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Abstract

A prevalent assumption regarding real-world data is that it lies on or close to a low-dimensional
manifold. When deploying a neural network on data manifolds, the required size, i.e., the
number of neurons of the network, heavily depends on the intricacy of the underlying latent
manifold. While significant advancements have been made in understanding the geometric
attributes of manifolds, it’s essential to recognize that topology, too, is a fundamental
characteristic of manifolds. In this study, we investigate network expressive power in terms
of the latent data manifold. Integrating both topological and geometric facets of the data
manifold, we present a size upper bound of ReLLU neural networks.

1 Introduction

The expressive power of deep neural networks (DNNs) is believed to play a critical role in their astonishing
performance. Despite a rapidly expanding literature, the theoretical understanding of such expressive power
remains limited. The well-known universal approximation theorems (Hornik, 1989; |Cybenko, [1989; [Leshno
et al.l {1993; [Hanin, 2017) guarantee that neural networks can approximate vast families of functions with
an arbitrarily high accuracy. However, the theoretical upper bound of the size of such networks is rather
pessimistic; it is exponential to the input space dimension. Indeed, these bounds tend to be loose, because
the analyses are often oblivious to the intrinsic structure of the data. Real-world data such as images are
believed to live in a manifold of a much lower dimension (Roweis & Saull, 2000; van der Maaten & Hinton,
2008; |Jolliffe & Cadima, [2016). Such manifold’s structure can be used to achieve better bounds of network
size. It has been shown that the network size can be bounded by exponential of the manifold’s intrinsic
dimension rather than the encompassing input space dimension (Chen et al., 2019 |Schmidt-Hieber], 2019).

However, the intrinsic dimension is only a small part of the manifold’s property. It is natural to ask whether
other properties of the manifold, such as topology and geometry, may lead to improved bounds. [Safran &
Shamir| (2016) demonstrate that to approximate the indicator function of a d-dimensional ball, one only needs
a network of size quadratic to d. However, this work assumes a rather simplistic input. To extend to a more
general setting, one needs to incorporate the topology and geometry of the manifold into the analysis.

Early research has probed the geometry and topology of manifolds. Notably, |Federer| (1959); Amenta &
Bern| (1998)) introduce a pivotal curvature measure, which adeptly captures the global geometric nuances of
manifolds and has been embraced in manifold learning studies (Narayanan & Niyogi, 2009; Narayanan &
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Mitter, |2010; Ramamurthy et al.| [2019). On the topological front, descriptors like Betti numbers have been
formalized in the language of algebraic topology to characterized the numbers of connected components and
holes of a manifold (Hatcher, |2002; [Bott et al., |1982; |Munkres| 2018; Rieck et al.,|2019). In their seminal work,
Niyogi et al. (2008) integrate manifold’s geometry and topology, setting forth conditions for topologically
faithful reconstructions grounded in geometric metrics.

With the advent of the deep learning era, there has been a burgeoning interest in discerning the interplay
between network size and manifold’s intrinsic structural attributes. Existing studies (Dikkala et al., |2021;
Schonsheck et al., [2019) bound network size with the geometry of manifolds. However, a theoretical framework
that successfully integrates network size and topological traits has not yet been developed. This is a missed
opportunity. The topological complexity of manifolds plays a crucial role in the learning problem, particularly
concerning network size. Empirical findings (Guss & Salakhutdinovl, |2018; |[Naitzat et al.| 2020]) suggest that
even with similar geometry, data with larger topological complexity requires a larger network. These empirical
observations highlight the need for a theoretical analysis that examines how manifold topology and geometry
interact with network size. Addressing this need poses a significant challenge, as incorporating topological
descriptors into the current analytical framework is inherently difficult due to the discrete nature of topology.

In this paper, we address this gap by presenting an innovative theoretical framework that integrates topology
with neural network size. We tackle the challenge by first approximating a homeomorphism to disentangle the
geometry and topology of a manifold. Notably, manifold topology remains invariant under a homeomorphism.
This allows us to simplify the geometric complexity while maintaining the topological complexity. We then
successfully represent discrete topological complexity as a combination of the complexities of basic topological
shapes, thus overcoming the challenge posed by the discrete nature of topological descriptors. The resulting
upper bound is obtained by constructing a neural network that first learns a low-dimensional embedding of
the input manifold, followed by classification in the embedding space. This approach aligns with modern
neural network design principles.

Our theoretical result reveals for the first time how the data topology, as a global structural characterization
of data manifold, affects the network expressiveness. The beauty of the theorem is that it explicitly bounds
the network size with both topology and geometry, giving us insights as to how the two important manifold
properties affect learning. To capture the manifold’s topology, we use the classic Betti numbers, which
measure the number of connected components and holes within the manifold. For geometric measure, we use
the reach introduced by [Federer| (1959); |Amenta & Bern| (1998), describing the manifold’s overall flatness.
See Figure [1] for illustrations of these measures.

Our main theoretical result is summarized informally below; the formal version is presented in Theorem 2.

Main Theorem. (Informal) Let M C RP be a d-dimensional manifold (d < D) from a family of thickened
1-manifold and has two classes. There exists a ReLU network classifier g with depth at most O(log 8 + log %)

and size at most O(3% + (%)d2/2), such that with large probability, the true risk of g is small. (3 is the sum of
Betti numbers and % is the inverse of reach.

According to our bound, the network size scales quadratically in terms of the sum of Betti numbers 5.

Conversely, in terms of %, it scales as O ((%)dz/ 2). This bound reveals interesting insights. The growth of

network size is only affected by Betti numbers quadratically. Meanwhile, the network size can be affected
by condition number more significantly when the intrinsic manifold dimension is high. These insights can
be the foundation for future development of tighter bounds, and potentially inspire new designs of network
architectures that capitalize on data’s intrinsic manifold structures.

In the following section, we discuss related works and compare our derived bounds with those previously
established. In Section [3} we define the problem and introduce the concept of the thickened 1-manifold family.
At first glance, this family may appear overly restrictive; however, we will explain why it actually represents
a broad and versatile class of manifolds. In Section [4, we present our theoretical findings, detailing the
step-by-step derivation of our bounds. Our results establish a new theoretical perspective that can stimulate
further exploration into the expressiveness of networks. Looking ahead, this theory could inform the design
of more efficient neural networks by leveraging insights from manifold topology and geometry.
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Figure 1: Tllustration of Betti numbers and reach. (a) A 2-manifold embedding in R?® with 3y = 1,8, = 0. (b)
A 2-manifold embedded in R® with 3y = 1,8, = 3. (c¢) A 1-manifold with large reach. (d) A 1-manifold with
small reach, which is the radius of the dashed circle.

(d)

2 Related Works

Network size with manifold geometry. Multiple studies have formulated network size bounds across
varied manifold learning contexts based on geometry. [Schonsheck et al. (2019) establish a bound of
O(LdDe==4/2(—10g'*%/2 ¢)) on the network size for manifold reconstruction tasks. L is the covering
number in terms of the injectivity radius, a geometric property. They utilize an auto-encoder, denoted
as D o E, for the reconstruction of a manifold. Both the encoder E and the decoder D are designed to
function as homeomorphisms. As a result, the overarching objective is the construction of a homeomorphism
within the same space, which elucidates the absence of topological considerations in their outcomes. Our
findings include not only the homeomorphism but also the classification network, with the latter being
influenced by the manifold’s topology. |Chen et al.| (2019) demonstrate the existence of a network of size
O(e=%mlog L + Dlog L + Dlog D) that can approximate any smooth real function supported on a compact
Riemannian manifold. In this context, n denotes the order of smoothness of the function. Their primary
objective is to illustrate that, in manifold learning, the manifold dimension chiefly determines network size,
with only a marginal dependence on the ambient dimension. Moreover, their smoothness assumption is
inapplicable to classification tasks, where the target function lacks continuity. Yet, the interplay between
manifold properties and their impact on network size in manifold classification largely remains unexplored.

Classifier learned on manifold. Dikkala et al.| (2021) investigate network size in classification contexts.
However, their foundational assumption is that a manifold’s essence can be distilled into just two parameters:
a centroid and a surrounding perturbation. They further assume there is a sensitive hashing property on
manifolds. These assumptions are quite constrained, might not align with real-world complexities, and also
overlooks the intrinsic properties of the manifold. Nevertheless, the aforementioned studies predominantly
concentrate on network size and geometric traits, neglecting the equally critical role of topological features.
Buchanan et al.| (2021) establish a lower bound on the size of classifiers for inputs situated on manifolds.
However, their theoretical framework is restricted to smooth, regular simple curves; it fails to account for
complex manifold structures. (Chung et al.| (2018]) focus on three types of manifolds: manifolds with strictly
smooth convex hulls, manifolds of convex polytopes, and ring manifolds. They generate generic bounds on
the manifold separability capacity using linear separation. (Guss & Salakhutdinov| (2018) provide empirical
evidence showing that classifiers, when trained on data with higher Betti numbers, tend to have slower
convergence rates. They also highlight that with rising topological complexity, smaller networks face challenges
in effective learning. These findings underscore the need for a more comprehensive theoretical understanding.

There are some intriguing studies not primarily centered on manifold learning. Specifically, [Bianchini &
Scarselli (2014)) establish a bound for the Betti number of a neural network’s expression field based on its
capacity. Nevertheless, their proposed bound is loose, and it exclusively addresses the regions a network can
generate, neglecting any consideration of input manifold. |Safran & Shamir (2016) explore the challenge of
approximating the indicator function of a unit ball using a ReLU network. While their primary objective is
to demonstrate that enhancing depth is more effective than expanding width, their approach has provided
valuable insights. Naitzat et al. (2020) empirically examines the evolution of manifold topology as data
traverses the layers of a proficiently trained neural network. We have adopted their concept of topological
complexity. A number of studies, such as those by [Hanin & Rolnick (2019) and |Grigsby & Lindsey| (2022),
concentrate on exploring the potential expressivity of neural networks. However, these works primarily
focus on the network’s inherent capabilities without extensively considering the characteristics of the input
data. Theoretically, Birdal et al. (2021); |Andreeva et al.| (2024) propose a persistent homology generalization
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bound that accounts for the topology of the training trajectory. They propose a comprehensive metric that
encompasses the neural network, optimization process, and network activations. In contrast, our work focuses
specifically on approximating the indicator function of the data manifold using a neural network and studying
the relationship between neural network size and the properties of the data manifold.

3 Preliminaries

Topological Manifolds. In this paper, we focus on a specific class of manifolds called the thickened
1-manifold family, which are derived from operations on l-manifolds. To lay the groundwork, we begin
with the concept of a manifold. An n-dimensional manifold is a topological space where every point has a
neighborhood that is homeomorphic (topologically equivalent) to R”. And an n-manifold with boundary
allows for points that have neighborhoods homeomorphic to the half-space R>g x R"~!. For example, a circle
(s!) is a 1-manifold without boundary, known as a closed manifold, while a line segment (I') is a 1-manifold
with boundary.

Thickened 1-manifold. Our manifolds of interest are those obtained through operations on 1-manifolds,
particularly when they are "thickened" to higher dimensions. Specifically, we consider d-thickened 1-manifolds,
which are (d + 1)-dimensional manifolds homeomorphic to M! x B% where M! is a compact 1-manifold
(with or without boundary), and B¢ denotes a d-dimensional closed ball. Figure |3 illustrates the 1-thickened
1-manifold. According to the classification theorem for 1-manifolds, M' is homeomorphic to either a closed
interval I' or a circle S'. Consequently, a 1-thickened 1-manifold is homeomorphic to either I' x B! or
St x B

& v O— ()

Figure 2: Illustration of connected sum.

Connected Sum and Disjoint Union. To construct more complex manifolds from simpler ones, we utilize
operations such as the connected sum and disjoint union. The connected sum of two closed manifolds M
and A, denoted M # N, is formed by removing a small open ball from each manifold and then gluing
them together along the resulting boundary sphere. The disjoint union M U A combines two manifolds
by considering them together without connecting them. These operations yield new compact manifolds
that combine the topological features of the original manifolds. Although the connected sum of thickened
1-manifolds differs from the standard definition of the connected sum for closed manifolds mentioned earlier,
we utilize the fact that the boundary OM of a thickened 1-manifold M is a closed manifold. The connected
sum of two thickened 1-manifolds is defined by performing the connected sum on their boundaries and extend
the gluing to the interiors of identifying corresponding points in the neighborhoods adjacent to the removed
sphere. The formal definition of connected sum is provided in section Figure [2| illustrates the connected
sum between thickened 1-manifolds.

With the tools defined above, we can now define the thickened 1-manifold family, which is the class of
manifolds we will study in this paper.

Definition 1 (Thickened 1-Manifold Family). Let M! represent a compact 1-manifold (with or without
boundary). A d-thickened 1-manifold is a (d + 1)-manifold homeomorphic to M' x B%. The family of
d-thickened 1-manifolds, denoted by M, includes all such manifolds obtained via finite operations of connected
sum and disjoint union.

The proposed thickened 1-manifold family may appear straightforward at first. However, homeomorphisms,
connected sums, and disjoint unions greatly enhance its expressivity, enabling a broad range of topolog-
ical constructions. A homeomorphism allows the manifold to be smoothly deformed without altering its
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Figure 3: An illustration of the 1-thickened 1-manifold in 2D space. The top row shows a manifold that has
the same homotopy type as a closed interval I', while the bottom row shows a manifold that is homotopy
equivalent to a circle S'. The 1-thickened 1-manifold family contains all manifolds that can be obtained
through the disjoint union and connected sum of these manifolds.

fundamental topological properties, thus accommodating diverse geometric shapes. Connected sums can
introduce additional “handles” or loops by merging two manifolds along shared boundaries, while disjoint
unions allow multiple manifolds to coexist independently. These operations can yield manifolds of higher
genus (e.g., multiple “holes”) or several distinct loop-like components. As illustrated in Figure|3] even a single
homeomorphism can significantly transform a manifold’s embedded shape. Notably, all manifolds that can be
contracted into skeletons belong to the thickened 1-manifold family. Examples include knots, multi-genus
tori, and various high-dimensional “patches” formed through these constructions. Many real-world objects,
such as cups, tires, and tables, also fall within this family due to their topological equivalence to thickened
1-dimensional structures. However, spheres in three-dimensional space are excluded, as thickened 1-manifolds
only support non-trivial 0- and 1-dimensional Betti numbers, preventing the existence of higher-dimensional
holes. While this assumption restricts the types of shapes considered, it also simplifies the computation
of high-dimensional Betti numbers in real data. In fact, the concept of principal curves (Hastie & Stuet-
zle, [1989)—where data are assumed to cluster around a low-dimensional (1D) manifold—underscores the
practicality of focusing on thickened 1-manifolds.

Betti numbers. We employ Betti number (M) to quantify topology of a manifold M. k is the dimension
of that Betti number. 0-dimension Betti number Sy(M) is the number of connected components in M, and
Br(M) (k> 1) can be informally described as the number of k-dimensional holes. 1-dimensional hole is a
circle and 2-dimensional hole is a void. For the sake of coherence, we defer the formal definition of Betti
numbers to Appendix Following |Naitzat et al. (2020), we utilize the total Betti number of M as its
topological complexity. The topological complexity we employ here is the topological complexity of data
manifolds, instead of the topological complexity of neural networks used in |Andreeva et al. (2024)).

Definition 2 (Topological Complexity). M is a d-dimensional manifold. (M) is the k-dimensional Betti
number of M. The topological complexity is defined as

d—1
BM) = BeM). (1)

k=0

Reach and condition number. We then introduce metrics that encapsulate these geometric properties.
For a compact manifold M, the reach 7 is the largest radius that the open normal bundle about M of radius
7 is embedded in RY, i.e., no self-intersection.
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Definition 3 (Reach and Condition Number). For a compact manifold M C RP | let

G ={xecR”3p,qe M,p #aq,
—pll=lx—q||= inf ||x—y|.
[x —pl| =[x —ql| Jnf |x —yll}

(2)

The reach of M is defined as T(M) = infxemyec ||x — y||. The condition number L is the inverse of the
reach.

Niyogi et al. (2008]) prove that the condition number controls the curvature of the manifold at every point. A
modest condition number 1/7 signifies a well-conditioned manifold exhibiting low curvature.

Problem setup. In this paper, we examine the topology and geometry of manifolds in the classification
setting. We have access to a training dataset {(x;,y:)|x; € M,y; € [L]}*,, where M = |_|ZL:1 M;. Each
sample is drawn i.i.d. from a mixture distribution p over L disjoint manifolds with the corresponding label. For
the simplification of notation, we build our theory on binary classification. It can be extended to multi-class
without efforts in a one-verses-all setting. In binary case, the dataset is {(x;,y;)|x; € M,y; € {0,1}},,
where M = My LI My € RP. M; and M, are two disjoint d-dimensional manifolds representing two classes.
The label y; is determined by the indicator function

1, xe My,
0, otherwise.

I, (%) = { 3)

A neural network h(x) : RP — [0, 1] approaches the classification problem by approximating the indicator
function I, (x). In the scope of this study, we focus on neural networks utilizing the ReLU (Rectified Linear
Unit) activation function.

Definition 4 (Adapted from |Arora et al.| (2018)). A ReLU multi-layer feed-forward network h : R0 — RWhk+1
with k + 1 layers is defined as
h(x) = hiy1 0 hg o0 hi(x), (4)

where h; : R%¥i-t — RYi h;(x) = o(W;x +b;) for 1 < i < k are ReLU layers, and hpyq : R¥: —
RYe+1 hytq(X) = Wip1X +brt1 s a linear layer. o is the ReLU activation function. The depth of the ReLU
network is defined as k + 1. The width of the ReLU network is max{wi,...,wr}. The size of the ReLU

.k
network is Y, | wj.

The approximation error of a ReLLU network is determined by the true risk.

Definition 5 (Approximation Error). Let’s consider the indicator function Inq, for a manifold My in a
binary classification problem where M = My U Mg. A neural network operates as a function h(x) : M — R.
The approximation error of the neural network h is then defined as:

True Risk: R(h) = /M(h — I, ) pu(x)dx. (5)

w is any continuous distribution over M.

4 Main Results

In this section, we explore how the topology of manifolds influence network size in classification scenarios. Our
results, derived methodically through construction, follow two steps. First, we approximate a homeomorphism
between the input manifold and a latent one; second, we carry out classification within this latent manifold.
This latent manifold is designed to have simple geometric features, akin to those found in spheres and tori,
while retaining the intrinsic topological characteristics of the original manifold. By design, the first phase
is purely geometric, as the topological traits remain unaltered, while the subsequent classification phase
is predominantly topological. Consequently, the required network size can be delineated into two distinct
parts. We employ Betti numbers and the condition number as metrics to gauge topological and geometric
complexities, respectively. Specifically, Betti numbers quantify the number of connected components and
holes within the manifold, whereas the condition number characterizes the manifold’s overall curvature.
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4.1 Complexity Arising from Topology

To focus on the topological aspects rather than the geometric intricacies of the manifold, our attention
shifts to the elemental shapes that typify the thickened 1-manifold collection. Among these shapes are the
d-dimensional balls, denoted as B,‘f(c), and the solid d-tori, represented by T;i’ r- The d-dimensional ball,

Bd(c), is characterized by a radius r and is centered at ¢, mathematically defined as
Bic)={xeR?:|x—cla<r}. (6)

On the other hand, the solid d-torus, T;% R, embodies a genus-1 torus with a tunnel radius of r and a tunnel

center radius of R, centered at c. Its formula is given by

TgR(c) ={xeR?: (xq — cd)2 +

It’s pertinent to acknowledge that the general structure of a d-torus becomes significantly more complex as d
increases. The provided equation for TT‘% r represents only one of its potential configurations. Nevertheless,
this depiction suffices within the context of the thickened 1-manifold ensemble.

Lemma 1 (Topological Representative). Let M C M be a d-dimensional manifold from the thickened
1-manifold family. There exist a set of my d-balls B = {Bg (c;)}™ and a set of my solid d-tori T =
{Trdi}Ri (ci)}i2, such that M is homeomorphic to the union (Ugcp B) U (Uper T), where my +my < B(M)
is a constant integer. We term M’ = (Ugcp B) U (Urper T) as the topological representative of M.

Given the classification theorem of 1-manifolds, compact 1-manifolds without boundary are homeomorphic to
a circle, while compact 1-manifolds with boundary are homeomorphic to a closed interval. Therefore, the
thickened 1-manifolds are homeomorphic to either a solid torus or a ball. Our preliminary analysis focuses
on the network size associated with d-balls and d-tori. Using this as a foundation, we then explore how
various topological configurations of thickened 1-manifold impact the size of neural networks. Proposition
determines the network size required to approximate a R? ball. While the original result is found in [Safran &
Shamir (2016), our study utilizes fewer parameters and offers a different way to approximate the threshold
function. Proposition [2] outlines a network size bound for the approximation of a solid torus.

Proposition 1 (Approximating a R? Ball, adapted from Theorem 2 in [Safran & Shamir (2016)). Given
€ > 0, there exists a ReLU network h : R? — R with 3 layers and with size at most 4d*r? /e + 2d + 2, which
can approzimate the indicator function Iga within error R(h) < € for any continuous distribution p(x).

Proposition 2 (Approximating a Solid Torus). Given € > 0, there exists a ReLU network h : R* — R with 5

layers and with size at most 22(4(d — 1)(R +r)? + 8r2 + \/ﬁ) + 9, which can approzimate the indicator

function Ipa —within error R(h) < € for any continuous distribution p(x).

Both proofs begin by expressing the indicator function as a composition of truncated power functions.
Each truncated power function can be approximated by a piecewise linear function, which can be precisely
represented by a ReLLU layer. The composition of these power functions is then thresholded, and this threshold
function can also be approximated by another ReLLU layer. The overall approximation error is estimated
across these two steps. Proposition [1{ and [2| address the network size associated with approximating B¢ and
T;f g~ Detailed proofs can be found in the Appendix E Building on this, we can infer the network size for
approximating topological representatives by combining the complexities of approximating B¢ and Tr”f R With
those of union operation. This consolidated insight is captured in Theorem

Theorem 1 (Complexity Arising from Topology). Suppose M’ is the topological representative of d-manifold
from the thickened 1-manifold family. Given € > 0, there exists a ReLU network h : R? — R with depth at

most O(log B) and size at most O(@), that can approzimate the indicator function Ing with error R(h) < €
for any continuous distribution p over R%. 3 is the topological complexity of M.
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Since a topological representative is the union of balls and solid tori, the overall network size is computed by
summing the network sizes required to approximate the balls and tori, along with the network size needed
for the union operations. The detailed proof can be found in Appendix This theorem offers an upper
bound on the network size required to approximate the indicator function of a topological representative. It
is important to note that this captures the full range of complexities arising from the topology of a manifold
M € M, given that M and M’ are homeomorphic. To the best of our knowledge, this is the first result
bounding neural network size in terms of a manifold’s Betti numbers.

4.2 Overall Complexity

For general manifolds in M € M, due to their inherent complexity, often defy explicit expression. This hinders
the direct use of function analysis for approximating their indicator functions, as was done in previous studies.
To tackle this issue, we construct a homeomorphism, a continuous two-way transformation, between M and
its corresponding topological representative M’. This method only alters the geometric properties, preserving
the object’s topological attributes. Therefore, the network size in approximating the indicator function of M is
constructed by the approximation of the homeomorphism and the classification of topological representatives.
The network size of constructing the homeomorphism is exclusively influenced by the geometric properties,
whereas the network size of classifying topological representatives pertains solely to topological properties.
The latter we already figured in previous section. This methodology enables us to distinguish the influence of
topology and geometry of manifold on classifiers. In this section, we aim to obtain the overall network size
for a classifier.

To build a homeomorphism from M, we first need to recover the homology of M. The subsequent proposition
outlines a lower limit for the number of points essential to recover the homology of the initial manifold M.

Proposition 3 (Theorem 3.1 in Niyogi et al. (2008)). Let M be a compact d-dimensional submanifold of
RP with condition number 1/7. Let X = {x1,%2,..X,} be a set of n points drawn in i.i.d. fashion according
to the uniform probability measure on M. Let 0 < e < 5. Let U = Jyc x Be(X) be a corresponding random
open subset of RP. Then for all
1
n > Ar(log(rz) +log(5)), (8)
U is a e-cover of M, and the homology of U equals the homology of M with high confidence (probability
>1—0). Here
vol(M)

A= d Mo =
! (cosdﬂl)vol(Bg/4) and A2

vol(M)
(cosd02)vol(Bj/8) ’

(9)

0, = arcsin(e/87) and 03 = arcsin(e/167). vol(BY) denotes the d-dimensional volume of the standard
d-dimensional ball of radius €. vol(M) is the d-dimensional volume of M.

This result stipulates a lower bound for the training set size necessary to recover the homology of the
manifold, which is the foundation to learn the homeomorphism between a manifold M € M and its
topological representative M’. However, directly constructing this homeomorphism remains challenging. As a
workaround, we develop a simplicial homeomorphism to approximate the genuine homeomorphism. Notably,
this simplicial approach lends itself readily to representation via neural networks.

Combined with the topological representative classification network in Theorem [I, we can construct a
classification network for general manifolds in M, as depicted in Figure [f. Initially, we project M to its
simplicial approximation |K | using a neural network NN,. This is succeeded by a network Ny that facilitates the
simplicial homeomorphism between |K | and |L|, the latter being the simplicial approximation of the topological
representative M’. Finally, a network h is utilized to classify between |L;| and |Lg|. Consequently, the
network’s size is divided into two main parts: one focused on complexities related to geometric attributes and
the other concerning topological aspects. This distinction separates topology from geometry in classification
problems.

In Theorem |2| we design such a neural network based on this training set, ensuring that approximation errors
are effectively controlled. The detailed proof is provided in Appendix Our proof strategy begins with
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the construction of a ReLU network, followed by an evaluation of the network’s size. Subsequently, we place
bounds on the involved approximation errors.

Figure 4: Construction of the network g. The network first learns a low-dimensional embedding and then
performs classification in the embedding space. This paradigm mirrors the typical operation of deep networks.
While the diagram illustrates only the process for the manifold of the positive class, the procedure for My
mirrors this operation identically.

Theorem 2 (Main Theorem). Let M = M; U Mg C RP be a d-dimensional manifold from the thickened
1-manifold family. My and Mg are two disjoint sub-manifolds of M representing two classes. The condition
number of M is % and the total Betti number of My is B. Given a training set {(x;,y;)|x; € M,y; €
{0,1}}2,, where x; are sampled i.i.d. from M by a uniform distribution, and y; = I, (%;). For any
0 > 0, if inequality @ holds, then for any € > 0, there exists a ReLU network g with depth at most

O(log B + dlog L +loglog ) and size at most O(Lf2 + 7= 4*/2]0g?? L+ Dr?log &), such that
P(R(g) <€) >1-0, (10)
where R(g) = [,,(9 — I, )*u(x)dx with any continuous distribution p.

Proof Sketch. Since M = Mj LI Mg is from thickened 1-manifold family, it has a topological representative
M = M) UM C RY where M) and M, are topological representatives of M; and Mo, respectively. The
proof follows Figure [4] by first constructing simplicial approximations |K| and |L| of M and M/, respectively.
Then we represent a simplicial homeomorphism ¢ : |K| — |L| by a neural network Ny, where K is constructed
from M and L from M’. Built on the top of this, a projection from M to its simplicial approximation |K]| is
represented by another network IV,,. The overall network can be constructed by g = h o Ny o N,,. The proof
is completed by first constructing the network g, and then bounding the approximation error.

Upon examining the depth and size of the neural network, it becomes evident that the topological complexity,
denoted by 3, and the geometric complexity, symbolized by 7, are distinctly delineated. Note that our
result provides an upper bound on the network size required to achieve a given classification error rate and
may not necessarily be tight. However, our empirical validation suggests that the topological component of
the bound has the potential to be tight in practice. While this bound serves as a theoretical guarantee, it
also offers valuable insights into the distinct factors that contribute to the complexity of the network. The

topological complexity contributes O (@) to the overall network size. In contrast, geometry contributes

o (T_d2/2 logd/2 715 + D7~ %log %)
5 Experiments

2 02
In this section, we present numerical results that showcase our topological bound O (%) in fixed dimension.

Even though this bound is derived through construction and serves as an upper limit, it is intriguing to
discover that the bound is tight and can be readily observed in experimental settings. In practical scenarios,
when training networks of varying sizes on data drawn from manifolds with different total Betti numbers S,
and achieving the same error rate, we anticipate a linear relationship between the network size and 32.
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s~0(B?)

300 95% confidence interval

s = 2.0594B% + 11.0022
r = 0.9698

b Zb 4b Gb 5'0 160 1%0
-4-3-2-10 1 2 3 4 8

(a) Solid torus of genus 1. (b) Solid torus of genus 2. (c) Relation between network size and 2.

Figure 5: Validation of topological complexity bound. We utilize manifolds characterized as solid genus-g
tori, with g spanning from 1 to 10. For each torus, we consistently sample g x 10 points from a surrounding
bounding box that cover the torus. The labels for these points are generated using the indicator function
of the solid torus. (a,b) are two examples of genus-g tori, but samples from the background class are not
visualized in the graph. (c) showcases the linear regression results between the network size and the square of
topological complexity. A 5-layer neural network with adaptive width is trained to fit tori of varying genus
g. The width of the network is increased until the training accuracy can exceeds 0.95 when the MSE loss
converges. This regression underscores a pronounced linear association between network size s and 82, with a
correlation coefficient 0.9698.

We utilize manifolds characterized as solid genus-g tori, with ¢ spanning from 1 to 10. Each genus-g torus is
synthesized by overlapping two identical tori. For each torus, we consistently sample ¢ x 10* points from a
surrounding bounding box. The labels for these points are generated using the indicator function of the solid
torus.

For training, we deploy a 5-layer ReLLU network, gradually

increasing its width until the training accuracy surpasses 0.95. s~ 0(g?)
Figure [5c| presents a regression line charting the relationship 95% Confidence interval
between network size and the squared topological complexity, 800
B32. This regression underscores a pronounced linear association
between network size s and 2, with a correlation coefficient 600
0.9698. "

5 400

The tori used in the previous experiment were sampled using
Equation [7 with parameters R = 3 and r = 1. To investigate 200 |
the impact of geometric properties, we shrink the inner radius to

r = 0.5, effectively increasing the condition number % We then of .
repeat the same experiments on these modified tori for genus , , , , , , ,
1 to 10, as shown in Figure[6] The results continue to indicate 0 ? “ 622 % e o

a linear relationship between network size and 32. Compared

to Figure learning a torus with the same genus but a larger Figure 6: Relation between network size and
condition number requires a larger network, highlighting the 2 with larger condition number.

impact of geometric complexity on network expressivity.

6 Conclusion

In this study, we delved into the intricate relationship between network size, and both geometric and
topological characteristics of manifolds. Our findings underscored that while many existing studies have been
focused on geometric intricacies, it is important to also appreciate the manifold’s topological characteristics.
These characteristics not only offer an alternative perspective on data structures but also influence network
size in significant ways.

10
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Our proposed network size bounds represent theoretical upper limits, meaning that real-world implementations
may yield efficiencies beyond these confines. To attain a more direct and refined theoretical bound, we may
need more comprehensive descriptors of manifolds that go beyond merely the Betti numbers and the condition
number. We leave this exploration for future work. We hope that our study acts as a catalyst for further
research, pushing the boundaries of manifold learning and its applications in modern Al systems.
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A Appendix

In this section, we formally prove the theoretical findings presented in the primary manuscript. Initially, we
utilize some necessary definitions and existing results. Then we prove the network size bound for balls, solid
tori and general topological representatives.

A.1 Additional Definitions

The first definition is Betti number, which is a vital part of this paper. The k-th Betti number is defined as
the rank of k-th homology group. Therefore, we have to properly define homology group first. Our definition
follows Hatcher (2002) but is tailed for simplification. We first define simplicial homology for simplicial
complexes. (Actually for A-complexes. we simplify it to avoid introducing A-complexes.) Then extend it to
singular homology that can be applied to manifolds.

Simplicial Homology. Let K be a simplicial complex, and let K* be the set of all k-dimensional simplices
in K. The set of K* together with the field Z, forms a group Cy,(K). It is a vector space defined on Zo with
K* as a basis. The element of Cy(K) is called a k-chain. Let 0 € K* be a k-simplex. The boundary dj (o) is
the collection of its (k — 1)-dimensional faces, which is a k — 1-simplicial complex. The boudnary operator is
linear, i.e.

8k(2101 + 2202) = Zlak(dl) + Zzak(c'g).

The boundary operator 9 : Ci(K) — Ci_1(K) introduces a chain complex

0, Od— 7]
e O 5 Oy 5 Cyg == Oy 25 0.

d is the maximum dimension of K. Ker 0y, is the collection of k-chains with empty boundary and Im 0y, is
the collection of (k — 1)-chains that are boundaries of k-chains. Then we can define the k-th homology group
of the chain complex to be the quotient group Hy = Ker dx/Im Ox11. The k-th Betti number is defined by

By = rank Hy.

Singular Homology. Given a topological space X, the k-th singular chain group Cj(X) is defined as the
free Abelian group generated by the continuous maps ¢ : K* — X, where K* is the standard k-simplex in
RE. Each such map is referred to as a singular k-simplex in X.

A boundary operator J, : Cr(X) — Ci—1(X) can be defined as:
¢ = Z(—1)i¢|[v0,.._ i on]>
i=0

where @|jy,,... 5, represents the restriction of o to the i-th face of K*.

“Un]

The k-th singular homology group Hy(X) is then represented as the quotient:
Hk(X) = Ker@k/lmakH.
The k-th Betti number is still defined as fj = rank Hy(X).

Connected Sum of Thickened 1-Manifold. Let M = M! x B and N' = N'! x B? be two d-thickened 1-
manifolds, where M* and N'! are compact 1-manifolds (with or without boundary), and B? is a d-dimensional
closed ball. We define the connected sum M#N by performing connected sum on their boundaries and then
extend the gluing to the interior. The process is defined as:

1. The connected sum of boundaries. The boundaries of M and A are closed manifolds, where
OM = M' x 891 and ON = N x S9!, Two open neighborhoods U € OM and V C ON are
removed from the boundaries. Then a homeomorphism h : U — 0V is defined to match the resulting
boundaries. Then glue OM \ U and ON \ V along OU and 9V via h, forming O(M#N).

2. Extend the gluing to the interiors of M and N by identifying corresponding points in the neighbor-
hoods adjacent to U and V.

14
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A.2 Preliminary Results

We present some pre-established results regarding the network size associated with learning a 1-dimensional
piecewise linear function, as well as basic combinations of functions.

Lemma 2 (Theorem 2.2. in|Arora et al. (2018))). Given any piecewise linear function R — R with p pieces
there exists a 2-layer ReLU network with at most p nodes that can represent f. Moreover, if the rightmost or
leftmost piece of a the piecewise linear function has 0 slope, then we can compute such a p piece function
using a 2-layer ReLU network with size p — 1.

Lemma 3 (Function Composition, Lemma D.1. in Arora et al. (2018)). If f1 : RY — R™ is represented by
a ReLU DNN with depth k1 + 1 and size s1, and fo : R™ — R"™ s represented by a ReLU DNN with depth
ko 4+ 1 and size so, then fs o f1 can be represented by a ReLU DNN with depth ki + ko + 1 and size s1 + s3.

Lemma 4 (Function Addition, Lemma D.2. in |Arora et al.|(2018)). If f1 : R™ — R™ is represented by a
ReLU DNN with depth k+ 1 and size s1,and fa : R™ — R™ s represented by a ReLU DNN with depth k + 1
and size so, then f1 + fo can be represented by a ReLU DNN with depth k + 1 and size s1 + s3.

Lemma 5 (Taking maximums, Lemma D.3. in [Arora et al. (2018)). Let fi,...,fm : R™ — R be the
functions that each can be represented by ReL U networks with depth k; +1 and size s;, i = 1,...,m. Then the
function f:R™ — R defined as f = max{f1,..., fm} can be represented by a ReLU network of depth at most
max{kl,...,k,} +log(m) + 1 and size at most s1 + ... + Sy +4(2m — 1).

We proceed to disclose the network size involved in learning a 1-dimensional Lipschitz function.

Lemma 6 (Lipschitz Function Approximation, adapted from Lemma 11 in [Eldan & Shamir| (2016)). For
any L-Lipschitz function [ : R — R which is constant outside a bounded interval [a,b], and for any € > 0,
there exits a two-layer ReLU network h(x) with at most [L(b — a)/€| + 1 nodes, such that

sup | f(z) — h(x)| < c.
z€R

Proof. We follow the original proving idea but adapt it for better understanding. We prove the lemma by
estimate the Lipschitz function by a piece-wise linear function within error € and use a two-layer ReLLU
network to represent the piece-wise linear function.

We first cut the interval equally into m sections [a, b] = (J;~, [a+ (i —1)d, a+id], where § = (b—a)/m. For each
interval I; = [a+(i—1)d, a+1id], we denote f;(z) = f|r,. Then V1,22 € I;, | fi(x1) — fi(x2)| < L|z1 —ax2| < L.
Let h;(x) be the linear function defined on this interval and connect (a + (i — 1)0, fi(a + (i — 1)d)) and
(a + 19, fi(a+140)). Then we can bound the difference between f;(z) and h;(z) by

|fi(x) — hi(z)] < max{|max f;(z) — min h;(z)|, | min f;(z) — max h;(z)|}

= max{| max f;(z) — fi(a + (i = 1)d)[, |min fi(z) — fi(a +i9))[} (A.1)
< Lé.

The second line assumes h;(x) is non-decreasing. The other case can also be easily verified. By setting
m= f”bf_“)], for every interval, the error is controlled by e. Let h(x) be the collection of all h; and also the
constant outside of [a, b], so we have sup,cp |f(z) — h(z)| < e.

h(zx) is a piece-wise linear function with m + 2 pieces. According to Lemma E, there exists a 2-layer ReLU
network with at most m + 1 pieces that can represent h(x). Proof done. O

A.3 Approximating Basic Solid Manifolds

Now we are in a good position to prove Proposition [1] and

Proposition 1 (Approximating a R? Ball, adapted from Theorem 2 in Safran & Shamir (2016)). Given
€ > 0, there exists a ReLU network h : R? — R with 3 layers and with size at most 4d*r? /e + 2d + 2, which
can approzimate the indicator function Igs within error R(h) < € for any continuous distribution u(x).
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Proof. We generally follow the original proof but derive a slightly different bound with fewer parameters.
The proof is organized by first using a non-linear layer to approximate a truncated square function and then
using another non-linear layer to approximate a threshold function. Consider the truncated square function

I(z;r) = min{z?, r?}. (A.2)

Clearly I(z; ) is a Lipschitz function with Lipschitz constant 2r. Applying Lemma |§|, we have a 2-layer ReLU
network hj; that can approximate I(x;r) with

sug |hii(z) — l(2)] < e, (A.3)
z€E

with at most 272 /e; + 2 nodes. Now for x € RY, let

d
hi(x) =Y hyi(ay). (A.4)
=1

Note that h; is also a 2-layer network because no extra non-linear operation is introduced in equation
and has size at most 2dr?/e; + 2d. This can also be verified by Lemma |4 Let

d
L(x) = Z L(zi;r), (A.5)

and we have
sup |hy(x) — L(x)| < de;. (A.6)

Let €; = dey, then hy has size at most 2d%r? /e; + 2d. Although L(x) is different from >~ 22, the trick here is
to show B = {x: L(x) < r?}.

On the one hand, if L(rvx) < r2, remember that
d
L(x) =Y min{a},r*} < 1% (A7)
i=1

This means for all z;, z; < r2. Therefore, L(x) = Zle x2. On the other, L(x) > r? only happens when
there exists a i, such that 27 > 7. Thus, x ¢ Bf. Consequently, one can represent Iga by L(x) < 2.

The next step towards this proposition is to construct another 2-layer ReLU network to threshold L(x).
Consider

1, x <r? =4,
f(z) = Tfr ze[r?—6,r?, (A.8)
0, x> r2.

Note that f is a 3-piece piece-wise linear function that approximates a threshold function. According to
Lemma a 2-layer ReLU network ho with size 2 can represent f. The function fo L(x) can then be estimated
by a 3-layer network h = hy o hy, whose size is 2d%r?/e; + 2d + 2. The next step is to bound the error between
h and Ips. We consider the Ly-type bound |[h(x) — Ipa(X)||L,(0) = [ga(h(x) = Ipa(x))?u(x)dx. We divide
the integral into two parts

17(x) = Tpa(x)|| Ly ()

<f o L(x) = Ipg ()|l La(y + |1f 0 L(x) = h2 0 ha(X)|] Ly (A.9)

=1 + L.

Since p(x) is continuous, there exists § such that

/S u(x)dx < €. (A.10)
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Ss={xeR¥:12-§< 2?21 x? < r?}. Combine equation E we have
I= [ (o200 ~ Ioyx) P

]Rd
= [ (70260 = Ty () *utxix

5

:/ (f o L(x) — 1)%u(x)dx (A.11)
Ss

< /Sé p(x)dx

< €9.

The first inequality is because f € [0,1], such that (f o L(x) — 1)? < 1. The second part of the error can be
easily bounded by its infinity norm.

I, = ||f o L(x) — hs ohl(x)||L2(u) <||f o L(x) — ha 0 b1 (X) |00 < €. (A.12)

The last inequality is because hs is the exact representation of f, the error only occurs between L(x) and h;.
Combine [A.11/and [A.12, and let €; = €5 = €/2, we have

1A (%) = I(x)|| Lo ) < € (A.13)
The size of network h is then bounded by 4d*r? /e + 2d + 2. O

Proposition 2 (Approximating a Solid Torus). Given € > 0, there exists a ReLU network h : R* — R with 5

layers and with size at most 22(4(d — 1)(R 4 r)? + 8r? + \/ﬁ) + 9, which can approzimate the indicator

function Ipa —within error R(h) < € for any continuous distribution p(x).

Proof. The proof is done by two steps. We first use layers to estimate a truncated function. Then estimate a
threshold function by another layer.

Consider the truncated square function and root function,

li(z;7) = min{z?, 7%},
12(1'; 71372) = min{max{\/g7 71}772}3 (71 < 72)

_1

The Lipschitz constants for [; and [5 are 2y and respectively. By Lemma |§, there is a 2-layer ReLU

2/
network to approximate l; and lp with size [472/e1] + 1 and [(y2 — 71)/(2€1,/71)] + 1, respectively. Let
d—1
L(x) = li(za;r) + 1 (> l(zi; R+71); R—r, R+7) — Ri7). (A.14)

i=1

(3

2
Then it is time to show T;,i,R =<{xeR¥: 22+ ( Zf;lle —R) <r2} = {x: L(x) <7r?}. Forx €

ITgR(X), the following inequalities hold

w7 < ( (A.15)
Rir> > a?> (A.16)
zg <17 ( : : (A.17)
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2
These indicate that L(x) = z2 + ( 24;11 z? —R> < r? when x € T;fR. And when x ¢ TﬁfR, if

(3

2
S R) still holds, clearly L(x) > r2. Otherwise, one of the inequalities in |A.15

must break. If one of breaks, then clearli L(x) > r2 If does not hold, then

— R)? > 72, resulting L(x) > 2. The violation of [A.15| resulting violation of which then
leads to L(x) > r2.

To see how a ReLU network can estimate L(x), we start by estimating each of its component. We define the
following 2-layer networks. To make the overall network take x € R? as input, we consider the structure in

figure [A.T.

Tq \_d) w h32
Figure A.1: Network construction.

The size of parts in the network is provided in table [A.1.

Table A.1: Sub-network Size.

Network ‘ Target ‘ Size
hli ll(.’L‘i;R+T) S1; = [4(R+’I“)2/€1—|+1
ho lo(z;R—r,R+7r) | sa=[r/(eaevR—71)] +1
hs1 l1 (ZE‘; ,7“) S31 = [47‘2/61] +1
hso li(xg;,r) 530 = [412/e;] + 1

By Lemmalg and Lemma B and the given structure, a ReLU network L with depth 4 and size (d—1)s11 +
S92 + 831 + S32 + 2, where d = 3, can approximate L(x) such that

sup |L(x) — L(x)| < de;. (A.18)

The next step is to threshold L(x). Consider a function

1, x<r?—4§,
f@)=q55=, we?-46r7, (A.19)
0, x> r.

This function approximates a thresholding function I[x < r?] but with error inside the interval [r? — 6, 72].

By Lemma [2 a 2-layer ReLU network f with size 2 can represent f (z). Then f oL isa ReLU network with
depth 5 and size (d — 1)s11 + s2 + s31 + S32 + 4, such that

sup |f o L(x) — f o L(x)| < €1, (A.20)
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with letting €; = €;/d.
Let h(x) = f o L(x). We claim that h(x) is the desired network with depth 5 and size

(d* 1)811 +52 +531 +532 +4

d 9 9 r
25(4(d—1)(R+r) + 8r° + T
:O(dj).

€1

)+9 (A.21)

To finalize our proof, we just need to bound the error ||h(x) — IT‘?R(X)HLQ(/L)' The proof follows proof of
Proposition [} The error is divided into two parts and is bounded Sef)arately. The only difference is we define

2
S5 to be S5 = {X eERI:r2 -5 <22+ (\/Zf__ll z? —R) < 1“2}, such that

/S u(x)dx < es. (A.22)

We can get I; < eg, and Iy < €1. Let €1 = €2 = ¢/2, we have

[[h(x) = 1(X)|[ Lo () < € (A.23)
: 2d 2 2 T
And h has size at most 24(4(d — 1)(R+r)* 4+ 8r* + m) +9. O

A.4 Approximating Topological Representatives

After getting the size arising from fundamental manifolds, we proceed to study the combination of them. We
start by proving the representative property.

Lemma 1 (Topological Representative). Let M C M be a d-dimensional manifold from the thickened
1-manifold family. There exist a set of my d-balls B = {BZ (c;)}™ and a set of my solid d-tori T =
{T¢ g, (i)}, such that M is homeomorphic to the union (Jgep B) U (Uper T), where my 4+ ma < B(M)
is a constant integer. We term M’ = (Ugep B) U (Urper T) as the topological representative of M.

Proof. Since M C M, regarding the definition, M is homeomorphic to connect sum or disjoint union of m
thickened 1-manifolds. A thickened 1-manifold is denoted as M! x B%~1. And based on the classification
theorem of 1-manifold, M is homeomorphic either to a circle S* or I = [0,1]. If M ~ S! then
M x B¥=1 ~ 81 x Bé=1 ~ TT‘%R. If M! ~ I, then M! x B¥~! ~ I x B¥! ~ B4, Now let M; and My be
two thickened 1-manifold, the connected sum of M; and Ms, denoted by M; & My, can be represented
by the union of two manifolds M; U Ms. Since M is homeomorphic to connect sum or disjoint union of m
thickened 1-manifolds, suppose m; of them are homeomorphic to B¢ and ms of them are homeomorphic to
T g. Therefore, M ~ (Upes B) U (Urer T)-

Notice that among B, the union is disjoint union, otherwise the union is still homeomorphic to a BZ. Similarly,
the union between B and 7T is also disjoint union, otherwise the union is still homeomorphic to a solid
torus Tﬁf r- The union among 7 could be joint union or disjoint union. For two solid tori T and Ty,

BT = B(T) = 2. BIFUTY) > 3> 2. Overall, B(M) > my + ms.

O
Lemma 7 (Manifold Union). M; and My are two manifolds in R?. Irq, can be approvimated by a ReLU
network hy with depth dy + 1 and size at most s; with error R(hy) < €1, Iy, can be approximated by a ReLU

network hy with depth da + 1 and size at most so with error R(hs) < €. Then Ir,um, can be approximated
within error €1 + €2 by a ReLU network with depth at most max{dy,ds} + 2 and size at most s1 + s3 + 2.
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Proof. We represent Ing,um, = Lo>0© (Ip, + Iam,) by a threshold function I,~o. The threshold function
can be approximate by a function

0, <0
flx)=1%, z€(0,0) (A.24)
1, x=>6.

with errors only in (0,d). f can be represented by a 2-layer ReLU network hy with size 2. Then if let
h = hyf o (hi + hs), according to Lemma 4| and (3| % is a neural network with depth max{d;,ds} + 2 and size
1 + s2 + 2. Then we bound the error

[Ih = Irmyomsl| Loy = Ihg o (ha + ha) — Liso 0 (Ivy + Imio)| o)
<|[hg o (hi+h2) = fo(Imy + Inmo)l Lo
+If o (Umy + Imy) = Leso 0 (Iaay + Il o)
<|[hgo(h1+h2) = hgo(Imy + Iro)l| Lo (A.25)
< htllooll(hr + h2) = (Iny + Do)l Lo ()
< |[(ha + h2) = (Ivy + Do) || 2o ()
<é€ te

O

Theorem 1 (Complexity Arising from Topology). Suppose M’ is the topological representative of d-manifold
Jrom the thickened 1-manifold family. Given € >0, there exists a ReLU network h : R? — R with depth at
most O(log B) and size at most O(@), that can approzimate the indicator function Iny with error R(h) < e
for any continuous distribution p over R%. B is the topological complexity of M.

Proof. Since M’ is a topological representative, according to Lemma |I, there exist a set of m; d-balls
B = {BZ(c;)}1*, and a set of my solid d-tori T = {Ti,Ri (ci)}iz, such that M" = (Ugeg B) U (Uper T)-
Let m = my + mg. According to Lemma [7, Ir¢ can be approximated by a ReLU network h with depth
at most max{dy,ds, ...,dn, } + logm and size at most > .-, s; + logm, with error R(h) < > 7" €;. Then
according to Proposition [l|and 2} s; ~ O(d?/e;), d; ~ O(1) and take ¢; to be all the same for all i = [m]. Let
e = me; and note that m < . We have h has depth at most O(log ) and size at most O(@), and can
approximate Irq with error R(h) <. O

A.5 Overall Complexity

We present a result from |Gonzalez-Diaz et al.| (2019), which gives a bound of network size to represent a
simplicial map.

Proposition 6 (Adapted from Theorem 4 in |Gonzalez-Diaz et al.| (2019)). Let us consider a simplicial
map ¢¢ : |K| — |L| between the underlying space of two finite pure simplicial complexes K and L. Then a
two-hidden-layer feed-forward network Ny such that ¢.(x) = Ny(z) for all z € |K| can be explicitly defined.
The size of Ny is D+d+ k(D +1)+1(d+ 1), where D = dim(|K|) and d = dim(|L|), k and | are the number
of simplices in K and L, respectively.

Theorem 2 (Main Theorem). Let M = M; U Mg C RP be a d-dimensional manifold from the thickened
1-manifold family. My and My are two disjoint sub-manifolds of M representing two classes. The condition
number of M s % and the total Betti number of My is B. Given a training set {(x;,y;)|x; € M,y; €
{0,1}}2,, where x; are sampled i.i.d. from M by a uniform distribution, and y; = Iam, (%;). For any
0 > 0, if inequality @ holds, then for any € > 0, there exists a ReLU network g with depth at most
O(log 8 + dlog L +loglog ) and size at most O(Lf2 + 742 ]0g?? L+ Dr=?log &), such that

P(R(g) <€) >1-4, (A.26)

where R(g) = [\,(9 — Iam, )?u(x)dx with any continuous distribution .
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Proof. Since M = Mj U M is from thickened 1l-manifold family, it has a topological representative
M = M, U M) C R where M) and M, are topological representatives of M; and Mo, respectively.

The proof follows by first constructing simplicial approximations |K| and |L| of M and M’, respectively.
Then we represent a simplicial homeomorphism ¢ : |K| — |L| by a neural network Ny, where K is constructed
from M and L from M’. Built on the top of this, a projection from M to its simiplicial approximation |K|
is represented by another network N,. The overall network can be constructed by g = h o Ny o N,. Note
that A is the function to approximate I M, but the data after projection and homeomorphism is from |L;].
There should be an error in this approximation. However, we will show that by using the true risk, having
|L1] € M7 will make sure ||, — Ia; || L, () = 0. We move ahead by first constructing the network g, and
then bounding the approximation error.

Network Construction. Given M is a compact submanifold of R” and x; are sampled according to a uniform
distribution, by Proposition E for all 0 < 7 < 7/2 and n > Ai(log(X2) + log(3)) (n ~ O(7 _dlog(l/Té))),
U = J, BP(x;) has the same homology as M with probability higher than 1 — 5 Note that every B (x;) is
contractlble because r < 7. Therefore by the nerve theorem (Edelsbrunner & Harer| [2022), the nerve of U
is homotopy equivalent to M. Note that U is a collection of e-balls. The nerve of U is the Cech complex,
which is an abstract complex constructed as Cech(r) = {0 C X|(\,c, Br(x) # 0}. But since the dimension
of M is d, it suffices to only consider simplices with dimension < d. Delaunay complex is such a geometric
construction that limits the dimension of simplices we get from a nerve. And in the other hand, we also do
not want to lose the radius constraint. Here we construct the Alpha complex, a sub-complex of the Delaunay
complex. It is constructed by intersecting each ball with the corresponding Voronoi cell, Ry (r) = B,(x) N Vx.
The alpha complex is defined by

Alpha(r) = {o C X| (1] Rx(r) # 0}. (A.27)

X€Eo

Based on the construction, Alpha(r) also has the same homotopy type as U. [Bern et al.| (1995) provided the
number of simplices in a Delaunay complex of n vertices is bounded by O(n/%/21). Since the Alpha complex
is a sub-complex of Delaunay complex, the number of simplices in Alpha(r) is also bounded by

O(nl¥/21y = O(de2/2 log?/? %) (A.28)

Denote K = Alpha(r).

We claim that there exists a a vertex map ¢ : x; — x} for ¢ = 1,...,n, such that with probability higher than
1-6,U =, B%(x!) has the same homology of M. We prove this claim after the proof. We can construct
an alpha complex from {x}}? ; in a similar way, L = Alpha(r). The number of simiplices is also bounded by

O(r=*/210g"? ).
¢ can be extended to a simiplicial map ¢ : |K| — |L| by

n

G(x) =D bi(x)p(x;). (A.29)

i=1

The map b; : |[K| — R maps each point to its i-th barycentrlc coordinate. According to Proposmon @ there
exists a ReLU network N, with depth 4 and size O(7 —d*/2 logd/2 =), such that ¢(x) = Ng(x) for all x € |K].

Next we construct a network IV, that projects M to its simplicial approximation |K|. The point is projecting
x € M to its closest simplex ox. According to the proof of theorem 3 in [Schonsheck et al.| (2019), such
projection can be represented as a neural network N, with depth at most logn + 1 and size at most

O(nD). Lastly, by T heoremE a neural network h with depth at most O(log 8) and size at most O( )
can approximate I with error R(h) < ¢;. And by Lemma |3 |: g = h o Ngo N, has depth at most

O(log(nf)) and size O( ﬁ + = /210gd/2 L 4+ nD). Given n ~ O(7~%log(1/76)), g has depth at most
O(log B + dlog L ~ +log log ﬁ) and size at most O(% 4+ 74’2 log®/? T—lé + D1~ %log %) Note that the
probability of the existence for such network is larger than (1 — )2 = 1 — 25 + 62 > 1 — 26. We let
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//) |L1|

Extend M’

v

Figure A.2: For a point x’ € |L1| but x’ ¢ M/, we extend M/ to make x’ € M. The extended M} is still a
topological representative.

0 = 26, such that with probability larger than 1 — §, neural network g exists and g has depth at most
2 2
O(log 8 + dlog% + log log %) and size at most O(% 4+ /2 log®/? % + D1 %log %)

Bounding Approximation Error. Now it is time to bound the approximation error R(g). We split R(g)
into two parts.

R(g) = lg — Irmi |2
< |[lho Ny o Ny — Iy, 060 Npllpyuy + 1Lagy 060 Ny = Inty [l (A.30)
=1+ I.
We first show that I = 0. Note that N, : M — |K]|, and ¢ : |K| — |L|. We claim that for x € Mj,

¢ o Ny(x) € Ly and if x € My, ¢ o Np(x) € Lg. This is true because M; and My are disjoint and L is
homotopy equivalent to M. Consequently, I1, o ¢ o N, = Irq,. Given

[Hat; © @0 Np = Inay || Loy = [Hatg © @0 Np — I, 0 d o Nyl

(A.31)
=1L, = Iamy Il Lo (uny-

The second equation is derived by letting 1/ (x’) = progo Ny (x). Now it suffices to show ||1z, — I |[L,(ury = 0.
Note that p’ is a distribution supported on |L|, it can be naturally extended to M’ by set p/(x') = 0if x’ € M’
but x’ ¢ |L|. For x’ € |L1| but x’ ¢ M, like shown in Figure [A-2] we extend M} so that x’ € M. And
such extension always exists due to the construction of |L;|. Note that |L| is a alpha complex constructed
from a r’-cover, in a way that there will be an edge if and only if two covering balls have intersection. Hence,
for any edge (xj,x}) € |L1], the length I;; of it satisfies l;; < 20" < 7'. And notice the radius of the inner
circle should be at least 7. Otherwise, the reach will be less than 7/. Consequently, the edge of |L;| is always
smaller than the radius of the inner circle. Therefore, one can always choose a M/, so that Vx’' € |L;| but

x' e Mj.
After the expansion, [Li| C M. As a conclusion, ||[Ir, — I l|L,() = 0. Hereby, we have proved I = 0.
Now we settle I;. Given Ny is an exact representation of the simplicial map ¢,
I = b = Iamy Loy (A.32)
According to Theorem (1} I; < €;. Combined together, we have
R(g) < e1. (A.33)

Note that this inequality holds only with probability larger than 1 — § because that is the probability we
successfully recover the homology of M by the training set and construct a simplicial homeomorphism. [

22



Published in Transactions on Machine Learning Research (Apr/2025)

Claim 1. M € R? is a d-dimensional manifold from thickened 1-manifold family. Suppose there exists a set
{x; € M}, and radius r, such that U = J, BP(x;) is a cover of M and has the same homology. Then
there exists a M’ € R? that is a topological representative of M. Denote the homeomorphism between them
f. Then with probability larger than 1 — &, U’ = |J, B4 (f(x;)) has the same homology as M.

Proof. We let

c(r, 7, M) = vol(M) | <log( vol(M) — +log 1) 7 (A.34)

(cosdel)vol(Bf/4 cosdeg)vol(Br/S) ]

where ) = arcsin g, 02 = arcsin 1= and 0 < r < 7/2. Given a set {f(x;)}i_,, apply propositionto M. T
n>c(r', v, M), (A.35)

then with probability 1 — 4, U’ = |J, B4 (f(x;)) has the same homology as M, with r’ < 7//2.

Note that n already satisfy that n > ¢(r, 7, M), it suffices to show ¢(r, 7, M) > ¢(r’, 7', M"). Since M’ is one
of topological representatives of M, we can always choose the radius of the fundamental members in M’ and
choose the distance between M7} and MY, to make sure that 7/ > 7 and vol(M’) < vol(M). Hence, we can
choose 7 and 7/, such that B¢ > BZ. With the same §, we have proved that c(r,7, M) > c(r', 7/, M’).

O
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