

1 **Advanced Hybrid Composites: Integrating Carbon Fiber Tape into**
2 **Glass Fiber Thermoplastics Via Automated Tape Placement**
3 **Overmolding**

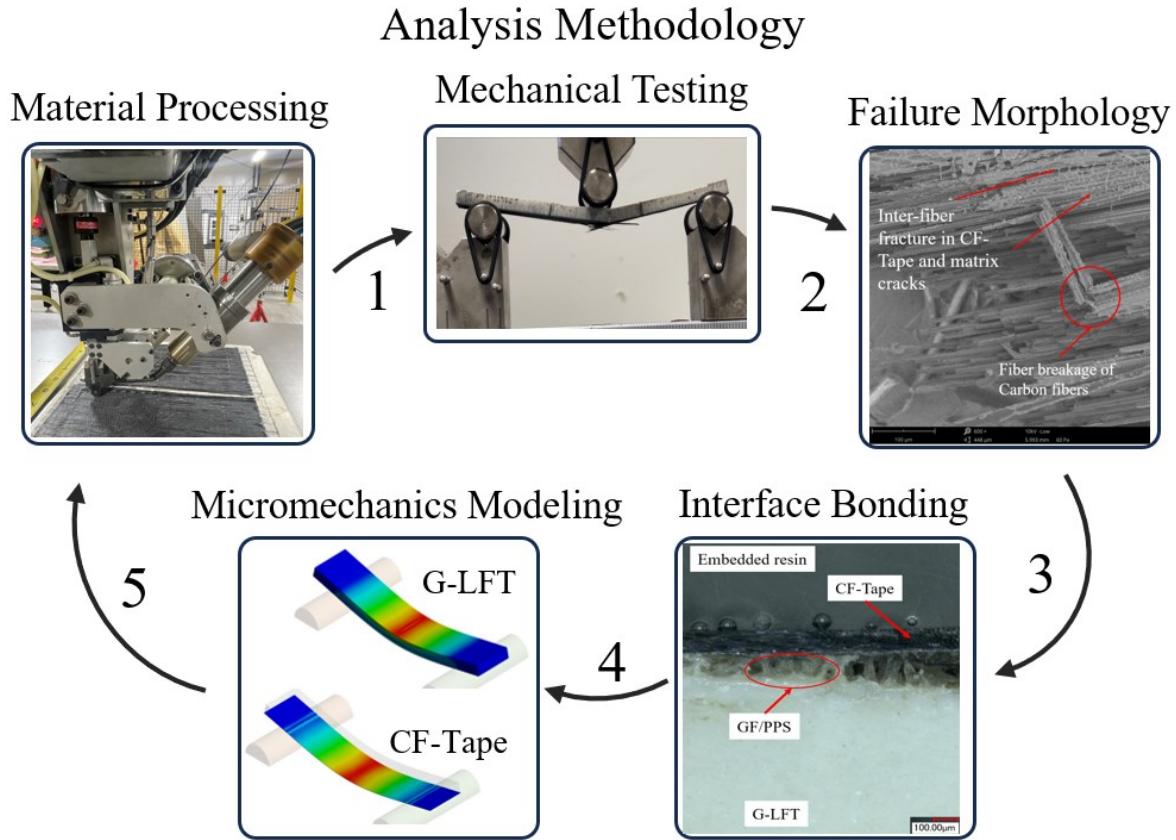
4 Georges Chahine¹, Abdallah Barakat¹, Brandon White¹, Benjamin Schwartz¹, Umesh Marathe²,
5 Pritesh Yeole¹, Ahmed Arabi Hassen² and Uday Vaidya ^{*1,2,3}

6 1. Tickle College of Engineering, University of Tennessee, Knoxville, TN, 37996 USA

7 2. Manufacturing Sciences Division (MSD), Oak Ridge National Laboratory, 2350 Cherahala
8 Blvd, Knoxville, TN 37832, USA

9 3. Institute for Advanced Composites Manufacturing Innovation, 10658 Checkerboard Lane,
10 Knoxville, TN 37932, USA.

11 * Corresponding author: Email: uvaidya@utk.edu


12 Phone: +1 (205) 410-2898

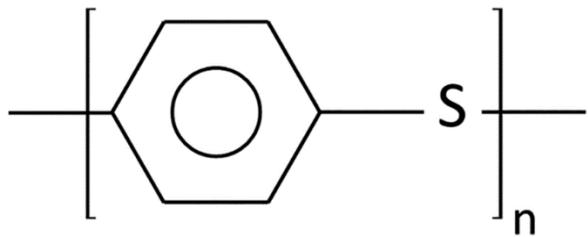
13 **Abstract**

14 Long fiber thermoplastic (LFT) composites have gained significant attention in various industries
15 due to their desirable properties, including ease of processing, recyclability, superior strength, and
16 corrosion resistance. Glass fiber (GF) is commonly used as a reinforcing material in LFT
17 composites, given its low cost and excellent mechanical properties. However, there are challenges
18 associated with the existing manufacturing processes, such as fiber attrition and limitations in
19 achieving anisotropic properties. In this study, the overmolding of glass fiber-reinforced
20 polyphenylene sulfide long fiber thermoplastic (G-LFT) and unidirectional continuous carbon
21 fiber/polyphenylene sulfide tape (CF-Tape) using an Automated Tape Placement (ATP) robotic
22 system has been investigated. The aim is to explore the potential of ATP for improving the
23 mechanical properties of LFT composites. The results reveal that the overmolding process using
24 CF-Tape on G-LFT leads to significant enhancements in mechanical performance. A 129%
25 increase in tensile strength and a 192% improvement in flexural strength were observed compared
26 to the G-LFT baseline. The bond strength at the interface was evaluated through flatwise tensile
27 testing, which resulted in partial failure within the CF-Tape and a measured bond strength of 7.52
28 MPa \pm 0.34. Thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) were
29 conducted to analyze the thermal behavior of the parts. The crystallinity was measured using DSC
30 data, and a value of 33.4% was obtained. Low-velocity impact testing has been conducted to
31 understand the dynamic behavior of G-LFT and G-LFT/CF-Tape. The impact energy absorbed
32 was found to be similar in both cases. A numerical model was used to reduce the number of
33 experiments. It was found that the flexural strength would improved by 60% by adding five layers
34 of CF-Tape. In summary, this research contributes to expanding the knowledge of overmolding
35 techniques and highlights the potential of ATP-based overmolding for enhancing the localized
36 strength and easily applied to intricate geometries.

37 **Keywords:** Long Fiber Thermoplastic, Finite Element Analysis, Micromechanics Analysis,
38 Automated Tape Placement, Overmolding.

39 **Graphical Abstract**

41 **1 Introduction**


42 Long fiber thermoplastic (LFT) composites are a popular choice in the automotive and
43 transportation sector due to their ease of processing, recyclability, superior specific modulus and
44 strength, excellent impact, corrosion resistance, and [long](#) shelf life¹. Various thermoplastic
45 polymers ranging from commodity (e.g.: polypropylene (PP), high-density polyethylene (HDPE),
46 etc.) to high-performance engineering (e.g.: polyamide (PA), polyphenylene sulfide (PPS),
47 polyether ether ketone (PEEK) etc.) have been used as matrices in LFTs^{2,3}. As a result, LFTs have
48 become one of the most advanced lightweight engineering materials, and their demand is
49 continuously increasing in various sectors such as automotive, aerospace, electrical, etc.⁴. Glass
50 fiber (GF) is frequently employed as reinforcing material in LFTs because of low-cost and superior
51 mechanical properties⁵. LFT composite parts are manufactured via injection molding (IM) or
52 extrusion compression molding (ECM). The IM process provides higher mechanical properties in
53 the direction of the flow⁶; However, [it](#) results in higher fiber attrition due to the shear stresses
54 induced in the compounding screw. ECM composites provide pseudo-isotropic properties in the

55 finished part with more fiber length retention as compared to IM ⁷. However, both IM and ECM
56 parts are limited by the aspect ratio of the discontinuous fiber ⁸⁻¹⁰.

57 One approach to enhance the mechanical performance of discontinuous fiber i.e. LFTs is
58 overmolding¹¹⁻¹³. The purpose of composite overmolding is to integrate advantages and reduce
59 shortcomings of a 100% discontinuous composite, like LFT. Alwekar et. al.⁷ studied the
60 overmolding of glass/polypropylene LFT and unidirectional continuous glass-polypropylene tape.
61 The overmolded panel was manufactured by compression molding. The authors reported 119-
62 142% and 60-70% increase in flexure strength and modulus, respectively. However, they observed
63 an out-of-plane warpage in the finished consolidated panel. Heer et al ¹⁴, studied the mechanical
64 properties of overmolded GF/polyamide 6 (PA6) long fiber thermoplastic-direct (LFT-D) and
65 glass mat thermoplastic (GMT). The authors compared the properties of the overmolded sample
66 with constituents such as LFT-D and GMT and observed that the properties ranked as follows-
67 GMT > overmolded > LFT-D. Therefore, based on the particular application, the properties of the
68 overmolded part could be tailored according to the placement of the constituent. However, the
69 process consists of some drawbacks such as out-of-plane warpage that could occur in the finished
70 part. Gan et al. ¹⁵ studied the absorption properties of grid-stiffened thermoplastic composites
71 under transverse loading. Commingled unidirectional Twintex® E-glass-PP and commingled
72 woven Twintex® E-glass-PP were used to construct the ribs and skin, respectively. The
73 commingled fibers were arranged in grooves to create the ribs, with the skin made up of
74 commingled woven fabric and integrally bonded to the ribs. This approach provided uniform fiber
75 distribution and fibers oriented in the direction of the ribs. However, despite its numerous benefits,
76 this technique is highly time-consuming and not cost-effective. Lee et al ¹⁶ developed a rib-
77 stiffened composite side impact beam (SIB) by co-molding LFT ribs with woven glass fabric
78 prepregs. The authors conducted tension and compression tests. The results showed that the
79 specific strength of the composite SIB was 130% and 10% higher than steel SIB in tension and
80 compression, respectively. It was reported that hybrid composites could be a good replacement as
81 compared to steel for SIB.

82 This study consists of fabricating and analyzing the overmolded LFT panel, the overmolding
83 conducted with automated tape placement (ATP). In recent years, ATP has become a main stream
84 composite manufacturing technique with significant increase in demand from 6% in 1990 to 35%
85 by 2020 ¹⁷. ATP in-situ thermoplastic composites has witnessed an interest from various industries
86 such aerospace, oil and gas, due to elimination of secondary post-curing process such as autoclave
87 molding, resulting in cost and energy effectiveness ¹⁸⁻²¹. More details about ATP can be found in
88 [22-30](#).

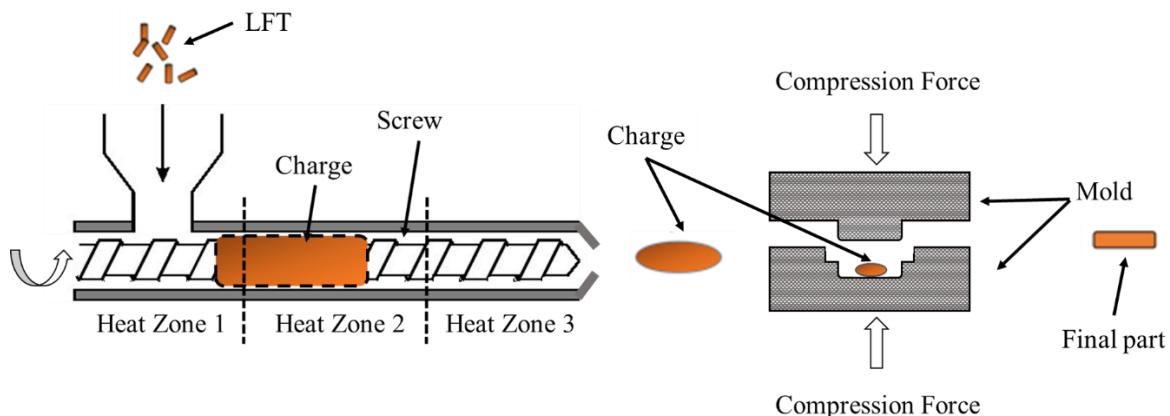
89 In this work, glass fiber reinforced polyphenylene sulfide long fiber thermoplastic (G-LFT) and
90 unidirectional continuous carbon fiber/polyphenylene sulfide tape (CF-Tape) was used. PPS is an
91 engineering thermoplastic polymer known for its high temperature resistance, featuring a
92 molecular structure composed of alternating aromatic rings and sulfur atoms as shown Figure 1.

93

94 **Figure 1. Chemical structure of Polyphenolic Sulfide (PPS).**

95 PPS boasts a noteworthy array of properties, including thermal stability, chemical resistance, flame
 96 resistance, wear resistance, processability, low coefficient of thermal expansion, and impressive
 97 mechanical characteristics. The semi-crystalline nature of PPS provides benefits such as the
 98 capability to be utilized above the glass transition temperature without compromising modulus and
 99 resistance to creep deformation ³¹. Therefore, PPS finds application in the automotive industry,
 100 particularly in situations requiring elevated temperatures ^{32,33}.

101 To the best of the authors' knowledge, no research has been conducted on the overmolding of CF-
 102 Tape and G-LFT processed with the ATP robotic system. Previous studies have explored hybrid
 103 overmolding using injection or compression molding, mostly involving pre-consolidated laminates
 104 or short-fiber substrates. However, the overmolding of in-situ consolidated continuous CF-Tape
 105 tapes onto long glass fiber-reinforced thermoplastics using ATP has not been reported. The
 106 interface bonding behavior, thermal compatibility, and mechanical performance under ATP
 107 processing conditions remain largely unaddressed. In this study, an overmolded panel of G-LFT
 108 and CF-Tape was manufactured. A morphological study was conducted to examine the bonding at
 109 the LFT-Tape interface. The interface mechanism was further evaluated mechanically using a flat-
 110 wise tensile test. A number of mechanical tests such as tensile (ASTM D3039), flexural (ASTM
 111 D790), and short beam shear (ASTM D2344) were performed in order to understand the effect of
 112 overmolding. Low velocity impact (ASTM D7136) testing was also carried out to analyze the
 113 effect of energy absorption after CF-Tape overmolding. A numerical analysis was implied to
 114 minimize experimental iterations by evaluating the effect of CF-tape layer quantity and orientation
 115 on localized strength, using a validated model of the three-point bending test.

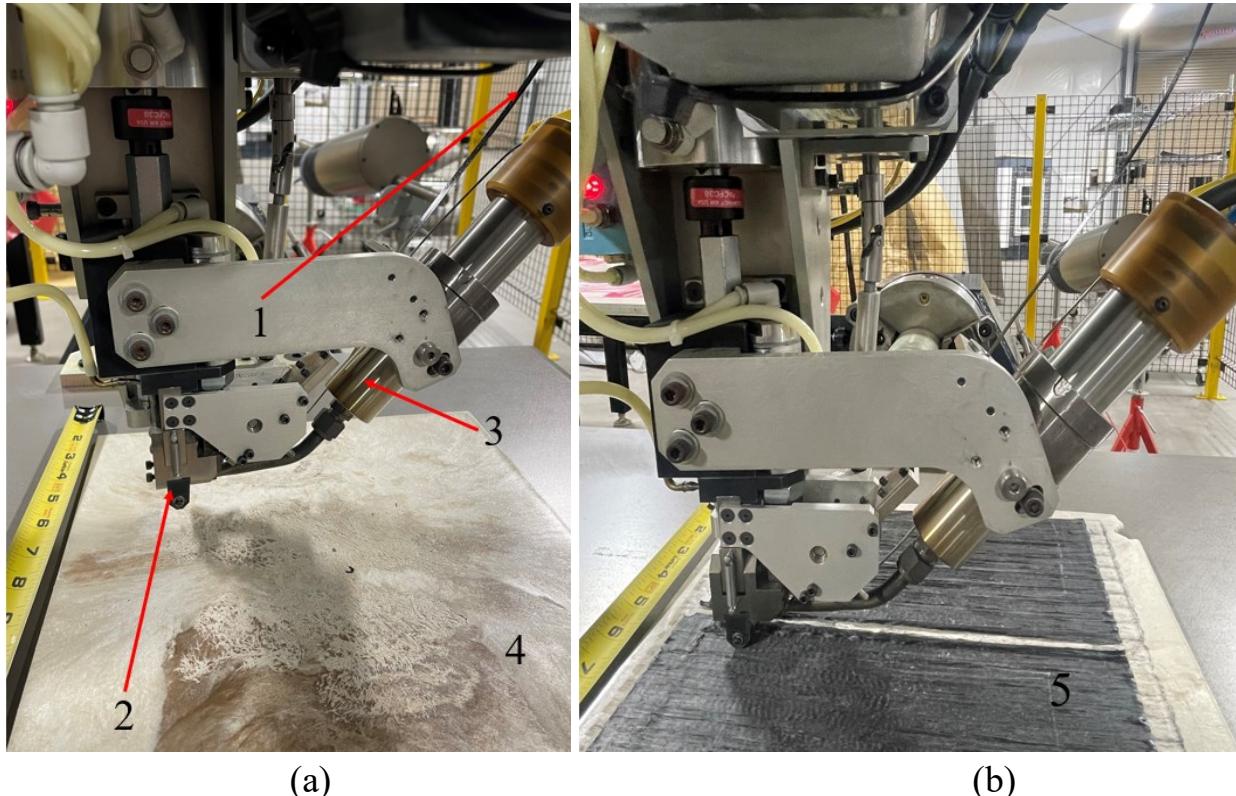

116 **2 Materials and Methods**

117 **2.1 Materials**

118 A 12.7 mm (½-inch) 60% weight (wt.) GF reinforced PPS LFT pellets (PPS-GF60, LFT
 119 Celstran®) were procured from Celanese (Ticona/Celanese, Winona, MN, USA). A 12.7 mm (½-
 120 inch) wide unidirectional CF-tape (AS4/PPS) tape, 66% wt. CF and with an approximate thickness
 121 of 0.16 mm was provided by Cytec Engineered materials, now, Solvay S.A Inc. (Alpharetta, GA,
 122 USA). ATP KAWASAKI ZXZ130L 6-axis robot, located at the IACMI-Composites Institute,
 123 Knoxville was used for the fabrication of the overmolding panel using the hot gas torch head
 124 (HGT) developed by Automated Dynamics in 2013, now, Trelleborg Group, Sweden.

125 **2.2 Processing**

126 The process to obtain an overmolded panel was divided into two steps. (a) The first step was the
127 manufacturing of the substrate LFT plate(s). G-LFT pellets and CF-Tape were dried at 80 °C for
128 8 hours before any processing. Dried G-LFT pellets were used in the ECM process to manufacture
129 the panels. ECM process involved two operations extrusion and compression molding. In the first
130 operation, the pellets were fed into a single screw extruder (B-30 IMPCO Plasticator) at a rate of
131 0.454g/min (1lb/min). The extruder consists of four heating zones to melt the polymer which were
132 kept at 295 °C, 300 °C, 305 °C, and the nozzle temperature at 310 °C. The hot, molten charge 38
133 cm x 7.6 cm approximately (15" x 3") obtained from the plasticator was transferred to the fast-
134 acting Wabash (Model DA150-36-BCX) hydraulic compression press. A 280 mm x 280 mm x 3.2
135 mm (11" x 11" x 0.125") consolidated panel was fabricated under 2.89 MPa (420 psi) pressure
136 with 60-second dwell time as shown Figure 2.

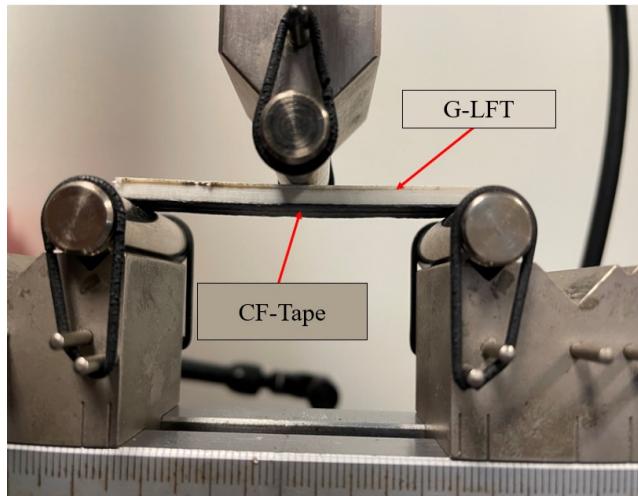

137

138 **Figure 2. Schematic of the extrusion compression molding process for LFT composites. G-LFT**
139 **are melted and conveyed through a screw extruder to form a charge, which is then transferred into**
140 **a mold cavity and compressed into the final part shape.**

141 (b) The second step involved the manufacturing of an overmolding panel using the ATP process.
142 The G-LFT panel was mounted on an aluminum flat mandrel as shown in Figure 3(a). An ATP
143 system includes a coordinated spindle, a stainless-steel compaction roller (placement head), a tape
144 dispensing system, and HGT as a heat source. The tape was fed into the roller and heated using
145 HGT. The temperature for HGT was kept at 840 °C (temperature of the torch and not at the contact
146 place with the mandrel). The nip temperature was noted to be approximately 290°C at the contact
147 point between the tape and G-LFT panel substrate. The temperature was monitored using a
148 Teledyne FLIR A700-EST IR camera. One layer of the CF-Tape was laid down on the substrate
149 as shown in Figure 3(b) and bonded with the combination of heat and pressure 63.5 Kg (140 lb)
150 applied through a compaction roller of 12.7 mm (½- inch) diameter.

151 No visible warpage or residual deformation was observed in the overmolded parts after ATP
152 processing. The parts remained flat after cooling and maintained dimensional stability. Visual
153 inspection confirmed that the flatness of the specimens was within the tolerances specified in

154 ASTM D790 and ASTM D3039, ensuring their suitability for subsequent mechanical testing.
155 During the overmolding process, the asperities of the substrate and the tape were flatten during
156 consolidation due to the pressure applied by the compaction roller and the temperature generated
157 by the HGT, leading to “intimate contact”. Once this phenomenon occurs, the presence of
158 interlaminar voids diminishes, facilitating molecular chain interdiffusion between G-LFT and CF-
159 Tape, thereby establishing a robust bond at the interface ^{34,35}.


160
161 Figure 3. Illustration of the ATP robot: 1) CF-Tape 12.7mm (½- inch), 2) The compaction roller,
162 3) The HGT, 4) The G-LFT substrate 5) The overmolded part. (a) The G-LFT substrate before
163 overmolding. (b) The CF-Tape will pass through a guide slot, the tape will be heated with the
164 HGT, and in-situ consolidated on the substrate with a load of 64.5 Kg (140 lb). applied by the
165 compaction roller.
166

167 2.3 Testing and Analysis

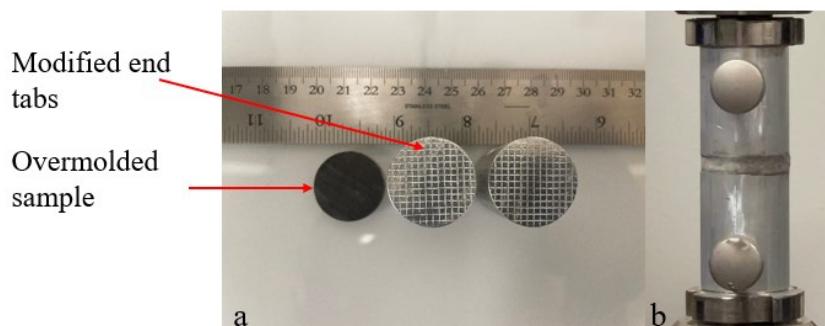
168 2.3.1 Three-Point Bending or Flexural Test.

169 Flexural specimens were cut from the overmolded plaques using an OMAX Waterjet 2026 system
170 to ensure precision and prevent edge defects or thermal damage. Samples were extracted along the
171 longitudinal direction of the CF-Tape to align with the fiber orientation. Testing was performed
172 using a universal testing machine (Test Resources, Model 313 series, Minneapolis, MN) equipped
173 with a 50 kN load cell, in accordance with ASTM D790. The three-point bending configuration
174 was arranged such that the CF-Tape side was under tensile loading, as CF performed better in tensile
175 than compression ^{36,37} while G-LFT section was under compression loading as shown in Figure 4.

176 Five specimens from each plaque (i.e., LFT and overmolded) were tested at 1.59 mm/min loading
177 rate and average flexural properties were reported.

178
179 Figure 4. Flexural setup for the overmolded specimen, the tape was from the bottom side, as CF
180 performed in Tensile better than compression.

181 The fractured surface of the flexural test specimen and the morphology of the delamination
182 between CF-Tape and G-LFT was examined using a Zeiss EVO 25 scanning electron microscopy
183 (SEM).


184 **2.3.2 Thermal Analysis.**

185 Thermogravimetric analysis (TGA) was conducted under a nitrogen atmosphere to prevent
186 oxidative effects and to accurately evaluate the thermal stability and degradation behavior, of both
187 **G-LFT and G-LFT/CF-Tape composites**. TGA Q50 was used at a heating rate of 15°C/min starting
188 from room temperature to 800°C. Differential scanning calorimetry (DSC) utilized to portray the
189 melting behavior of the G-LFT substrate and the overmolded samples. **DSC sample was sectioned**
190 **through the thickness to include the interface region, comprising both the CF-Tape and a portion**
191 **of the underlying G-LFT substrate**. DSC was performed using DSC Q2000 setup by applying
192 heating and cooling. Samples were dried 24 hours at 80°C prior testing, then heated from room
193 temperature to 400°C and cooled down to 20° in presence of liquid nitrogen (50.0L/min) with a
194 rate of 20°C/min.

195 **2.3.3 Flatwise (Through-Thickness) Tensile Strength.**

196 A flatwise tensile test was performed to understand the bonding characteristic of the overmolded
197 tape on the G-LFT panel. According to ASTM D7291 standard, through-thickness testing
198 specimens were prepared with an average diameter of 25.4 mm and 4 mm thickness. Two
199 aluminum cylinders were attached to the specimen using J-B Weld™ epoxy. A square mesh
200 pattern was created on the aluminum surface (see Figure 5) to increase the surface area for proper
201 bonding. Prior to the testing, the specimen was kept under pressure (50 psi) for 24 hours for the

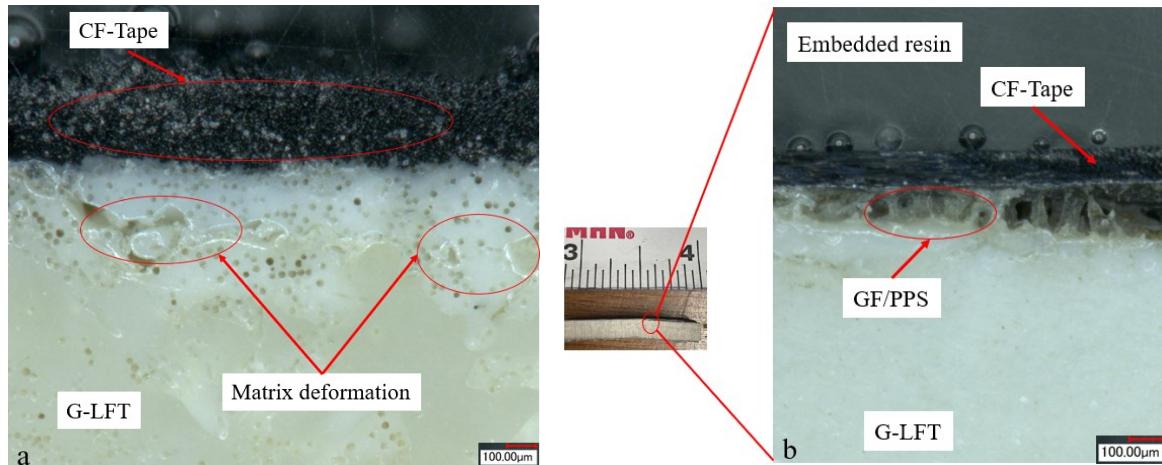
202 complete curing of epoxy. Test resources frame (50 kN load cell) was used to pull the samples at
203 0.1mm/min loading rate.

204
205 Figure 5. (a) Sample preparation of the overmolded part and surface modification of the aluminum
206 end tabs. Aluminum tabs were modified to achieve a failure on the interface and not in the glue
207 part. (b) Glue placed on the end tabs and specimens were mounted for out of plane tension test.

208 2.3.4 Tensile (In-Plane) Test.

209 A set of five (5) specimens was prepared for tensile testing according to ASTM D3039. The
210 average width and thickness of the overmolded sample was 254 mm x 25.4 mm (Length x Width).
211 All specimens were tapped using GEEEX 1871224N glass epoxy (Accurate PLASTICS) and
212 superglue (Gorilla). The test was performed on the 50 kN load cell test resource frame and samples
213 were pulled at 2 mm/ min loading rate. Strain was monitored using an axial extensometer, Model
214 3542 Technology Corp, Jackson WY 83001 USA.

215 2.3.5 Drop-Tower (Low Velocity) Impact Test


216 The low velocity impact (LVI) tests were conducted using the Instron CEAST 9340 drop tower.
217 A set of 5 specimens with 101.6mm x 152.4mm (4x6 in) dimensions were prepared according to
218 ASTM D7136. In this test, a hemispherical tup of 16 mm (0.63in) diameter and 3.22 kg (7lbs)
219 weight was used. A tup was dropped on a specimen from 1080 mm (42.5in) height with 4.6 m/s
220 velocity, generating 34 J kinetic energy.

221 3 Results and Discussion

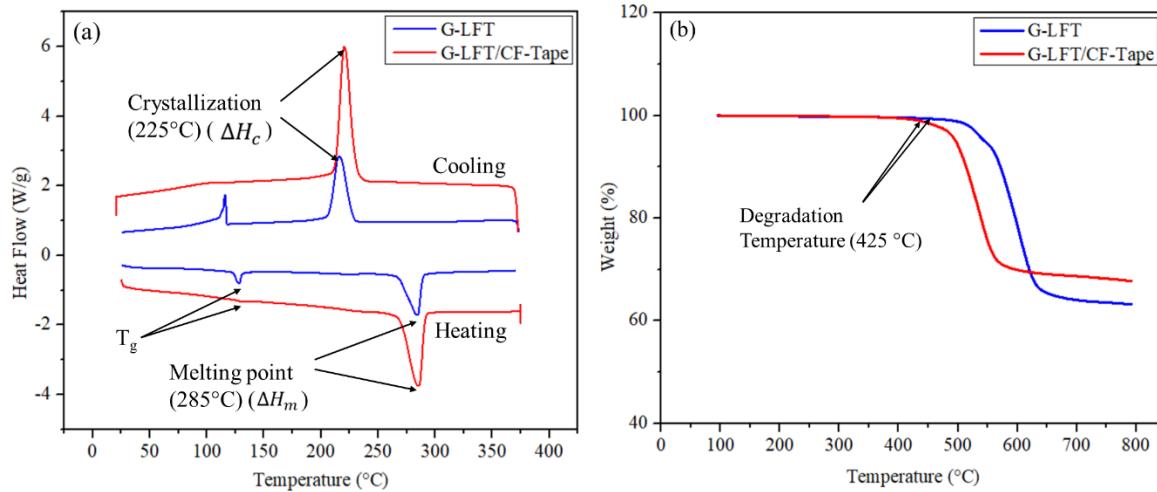
222 3.1 Interface Bonding

223 Figure 6a shows the optical microscopy (OM) image of the overmolded sample. OM image
224 analysis was conducted to evaluate the weld line behavior and the effect of ATP overmolding on
225 the G-LFT surface. Figure 5b reveals no porosity or defects in the substrate G-LFT surface or at
226 the interface. However, matrix deformation has been noticed at the interface, attributed to the heat
227 applied by the HGT during the ATP overmolding. This deformation suggests localized melting,
228 which promotes molecular interdiffusion between the G-LFT and CF-Tape, enhancing interfacial
229 bonding. To further understand the bond characteristics, interlaminar shear strength (ILSS) testing
230 was conducted in accordance with ASTM D2344. The ILSS specimens were tested at a constant
231 rate of 1 mm/min. Figure 6b shows the OM image of the failed sample. A strong bond at the

232 interface was indicated by the limited delamination between the two surfaces and the presence of
 233 G-LFT matrix residue on the CF-Tape surface, suggesting cohesive failure. Additionally,
 234 embedded resin and fiber imprints were observed, pointing to the development of mechanical
 235 interlocking. The ILSS increased from 18 MPa for the G-LFT to 24 MPa after ATP overmolding,
 236 representing a 33% improvement, supporting the effectiveness of the bond formed at the interface.

237 Figure 6. (a) OM image showing the bonding adhesion on the interface after the overmolding
 238 process between the G-LFT and the CF-Tape. (b) A slight delamination has been noticed on the
 239 interface of an ILSS tested sample, the GF/PPS attached on the failed tape evidence the strong
 240 bonding on the interface.
 241

242 3.2 Thermal Analysis

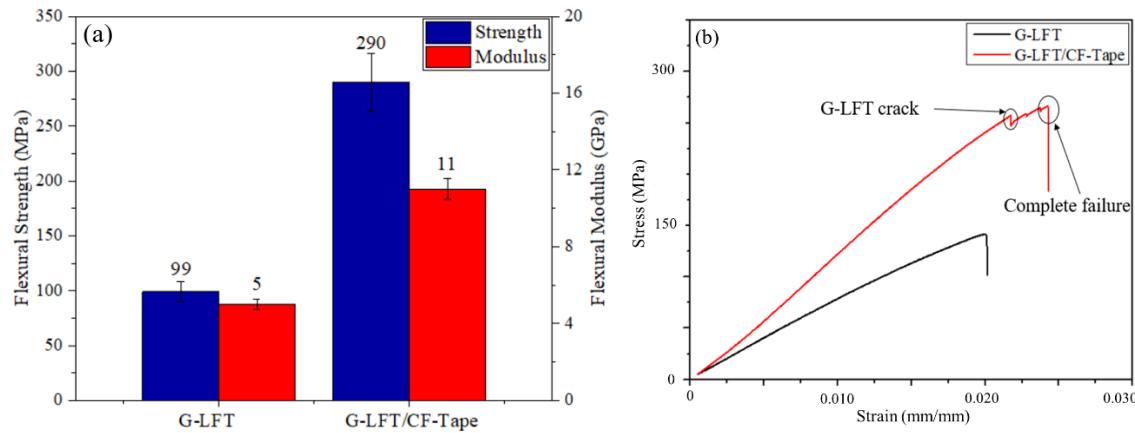

243 Figure 7 show the DSC and TGA results of G-LFT and G-LFT/CF-Tape, respectively. The twenty
 244 (20) samples were dried at 80°C for 8 hours in the oven to avoid moisture effect. The heat-cool
 245 cycle was applied for the DSC. It can be noticed from the heating cycle that G-LFT and G-LFT/CF-
 246 Tape had a similar glass transition T_g and melting point in the range of 125 -130°C and 280-285°C
 247 respectively. Melting point determines the lower limit for processing temperature. It could be
 248 observed from the cooling cycle that the recrystallization of the G-LFT and the overmolded sample
 249 started at 245°C. The degree of crystallinity χ_c of G-LFT and G-LFT/CF-Tape was calculated
 250 using eq 1:

$$251 \quad \chi_c = \frac{\Delta H_m - \Delta H_c}{\Delta H_{lit} \times W_p} \times 100 \quad (1)$$

252 where, ΔH_m (20.21 J/g) and ΔH_c (15.1 J/g) are the enthalpy at melting and cooling
 253 (crystallization), respectively, extracted based on the DSC data plot Figure 7a. ΔH_{lit} is adapted
 254 from the literature, in case of PPS is 76.4 J/g³⁸. W_p is the weight fraction of PPS in the composite
 255 sample which is 40% in the G-LFT based and 37% in the overmolded part based on TGA plot
 256 shown in Figure 7a. It was found that χ_c of G-LFT was 33.4% \pm 0.6% and around 33.5% \pm 0.7%
 257 for G-LFT/CF-Tape. The small difference in crystallinity is within the measurement variability
 258 and is not considered statistically significant. Knowing that the crystallinity of the materials is

259 directly affected by the cooling rate of the manufacturing process. Noting that during ATP
 260 overmolding the CF-Tape was exposed to a cooling rate of $1000\text{K} \cdot \text{min}^{-1}$. Since the surface of the
 261 G-LFT part is exposed to the heat of the HGT during the overmolding process, maintaining the
 262 same degree of crystallinity was critical to achieve a good bonding on the interface^{39,40}. This result
 263 can be attributed to the combined effects of localized heating and geometry. The thin tape thickness
 264 (0.15–0.16 mm) may have led to a rapid initial surface cooling, while the internal region of the
 265 tape, in contact with the heated G-LFT substrate, cooled more slowly. Additionally, temperature
 266 gradients across the tape thickness and the measurement location could have masked local
 267 variations in crystallization. Similar observations have been reported in the literature for PPS
 268 composites processed with rapid cooling but subject to non-uniform thermal conditions⁴¹.

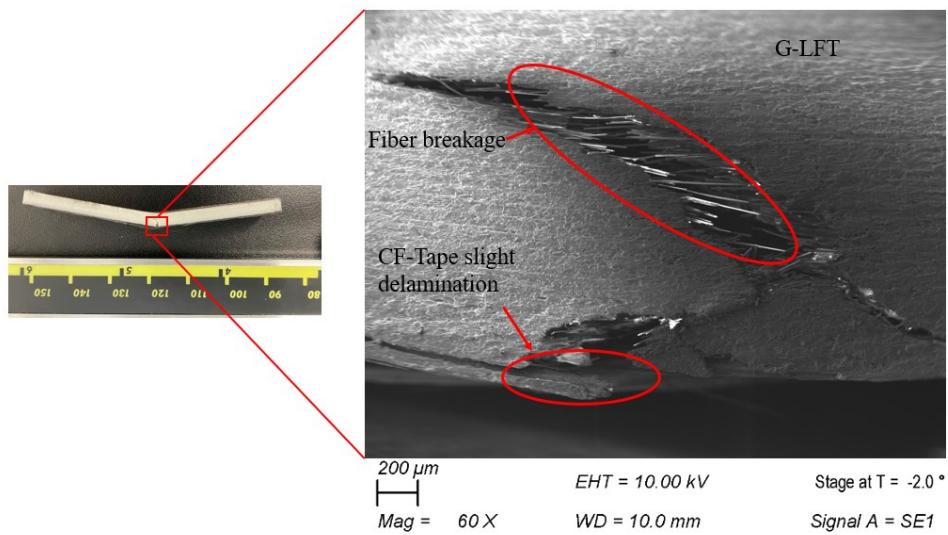
269 TGA was conducted to evaluate the degradation behavior of G-LFT and G-LFT/CF-Tape. It can
 270 be observed from Figure 7b that less than 1% weight loss was reported up to 425°C in both
 271 samples, indicating PPS stability and the upper processing temperature limit. Figure 7b shows the
 272 degradation behavior of G-LFT and overmolded samples in air. The complete degradation of G-
 273 LFT and G-LFT/CF-Tape was observed at 650°C and 575°C respectively. At 650°C, G-LFT
 274 maintained 62% residue which was very close to the initial content of glass fiber (60%). G-
 275 LFT/CF-Tape sample showed a total of 66% residue. G-LFT pellets contain 60% glass while CF-
 276 Tape contain 66% of CF. Therefore, the average fiber content is close to 63-64%. However, the
 277 higher residue may be due to the overmolding process as the effect of pressure and heat of the
 278 compaction roller applied by the ATP on the G-LFT substrate would peel off a small amount of
 279 the polymer.



280
 281 Figure 7. (a) DSC of G-LFT and G-LFT/CF-Tape, showing the melting point (285°C) and the
 282 crystallization point (225°C), (b) TGA analysis of G-LFT and G-LFT/CF-Tape showing that the
 283 degradation temperature of the composites started at 425°C.

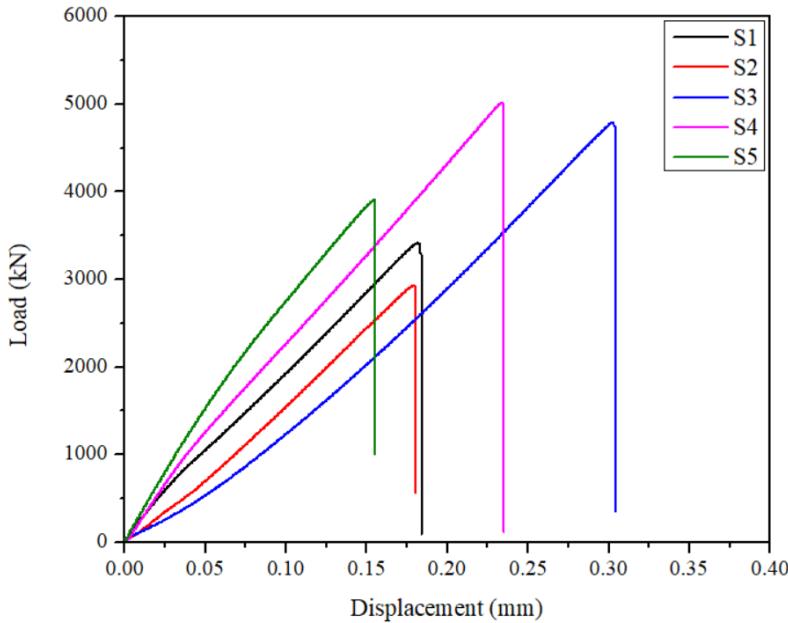
284 **3.3 Flexural Testing**

285 A three-point bending test was conducted to assess the performance of continuous CF-Tape on the
 286 G-LFT plaque. Figure 8a presents the properties derived from the flexure test results. Figure 8a
 287 displays the flexural strength and modulus, while Figure 8b illustrates the load vs displacement
 288 curve. Notably, a single layer of 0.15mm unidirectional CF-Tape was overmolded onto the G-LFT
 289 surface.


290 The flexural strength and modulus of the overmolded G-LFT increased from 99 MPa to 290 MPa
 291 (a 192% increase) and from 5.09 GPa to 11.04 GPa (a 120% increase), respectively. These results
 292 demonstrate that the addition of CF-Tape to the G-LFT plaque enhances its bending resistance.
 293 Additionally, both samples exhibited a brittle type of failure, as observed in Figure 8b. **The reduced**
 294 **deformability observed in the composite is primarily attributed to the high glass fiber content (>60**
 295 **wt%), which significantly increases stiffness and introduces stress concentrations at the fiber-**
 296 **matrix interface. While the semi-crystalline nature of PPS contributes to the overall rigidity of the**
 297 **matrix, its effect is secondary compared to the dominant influence of the reinforcing fibers on**
 298 **limiting the material's ability to deform under load.** This leads to brittle failure, as the material
 299 fractures rather than plastically deforming⁴².

300
 301 Figure 8. (a) The average flexural properties of the manufactured composites with and without
 302 tape. An increment of 192% in flexural strength and 120% in modulus has been noticed along the
 303 fiber direction of the tape. (b) Load versus displacement for the three-point bending testing
 304 illustrating a brittle failure in the G-LFT and the overmolded samples.

305 The G-LFT exhibited a single-step brittle failure, while the G-LFT/CF-Tape failed in two stages.
 306 To comprehend the two-step failure mechanism, SEM analysis was conducted on the failed
 307 specimen, as depicted in Figure 9. In the first stage, a crack was initiated in the G-LFT section and
 308 propagated towards the interface, resulting in delamination. The initiation of the crack in the G-
 309 LFT region indicates good bonding between the two surfaces. **As shown in Figure 9, fiber breakage**
 310 **was observed within the G-LFT layer and slight delamination occurred at the CF-Tape interface.**
 311 **The fiber fracture ahead of the delamination zone suggests that the interfacial strength was**
 312 **sufficient to transfer the load before local failure occurred.** These features point to a mixed failure


313 mode involving both cohesive fracture in the G-LFT and interfacial separation. It is noteworthy
314 that both samples were consolidated without any surface treatment. Literature suggests that the
315 interfacial bonding can be improved by mechanical (grid blasting)⁴³, non-mechanical (plasma)⁴⁴
316 or chemical^{34,45} treatments. Surface treatment analysis was out-of-scope for this work and will be
317 evaluated elsewhere.

319 Figure 9. SEM image of the fractured overmolded G-LFT/CF-Tape sample after flexural testing.
320 The image shows crack initiation in the G-LFT region and slight delamination at the interface,
321 indicating good bonding. Fiber breakage within the G-LFT and matrix remnants on the CF-Tape
322 surface suggest a mixed cohesive-interfacial failure mode.

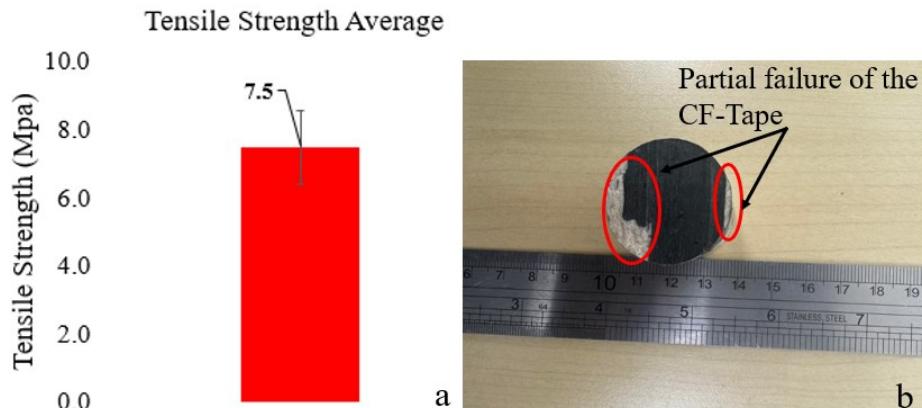
323 3.4 (Through-Thickness) Tensile Strength.

324 Through-the-thickness (flatwise) tests were conducted to determine the out-of-plane tensile
325 strength of the overmolded part. A total of five specimens were tested, and the load-displacement
326 curves are depicted in Figure 10. While all samples exhibited similar brittle failure, there was
327 significant variation noted in the peak load. Table 1 provides the dimensions and peak load of each
328 specimen. The failure strength was calculated by dividing the peak load by the bonded area of each
329 specimen. Although slight thickness variations were present, they did not affect the calculated
330 strength since the failure load was normalized by the bonded cross-sectional area. The variation in
331 peak load primarily reflected dimensional differences, but these were accounted for in the strength
332 calculation, resulting in a consistent average value with less than 5% standard deviation.

333

334 Figure 10. Load-displacement curves from flatwise tensile tests of G-LFT/CF-Tape overmolded
 335 specimens. The sudden load drops indicate brittle failure behavior. Variations in peak load are
 336 attributed to differences in sample thickness, while all specimens showed similar failure
 337 mechanisms.

338 It can be concluded that the peak load values were directly correlated with the thickness of the
 339 specimen. Thickness variation in the samples was observed during the manufacturing of substrate
 340 G-LFT. During ECM process, the hot charge (270°C) was placed on the relatively colder mold (at
 341 65°C), resulting in uneven material flow and thickness variation. However, this variation was
 342 limited to the peak load only, and the average failure strength was 7.5 MPa with less than a 5%
 343 standard deviation, as illustrated in Figure 11a Quan et al⁴⁶ showed that the flatwise tensile
 344 strength of the PEEK joints bonded by the carbon fibre prepreg attained an average of 7.6 MPa
 345 before attaining complete failure. Saeed et al⁴⁷ achieved an out-of plane tensile strength of 7 MPa
 346 for a continuous carbon fibre reinforced 3D printed polymer composites.

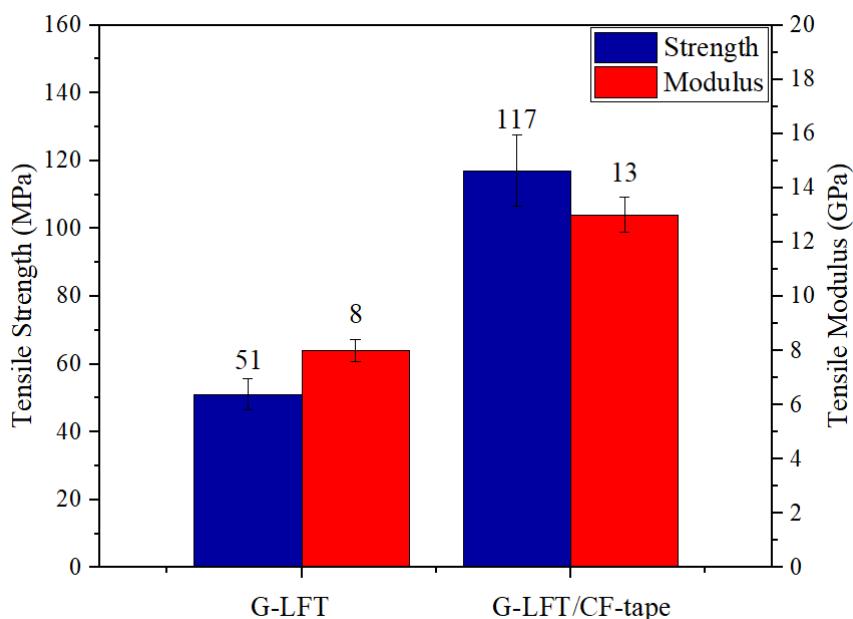

347 A partial failure of the CF-Tape at the interface was observed, as shown in Figure 11b This partial
 348 failure of the tape suggests strong adhesion at the interface between the G-LFT and the CF-Tape.

349 Table 1. Dimensions and peak load of the overmolded samples tested under flatwise tension. While
 350 thickness normalization was applied in the stress calculations, variability in peak load remained
 351 due to factors such as interfacial bonding quality and adhesive layer consistency.

Specimen	Thickness (mm)	Diameter (mm)	Flatwise Strength (MPa)	Average and Std Deviation
S1	4.65	25.51	6.46	
S2	4.55	25.26	6.20	

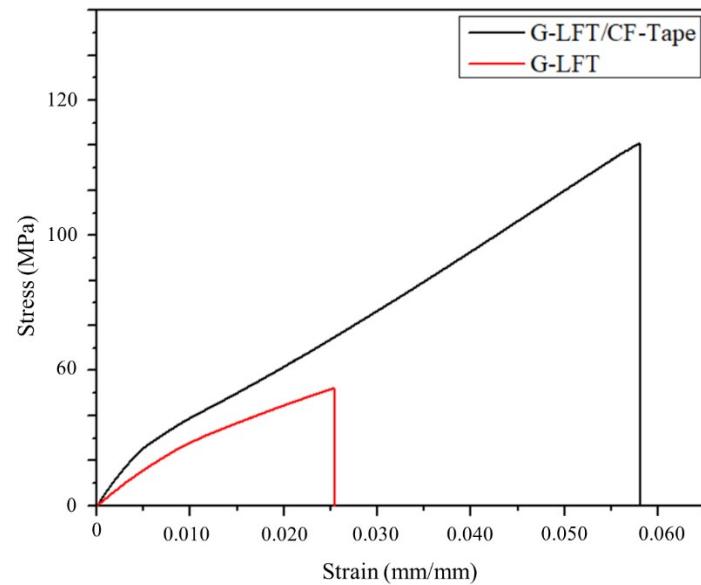
S3	4.75	25.34	6.78	7.52 ± 0.34
S4	4.81	25.46	9.31	
S5	4.70	25.31	7.63	

352

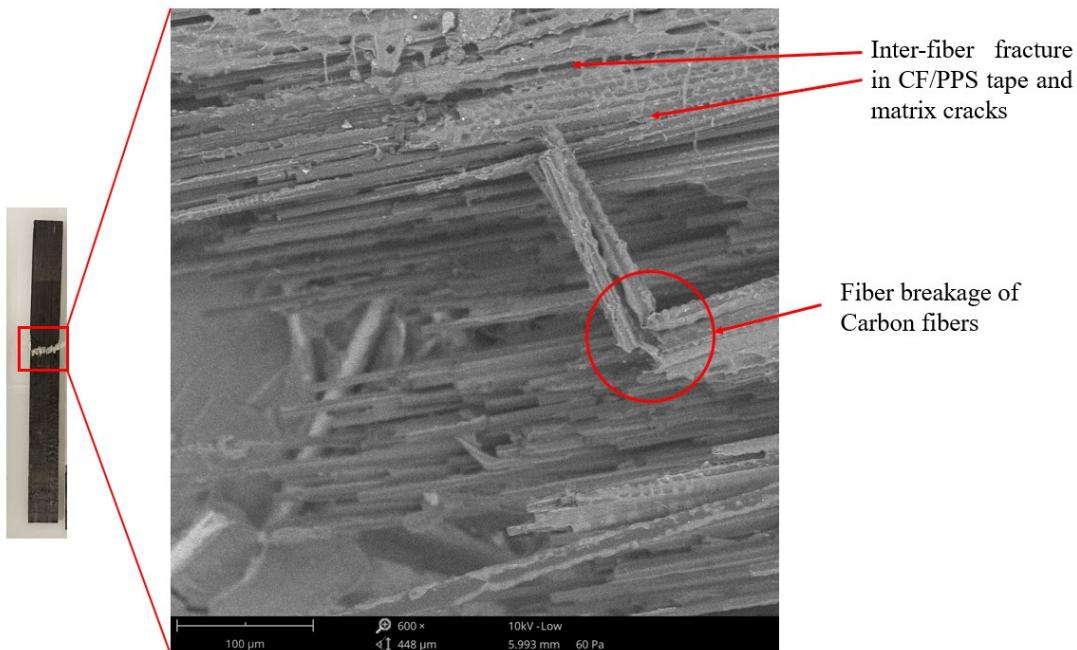


353

354 Figure 11. (a) Flatwise tensile strength of the G-LFT/CF-Tape overmolded part. (b) A partial
 355 failure of the CF-Tape on the interface between the G-LFT and each patch of the tape processed
 356 on the ATP.


357 3.5 Tensile Test

358 The tensile strength of the overmolded part indicates an increase from 51 MPa to 117 MPa
 359 (~129%) in strength, and from 8 MPa to 13 GPa (~62%) in modulus as shown in Figure 12. All
 360 specimens failed according to ASTM D3039, in the gauge length area.


361

362 Figure 12. Tensile properties of the G-LFT and G-LFT/CF-Tape. An improvement of 128% and
363 62% in tensile strength and modulus, respectively, were achieved in the G-LFT/CF-Tape
364 compared to G-LFT.

365
366 Figure 13. Load versus displacement for the tensile test showed the failure behavior for the G-LFT
367 and the G-LFT/CF-Tape, demonstrating a strong in-plane bonding on the interface.

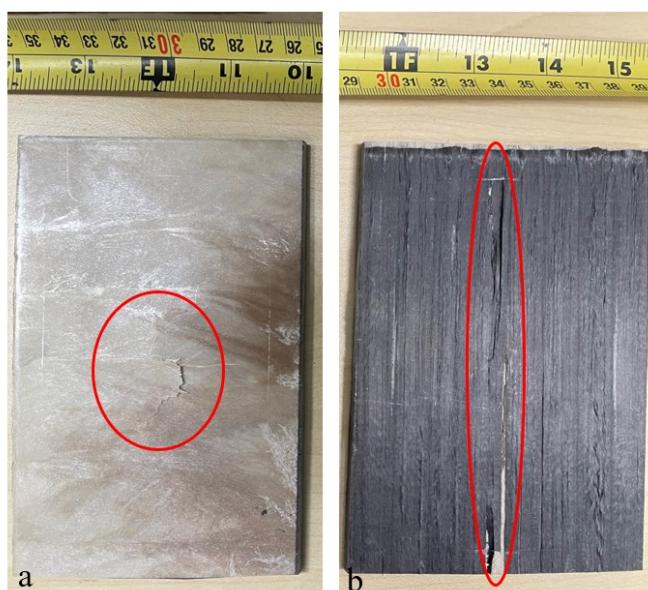
368 Figure 13 illustrate the load versus displacement for the tensile tested coupons. The linear response
369 for the in plane tensile test and the brittle failure (sudden drop) at the ultimate strength showed a
370 good bonding between the fiber and the matrix (G-LFT) as well as on the interface between the
371 overmolded CF-Tape and the substrate G-LFT. SEM investigations of the overmolded G-LFT/CF-
372 Tape samples showed that macroscopically visible inter-bundle fractures were accompanied by
373 interfibre fractures of the CF-Tape. Matrix cracks, which grew parallel to the tensile direction were
374 present as shown in Figure 14. Failure between fibers and the matrix and the breakage of individual
375 carbon fibers (CF) caused the discontinuous phase to fail in the transition zone⁴⁸. The
376 discontinuous G-LFT mainly failed due to layers separating. Although fibers broke at a
377 microscopic level, it became visible when whole fiber bundles failed together. As shown in Figure
378 13, both samples (G-LFT and G-LFT/CF-Tape) showed brittle failure at maximum load,
379 highlighting a bond strength of 117 MPa.

380

381 Figure 14. SEM image of the fractured G-LFT/CF-Tape interface after tensile testing. Matrix
 382 cracking and carbon fiber breakage are observed due to strong interfacial bonding, which enabled
 383 effective load transfer into the CF-PPS layer. The resulting fiber and matrix failure confirms good
 384 adhesion at the interface and the activation of composite action rather than premature
 385 delamination.

386 The increase in tensile (129%) and flexural (192%) strength after applying a single CF-Tape layer,
 387 despite its limited thickness (0.15–0.16 mm), can be attributed to several factors. The
 388 unidirectional continuous carbon fibers in the CF-Tape provide significantly higher stiffness and
 389 load-bearing capacity compared to the discontinuous glass fibers in the G-LFT substrate.
 390 Positioned on the tension side, the CF-Tape contributes effectively under both tensile and bending
 391 loads, particularly in flexural tests where surface stresses are critical. The enhancement is further
 392 supported by the strong interfacial bonding achieved during ATP processing, which enables
 393 efficient stress transfer from the matrix to the reinforcement. Similar findings have been reported
 394 in previous studies where thin localized reinforcements significantly improved mechanical
 395 performance due to favorable stress distribution and bonding⁴⁹.

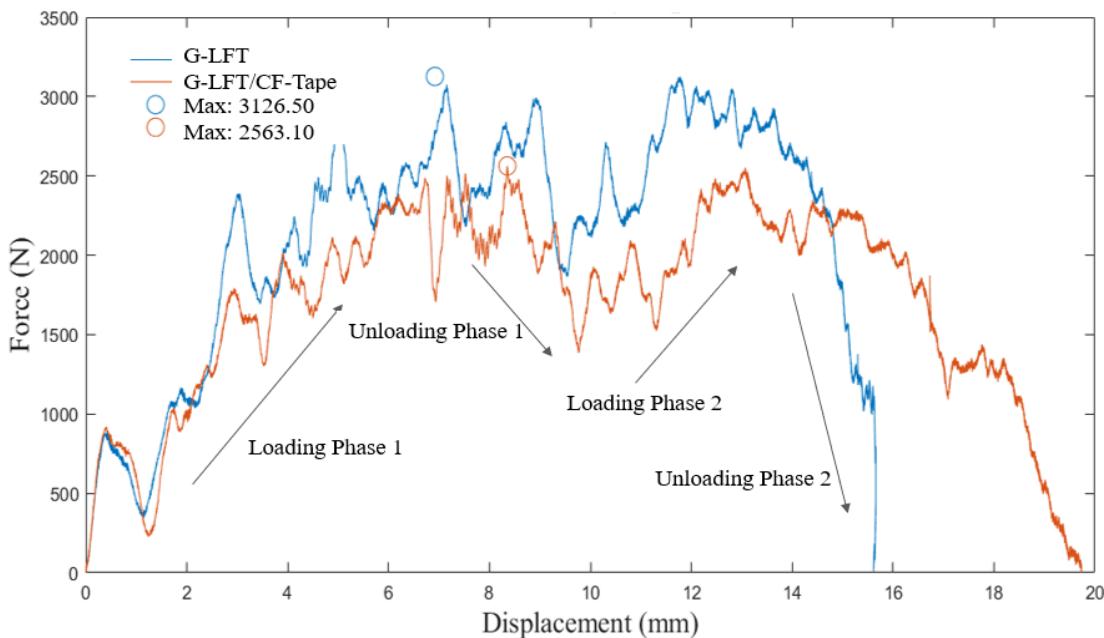
396 3.6 Drop-Tower (Low Velocity) Impact Test


397 LVI Test was performed on both samples G-LFT and G-LFT/CF-Tape to understand the
 398 impact behavior. Table 2 summarizes the LVI results as the initial impact energy, energy
 399 absorption concerning maximum force, and deformation.

400 Table 2. Results summary of the tested specimens.

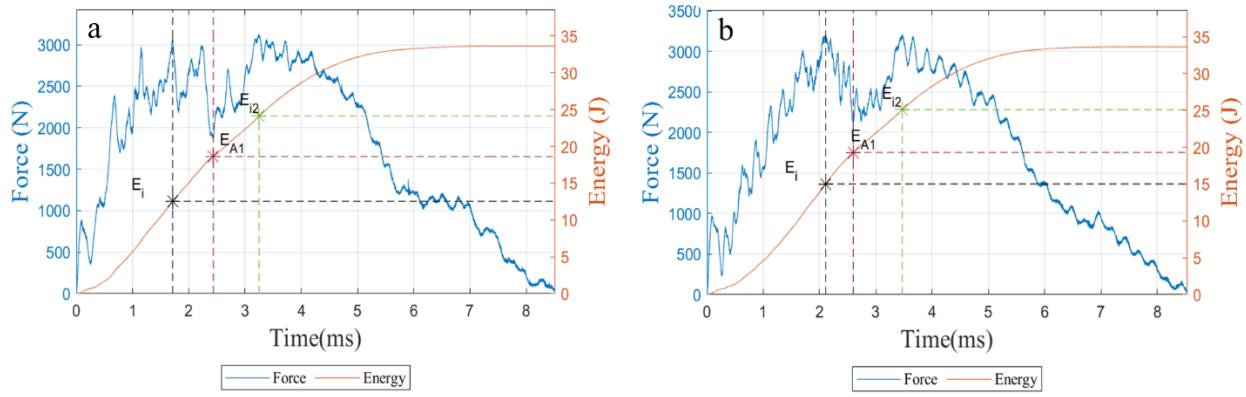
Specimen ID	Input Energy (J)	Average Contact Force (N)	Average Deformation (mm)
-------------	------------------	---------------------------	--------------------------

G-LFT	34.02	3010.12 ± 284.30	16.96 ± 2.34
G-LFT/CF-Tape	34.02	2886.09 ± 287.30	19.56 ± 1.87


401
402 The impact energies were 20J, 25J, 30J, and 34J respectively. No visible damage was observed on
403 the samples before 34J energy. Therefore, only 34J impact energy results are explained in this
404 work. The damage on the back surface for both samples is shown in Figure 15. The G-LFT
405 specimen showed a hemispherical-shaped crack same as the dimensions of the impactor. Whereas,
406 a vertical crack along the direction of the CF orientation was observed in the overmolded sample.
407 The crack orientation was observed due to the delamination of CF tape and energy was released
408 along the easy path as the direction of fibers.

409
410 Figure 15 (a). 10.16 x 15.24 cm (4x6 in) G-LFT tested composite panels. (b) 10.16 x 15.24 cm
411 (4x6 in) G-LFT/CF-Tape tested panel. A vertical crack along the direction of the CF orientation
412 was observed in the overmolded sample. The crack orientation was observed due to the
413 delamination of CF-Tape.

414 Figure 16 shows the force versus displacement behavior of both samples. It can be observed that
415 both samples exhibited continuous loading and unloading forces. In hybrid samples, the impact
416 energy is dissipated in various ways fiber/ matrix failure, delaminations, friction, etc ⁵⁰. Notably,
417 both samples were impacted such that the G-LFT surface was struck (top surface). The G-LFT
418 sample contains several chopped fibers, which led to microcracking and resulted in a loading and
419 unloading type of failure. The G-LFT/CF-Tape sample exhibited a maximal force response that
420 was 10% lower than the G-LFT force response while showing a 15% increase in displacement at
421 the time of failure. Ideally, the hybrid sample should have a higher load and lower displacement
422 since CF has greater strength and glass fiber has a higher elongation ⁵¹. In this study, only one
423 layer of CF (0.16mm thick) was added, while the G-LFT was ~3.2mm thick. Therefore, further


424 evaluation is needed to understand the exact failure mechanism, which was beyond the scope of
425 this work.

426

427 Figure 16. Force-displacement curves from low-velocity impact (LVI) testing of G-LFT and G-
428 LFT/CF-Tape specimens. Both samples show a loading-unloading response typical of hybrid
429 composites. The overmolded sample exhibits greater deformation and slightly lower peak force,
430 attributed to energy dissipation through interfacial delamination and fiber-matrix failure
431 mechanisms. Blue G-LFT/CF-Tape specimens, orange G-LFT specimens.

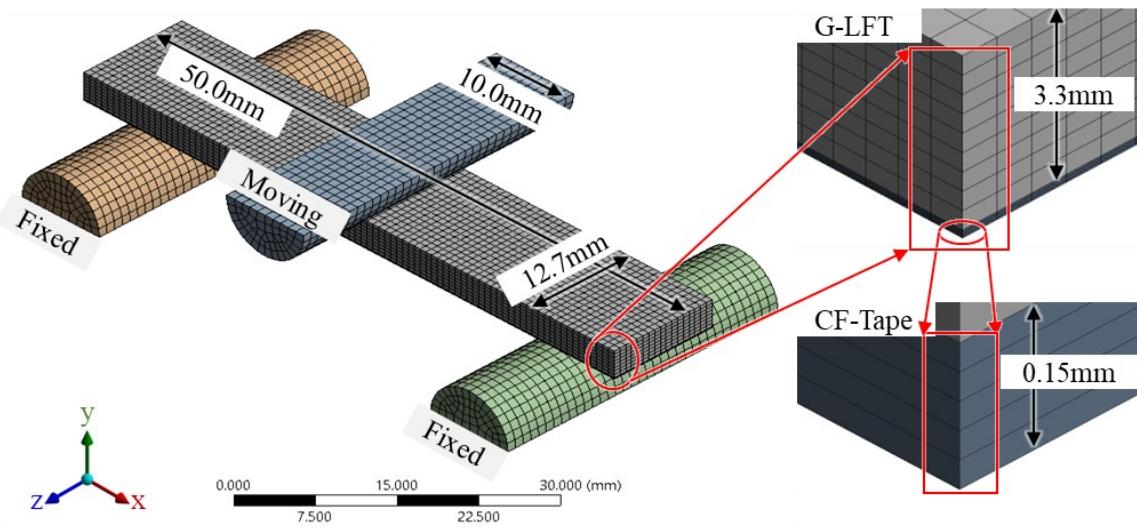
432 Figure 17 compares the force/energy versus time curves for both samples to indicate the
433 perforation energy (total energy absorption) behavior. Perforation energy is the sum of damage
434 initiation energy (E_i) and damage propagation energy. The damage initiation energy for G-LFT
435 was 12.5 J, while for G-LFT/CF-Tape, it was 15 J. This increase in E_i was due to the addition of
436 a well-bonded CF layer, which improves the sample's ability to absorb more energy. However,
437 both samples absorbed the same total perforation energy of 34 J, as shown in Figure 17. The energy
438 required to fracture the carbon fibers in tension is approximately equal to that needed to break the
439 glass fibers in tension (due to the higher strength of the carbon fibers, but the larger strain to failure
440 of the glass fibers)⁵². Additionally, localized delamination and early-stage debonding at the
441 interface may have redirected damage propagation and allowed for more extensive deformation
442 under impact. Similar observations have been reported by Cantwell and Morton⁵³, who noted that
443 delamination in hybrid composite structures can promote energy dissipation while increasing
444 compliance, leading to greater deformation without a corresponding rise in absorbed energy. The
445 presence of slight interfacial delamination and matrix cracking, as observed in the post-impact
446 inspection, supports this mechanism.

447

448 Figure 17. LVI Force/Energy-time response depicting the damage initiation energy “ E_i ” at both
 449 peaks and the damage propagation energy “ E_A ” at the two minimal values during unloading
 450 phases. (a) G-LFT specimens (b) G-LFT/CF-Tape specimens.

451 3.7 Finite Element Analysis

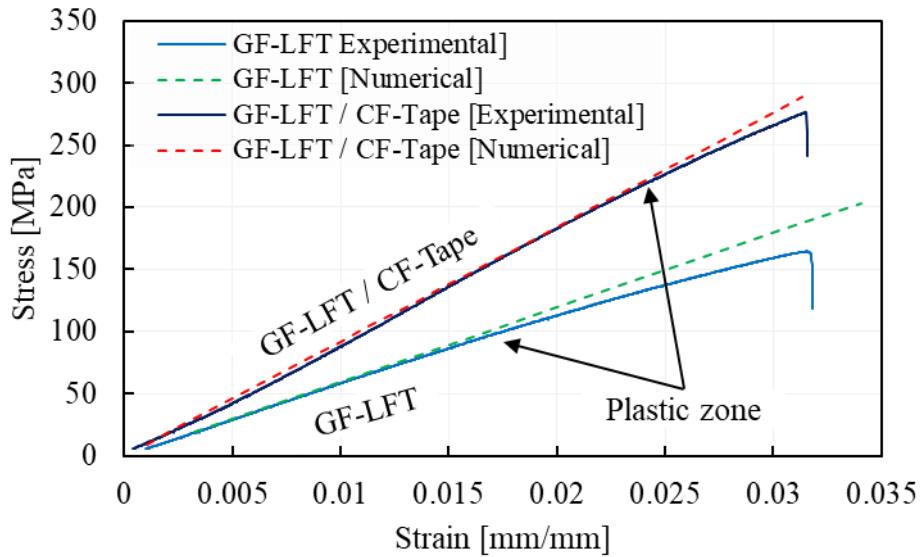
452 A numerical model was used to reduce the number of experimental iterations, as testing multiple
 453 parameter combinations experimentally is time-consuming and logically challenging. The
 454 flexural test was conducted numerically with a representative boundary conditions similar to the
 455 experiment. The model simulates micromechanics behavior using the commercial software Ansys
 456 Academic 2023-R2.


457 Table 3 shows the measured material properties from experiments. The LFT layer was considered
 458 as a psuedo-isotropy property. However, the CF-Tape was utilized as an orthotropic material,
 459 which has an orientation of $[0^\circ]$ along its length. The testing parameters were used same as the
 460 experiment, i.e., the span length (54.5mm), and control rate (1.59 mm/min) to apply the desired
 461 force.

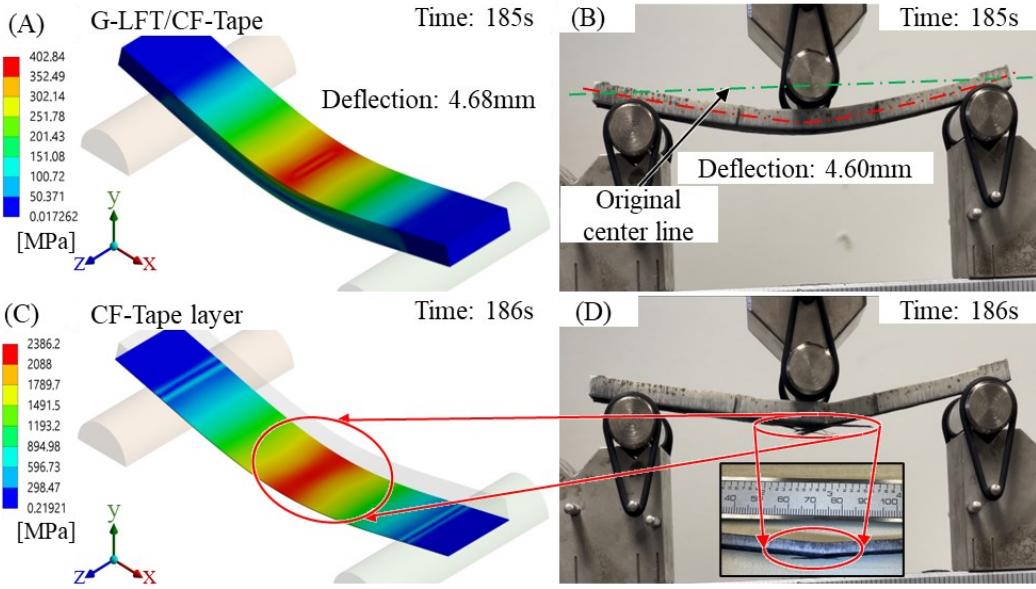
462 Table 3. Materials properties for the finite element model collected from the experimental
 463 measurement and from the Material Data Sheet (MDS) of the material provided by the
 464 manufacturer⁵⁴.

Material	Density [kg/ m ³]	Isotropic elasticity					Tensile ultimate strength [MPa]
		Young's modulus [GPa]	Poisson's ratio [-]	Bulk modulus [GPa]	Shear modulus [GPa]		
G-LFT	1.62	6.25	0.37	10.26	2.92	55.0	
Orthotropic elasticity							
Material	Density [kg/ m ³]	Young's modulus (x-, y-, z-directions) [GPa]	Poisson's ratio (xy, yz, xz) [-]	Shear modulus (xy, yz, xz) [GPa]	Ultimate strength [MPa]	Compressive ultimate strength [MPa]	

CF-Tape	1.59	134.0	0.37	3.50	2020.0	1100.0
		9.25	0.37	3.50		
		1.0	0.37	0.10		


465 A mesh sensitivity analysis was carried out to evaluate the proper mesh sizing for both the G-LFT
 466 and the CF-Tape layers. For the CF-Tape layer, the fiber orientation was mapped on the solid
 467 elements. The CF-Tape layer has four layers of solid hexagonal elements through the thickness of
 468 the layer, which was specified based on the sensitivity analysis. The G-LFT part has eight layers
 469 of elements through the part thickness. Both the G-LFT part and the CF-Tape layer have 17
 470 elements and 90 elements along the x - and y -directions respectively, as shown in Figure 18.

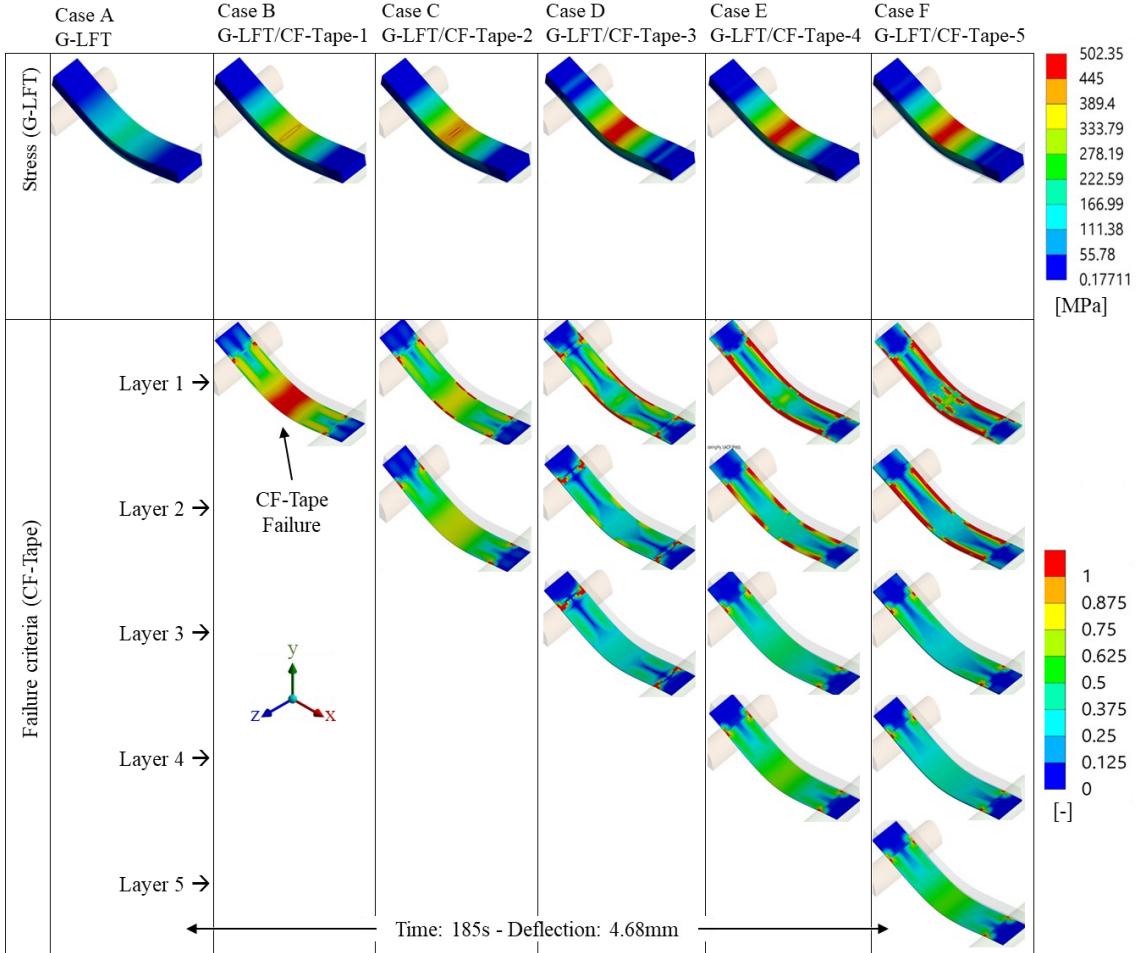
471
 472 Figure 18. Mesh distributions for G-LFT substrate and CF-Tape layer. The figure illustrates the
 473 mesh for the tested parts and the three-point bending mechanism as rigid bodies.


474 A total number of 18,360 elements was found to be optimal mesh number. The contact between
 475 the G-LFT substrate part and the CF-Tape layers was assigned as a bond, and the contacts for the
 476 supports were assigned frictional contact. **This prevents any delamination failure expected between**
 477 **them.** The model is validated against the experimental data. Numerical stresses to strain curves of
 478 the G-LFT part and the overmolded CF-Tape layer with the G-LFT part were compared to the
 479 experimental data. Both curves had the same trend as the experimental curves, as shown in Figure
 480 19. However, some discrepancies were observed, as the hybrid part exhibited slight non-linear
 481 behavior not captured by the numerical model, which assumed defect-free materials and ideal
 482 contact conditions. To simplify the analysis, the material was defined with linear properties—an
 483 assumption generally consistent with experimental trends, especially after CF-Tape reinforcement.
 484 For G-LFT, the model slightly overpredicted strength due to its limitations in capturing nonlinear
 485 effects such as fiber pull-out, matrix yielding, and progressive damage, along with assumptions of
 486 perfect bonding and uniform fiber orientation. In contrast, the G-LFT/CF-Tape configuration
 487 showed smaller deviations, indicating better model accuracy, though idealized interface conditions

488 and lack of damage modeling still contributed to some overprediction. Additional differences may
489 also stem from strain rate sensitivity and testing conditions not reflected in the simulation.

490
491 Figure 19. Comparison between experimental and numerical stress-strain curves for flexural
492 testing of G-LFT and G-LFT/CF-Tape, demonstrating good agreement and validating the
493 simulation model.

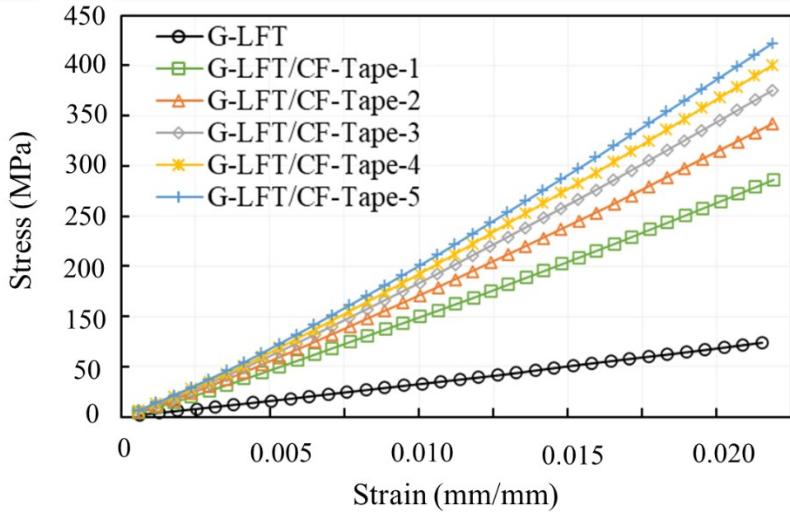
494 Figure 20. (A) and (B) shows the numerical stress of the G-LFT/CF-Tape, the numerical results
495 behaviors was similar to the experimental results. The same deflection behavior was replicated, as
496 the force applied was controlled by the control rate. The failure criteria were used to evaluate the
497 failure of the CF-Tape layer, as shown in Figure 20 (C) and (D). The model predicted the failure
498 of the CF-Tape in the same manner as the experimental test. Failure was evaluated using the
499 maximum stress criterion, assuming failure occurs when applied stresses exceed the material's
500 ultimate strength. The CF-Tape was modeled with orthotropic failure limits, defined by tensile
501 strengths of 2.02 GPa in the x, y, and z directions, and shear strengths of 80.0 MPa in the xy, yz,
502 and xz planes.



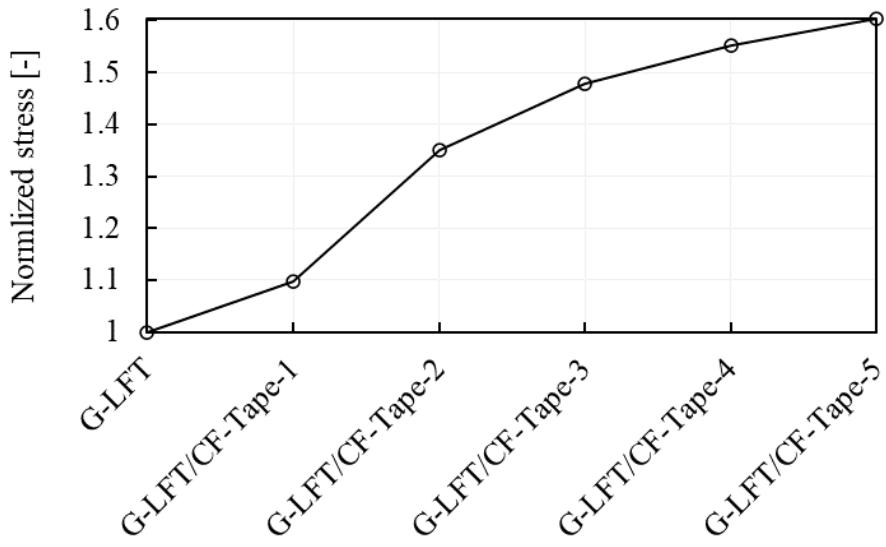
503

504 Figure 20. (A) Von Mises stress of the applied load, (B) deflection of the part. (C) and (D) failure
 505 monography of the CF-Tape layer numerically and experimentally respectively.

506 The model was used to [evaluate](#) stress, deflection, and failure. A parametric analysis investigated
 507 the optimal number of CF-Tape layers that need to be overmolded. A total number of five layers
 508 of CF-Tape ($5 \times 0.15\text{mm}$) was considered in the model. The aim was to optimize the required
 509 number of layers to provide sufficient strength to the material. The layers were added sequentially
 510 one-by-one to capture the effect of overmolding the CF-Tape. All the layers had the same material
 511 properties, as [listed](#) in


512 Table 3, and all the layers were defined using $[0^\circ]$ fiber orientation. The parametric analysis uses
 513 six cases, Case A to Case F, whereas each case has an added extra layer of CF-Tape. Starting with
 514 no CF-Tape layer in Case A, Case B uses one layer, then Cases C use two CF-Tape layers, etc.
 515 The structural analyses of the added layers show that the added layers distributed the load evenly
 516 in the whole part, as shown in Figure 21.

518 Figure 21. On top, Von Mises stresses for the overmolded part with different number of CF-Tape
 519 layers. The stress range shows the ability of the overmolded parts of supporting more load by
 520 adding additional layers of tapes. On bottom, the corresponding failure response of each layer
 521 individually. From the left side, the single layer of tape failed quickly, however adding more layers
 522 distributed the load evenly through thickness and prevented progressive failure.


523 The stress was not concentrated at the center of the beam, as observed for the one-layer case. In
 524 Figure 21, failure criteria show the behavior of the overmolded CF-Tape layers, by order. The first
 525 layer of CF-Tape experiences the initial failure. Subsequent layers don't utilize the same level of
 526 stress concentration as the first layer. When the first layer fails, the load is then transferred to the
 527 subsequent layer, leading to a gradual failure. The addition of CF-Tape layers enhances stress
 528 distribution in the G-LFT component, resulting in increased stress tolerance before failure.

529 The CF-Tape layers add a significant value to strengthen the G-LFT part. In Figure 22 the exerted
 530 forces to displacement were recorded to all cases, and describe the forces increase as the number
 531 of CF-Tape layers increase. A gain of 10.0% in strength was achieved by overmolding a single
 532 CF-Tape layer. The stress increased tremendously by 60.0%, by adding five CF-Tape layers, as
 533 shown in Figure 23.

534

535 Figure 22. Numerical prediction of stress-strain behavior for G-LFT with increasing numbers of
 536 overmolded CF-Tape layers. The results show that adding CF-Tape layers progressively enhances
 537 the composite's stiffness and ultimate strength, indicating improved load-bearing capacity and
 538 more efficient stress distribution.

539

540 Figure 23. Normalized stress predictions showing the strengthening effect of multiple CF-Tape
 541 layers overmolded onto G-LFT, with up to 60% improvement after five layers.

542 4 Conclusions

543 The aim of this work was to manufacture and characterize an overmolded part using two different
 544 techniques, the ECM has been selected as an industry scale manufacturing technique, with a rate
 545 of 1 part/min (discontinuous part) to produce the G-LFT substrate, while the ATP was selected
 546 among the traditional technique of laying down UD-tape. The ATP has been conducted in the

547 study to enhance the local strength of the part, with high speed, efficiency, and automation. The
548 final overmolded composite showed an enhancement of ~190% in flexural strength and ~110% in
549 modulus. The tensile strength and modulus increased by 128% and 62 % respectively. The
550 interface bonding was investigated using SEM and OM before and after testing, the captured
551 imaged showed a good bonding on the interface between the G-LFT and the CF-Tape. A slight
552 delamination was noticed after the mechanical testing. However, the mechanical property of the
553 whole part was not affected. For that purpose, the effect of mechanical and non-mechanical
554 treatment(s) would be studied in the future to improve the interface bonding between the CF-Tape
555 with the substrate. An Ansys based FEA model was used to study the effect of overmolding CF-
556 Tape layers on strengthening the long glass fiber thermoplastic. The addition of CF-Tape layers
557 enhances ultimate strength and stress distribution in the long glass fiber thermoplastic part. The
558 ¹³model showed the gradual increase in strength of maximum 60% by adding five layers of CF-
559 Tape. The model also allows for simulation of CF-Tape layers with varying fiber orientations,
560 providing flexibility to assess different reinforcement strategies and their impact on localized
561 strength.

562 Acknowledgements

563 This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725
564 with the US Department of Energy (DOE). The US government retains and the publisher, by
565 accepting the article for publication, acknowledges that the US government retains a nonexclusive,
566 paid-up, irrevocable, worldwide license to publish or reproduce the published form of this
567 manuscript, or allow others to do so, for US government purposes. DOE will provide public access
568 to these results of federally sponsored research in accordance with the DOE Public Access Plan
569 (<http://energy.gov/downloads/doe-public-access-plan>).

570 The Authors gratefully acknowledge the Institute of Advanced Composites Manufacturing
571 Innovation (IACMI) under award number A22-1469. Additionally, authors want to thank
572 Southeastern advanced machine tools network (SEAMTN) under award number HQ00052110069
573 for funding a part of the project and National Science Foundation (NSF), Industry-University
574 Cooperative Research Centre (IUCRC) under grand number NSF-2052738 for offering technical
575 assistance and resources.

576 References

- 577 1 Mathijsen, D. Long fiber thermoplastics are a key technology in expanding existing
578 markets for composites. *Reinforced plastics* **63**, 267-272 (2019).
- 579 2 Ning, H. *et al.* A review of Long fibre thermoplastic (LFT) composites. *International
580 Materials Reviews* **65**, 164-188 (2020).
- 581 3 Vaidya, U. & Chawla, K. Processing of fibre reinforced thermoplastic composites.
582 *International Materials Reviews* **53**, 185-218 (2008).

583 4 Song, Y. *et al.* CAE method for compression molding of carbon fiber-reinforced
584 thermoplastic composite using bulk materials. *Composites Part A: Applied Science and*
585 *Manufacturing* **114**, 388-397 (2018).

586 5 Nuruzzaman, D., Iqbal, A. A., Oumer, A., Ismail, N. & Basri, S. in *IOP Conference Series: Materials Science and Engineering*. 012118 (IOP Publishing).

588 6 Gupta, M. & Wang, K. Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results. *Polymer Composites* **14**, 367-382 (1993).

591 7 Alwekar, S., Ogle, R., Kim, S. & Vaidya, U. Manufacturing and characterization of continuous fiber-reinforced thermoplastic tape overmolded long fiber thermoplastic. *Composites Part B: Engineering* **207**, 108597 (2021).

594 8 Kim, H. G. Effects of fiber aspect ratio evaluated by elastic analysis in discontinuous composites. *Journal of Mechanical Science and Technology* **22**, 411-419 (2008). <https://doi.org/10.1007/s12206-007-1208-1>

597 9 Robinson, I. & Robinson, J. The influence of fibre aspect ratio on the deformation of discontinuous fibre-reinforced composites. *Journal of materials science* **29**, 4663-4677 (1994).

600 10 Yeole, P., Ning, H. & Hassen, A. A. Development and characterization of a polypropylene matrix composite and aluminum hybrid material. *Journal of Thermoplastic Composite Materials* **34**, 364-381 (2021).

603 11 Marathe, U. *et al.* 4 Bridging conventional manufacturing through hybrid manufacturing processes. *Hybrid Composite Materials and Manufacturing: Fibers, Nano-Fillers and Integrated Additive Processes*, 71 (2024).

606 12 Chahine, G. *et al.* Hybridizing of glass sheet molding compounds (SMC) with recycled carbon fiber (rCF). *Journal of Composite Materials*, 00219983251319590 (2025).

608 13 Marathe, U. *et al.* in *Hybrid Composite Materials and Manufacturing* (ed Kumar Vipin) 71-88 (De Gruyter, 2025).

610 14 Heer, N. *et al.* Hybrid LFT-D and GMT glass reinforced nylon composite for optimization of part molding and performance. (2022).

612 15 Gan, C. *Behavior of grid-stiffened composite structures under transverse loading*. (Wayne State University, 2003).

614 16 Lee, H., Huh, M., Kang, S. & Yun, S. I. Compressive behavior of automotive side impact beam with continuous glass fiber reinforced thermoplastics incorporating long fiber thermoplastics ribs. *Fibers and Polymers* **18**, 1609-1613 (2017).

617 17 Zhang, L., Wang, X., Pei, J. & Zhou, Y. Review of automated fibre placement and its prospects for advanced composites. *Journal of Materials Science* **55**, 7121-7155 (2020).

619 18 Khodaei, A. & Shadmehri, F. Intimate contact development for automated fiber placement of thermoplastic composites. *Composites Part C: Open Access* **8**, 100290 (2022).

621 19 Boon, Y. D., Joshi, S. C. & Bhudolia, S. K. Filament winding and automated fiber placement with in situ consolidation for fiber reinforced thermoplastic polymer composites. *Polymers* **13**, 1951 (2021).

624 20 Belhaj, M. *et al.* Dry fiber automated placement of carbon fibrous preforms. *Composites Part B: Engineering* **50**, 107-111 (2013).

626 21 Georges Chahine, U. M., Liam Collins, Vinoy Thomas, Vipin Kumar, Ahmed Arabi Hassen, Halil Tekinalp, Soydan Ozcan, Uday Vaidya. Effect of plasma treatment on

628 LMPAEK/CF tape and composites manufactured by automated tape placement (ATP).
629 *Composites Part A: Applied Science and Manufacturing* (2024).

630 22 Yadav, N. & Schledjewski, R. Review of in-process defect monitoring for automated tape
631 laying. *Composites Part A: Applied Science and Manufacturing*, 107654 (2023).

632 23 Danezis, A., Williams, D., Edwards, M. & Skordos, A. A. Heat transfer modelling of
633 flashlamp heating for automated tape placement of thermoplastic composites. *Composites
634 Part A: Applied Science and Manufacturing* **145**, 106381 (2021).

635 24 McArthur, S., Mehnen, J., Yokan, C. & Bomphray, I. An overview of current research in
636 automated fibre placement defect rework. *Procedia Computer Science* **232**, 2167-2180
637 (2024).

638 25 Oromiehie, E., Prusty, B. G., Compston, P. & Rajan, G. Automated fibre placement based
639 composite structures: Review on the defects, impacts and inspections techniques.
640 *Composite Structures* **224**, 110987 (2019).

641 26 Yassin, K. & Hojjati, M. Processing of thermoplastic matrix composites through automated
642 fiber placement and tape laying methods: A review. *Journal of Thermoplastic Composite
643 Materials* **31**, 1676-1725 (2018).

644 27 Shadmehri, F., Hoa, S., Fortin-Simpson, J. & Ghayoor, H. Effect of in situ treatment on
645 the quality of flat thermoplastic composite plates made by automated fiber placement
646 (AFP). *Advanced Manufacturing: Polymer & Composites Science* **4**, 41-47 (2018).

647 28 Islam, F. *et al.* Modelling the effect of hot gas torch heating on adjacent tows during
648 automated fibre placement consolidation of thermoplastic composites. *Journal of
649 Thermoplastic Composite Materials* **36**, 4211-4236 (2023).

650 29 Van Hoa, S., Duc Hoang, M. & Simpson, J. Manufacturing procedure to make flat
651 thermoplastic composite laminates by automated fibre placement and their mechanical
652 properties. *Journal of Thermoplastic Composite Materials* **30**, 1693-1712 (2017).

653 30 Rizzolo, R. H. & Walczyk, D. F. Ultrasonic consolidation of thermoplastic composite
654 prepreg for automated fiber placement. *Journal of Thermoplastic Composite Materials* **29**,
655 1480-1497 (2016).

656 31 Yeole, P. *et al.* Mechanical characterization of high-temperature carbon fiber-
657 polyphenylene sulfide composites for large area extrusion deposition additive
658 manufacturing. *Additive Manufacturing* **34**, 101255 (2020).

659 32 Rahate, A. S., Nemade, K. R. & Waghuley, S. A. Polyphenylene sulfide (PPS): state of the
660 art and applications. *Reviews in Chemical Engineering* **29**, 471-489 (2013).

661 33 Chen, G., Mohanty, A. K. & Misra, M. Progress in research and applications of
662 Polyphenylene Sulfide blends and composites with carbons. *Composites Part B:
663 Engineering* **209**, 108553 (2021).

664 34 Khan, H., Kaur, J., Naebe, M., Hutchinson, S. & Varley, R. J. Continuous, pilot-scale
665 production of carbon fiber from a textile grade PAN polymer. *Materials Today
666 Communications* **31**, 103231 (2022).

667 35 Arquier, R., Iliopoulos, I., Régnier, G. & Miquelard-Garnier, G. Consolidation of
668 Continuous Carbon Fiber-Reinforced PAEK composites: A review. *Materials Today
669 Communications*, 104036 (2022).

670 36 Mallick, P. K. *Fiber-reinforced composites: materials, manufacturing, and design.* (CRC
671 press, 2007).

672 37 Wasti, S. *et al.* BAMBOO FIBER Overmolding Textile Grade Carbon Fiber Tape and
673 Bamboo Fiber Polypropylene Composites. *SAMPE JOURNAL* **59**, 22-29 (2023).

674 38 Nohara, L. B. *et al.* Study of crystallization behavior of poly (phenylene sulfide). *Polímeros*
675 **16**, 104-110 (2006).

676 39 Perez-Martin, H., Mackenzie, P., Baidak, A., Brádaigh, C. M. Ó. & Ray, D. Crystallinity
677 studies of PEKK and carbon fibre/PEKK composites: A review. *Composites Part B: Engineering* **223**, 109127 (2021).

678 40 Wool, R. P. Polymer entanglements. *Macromolecules* **26**, 1564-1569 (1993).

679 41 Zhao, D. *et al.* Crystallization mechanism and mechanical properties of CF/PPS
680 thermoplastic composites manufactured by laser-assisted automated fiber placement.
681 *Journal of Composite Materials* **57**, 49-61 (2023).

682 42 Gürler, N., Paşa, S. & Temel, H. Silane doped biodegradable starch-PLA bilayer films for
683 food packaging applications: Mechanical, thermal, barrier and biodegradability properties.
684 *Journal of the Taiwan Institute of Chemical Engineers* **123**, 261-271 (2021).

685 43 Wei, H. *et al.* Adhesion and cohesion of epoxy-based industrial composite coatings.
686 *Composites Part B: Engineering* **193**, 108035 (2020).

687 44 Jarukumjorn, K. & Suppakarn, N. Effect of glass fiber hybridization on properties of sisal
688 fiber-polypropylene composites. *Composites Part B: Engineering* **40**, 623-627 (2009).

689 45 Paramasivam, A., Timmaraju, M. V. & Velmurugan, R. Influence of preheating on the
690 fracture behavior of over-molded short/continuous fiber reinforced polypropylene
691 composites. *Journal of Composite Materials* **55**, 4387-4397 (2021).

692 46 Quan, D. *et al.* Effect of interlaying UV-irradiated PEEK fibres on the mechanical, impact
693 and fracture response of aerospace-grade carbon fibre/epoxy composites. *Composites Part*
694 *B: Engineering* **191**, 107923 (2020).

695 47 Saeed, K. *et al.* Elastic Modulus and Flatwise (Through-Thickness) Tensile Strength of
696 Continuous Carbon Fibre Reinforced 3D Printed Polymer Composites. *Materials* **15**, 1002
697 (2022).

698 48 Trauth, A. & Weidenmann, K. A. Continuous-discontinuous sheet moulding compounds—
699 effect of hybridisation on mechanical material properties. *Composite Structures* **202**, 1087-
700 1098 (2018).

701 49 Madhukar, S. & Singha, M. Geometrically nonlinear finite element analysis of sandwich
702 plates using normal deformation theory. *Composite Structures* **97**, 84-90 (2013).

703 50 Wonderly, C., Grenestedt, J., Fernlund, G. & Cěpus, E. Comparison of mechanical
704 properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. *Composites*
705 *Part B: Engineering* **36**, 417-426 (2005).

706 51 Park, J.-M. *et al.* The change in mechanical and interfacial properties of GF and CF
707 reinforced epoxy composites after aging in NaCl solution. *Composites Science and*
708 *Technology* **122**, 59-66 (2016).

709 52 Fu, S.-Y., Lauke, B., Mäder, E., Yue, C.-Y. & Hu, X. Tensile properties of short-glass-
710 fiber-and short-carbon-fiber-reinforced polypropylene composites. *Composites Part A: Applied*
711 *Science and Manufacturing* **31**, 1117-1125 (2000).

712 53 Cantwell, W. J. & Morton, J. The impact resistance of composite materials—a review.
713 *composites* **22**, 347-362 (1991).

714 54 Composites, T. A. Toray Cetex TC1100 PPS.

715