular interactions, reveal-
ing potential biomarkers and enhancing our understanding
of disease progression.

We propose the first diffusion model that generates cell
topology for digital pathology. Our method guides the
generation process with both 0- and 1-dimensional topolog-
ical features, i.e., cell clusters and holes/gaps enclosed by
cells. We implement this using the theory of persistent ho-
mology, which models cell topology in a multi-scale man-
ner. As illustrated in Fig. 1, learning the topology ensures
that the generated cell layouts not only preserve intra-class
spatial/structural property but also accurately capture inter-
class interactions.

The second contribution of this paper is a novel cell
counting loss that ensures the diffusion model learns the
correct distribution of cell numbers from the data. This
addresses a key challenge in previous diffusion models for
histopathology images [4, 23, 44], which is often biased to-
ward unrealistically low or high cell counts.

By ensuring both accurate cell topology and cell count,
our method generates layouts that more closely resemble
real tissue microenvironments. This precision in model-
ing cell distributions and interactions enhances the utility of
generated images for augmenting training in downstream
tasks such as cell detection and classification, as demon-
strated in our experiments. From a modeling perspective,
our approach moves closer to generating biologically faith-
ful representations of cellular environments, integrating hu-
man domain knowledge, and improving generalization to
diverse scenarios.

Finally, we introduce the Topological Fréchet Distance
(TopoFD), a novel metric designed to assess the spatial
and topological accuracy of the generated layouts. TopoFD
measures the similarity between the topological features of
real and synthetic cell layouts, whereas traditional metrics
such as FID focus solely on visual similarity.

In summary, our contribution is three-fold:
• We present the first diffusion model designed to gener-

ate cell topology for digital pathology, simulating realistic
intra- and inter-class spatial distributions in the generated
layouts.

• We introduce a novel cell counting loss that aligns the
generated cell numbers with real data, addressing biases
in prior diffusion models and ensuring realistic cell den-
sity in synthetic layouts.

• We introduce the Topological Fréchet Distance
(TopoFD), a new metric designed to evaluate the
topological similarity of generated cell layouts.

Extensive experiments demonstrate the effectiveness of our
proposed method, showing that it not only enhances sam-
ple quality but also significantly improves performance in
downstream tasks such as cell detection and classification.

2. Related Works

Diffusion Models for Digital Pathology. Diffusion mod-
els, such as Denoising Diffusion Probabilistic Models



(DDPMs) [11, 15, 31, 33, 50, 61, 62, 77] and Latent
Diffusion Models (LDMs) [6, 53, 55], have significantly
advanced image synthesis by modeling data distributions
through iterative denoising processes on data sample or la-
tent spaces. These models have been adapted to gener-
ate high-fidelity histopathology images in digital pathol-
ogy [4, 23, 28, 72]. However, these methods often over-
look the significance of multi-class cell layouts, which are
crucial for accurately representing tissue structures.

Recent approaches to synthetic cell layout generation
in digital pathology have explored nuclei labeling and cell
arrangement. Abousamra et al. utilized spatial statistics
and topological descriptors in GANs to model complex
cell configurations [2]. DiffMix employs conditioned diffu-
sion models for augmenting imbalanced nuclear pathology
datasets, generating more realistic images than earlier meth-
ods [51]. Similarly, a inter diffusion framework proposed
in [48] generates paired histopathology images and nuclei
labels simultaneously, enhancing the context-awareness of
synthetic data. Another strategy, a diffusion model focused
on cell layout generation, uses density maps to incorpo-
rate spatial distributions, though it simplifies cell counts
into five categorical conditions, which provides only lim-
ited guidance [44]. While these models have contributed
to more realistic cell layout synthesis, they generally lack
fine control over cell density and fail to explicitly preserve
intra-class spatial distributions and inter-class spatial rela-
tionships across cell types. This limits their effectiveness in
replicating the complex and varied structures of real tissue.

Topology-Driven Methods in Deep Learning. Incorporat-
ing algebraic topology [49] in deep learning frameworks is
becoming increasingly significant. A key development in
this front has been persistent homology [13, 14], a mathe-
matical theory that analyzes how structural features (such
as connected components, loops, and voids) persist across
different scales in data. This approach has proven partic-
ularly valuable for understanding complex data structures
while being resistant to noise. Its applications range from
image segmentation [8, 36, 64, 71], feature extraction [19]
and disease diagnosis [42, 43, 67, 70]. The field has further
expanded through additional mathematical frameworks, in-
cluding discrete Morse theory [17, 37, 38], homotopy warp-
ing [35], structural relationship studies [25, 27], and meth-
ods for analyzing shape features [60, 68].

For generative models, topological information has be-
come increasingly essential, particularly in biomedical
imaging, where capturing both visual realism and topo-
logical integrity is critical. One notable method is To-
poGAN [66], which integrates topology into GANs by in-
troducing a novel topological loss based on persistent ho-
mology. Recently, TopoDiffusionNet [26] has integrated
topology with diffusion models, introducing a topology-
based objective function that guides the model’s denoising

process to generate images with exact object counts. How-
ever, these methods, designed for natural images, are un-
suitable for our cell topology generation task. Their em-
phasis on overall structure numbers cannot capture the cell
structural pattern and cell spatial interactions among multi-
ple cell types as our method does.

3. Method
In this section, we introduce our methodology for generat-
ing realistic multi-class cell layouts with precise topological
control. To accurately control the cell density in the gener-
ated layout, we employ a conditioning mechanism based on
the cell count for each type. In the multi-class setting, as-
suming we have n classes of cells, we define the condition
vector c = [c1, c2, ..., cn], where each element ci represents
the count of cells in the respective channel.

However, the condition vector c alone is insufficient to
precisely control cell counts [26]. Additionally, it can-
not preserve the intra-class spatial distributions as well as
inter-class topological relationships in the generated lay-
outs. To address this, we formulate a cell counting loss to
strengthen the control on accurate cell counts and introduce
two topology-aware objective functions based on persistent
homology [13, 49] to guide the generation process, ensuring
realistic and contextually accurate cell layouts that respect
both spatial and topological constraints.

The remainder of this section is structured as follows:
In Sec. 3.1, we present a brief introduction to diffusion
models. Next, in Sec. 3.2, we provide a quick back-
ground on persistent homology. Following this, we in-
troduce TopoCellGen, our topology-preserving cell layout
generation method, in Sec. 3.3. We introduce our proposed
Topological Fréchet Distance (TopoFD) in Sec. 3.4. Finally,
in Sec. 3.5, we present the overall inference pipeline and
how the generated cell layouts are transformed into H&E
images for training augmentation for downstream tasks.

Preliminaries. In a multi-class cell layout containing n
channels, each channel corresponds to a specific cell type
(e.g., lymphocyte), with each cell represented as a square
where the pixel value is set to 1, while the pixel value of the
background is set to 0.

3.1. Diffusion Models
Our generative approach utilizes a denoising diffusion prob-
abilistic model (DDPM) [31], which learns to reverse a
forward process that incrementally adds Gaussian noise to
transform a structured cell layout into a noise distribution.
The reverse process then reconstructs the layout from noise
via iterative denoising.

Let x0 represent the target cell layout and xT denote
pure Gaussian noise. At each time step t, noise is added
to the data based on a variance schedule ωt: q(xt|xt→1) =



Figure 2. An overview of our method TopoCellGen. (a) denotes the overview workflow. (b) shows the details of Lcount, Lintra and Linter.

N (xt;
→
1↑ ωtxt→1,ωtI). This forward process results

in the progressively noisier version of the data, with xT

approximating an isotropic Gaussian distribution as t in-
creases.

The reverse process, parameterized by a neural network
εω(xt, t) (typically UNet [54]), learns to iteratively denoise
xT back to x0. Conditioning on the cell count vector c, the
model is trained by minimizing a simplified variant of the
variational lower bound, specifically focusing on predicting
the noise added at each step:

Lsimple = Et,x0,ε

[
↓ε↑ εω(xt, c, t)↓2

]
(1)

where ε ↔ N (0, I) is the noise sampled during training.
This objective enables the model to learn the reverse pro-
cess effectively. Instead of the standard iterative denoising,
we also approximate the noiseless layout x̂t

0 deterministi-
cally for any noisy state xt by marginalizing over the noise
schedule:

x̂t
0 ↗ 1→

ϑ̄t

(
xt ↑

→
1↑ ϑ̄tεω(xt, c, t)

)
(2)

where ϑt = 1↑ωt and ϑ̄t =
∏t

s=1 ϑs, which aggregates the
effect of the variance schedule up to time t. This predicted
noiseless layout, x̂t

0, will be used to impose constraints in
subsequent stages.

3.2. Background: Persistent Homology
In algebraic topology [49], homology classes provide a
structured way to capture topological features across mul-
tiple dimensions. For instance, 0-, 1-, and 2-dimensional
features represent connected components, loops, and voids,
respectively. The d-dimensional Betti number, ωd, quanti-
fies the number of d-dimensional features present, offering

insights into the underlying topological complexity. How-
ever, extending these concepts to real-world data, which is
often continuous and noisy, introduces challenges for accu-
rately capturing topological structures.

Persistent homology, developed in the early 2000s [13,
14], addresses this need by tracking the evolution of topo-
logical features across multiple scales, making it particu-
larly effective for discrete datasets like cell point clouds.
The process begins by constructing a filtration—a sequence
of nested simplicial complexes built from the point cloud
data by incrementally connecting points based on a scale pa-
rameter. As the parameter varies, topological features such
as connected components and loops appear and eventually
vanish, each represented by a point in a persistence diagram
(Dgm). In a diagram, each point (b, d) marks the birth and
death of a feature, capturing its persistence across scales and
providing a compact, multi-scale summary of the underly-
ing topology. More details are in the Supplementary.

3.3. Spatially Aligned Cell Layout Generation
The primary objective of our method is to generate multi-
class cell layouts that accurately simulate both the topolog-
ical and spatial properties of real-world biological cell dis-
tributions. To achieve this, we ensure accurate cell counts
for each cell type through a cell counting loss, while also
preserving spatial relationships within individual cell types
via enforcing intra-class spatial consistency. Furthermore,
we maintain structural coherence across all cell types by
applying an inter-class structural regularization, leverag-
ing 1-dimensional persistent homology to encapsulate both
type-specific and collective spatial properties. The overall
pipeline is shown in Fig. 2.
Cell Counting Loss. Given the target layout x0, which



serves as the ground truth, for each time step t, we obtain
the predicted noiseless layout x̂t

0 using Eq. (2). To ensure
precise control over the number of cells in the generated
layout, we introduce a differentiable cell counting loss. The
key challenge lies in making the counting operation differ-
entiable for gradient-based optimization. We address this
by employing the Straight-Through Estimator (STE) [5],
which enables gradient flow through the discrete binariza-
tion operation. Specifically, after obtaining x̂t

0, we apply a
hard threshold to obtain binary values:

b(x̂t
0) = float((x̂t

0 ↘ ϖ)) (3)

where ϖ is the threshold parameter. Here we set it to the me-
dian value of x̂t

0. During back-propagation, the STE treats
the thresholding operation as an identity function, allowing
gradients to flow through. The cell counting loss is then
formulated as:

Lcount =
1

|n|

n∑

i=1

∣∣∣∣∣

∑
b(x̂t

0)
(i)

ϱ
↑

∑
x(i)
0

ϱ

∣∣∣∣∣ (4)

where b(x̂t
0)

(i) represents the binarized prediction for the
i-th channel, and ϱ indicates the area (3 ≃ 3) of a single
cell in the layouts. This formulation provides a differen-
tiable approximation to the discrete cell counting operation,
enabling end-to-end training while maintaining precise con-
trol over the number of cells for each cell type.
Intra-Class Spatial Consistency. To enforce spatial con-
sistency within each cell type, we first calculate the distance
transform map [16] for each channel in both the target lay-
out x0 and the predicted noiseless layout x̂t

0. The distance
transform D(x) is a function that assigns to each pixel the
minimum Euclidean distance to the nearest cell (or non-zero
pixel) in the channel. This can be formally written as:

D(x) = min
p↑cells

↓x↑ p↓ (5)

where p represents the positions of cells in the layout. Af-
ter obtaining the distance transform maps of the target lay-
out and the predicted noiseless layout, x̂edt

t = D(b(x̂t
0))

and xedt
0 = D(x0), we calculate the 1-dim persistence di-

agrams for both of them, Dgm(x̂edt
t ) and Dgm(xedt

0 ) re-
spectively. Similar to previous topological losses [36], we
will use the classic Wasserstein distance between the two
diagrams. Given two diagrams Dgm(q) and Dgm(s), the
p-th Wasserstein distance is defined as follows:

Wp(Dgm(q), Dgm(s)) =



inf
ϑ↑!

∑

x↑Dgm(q)

||x↑ ς(x)||p




1
p

where ! represents all bijections from Dgm(q) to Dgm(s).
The Wasserstein distance operates by identifying an op-

timal correspondence between points in two diagrams, as-
signing unmatched points to their projections on the diag-
onal. This distance metric is calculated by summing the

distances between all paired points. The process of finding
this optimal matching, as well as calculating the Wasser-
stein distance, can be accomplished using either the tra-
ditional Hungarian algorithm or more sophisticated meth-
ods [39, 41].

Next, we denote ς↓, the optimal matching between
Dgm(x̂edt

t ) and Dgm(xedt
0 ). Each persistence dot in

Dgm(x̂edt
t ) is matched either to a target dot in Dgm(xedt

0 )
or its projection on the diagonal. We can now formulate the
spatial distribution consistency loss as the squared distance
between every dot in Dgm(x̂edt

t ) and its match:

Lspc =
∑

q↑Dgm(x̂edt
t )

||q ↑ ς↓(q)||2 (6)

For a multi-class cell layout containing n classes of cells,
we formulate the intra-class spatial consistency loss as fol-
lows by averaging the Eq. (6) across multiple classes:

Lintra =
1

|n|

n∑

i=1

Lspc

(
Dgm((x̂edt

t )(i))), Dgm((xedt
0 )(i))

)

(7)
Inter-Class Structural Regularization. Beyond maintain-
ing spatial distribution consistency within individual cell
types, it is equally important to capture the relationships
between different cell types. To achieve this, we construct
a unified layout by combining all cell types into a single-
channel representation, referred to as the aggregated layout:
xagg
0 = Agg(x0) and x̂t,agg

0 = Agg(x̂t
0). We then com-

pute the distance transform for the aggregated layouts, with
x̂edt
t,agg = D(x̂t,agg

0 ) representing the distance transform of
the predicted layout and xedt

0,agg = D(xagg
0 ) for the target

layout. The inter-class structural loss Linter is computed
similarly to the intra-class loss:

Linter = Lspc
(
Dgm(x̂edt

t,agg), Dgm(xedt
0,agg)

)
(8)

Together, these class-specific and cross-class regulariza-
tions ensure that both individual cell distributions and their
cumulative spatial interactions are enforced, preserving crit-
ical spatial dynamics within and between cell types in the
generated layouts.
Final Objectives. The final training objective function of
the model is the weighted sum of the three losses with
Lsimple:
Ltotal = Lsimple + φcLcount + φintraLintra + φinterLinter (9)

where φc, φintra and φinter are hyper-parameters that control
the relative contributions of the respective loss terms.

3.4. Topological Fréchet Distance (TopoFD)
Fréchet Inception Distance (FID) [30] is a key metric for
evaluating the quality of generated image data by compar-
ing the distributions of real and generated samples. FID op-
erates by computing the mean and covariance of feature rep-
resentations extracted from a pre-trained model, typically



FID: 0.1736

TopoFD: 221.771

FID: 0.1959

TopoFD: 1159.240

Set 1 Set 2

Similar…

Distinguishable!

Ref Set

FID
TopoFD

TCE: 0 TCE: 10.0

TCE

Heterogeneous

Figure 3. Intuition of our proposed Topological Fréchet Distance.
TCE indicates the Total Count Error.

InceptionV3 [65]. The distance between these distributions
is then measured using the Fréchet distance [18]. The for-
mula for FID is as follows:

FID = ↓µr ↑ µg↓2 + Tr(”r + ”g ↑ 2(”r”g)
1
2 ) (10)

where µr, ”r and µg , ”g are the mean and covariance of
the real and generated data, respectively.

Traditional FID measures feature similarities but fail to
capture complex spatial and topological cell interactions.
For example, in Fig. 3, synthetic layouts of three cell types
(lymphocyte, tumor/epithelial and stromal cells) demon-
strate this limitation. Both Set 1 and Set 2 yield similar
FID scores with respect to the Ref Set, yet differ signifi-
cantly from each other in spatial configuration. Set 1 mir-
rors the reference with cohesive single cycles per cell type,
while Set 2 presents multiple distinct cycles, deviating from
the reference. The Total Count Error (TCE) reveals identi-
cal counts between Set 1 and the reference (TCE = 0) but
substantial discrepancies for Set 2 (TCE = 10). Despite
matching counts, Set 1’s spatial arrangement still diverges
from the reference. This suggests that a count metric alone
does not ensure spatial and topological fidelity. We propose
Topological Fréchet Distance (TopoFD) to capture higher-
dimensional topological features, enabling greater sensitiv-
ity to spatial configurations essential in synthetic pathology
data generation.

The pipeline of our Topological Fréchet Distance
(TopoFD) is shown in Fig. 4, taking one type of cell as
an example. For each layout in the reference and synthetic
sets, we first obtain a point cloud, with the points corre-
sponding to the cell center coordinates. Then, we calculate
1-dimensional persistence diagrams of each point cloud in
each set:

Dgmref = {Dgm1
r, Dgm2

r, ..., Dgmn
r }

Dgmsyn = {Dgm1
s, Dgm2

s, ..., Dgmn
s }

Figure 4. The overall pipeline of calculating the Topological
Fréchet Distance. Take the lymphocyte as an example.

where Dgmi
r and Dgmj

s are persistence diagrams in ref-
erence and synthetic sets, n is the number of the samples.
We then compute each set’s barycenter [7, 9], which min-
imizes the sum of Wasserstein distances [9] between indi-
vidual diagrams and the barycenter. For the reference set,
the barycenter Dgmreal is given by:

Dgmr = arg min
Dgmr

n∑

i=1

W 2
2 (Dgmi

r, Dgmr) (11)

where W2 is the 2-Wasserstein distance. A similar process
is applied for Dgms from the synthetic set.

To enable statistical analysis, we transform the persis-
tence diagrams and their barycenters into persistence land-
scapes, transforming each diagram into a sequence of con-
tinuous, piecewise linear functions that preserve topolog-
ical information while enabling standard statistical opera-
tions [7]. The vectorized barycenters are regarded as mean
vectors µ and we compute the covariance matrices ! from
both sets of persistence diagrams.

For multi-class layouts, TopoFD is calculated in two
steps. First, for each cell type, we compute the vectorized
persistence diagrams for both reference and synthetic lay-
outs containing that type. Then, the final TopoFD is the
average Fréchet Distance across cell types:

TopoFD =
1

|n|

n∑

i=1

FD(µr
i ,!

r
i ,µ

s
i ,!

s
i ) (12)

where FD(·) denotes the Fréchet distance computation.

3.5. Layout-Guided Pathology Image Generation
In the final stage of our methodology, we focus on gener-
ating high-resolution pathology images based on the previ-
ously created cell layouts. These layouts serve as spatial and
structural guides, ensuring that the pathology images adhere
to the organization of cells within the layout. We employ a
guided diffusion model [11] to synthesize realistic pathol-
ogy images, conditioned on the underlying cell arrange-
ment. This approach ensures that cells’ spatial distribution
and organization in the generated images align closely with
the provided cell layouts. More details are provided in the
Supplementary.



Figure 5. The qualitative results of our proposed TopoCellGen. Columns 1-3: BRCA-M2C dataset. Columns 4-6: Lizard dataset. The cell
types and their corresponding colors are shown on the right side of the figure.

4. Experiments
We conduct extensive experiments on two public and
widely used nuclei analysis datasets. We compare our
method against SoTA layout generation methods in terms
of sample quality and performance on downstream tasks.

Datasets. We evaluate our proposed method on TCGA
Breast Cancer Cell Classification Dataset (BRCA-M2C) [1]
and Lizard dataset [22]. More details about the datasets, the
test set split, and the cell count distribution analysis are pro-
vided in the Supplementary.

Evaluation Metrics. We evaluate our proposed method on
both sample quality and the performance of downstream
tasks. We use Fréchet Inception Distance (FID) [30],
the cell count error for each cell type, the total count er-
ror (TCE), our proposed TopoFD and maximum mean
discrepancy (MMD) [66] to evaluate how well the gen-
erated cell layouts align with the reference layouts. Note
that for FID, feature extraction is tailored to each dataset
with custom-trained models. On the other hand, we gener-
ate 2, 000 image-layout pairs as augmented training data for
cell detection and classification tasks, evaluating their per-
formance with the F1-score. More details are provided in
the Supplementary.

Implementation Details are in the Supplementary.

Biological Plausibility. To further validate the quality of
our generated cell layouts, we conducted an evaluation in-
volving a board-certified pathologist with 7+ years of expe-
rience. From a pathologist’s perspective, the synthetic cell
layouts are nearly indistinguishable from real ones and ac-
curately capture the defining benign or malignant features
of their real counterparts. More details are in the Supple-
mentary.

Backpropagation from Distance Transform Map to Bi-
nary Mask. To backpropagate the gradient from the dis-

tance transform map to a binary mask, we leverage an ef-
ficient implementation of the geodesic distance transform
provided by the FastGeodis library [3]. This method en-
ables the computation of a differentiable distance map,
which allows us to propagate gradients through the distance
transform during training. The library implements a par-
allelized raster scan method that efficiently computes the
Euclidean distance transforms on GPU hardware.

4.1. Experimental Results

Qualitative Results. Qualitative results are shown in Fig. 5.
Our proposed TopoCellGen method demonstrates cell lay-
outs that closely match the reference layouts in both density
and spatial arrangement. The generated layouts exhibit a
high degree of distribution consistency, preserving density
patterns and spatial relationships among cell types while re-
flecting the structural characteristics of the reference lay-
outs.
Quantitative Results on Sample Quality. Tab. 1 shows
the results of sample quality and generation accuracy on the
BRCA-M2C and Lizard datasets compared with the state-
of-the-art cell layout generation baselines: ADM [11], TM-
CCG [2] and Spatial Diffusion [44]. Across all multi-class
datasets, our proposed TopoCellGen attains the lowest FID
and TopoFD, indicating superior visual fidelity and topo-
logical accuracy. Moreover, TopoCellGen notably reduces
multi-class count errors, resulting in more precise and topo-
logically consistent synthetic cell layouts. These findings
highlight TopoCellGen’s capacity to preserve realistic cell
distributions, maintain topological relationships, and enable
accurate control over cell density.
Performance on Downstream Tasks. In Tab. 2, we show
the results of cell detection and classification tasks using
our synthetic image-layout pairs as data augmentations. We
present the results using two frameworks, UNet [54] and



Method FID ↔ Lym. ↔ Epi. ↔ Stro. ↔ Neu. ↔ Pla. ↔ Eos. ↔ Con. ↔ TCE ↔ TopoFD ↔ MMD ↔

BRCA-M2C

ADM [11] 1.150 13.757 40.230 15.491 – – – – 22.465 133.012 0.732
TMCCG [2] 0.634 11.503 34.032 12.907 – – – – 19.687 89.252 0.635

Spatial Diffusion [44] 0.263 10.852 35.954 13.496 – – – – 20.806 97.584 0.589
TopoCellGen 0.005 2.090 3.824 2.468 – – – – 5.192 69.354 0.421

Lizard

ADM [11] 0.059 16.508 11.796 – 1.123 4.328 1.598 10.737 23.964 65.910 0.783
TMCCG [2] 1.093 15.548 10.011 – 2.376 4.293 1.872 11.643 22.604 63.120 0.667

Spatial Diffusion [44] 0.137 10.740 9.062 – 3.040 6.552 2.173 11.225 20.606 79.591 0.883
TopoCellGen 0.027 6.155 6.560 – 1.022 2.982 1.167 7.288 11.590 31.607 0.536

Table 1. Results for BRCA-M2C and Lizard datasets on the quality of the generated samples.

Data Method F1-Score ↗

Lymphocytes Epithelial Stromal Mean Detection
Real.

UNet

0.569 ± 0.010 0.736 ± 0.012 0.507 ± 0.015 0.604 ± 0.011 0.857 ± 0.006
Real+Syn. (Rand) 0.549 ± 0.009 0.693 ± 0.014 0.472 ± 0.016 0.571 ± 0.013 0.848 ± 0.008

Real+Syn (TMCCG) 0.650 ± 0.007 0.768 ± 0.010 0.511 ± 0.012 0.643 ± 0.009 0.852 ± 0.005
Real+Syn (SpaDM) 0.647 ± 0.006 0.797 ± 0.003 0.554 ± 0.011 0.666 ± 0.007 0.853 ± 0.005

Real+Syn (TopoCellGen) 0.656 ± 0.003 0.803 ± 0.005 0.574 ± 0.004 0.678 ± 0.004 0.860 ± 0.004

Real.

MCSpatNet

0.615 ± 0.008 0.777 ± 0.010 0.540 ± 0.013 0.644 ± 0.009 0.855 ± 0.005
Real+Syn. (Rand) 0.578 ± 0.009 0.756 ± 0.012 0.502 ± 0.014 0.612 ± 0.010 0.851 ± 0.006

Real+Syn (TMCCG) 0.678 ± 0.006 0.800 ± 0.005 0.522 ± 0.014 0.667 ± 0.007 0.853 ± 0.004
Real+Syn (SpaDM) 0.639 ± 0.005 0.804 ± 0.007 0.563 ± 0.012 0.669 ± 0.006 0.855 ± 0.005

Real+Syn (TopoCellGen) 0.652 ± 0.004 0.817 ± 0.006 0.582 ± 0.005 0.684 ± 0.004 0.862 ± 0.004

Table 2. Results on cell detection and classification tasks on BRCA-M2C dataset. The best and statistically significant results are high-
lighted in bold.

MCSpatNet [1]. The results indicate that TopoCellGen
achieves the highest F1 scores across various cell types, in-
cluding inflammation and epithelial cells, resulting in supe-
rior mean F1 scores and detection metrics on the BRCA-
M2C dataset. This demonstrates our TopoCellGen’s capa-
bility to capture both spatial fidelity and topological accu-
racy, ensuring that synthetic data closely resembles real bi-
ological structures. By accurately modeling complex spa-
tial distributions and inter-class relationships, TopoCellGen
provides biologically plausible synthetic samples that im-
prove the generalizability of detection and classification
models. Furthermore, its balanced representation of cel-
lular compositions reduces class-wise biases, allowing the
classifiers to better learn fine-grained distinctions.

4.2. Ablation Studies

Extensive experiments are conducted to elucidate the effec-
tiveness and robustness of our loss components and hyper-
parameters. All experiments are performed on the BRCA-
M2C dataset.

Ablation Study on Loss Components. We evaluate the
contributions of three loss functions to the model’s per-
formance in generating synthetic cell layouts, measured
by FID, Total Counting Error, and TopoFD. As shown in
Tab. 3, the results demonstrate that Lcount significantly re-
duces the counting errors, achieving better accuracy when
combined with the other losses. The Lintra improves the fi-
delity and topological accuracy of the generated multi-class
layouts, as indicated by lower FID and TopoFD. The Linter
has a smaller effect on the cell counting error but enhances
structural consistency, as reflected in improved TopoFD.
Combining all three losses yields superior results across all
metrics, highlighting their complementary contributions to
accurate and realistic multi-class cell layouts.

Lcount Lintra Linter
BRCA-M2C

FID ↔ TCE ↔ TopoFD ↔

✁ ✁ ✁ 1.150 22.465 133.012
✂ ✁ ✁ 0.842 12.253 118.304
✁ ✂ ✁ 0.621 16.315 98.798
✁ ✁ ✂ 1.083 21.928 126.742
✂ ✂ ✁ 0.232 6.854 85.672
✂ ✁ ✂ 0.498 8.012 91.324
✁ ✂ ✂ 0.327 17.573 73.612
✂ ✂ ✂ 0.005 5.192 69.354

Table 3. Ablation study on loss components.

Ablation Study on Loss Weights. The ablation study on
loss weights is presented in Tab. 4. The results indicate that
when the loss weights are higher, such as 0.005 or 0.001,
they impose overly strong regularization, leading to subop-
timal outcomes. Conversely, when the loss weights are low-
ered to 1e ↑ 4 or even 5e ↑ 5, the regularization becomes
too weak to achieve optimal performance. The configura-
tion with moderate weights 5e↑4 achieves the best balance,
yielding the lowest FID, total count error, and TopoFD.

ϖc ϖintra ϖinter
BRCA-M2C

FID ↔ TCE ↔ TopoFD ↔

0.005 0.005 0.005 0.289 14.920 92.718
0.001 0.001 0.001 0.153 12.471 85.642
1e-4 1e-4 1e-4 0.012 8.275 88.627
5e-5 5e-5 5e-5 0.129 11.378 83.629
5e-4 5e-4 5e-4 0.005 5.192 69.354

Table 4. Ablation study on loss weights.

5. Conclusion
In summary, TopoCellGen presents a robust framework for
generating realistic cell topologies in digital pathology. It
accurately preserves both intra- and inter-class spatial pat-
terns, ensures cell count control, and achieves high struc-
tural fidelity. Experimental results confirm its close ap-
proximation of real tissue layouts, thereby enhancing down-
stream tasks such as cell detection and classification.
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[41] Théo Lacombe, Marco Cuturi, and Steve Oudot. Large scale
computation of means and clusters for persistence diagrams
using optimal transport. In NeurIPS, 2018. 5

[42] D-S Lee, Juyong Park, KA Kay, Nicholas A Christakis,
Zoltan N Oltvai, and A-L Barabási. The implications of
human metabolic network topology for disease comorbidity.
PNAS, 2008. 3

[43] Richard M Levenson, Yashbir Singh, Bastian Rieck,
Quincy A Hathaway, Colleen Farrelly, Jennifer Rozenblit,
Prateek Prasanna, Bradley Erickson, Ashok Choudhary,
Gunnar Carlsson, et al. Advancing precision medicine: al-
gebraic topology and differential geometry in radiology and
computational pathology. Laboratory Investigation, 2024. 3

[44] Chen Li, Xiaoling Hu, Shahira Abousamra, Meilong Xu, and
Chao Chen. Spatial diffusion for cell layout generation. In
MICCAI, 2024. 2, 3, 7, 8, 13

[45] Ming Li, Taojiannan Yang, Huafeng Kuang, Jie Wu, Zhaon-
ing Wang, Xuefeng Xiao, and Chen Chen. Controlnet++:
Improving conditional controls with efficient consistency
feedback. In ECCV, 2024. 1

[46] Cheng Lu, Can Koyuncu, German Corredor, Prateek
Prasanna, Patrick Leo, XiangXue Wang, Andrew
Janowczyk, Kaustav Bera, James Lewis Jr, Vamsidhar
Velcheti, et al. Feature-driven local cell graph (flock): new
computational pathology-based descriptors for prognosis
of lung cancer and hpv status of oropharyngeal cancers.
MedIA, 2021. 1

[47] Alessandro Lugli, Inti Zlobec, Martin D Berger, Richard
Kirsch, and Iris D Nagtegaal. Tumour budding in solid can-
cers. Nature Reviews Clinical Oncology, 2021. 1

[48] Seonghui Min, Hyun-Jic Oh, and Won-Ki Jeong. Co-
synthesis of histopathology nuclei image-label pairs using a
context-conditioned joint diffusion model. In ECCV, 2024.
1, 3

[49] James R Munkres. Elements of algebraic topology, 1984. 3,
4, 12

[50] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In ICML, 2021. 1,
3, 13

[51] Hyun-Jic Oh and Won-Ki Jeong. Diffmix: Diffusion model-
based data synthesis for nuclei segmentation and classifica-
tion in imbalanced pathology image datasets. In MICCAI,
2023. 1, 3

[52] Tim Prangemeier, Christoph Reich, and Heinz Koeppl.
Attention-based transformers for instance segmentation of
cells in microstructures. In 2020 IEEE international con-
ference on Bioinformatics and Biomedicine (BIBM). IEEE,
2020. 1

[53] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 3

[54] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, 2015. 4, 7

[55] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. In NeurIPS, 2022. 3

[56] Roberto Salgado, Carsten Denkert, S Demaria, N Sirtaine,
F Klauschen, Giancarlo Pruneri, S Wienert, Gert Van den
Eynden, Frederick L Baehner, Frederique Pénault-Llorca,
et al. The evaluation of tumor-infiltrating lymphocytes (tils)
in breast cancer: recommendations by an international tils
working group 2014. Annals of oncology, 2015. 1

[57] Joel Saltz, Rajarsi Gupta, Le Hou, Tahsin Kurc, Pankaj
Singh, Vu Nguyen, Dimitris Samaras, Kenneth R Shroyer,
Tianhao Zhao, Rebecca Batiste, et al. Spatial organization
and molecular correlation of tumor-infiltrating lymphocytes
using deep learning on pathology images. Cell reports, 2018.
1

[58] Hanan Samet and Markku Tamminen. Efficient component
labeling of images of arbitrary dimension represented by lin-
ear bintrees. TPAMI, 1988. 13

[59] Denis Schapiro, Hartland W Jackson, Swetha Raghuraman,
Jana R Fischer, Vito RT Zanotelli, Daniel Schulz, Charlotte
Giesen, Raúl Catena, Zsuzsanna Varga, and Bernd Boden-
miller. histocat: analysis of cell phenotypes and interactions



in multiplex image cytometry data. Nature methods, 2017.
1, 2

[60] Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina,
Ivan Ezhov, Alexander Unger, Andrey Zhylka, Josien PW
Pluim, Ulrich Bauer, and Bjoern H Menze. cldice-a novel
topology-preserving loss function for tubular structure seg-
mentation. In CVPR, 2021. 3

[61] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015. 1, 3

[62] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 3, 13

[63] Sasha E Stanton and Mary L Disis. Clinical significance of
tumor-infiltrating lymphocytes in breast cancer. Journal for
immunotherapy of cancer, 2016. 1

[64] Nico Stucki, Johannes C Paetzold, Suprosanna Shit, Bjoern
Menze, and Ulrich Bauer. Topologically faithful image seg-
mentation via induced matching of persistence barcodes. In
ICML, 2023. 3

[65] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, 2016. 6

[66] Fan Wang, Huidong Liu, Dimitris Samaras, and Chao Chen.
Topogan: A topology-aware generative adversarial network.
In ECCV, 2020. 3, 7, 13

[67] Fan Wang, Zhilin Zou, Nicole Sakla, Luke Partyka, Nil
Rawal, Gagandeep Singh, Wei Zhao, Haibin Ling, Chuan
Huang, Prateek Prasanna, et al. Topotxr: A topology-guided
deep convolutional network for breast parenchyma learning
on dce-mris. MedIA, 2024. 3

[68] Haotian Wang, Min Xian, and Aleksandar Vakanski. Ta-net:
Topology-aware network for gland segmentation. In WACV,
2022. 3

[69] Jueqi Wang, Jacob Levman, Walter Hugo Lopez Pinaya,
Petru-Daniel Tudosiu, M Jorge Cardoso, and Razvan Mari-
nescu. Inversesr: 3d brain mri super-resolution using a latent
diffusion model. In MICCAI. Springer, 2023. 1

[70] Frederick H Xu, Michael Gao, Jiong Chen, Sumita
Garai, Duy Anh Duong-Tran, Yize Zhao, and Li Shen.
Topology-based clustering of functional brain networks in an
alzheimer’s disease cohort. AMIA Summits on Translational
Science Proceedings, 2024. 3

[71] Meilong Xu, Xiaoling Hu, Saumya Gupta, Shahira
Abousamra, and Chao Chen. Semi-supervised segmentation
of histopathology images with noise-aware topological con-
sistency. In ECCV, 2024. 3

[72] Srikar Yellapragada, Alexandros Graikos, Prateek Prasanna,
Tahsin Kurc, Joel Saltz, and Dimitris Samaras. Pathldm:
Text conditioned latent diffusion model for histopathology.
In WACV, 2024. 1, 3

[73] Chenyu You, Weicheng Dai, Fenglin Liu, Yifei Min, Nicha C
Dvornek, Xiaoxiao Li, David A Clifton, Lawrence Staib,
and James S Duncan. Mine your own anatomy: Revisiting
medical image segmentation with extremely limited labels.
TPAMI, 2024. 1

[74] Yinyin Yuan. Spatial heterogeneity in the tumor microen-
vironment. Cold Spring Harbor perspectives in medicine,
2016. 2

[75] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
ICCV, 2023. 1

[76] Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin
Bao, Shaozhe Hao, Lu Yuan, and Kwan-Yee K Wong.
Uni-controlnet: All-in-one control to text-to-image diffusion
models. In NeurIPS, 2024. 1

[77] Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang,
Shuang Xu, Yulun Zhang, Kai Zhang, Deyu Meng, Radu
Timofte, and Luc Van Gool. Ddfm: denoising diffusion
model for multi-modality image fusion. In ICCV, 2023. 3



TopoCellGen: Generating Histopathology Cell Topology with a Diffusion Model
— Supplementary Material —

In the supplementary material, we begin with notations for
foreground and background in Sec. 6, followed by a de-
scription of the background knowledge about persistent ho-
mology in Sec. 7. Next, we provide detailed introduction
to our layout-guided pathology image generation part in
Sec. 8, followed by the comprehensive descriptions of the
datasets in Sec. 9. The implementation details are provided
in Sec. 10. In Sec. 11, we discuss the evaluation metrics in
detail. To ensure the generation accuracy, we conduct the
analysis on cell count distribution across training and test
sets in Sec. 12. More ablation studies are given in Sec. 13.
The biological plausibility analysis by the domain expert
is provided in Sec. 14. Then, we provide the spatial point
pattern analysis using multivariate Ripley’s K-functions in
Sec. 15, followed by the discussion on computational cost
and scalability of our method in Sec. 16. Finally, we discuss
the limitations of our method in Sec. 17.

6. Notes on Foreground and Background
Here, we provide some notations about foreground and
background in our paper. In our experiments, the back-
ground of the layouts is black (the pixel value of 0) as can
be seen in Fig. 2 and Fig. 5. For better visualization, we
display the multi-class cell layouts with white as the back-
ground in Fig. 1, Fig. 3 and Fig. 4 of the main paper.

7. Background: Persistent Homology
In algebraic topology [49], homology classes capture topo-
logical features across different dimensions. For instance,
0-, 1-, and 2-dimensional structures represent connected
components, loops (or holes), and voids, respectively. In bi-
nary images, the number of d-dimensional topological fea-
tures is described by the d-dimensional Betti number, ωd.1
While topological structures are well-defined in binary im-
ages, extending this theory to real-world data, which is often
continuous and noisy, poses challenges.

In the case of analyzing cell point clouds, where data is
inherently discrete, we require a robust framework to infer
the underlying topological structures. Persistent homology,
developed in the early 2000s [13, 14], addresses this need
by tracking the evolution of topological features across mul-
tiple scales.

Given a point cloud in the 2D space P ⇐ R2, a filtration
is built by considering a growing family of simplicial com-
plexes constructed from the point cloud as a function of a

1Technically, ωd measures the dimension of the d-dimensional homol-
ogy group. The number of distinct homology classes is exponential in ωd.

parameter (e.g., radius). For each parameter value, we de-
fine a set of simplices connecting the points, starting from
isolated vertices and gradually adding edges and higher-
dimensional simplices as the parameter increases. This cre-
ates a series of nested simplicial complexes: ⊋ ⇐ Kr1 ⇐
Kr2 ⇐ ... ⇐ Krn . As the parameter grows, the topology
of the complexes changes, with new connected components
and loops emerging or vanishing.

Persistent homology captures these changes, tracking the
birth and death of topological features over the filtration.
The result is summarized in a persistence diagram (Dgm),
which provides a multi-scale representation of the topologi-
cal structures. A Dgm consists of points in a 2D plane, each
representing a topological feature. The coordinates of each
point, (b, d), correspond to the feature’s birth and death fil-
tration values, providing a concise description of its persis-
tence across scales.

8. Layout To Image Generation
In this section, we introduce our layout-guided image gen-
eration framework in detail. The framework leverages a
guided diffusion model (ADM) [11] to generate H&E im-
ages conditioned on multi-class cell layouts. The layouts
serve as explicit conditional inputs to the diffusion model,
which learns to reconstruct high-resolution pathology im-
ages from noisy counterparts during the reverse diffusion
process. The conditioning mechanism is implemented us-
ing a cross-attention layer that seamlessly integrates cell
layout information into the diffusion model. As shown in
Fig. 6, the generated H&E images generated by the model
accurately depict the relative densities and arrangements of
different cell types, while preserving the fine-grained de-
tails characteristic of histopathology images, such as nu-
clear shapes and staining patterns. This helps greatly im-
prove the performance of downstream tasks, such as cell
detection and classification.

9. Details of the Datasets

BRCA-M2C dataset [1] is obtained from the TCGA
dataset and contains 80, 10, and 30 pathology image patches
for training, validating, and testing, respectively. This
dataset provides dot annotations for multi-class classifi-
cation in breast cancer images. All images are around
500 ≃ 500 pixels. The cell classes are lymphocytes, tumor
or epithelial, and stromal cells.

Lizard Dataset [22] is a large-scale resource for nuclear in-
stance segmentation and classification, specifically target-



Figure 6. Qualitative results generated by our layout and image
generation framework for downstream tasks.

ing colonic tissue in computational pathology. It includes
nearly 495, 000 manually and semi-automatically annotated
nuclei, categorized into six classes: epithelial cells, connec-
tive tissue cells, lymphocytes, plasma cells, neutrophils, and
eosinophils. 238 images in the dataset are sourced from 6
publicly available datasets, ensuring diverse representations
of normal, inflammatory, dysplastic, and cancerous colonic
conditions.

10. Implementation Details
Our work is mainly based on guided-diffusion (ADM) [11].
The condition of our model is a list of cell counts. An
embedding of the condition is obtained by using an encod-
ing network. After that, we feed this embedding to all the
residual blocks in the network by adding it to the timestep
embedding [50]. For every dataset, the image resolution is
256≃ 256. Our diffusion models use a cosine noise sched-
uler [50], with noising timesteps of 1000 for training. We
first pre-train the diffusion model using only Lsimple for
150K steps, then train with the three losses for 210K steps.
During the inference, we use 100 steps of DDIM [62]. The
learning rate is 2 ≃ 10→5 and the batch size is 5. φc, φintra
and φinter are all set to 0.0005.

For the layout-guided generation model, the learning rate
is also 2≃ 10→5 and we train the model only using Lsimple

for 360K steps. The batch size is 6. The image resolution
is also 256≃ 256. These experiments were conducted on 1
NVIDIA RTX A6000 GPU with 48GB RAM.

Our experiments designate specific test sets for each
dataset to evaluate the synthetic cell layout generation pro-
cess. For the BRCA-M2C dataset, we utilize 30 images in
the test set, which were pre-defined in the dataset. To pre-
pare these for testing, each image is segmented into patches
using a sliding window approach with a stride of 32 pixels,
resulting in patches of size 256 ≃ 256. This process yields
a total of 1, 550 patches for the BRCA-M2C dataset. We
randomly select 20% of the cell layouts as the test set for
the Lizard dataset, which lacks predefined training and test
splits. The chosen images undergo the same patching pro-

cedure, generating 256 ≃ 256 patches, resulting in 1, 000
patches for the test set of the Lizard dataset.

In generating synthetic layouts, we aim to match the
channel-wise cell counts observed in the real layouts of the
test set. For each real test layout, we calculate the counts
of each cell type across the channels and use these as con-
ditional inputs during inference. This ensures that the gen-
erated synthetic patches exhibit similar cell count distribu-
tions to those observed in the real test layouts.

11. Evaluation Metrics
To evaluate the quality of the generated cell layouts and
pathology images, we employ a set of metrics focusing on
different aspects, such as visual fidelity, topological similar-
ity, and utility to downstream tasks.

First, the Fréchet Inception Distance (FID) [30] mea-
sures visual similarity by comparing the distributions of
features extracted from a pre-trained Inception network be-
tween real and generated images. Lower FID scores indi-
cate greater visual realism in the generated images. Feature
extraction is tailored to each dataset with custom-trained
models. Here, the FID we used is the spatial-FID pro-
posed in Spatial Diffusion [44]. The spatial-FID replaces
visual features with a spatial representation derived from
an autoencoder’s intermediate layer, and we trained the au-
toencoder in the same way. In addition, we extended it to
the Lizard dataset by training another autoencoder in the
same manner. We also evaluate the accuracy of the gen-
eration through cell count error, calculating discrepancies
between real and generated cell counts per type and overall.
In our experiments, we use the connected component label-
ing method [58] to count the cell numbers. Assume there
are n types of cells. For each cell type i, the cell count
error (CCE) across N test samples is defined as:

Cell Count Error(i) =
1

N

N∑

j=1

∣∣∣c(i)real,j ↑ c(i)syn,j

∣∣∣

with total count error (TCE) calculated as:

Total Count Error =
1

N

N∑

j=1

∣∣∣∣∣

n∑

i=1

c(i)real,j ↑
n∑

i=1

c(i)syn,j

∣∣∣∣∣

where c is the cell count. In addition, our proposed TopoFD
metric is used to evaluate the topological similarity between
real and generated cell layouts. Lower TopoFD scores indi-
cate closer alignment in spatial structure.

We also use the metric proposed in [66], Maximum
Mean Discrepancy (MMD) [24] to measure the topological
difference between the real and synthetic distributions. The
persistence diagrams from synthetic and real layouts are
embedded into a reproducing kernel Hilbert space (RKHS).



The MMD computes the distance between the mean em-
beddings of these two distributions in the RKHS. Given two
sets of persistence diagrams, Dsyn = {Dgmsyn

i }Ni=1 from
the synthetic data and Dreal = {Dgmreal

j }Nj=1 from the
real data, we can define the mean of each diagram set,

#(Dsyn) :=
1

N

N∑

i=1

#(Dgmsyn
i )

#(Dreal) :=
1

N

N∑

j=1

#(Dgmreal
i )

Then, the MMD is defined as:

MMD(Dsyn,Dreal) := ↓#(Dsyn)↑ #(Dreal)↓H
In terms of the kernel for persistence diagrams, we use the
Gaussian kernel based on the 1-Wasserstein distance be-
tween diagrams,

kW1(Dgmi, Dgmj) = exp


↑W1(Dgmi, Dgmj)

↼2



Lastly, to enhance downstream utility, we used 2, 000
generated image-layout pairs as augmented training data for
cell detection and classification tasks, evaluating their per-
formance with the F1-score.

12. Cell Count Distribution Analysis
Also, to ensure the accurate generation of cell distributions,
the training set encompasses a wide range of cell count val-
ues. As shown in Fig. 7, we randomly select 2, 000 patches
during the training. We analyzed and observed each cell
type’s range of cell counts in the training patches to con-
firm coverage across typical values observed in test condi-
tions. This observation is crucial for the diffusion model, as
it needs exposure to the range of cell counts during train-
ing to accurately generate corresponding counts during the
inference.

13. Additional Ablation Study

Ablation Study on learning rate. This ablation study ex-
amines the effect of different learning rates on model perfor-
mance. The results indicate that a learning rate of 2≃ 10→5

achieves the best overall performance across all metrics,
with the lowest FID, Total Counting Error, and TopoFD
values. Higher learning rates, such as 1 ≃ 10→4, result
in a higher total counting error and TopoFD, suggesting
that an overly large learning rate may hinder convergence.
Conversely, lower learning rates, including 1 ≃ 10→5 and
5≃10→5, show some improvements but do not reach the op-
timal balance across all metrics. The chosen learning rate
of 2 ≃ 10→5, therefore, appears to provide the best trade-
off, facilitating convergence that enhances both cell count-
ing accuracy and fidelity in the synthetic cell layouts.

Figure 7. The statistical analysis of the cell count distributions on
the BRCA-M2C training and test sets.

learning rate BRCA-M2C
FID → TCE → TopoFD →

1e-4 0.021 12.357 75.667
1e-5 0.015 6.314 81.397
5e-5 0.066 12.367 85.949
2e-5 0.005 5.192 69.354

Table 5. Ablation study on learning rate.

14. Biological Plausibility

Specifically, we randomly selected 10 pairs of real and syn-
thetic cell layouts as shown in Fig. 8. Without revealing
their type (synthetic/real), we asked the expert to (1) iden-
tify which layout is synthetic; (2) characterize the tissue bi-
ology of these layouts. The expert achieves only a 60%
accuracy in identifying the synthetic layout, confirming the
realism of our synthetic layouts even to a domain expert.
Regarding the characterization of tissue biology, as shown
in Fig. 8, the pathologist concluded that for each pair of
layouts, the synthetic layout preserved the defining biologi-
cal characteristics of its corresponding real sample, consis-
tently reflecting benign/low-grade or cancerous/high-grade
properties. These experiments with a domain expert offer
direct evidence, beyond quantitative measures and down-
stream analyses, that our generated layouts align well with
actual biological structures.

Figure 8. Biological plausibility validated by the domain expert.



15. Spatial Point Pattern Analysis
We also evaluate our synthetic layouts using one standard
statistical method for spatial point pattern analysis. Specifi-
cally, we employ multivariate Ripley’s K-functions to eval-
uate the synthetic layouts of the BRCA-M2C dataset, which
comprises 3 cell types. For each test reference layout, we
have a corresponding synthetic layout and extract cell cen-
troids from both. We then compute 3 K-functions to capture
intra-class clustering (one per cell type) and 6 cross-K func-
tions to describe inter-class interactions. Next, we examine
the difference between real and synthetic K-values over 6
radii: [15, 30, 45, 60, 75, 90]. For each radius and each cell-
type pair, we perform a paired t-test to check if synthetic
data deviates significantly from real layouts. This procedure
yields 54 p-values (18 from intra-class and 36 from inter-
class analyses). We then count the number of cases where
these p-values exceed 0.05, indicating no statistically sig-
nificant difference. Overall, as shown in Tab. 6 and Tab. 7,
TopoCellGen achieves a greater number of radii with no
significant difference is observed, compared to other meth-
ods. It most accurately produces both intra-class clustering
and inter-class interactions, demonstrating the closest align-
ment with real data across the evaluated radii.

Method BRCA-M2C
Lym. – Lym. Epi. – Epi. Stro. – Stro. Total

ADM 0/6 0/6 2/6 2/18
TMCCG 2/6 1/6 2/6 5/18

Spatial Diffusion 1/6 3/6 2/6 6/18
TopoCellGen 3/6 5/6 4/6 12/18

Table 6. Number of radii with no statistically significant difference
(p > 0.05) for intra-class spatial clustering.

Method BRCA-M2C
Lym. – Epi. Lym. – Stro. Epi. – Lym. Epi. – Stro. Stro. – Lym. Stro. – Epi. Total

ADM 1/6 3/6 2/6 1/6 1/6 2/6 10/36
TMCCG 3/6 2/6 3/6 4/6 3/6 2/6 17/36

Spatial Diffusion 3/6 4/6 2/6 3/6 1/6 2/6 15/36
TopoCellGen 4/6 3/6 4/6 5/6 3/6 5/6 24/36

Table 7. Number of radii with no statistically significant difference
(p > 0.05) for inter-class spatial interactions.

16. Computational Costs and Scalability
Currently, our model is trained on a single NVIDIA A6000
GPU with 48 GB of memory for approximately 360K steps,
using a batch size of 5 at 256 ≃ 256 resolution within 200
hours. The experiments can also be seamlessly scaled with
data parallel training.

17. Limitations
Our proposed TopoCellGen will fail in some cases. First,
the model is limited by its dependence on the cell types
present in the training data, preventing it from generat-
ing layouts containing unseen cell types. Additionally, the
model currently generates cell layouts in 256≃256 patches,
which constrains its application to small-scale regions.
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