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Abstract

Large Vision-Language Models (LVLMs) have made substantial progress by in-
tegrating pre-trained large language models (LLMs) and vision models through
instruction tuning. Despite these advancements, LVLMs often exhibit the hallu-
cination phenomenon, where generated text responses appear linguistically plau-
sible but contradict the input image, indicating a misalignment between image
and text pairs. This misalignment arises because the model tends to prioritize tex-
tual information over visual input, even when both the language model and visual
representations are of high quality. Existing methods leverage additional models
or human annotations to curate preference data and enhance modality alignment
through preference optimization. These approaches are resource-intensive and
may not effectively reflect the target LVLM’s preferences, making the curated pref-
erences easily distinguishable. Our work addresses these challenges by proposing
the Calibrated Self-Rewarding (CSR) approach, which enables the model to self-
improve by iteratively generating candidate responses, evaluating the reward for
each response, and curating preference data for fine-tuning. In the reward mod-
eling, we employ a step-wise strategy and incorporate visual constraints into the
self-rewarding process to place greater emphasis on visual input. Empirical re-
sults demonstrate that CSR significantly enhances performance and reduces hal-
lucinations across ten benchmarks and tasks, achieving substantial improvements
over existing methods by 7.62%. Our empirical results are further supported by
rigorous theoretical analysis, under mild assumptions, verifying the effectiveness
of introducing visual constraints into the self-rewarding paradigm. Additionally,
CSR shows compatibility with different vision-language models and the ability to
incrementally improve performance through iterative fine-tuning. Our data and
code are available at https://github.com/YiyangZhou/CSR.

1 Introduction

Large Vision-Language Models (LVLMs) [1–4] have achieved significant success by incorporating
pre-trained large language models (LLMs) and vision models through instruction tuning. However,
these LVLMs suffer from the hallucination phenomenon [5], which generates text responses that
are linguistically plausible but contradict the visual information in the accompanying image. For
instance, the description generated by LVLMs may include visual elements that are not depicted in
the image. This issue can also occur when the LLM is highly factual and the visual backbone is
capable of producing sufficiently high-quality representations. As indicated in Cui et al. [6], Guan
et al. [7], the potential reason for this lies in the misalignment problem between image and text
modalities in LVLMs, which causes the model to prioritize the text knowledge present in the training
language data while ignoring the actual visual input information.
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Several works have been proposed to enhance modality alignment capability in LVLMs through pref-
erence fine-tuning techniques, such as reinforcement learning from human feedback (RLHF) [8] and
direct preference optimization (DPO) [9, 10]. However, these methods often either introduce addi-
tional models, such as GPT-4, or depend on human annotation to generate preference data. This
data generation process is not only resource-intensive but, more critically, fails to capture the inher-
ent preferences of the target LVLM. Consequently, the target LVLM may easily discern preferences
from such curated data, making them less effective (detailed analysis provided in Appendix A.4).
Recently, self-rewarding approaches have emerged, utilizing a single LLM for both response genera-
tion and preference modeling, showing promising results in LLM alignment [11, 12]. Unlike LLMs,
LVLMs face modality misalignment issues in both response generation and preference modeling
stages, potentially resulting in self-generated preferences overlooking visual input information. Di-
rectly applying these self-rewarding approaches to LVLMs is not capable of addressing the modality
alignment problem and redirecting LVLM’s attention towards emphasizing input image information.

To tackle these challenges, our work introduces the Calibrated Self-Rewarding (CSR) approach,
aimed at calibrating the self-rewarding paradigm by incorporating visual constraints into the pref-
erence modeling process. Specifically, we train the target LVLM using an iterative preference
optimization framework that continuously generates preferences and optimizes the target LVLM
over multiple iterations. Starting with a seed model, each iteration employs sentence-level beam
search [13, 14] to produce fine-grained candidate responses for each image and text prompt. During
the beam search, for each generated sentence, we first utilize the language decoder to establish an
initial reward (i.e., sentence-level cumulative probabilities). Subsequently, we calibrate this initial
reward by incorporating an image-response relevance score, resulting in the calibrated reward score.
These calibrated reward scores are utilized to guide the generation of the next batch of candidate
sentences. Finally, responses with the highest and lowest cumulative calibrated reward scores are
identified as preferred and dispreferred responses, respectively, for preference fine-tuning in the
subsequent iteration.

Figure 1: Benchmark performance comparison.

The primary contribution of this paper is CSR, a
novel calibrated self-rewarding paradigm for im-
proving modality alignment in LVLMs. Theoret-
ically, with mild assumptions, we show that in-
troducing visual constraints in the self-rewarding
paradigm can improve performance. Empiri-
cally, when compared with other competitive ap-
proaches (see Figure 1 for some representative
methods), the results demonstrate that CSR is ca-
pable of improving performance on comprehen-
sive LVLM evaluation benchmarks, VQA tasks,
and reducing hallucination, achieving up to a
7.62% improvement on average. Additionally,
we demonstrate CSR is capable of continuously
improving performance over iterations, compati-
ble with different large vision-language backbone
models, and redirecting the attention of LVLMs
toward the visual modality to achieve stronger
modality alignment.

2 Preliminaries

In this section, we will provide a brief overview of LVLM and preference optimization.

Large Vision Language Models. LVLMs extend LLMs to multimodal scenario, which progres-
sively predict the probability distribution of the next token for each input prompt. Given an <image
xv , text xt> pair as input prompt x, LVLM outputs a text response y.

Preference Optimization. Preference optimization has shown promise in fine-tuning language mod-
els and aligning their behavior with desired outcomes. Given an input prompt x , a language model
with policy πθ can produce a conditional distribution πθ(y | x) with y as the output text response.

The preference data is defined as D = {(x(i)
, y

(i)
w , y

(i)
l )}Ni=1, where y

(i)
w and y

(i)
l denote the preferred
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Figure 2: The CSR framework operates an iterative process of preference data generation and learn-
ing. During preference data generation, CSR utilizes a sentence-level beam search approach to con-
struct responses sentence by sentence, assigning a reward to each sentence. This reward, initially
generated by the model itself, is then calibrated using image-relevance information. Preferences are
determined based on the cumulative reward for each response. In each iteration, CSR generates new
preference data and performs preference learning based on this data, continuously enhancing the
model’s performance.

and dispreferred responses for the input prompt x(i). Preference optimization leverage the prefer-
ence data to optimize language models. Taking DPO [15] as a representative example„ it formulates
the probability of obtaining each preference pair as p(yw ≻ yl) = σ(r(x, yw) − r(x, yl)), where σ(·)
is the sigmoid function. DPO optimizes the language models with the following classification loss:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[

log σ

(

α log
πθ(yw|x)

πref(yw|x)
− α log

πθ(yl|x)

πref(yl|x)

)]

, (1)

where πref(y|x) represents the reference policy, i.e., the language model after performing supervised
fine-tuning.

3 Calibrated Self-Rewarding Vision Language Models

To address this challenge, we propose Calibrated Self-Rewarding (CSR), a novel approach aimed
at improving modality alignment in LVLMs by integrating visual constraints into the self-rewarding
paradigm. As illustrated in Figure 2, CSR trains the target LVLM by alternately performing two
stages: candidate response generation and preference curation and fine-tuning. In the candidate
response generation stage, we employ sentence-level beam search for each input prompt to produce
fine-grained candidate responses. During this process, the language decoder determines the initial
reward for each generated sentence, which is then calibrated by incorporating an image-response
relevance score. This calibrated reward score guides the generation of subsequent sentences and
finally generate the entire response. Moving on to the preference curation and fine-tuning stage,
we use the responses with the highest and lowest cumulative calibrated rewards to construct the
preferred and dispreferred responses, and utilize the constructed preference pairs for fine-tuning. In
the remaining of this section, we will provide detailed explanations of CSR.
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3.1 Step-Level Reward Modeling and Calibration

Before delving into how to generate candidate response and construct preference data, in this section,
we first discuss how to formulate the reward within CSR. The ideal reward in the LVLM fulfills two
specific criteria:

• Vision-Constrained Reward: This aspect aims to integrate image-relevance information into the
reward definition of LVLMs. By doing so, we address the limitation of LVLM in overlooking
image input data when generating preferences.

• Step-Wise Reward: Instead of assigning a single reward for the entire response, we opt for a step-
wise approach. This involves assigning rewards at each step of response generation. Compared to
a single reward, this finer-grained reward offers more detailed guidance and is more robust.

To fulfill these criteria, we propose a step-wise calibrated reward modeling strategy. Inspired by
Process-Supervised Reward Models [16], we assign a reward score, R(s), to each generated sentence
s during the sentence-level beam search. This score is a combination of two components: the self-
generated instruction-following score, RT (s), and the image-response relevance score, RI(s).

Specifically, the self-generated instruction-following score, RT (s), is calculated using the language
decoder of the LVLM. It represents the sentence-level cumulative probability of generating sentence
s, formulated as:

RT (s) =

No
∏

t=1

P (ro | x, r1, r2, . . . , ro−1), (2)

where No is the number of tokens in sentence s and ro represents token o in sentence s. A higher
self-generated instruction-following score indicates a stronger capability of the generated response
to follow instructions.

While the self-generated instruction-following score partially reflects the LVLM’s preference, it still
suffers from modality misalignment, potentially overlooking visual input information. To address
this, we introduce an image-response relevance score, RI(s), to calibrate the reward score RT (s).
This score depicts the relevance between the generated sentence s and input image xv . We leverage
CLIP-score [17] for this calculation, where the vision encoder in the CLIP model aligns with the
vision encoder in the target LVLM. The image-response relevance score RI(s) is defined as:

RI(s) = max(100 ∗ cos(FI(xv),FT (s)), 0), (3)

where the FI(xv) and FT (s) represent the visual CLIP embedding and textual CLIP embedding,
respectively. Finally, the calibrated reward score R(s) for the generated sentence s is defined as:

R(s) = λ ·RI(s) + (1− λ) ·RT (s), (4)

where λ is a hyperparameter used to balance the language instruction-following and image-response
relevance scores. By combining both scores, we aim to redirect the attention of LVLM towards the
input visual information, thus enhancing its modality alignment ability.

3.2 Iterative Fine-Tuning

After establishing the reward framework in CSR, we next discuss our iterative fine-tuning process.
Within this framework, we iteratively perform two essential steps, namely candidate response gen-
eration and preference data curation and optimization. These steps are elaborated upon as follows:

3.2.1 Step-Level Candidate Response Generation

In candidate response generation, our objective is to generate responses to build preference data. To
accomplish this, we employ a sentence-level beam search strategy. Initially, we concurrently sample
multiple candidate sentences, utilizing the "end of sub-sentence" marker (e.g., "." in English) as
the delimiter. Subsequently, for each sentence s, we compute its reward score R(s) using Eqn. (4).
From these scores, we then select the top-k and bottom-k sentences with the highest and lowest
reward scores, respectively, to proceed to the subsequent round of sentence-level beam search. This
iterative process continues until reaching the "end of response," conventionally represented as ⟨eos⟩.
Once all sentences for a response y = {s1, · · · , sNy

} are generated, we calculate the cumulative
reward score for the response as the sum of the reward scores for each sentence within it. This is
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Algorithm 1 Calibrated Self-Rewarding

Require: Dataset: D = {x(i)}Ni=1; Reference model:πref ; Number of iterations: T
1: for t = 1, . . . , T do
2: for each x ∈ D do
3: while not reach the end of response do
4: Generate a bunch of candidate sentences from last-round sentences
5: for each candidate sentence s do
6: Compute the self-generated instruction-following score RT (s) by Eqn. (2)
7: Calculate the image representation FI(xv) and sentence representation FT (s)
8: Compute the image-response relevance score RI(s) by Eqn. (3)
9: Compute the calibrated reward score R(s) by Eqn. (4)

10: Select top-k and bottom-k sentences with the highest and lowest reward scores

11: Select the preferred response yw,t and dispreferred response yl,t
12: Update πθ ← argminθ Lt(πθ;πref), πref ← πθ.

defined as: R(y) =
∑Ny

i=1 R(si), where Ny is the number of sentences in response y. The detailed
algorithm for candidate response generation is outlined in Algorithm 1.

3.2.2 Preference Curation and Optimization

After generating candidate responses with their reward scores, our next step is to curate preference
dataset. Here, for each input prompt, we select the responses with the highest and lowest cumulative
calibrated reward scores as the preferred and dispreferred responses, respectively, to construct the
preference dataset for fine-tuning. For each iteration t, we denote the constructed preference data

as: Dt = {(x(i)
, y

(i)
w,t, y

(i)
l,t )}

N
i=1. After obtaining the preference data, we fine-tune the target LVLM

using DPO. At iteration t, we use the last iteration fine-tuned model πθt−1
as the reference model.

Following Eqn (1), the loss at iteration t of CSR is defined as:

Lt = −E(x,yw,t,yl,t)∼D

[

log σ

(

α log
πθ(yw,t|x)

πθt−1
(yw,t|x)

− α log
πθ(yl,t|x)

πθt−1
(yl,t|x)

)]

. (5)

The training process of CSR is detailed in Algorithm 1.

4 Experiment

In this section, we empirically investigate CSR in addressing the modality misalignment problem
of LVLMs, focusing on the following questions: (1) Can CSR help improve the performance of
models on both comprehensive benchmarks and hallucination benchmarks? (2) Can CSR iteratively
improve multimodal alignment progressively in LVLMs and lead to more factual LVLMs? (3) Is
CSR compatible with different open-sourced LVLMs? (4) How does CSR change attention weights
and preference pairs to align image and text modalities?

4.1 Experimental Setups

Implementation Details. We utilize LLaVA-1.5 7B and 13B [1] as the backbone models. During
the preference learning process, we adapt LoRA fine-tuning [18]. The images and prompts used
to construct the preference data are randomly sampled from the detailed description and complex
reasoning subclasses of the LLaVA150k dataset, totaling approximately 13,000 samples [19]. It is
worth noting that each iteration uses the same prompt and image as the previous round. Overall,
the iterative training is conducted over three iterations, completed on one A100 80GB GPU. It takes
roughly 3.5 and 5 hours for fine-tuning LLaVA-1.5 7B and LLaVA-1.5 13B, respectively. For more
detailed information on training hyperparameters and training data, please refer to Appendix A.1.

Evaluation Benchmarks. We conducted evaluations on three types of benchmarks: comprehensive
benchmarks, general VQA and hallucination benchmarks. Specifically, this includes: (1) Compre-
hensive benchmarks (MME [20], SEEDbench [21], LLaVAW [19], MMbench [22], MM-Vet [23]);
(2) General VQA (ScienceQA (SQA) [24], VisWiz [25], GQA [26]); (3) Hallucination benchmark
(POPE [27], CHAIR [28]). More detailed description are discussed in Appendix A.1.
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Table 1: The performance of CSR on LLaVA-1.5 across all benchmarks is presented. Most baseline
results, except those for self-rewarding, are sourced from Zhou et al. [10].

Comprehensive Benchmark General VQA Hallucination Benchmark

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA POPE CHAIRS CHAIRI

LLaVA-1.5-7B 1510.7 348.2 58.6 63.4 64.3 30.5 66.8 50.0 62.0 85.90 48.8 14.9

+ Vlfeedback 1432.7 321.8 59.3 62.1 64.0 31.2 66.2 52.6 63.2 83.72 40.3 13.2

+ Human-Prefer 1490.6 335.0 58.1 63.7 63.4 31.1 65.8 51.7 61.3 81.50 38.7 11.3

+ POVID 1452.8 325.3 60.2 68.7 64.9 31.8 68.8 53.6 61.7 86.90 35.2 8.3

+ RLHF-V 1489.2 349.4 60.1 65.4 63.6 30.9 67.1 54.2 62.1 86.20 29.7 7.5

+ Self-rewarding 1505.6 362.5 60.0 61.2 64.5 31.4 69.6 53.9 61.7 86.88 24.0 6.7

+ CSR (Ours) 1524.2 367.9 60.3 71.1 65.4 33.9 70.7 54.1 62.3 87.01 21.0 6.0

LLaVA-1.5-13B 1531.3 295.4 61.6 70.7 67.7 35.4 71.6 53.6 63.3 85.90 48.3 14.1

+ Self-rewarding 1529.0 300.1 62.8 65.6 64.5 35.3 74.3 56.1 63.2 86.58 37.0 8.8

+ CSR (Ours) 1530.6 303.9 62.9 74.7 68.8 37.8 75.1 56.8 63.7 87.30 28.0 7.3

Baselines. We will first compare CSR with the self-rewarding approach described by Yuan et al.
[29]. Here, we directly apply self-rewarding to LVLM, using the prompts and experimental settings
outlined in Yuan et al. [29] (see detailed settings in Appendix A.1 and Table 3). We also com-
pared CSR with several data-driven preference learning methods, including Silkie (Vlfeedback) [9],
LLaVA-RLHF (Human-preference) [8], POVID [10], and RLHF-V [30]. Furthermore, we com-
pared the performance of the optimized LLaVA-1.5 via CSR with other state-of-the-art open-source
LVLMs, including InstructBLIP [31], Qwen-VL-Chat [32], mPLUG-Owl2 [33], BLIP-2 [34], and
IDEFICS [35], after the final rounds of training (CSR with iteration = 3). Additionally, to evaluate
the effectiveness of CSR on other LVLMs, we applied CSR to a recent LVLM called Vila [36]. For
more information on these baselines, please refer to Appendix A.1.

4.2 Results

Figure 3: Average scores of CSR at different it-
erations over all benchmarks (see Table 6 and
Table 7 in Appendix A.5 for full results).

CSR Continuously Improves Model Perfor-
mance over Iterations. In Figure 3, we report
the average performance of LLaVA-1.5 7B and
13B models concerning the number of training it-
erations on comprehensive benchmarks, general
VQA tasks, and hallucination benchmarks. To fa-
cilitate score calculation, we first calculated an
average score on a 100-point scale by adjusting
the original values: MMEP was divided by 16,
and MMEC was divided by 4, corresponding to
the number of categories in MME. Additionally,
since a lower CHAIR value indicates better performance, we standardized all metrics to follow a
higher is better approach by transforming the CHAIRS and CHAIRI metrics into 100 - CHAIRS and
100 - CHAIRI. We then calculated the average score by averaging these standardized values, which
were used to compute the average percentage increase. In the experiment, the 7B model achieved
an improvement of approximately 7.62% across all benchmarks through online iterative updates,
while the 13B model saw an improvement of approximately 5.25%. According to the full results in
Table 6 and Table 7 of Appendix A.5, the improvement is particularly significant on the LLaVAW

and CHAIR benchmarks, with improvements of 8.9% and 49.50%, respectively. The results indicate
that CSR is capable of incrementally improving model performance over iterations, demonstrating
its effectiveness in self-improving the quality of generated preference data and leading to stronger
modality alignment. The degree of improvement gradually becomes smaller, which is not surprising,
indicating that the model is gradually converging.

Table 2: Ablation study of
vision-text reward score.

Method 7B 13B

Base 66.61 68.08
Only RT 68.46 68.12
Only RI 67.49 69.23
CSR (Ours) 72.39 71.95

CSR Outperforms Competitive Preference Fine-Tuning Base-
lines. Compared to preference data curation approaches (e.g.,
POVID, RHLF-V) that generate preference data from either ad-
ditional models or human annotations, the superiority of CSR in-
dicates that adapting a self-rewarding paradigm better captures
the inherent preferences of the target LVLMs, achieving stronger
modality alignment. Furthermore, CSR outperforms existing self-
rewarding methods, with an average performance improvement of
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2.43%, demonstrating its effectiveness in calibrating the reward model by incorporating image-
response relevance scores. This mitigates the potential issue of overlooking visual input information
when estimating self-generated preferences.

In addition, we compare the performance of LLaVA-1.5 after three rounds of online CSR with other
state-of-the-art open-sourced VLLMs and report the results in Table 5 of Appendix A.5. Although
different open-sourced VLLMs utilize various image and text encoders, CSR still outperforms other
open-sourced VLLMs in 9 out of 10 benchmarks, further corroborating the effectiveness of CSR in
improving modality alignment.

4.3 Analysis

Ablation Study. To validate the effectiveness of using the image-response relevance score (RI )
to complement the self-generated instruction following score (RT ), we specifically compare CSR
with three variants: (1) without applying CSR on LLaVA 1.5 (Base); (2) using CSR with only
the self-generated instruction following score (Only RT ); and (3) using CSR with only the image-
response relevance score (Only RI ). The results are reported in Table 2. We first observe that
CSR improves performance by jointly considering both the self-generated instruction following and
image-response relevance scores. This verifies its effectiveness in enhancing modality alignment by
calibrating the language-driven self-rewarding paradigm with visual constraints. Additionally, we
further conduct the analysis on the change of λ in Eqn (4) and found that incorporating external vi-
sual scores to calibrate the models rewarding process effectively enhances performance (see detailed
results in Appendix A.5.)

Figure 4: Average scores of CSR
in Vila 7B at different iterations
over all benchmarks (see Table 8 in
Appendix A.5 for full results).

Compatibility Analysis. To validate CSR for its applicability
to other LVLMs, we deployed CSR on Vila 7B and conducted
three rounds of online iterations. We conducted experiments
on all ten evaluation benchmarks and tasks, and the results
are shown in Figure 4. Similar to the findings in Figure 3,
Vila demonstrates a similar phenomenon during the online it-
erations of CSR, where it can self-correct preferences, lead-
ing to gradual improvements in all benchmarks. For Vila, the
overall performance improved by 3.37% after three rounds of
CSR iterations, with particularly notable increases of 8.48%
on VisWiz and 14.0% on MM-Vet. The compatibility analy-
sis further corroborates the generalizability and effectiveness
of CSR in enhancing the performance of LVLMs.

How Does CSR Change the Image-Response Relevance
Over Iterations? To investigate how CSR gradually improve
the performance over iterations, we analyzed the change of self-generated preference data with the
LLaVA-1.5 7B model. In Figure 5, we illustrated the distribution of image-response relevance scores
of three iterations over 500 examples from LLaVA-150k [19]. We first observe that both the chosen
(preferred) and rejected (dispreferred) responses achieve higher image-response relevance scores af-
ter the model undergoes CSR online iterations. This indicates that, following CSR, the responses
generated by LVLMs are more closely aligned with the image information. Secondly, it can be
observed that after multiple rounds of online iterations with CSR, the average image-response rel-
evance scores for the rejected and chosen responses become closer to each other. This makes the
self-generated preference data during CSR iterations more challenging to distinguish, while further
strengthening the learning process.

Figure 5: Image relevance scores before
and after employing CSR.

How Does CSR Improve Modality Alignment? To fur-
ther understand how CSR affects modality alignment, in
Figure 6, we present the changes in image and text atten-
tion maps for three models: the original LLaVA-1.5 7B
model, the self-rewarding approach, and CSR. These at-
tention maps illustrate the distribution of attention scores
over image and text tokens. We observe that applying
CSR strengthens the model’s attention to certain visual
tokens. Simultaneously, the change of attention values of
the text tokens indicates that CSR is capable of alleviating
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Prompt: What are the key elements in this picture?

CSR (Ours)

The image features a blue and white bus driving down a city street, with the bus's destination clearly displayed on the front: "Artesia." The bus is positioned in 

the middle of the street, and its large size and prominent destination sign make it easily noticeable to pedestrians and other vehicles. In addition to the bus, the 

image also includes a car driving behind the bus, indicating that both vehicles are sharing the roadway in the city.

An articulated city bus, which is blue and white, is driving down a street in a large city. In front of the bus is a truck, and the bus is positioned behind it. Several 

people can be seen walking along or standing near both the bus and truck. They are likely pedestrians going about daily activities or waiting for public 

transportation.  The scene captures the bustling atmosphere of a busy urban environment with various modes transportation in use. It highlights how public 

transportation, such as buses, plays a crucial role in the daily lives of city dwellers. Overall, it is a typical day in a large metropolitan area with people 

commuting and going about their daily routines.

Self-Reward

The image features a blue and white bus driving down a city street, with a large building in the background. The bus is the main focus of the scene, occupying a 

significant portion of the image. A few cars can be seen on the street, with one car positioned behind and to the left of the bus, and another car located further 

down the street on the right side.There are several people in the scene, with one person standing near the left edge of the image, another person closer to the 

center, and a third person on the right side of the street. They appear to be pedestrians going about their daily activities. Additionally, a traffic light is visible in 

the background, indicating that the bus is driving in an urban environment with traffic regulations.

LLaVA-1.5

Visual Tokens Text TokensCSR (Ours)

Self-Reward

LLaVA-1.5

Generate Responses Visualize Attentions

Figure 6: Comparison of attention maps. After optimizing the model with CSR, the attention scores
allocated to visual tokens increase, indicating that CSR effectively redirects the model’s attention
toward the input visual information during the response generation process.

the issue of over-reliance on context mentioned in Huang et al. [37]. Additionally, compared with
the self-rewarding approach, CSR shows a more effective distribution of attention between image
and text tokens. These findings indicate that with CSR, LVLMs can better align different modali-
ties through a calibrated self-rewarding strategy, focusing more on the visual modality rather than
over-relying on contextual text.

4.4 Case Study

In this section, we use LLaVA-1.5 13B as an example to illustrate changes in the models own re-
sponses during CSR iterations and the preference data sampled in the CSR learning process, with
hallucinations and errors highlighted in red. The results are shown in Figures 7 and 9, respectively.
As shown in Figures 7, with each iteration of CSR, hallucinations in the models responses notice-
ably decrease. This indicates that CSR effectively refines the models preferences through iterative
preference learning, making the models responses more accurate. In Figure 9 of the Appendix, we
present a sampled preference data pair from the model during the CSR learning process. It can be
seen that through CSR, the model not only gradually refines its own preferences but also obtains
high-quality preference data pairs without human annotation.

5 Theoretical Explanation

In this section, we present a theoretical framework to explain the empirical phenomenon that incor-
porating an image-response relevance score can calibrate the self-rewarding procedure, ultimately
improving generation accuracy.

As we consider an LVLM, to facilitate the analysis, we decompose the input prompt into x =
(xv, xt) ∈ R

dv × R
dt , representing the image and text prompts respectively. Although text data
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Figure 7: Two cases selected from the CSR-generated datasets.

typically comprises discrete tokens, we follow the CLIP theory literature [38–40] in modeling them
as continuous-value random vectors in this section to elucidate the rationale behind our proposed
method. More specifically, we assume the following data generative model for xv and xt:

xv = U1z1 + ξ1, and xt = U2z2 + ξ2,

where U1 ∈ O
dv×r and U2 ∈ O

dt×r are two orthonormal matrixces, representing decoders that
transform the latent (low-dimensional) signals z1, z2 ∈ R

r to images and text respectively. We
assume the covariance matrices of z1, z2 are identity matrices. ξ1 ∈ R

dv and ξ2 ∈ R
dt are noise

vectors, and we assume they follow sub-gaussian distributions with well-conditioned covariance
matrices and sub-gaussian norms upper bounded by a universal constant. We consider the infinite
data setting. This is a widely used simplification to avoid the influence of sample randomness [41–
43]. According to [38], with an abundance of image-text pairs, the learned visual CLIP embedding
FI(xv) and textual CLIP embedding FT (xt) converge to U⊤

1 xv and U⊤
2 xt respectively. To simplify

our analysis without loss of generality, we consider a single score for each response y and define the
image-response relevance score RI(y) = ⟨U

⊤
1 xv, U

⊤
2 y⟩.

We assume the ground truth ytruth = V ∗
1 xv + V ∗

2 xt + ϵy with weights V ∗
1 ∈ R

dv×dv and V ∗
2 ∈

R
dv×dt . In CSR, we assume the conditional distribution at iteration t, πθt(y | x) with θt = (V1, V2),

follows a Gaussian distribution πθt(y | x) ∝ exp(−∥y − (V1xv + V2xt)∥
2/σ2), where V1 ∈

R
dv×dv and V2 ∈ R

dv×dt are the weights matrices for the image and text inputs respectively, and
σ > 0 is the standard deviation. As the likelihood is monotonically decreasing with respect to
∥y− (V1xv +V2xt)∥

2, we consider the self-generated instruction-following score RT (y) = −∥y−
(V1xv + V2xt)∥

2. Then the calibrated reward score becomes R(y) = λ ·RI(y) + (1− λ) ·RT (y),
for some λ ∈ [0, 1]. In theoretical analysis, we consider a simpler version of CSR, where we
assume yw = argmaxy R(y) (whose distribution is denoted by p∗θt(y | x)), and yl is the text output

generated by πθt(y | x). As R(y) depends on λ, we denote the solution θt+1 by θt+1(λ). In the
special case where λ = 1, this corresponds to the setting where we do not use the image-response
relevance score at all.
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To evaluate the quality of the text output y, we consider a regression problem where there is an
outcome z associated with the ground-truth text output ytruth: z = β∗⊤ytruth with β∗ ∈ R

dt . We
evaluate the quality of y by considering the loss function L(y) = minβ∈Rdt E[(z−β⊤y)2]. We then
have the following theorem.

Theorem 5.1. Suppose that π∗
θt
(y | x) lies in the LLM space {πθ(y | x) : θ ∈ Θ}, ∥β∗⊤V ∗⊤

1 β∗∥ ≫

∥β∗⊤V ∗⊤
2 β∗∥ and ∥β∗⊤V ⊤

1 β∗∥ ≪ ∥β∗⊤V ⊤
2 β∗∥, then there exists λ < 1, such that

Eπθt+1(λ)(y|x)[L(y)] < Eπθt+1(1)(y|x)[L(y)].

Our theoretical analysis implies that as long as ∥β∗⊤V ⊤
1 β∗∥ ≪ ∥β∗⊤V ⊤

2 β∗∥, which happens when
the model tends to prioritize textual information over visual input. By incorporating the image-
response relevance score (corresponding to λ < 1), CSR is able to increase the attention on image
signals in generating y. As a result, the solution produced by CSR will be better than the method
without using the image-response relevance score (corresponding to λ = 1).

6 Related Work

Large Visual-Language Model Hallucination. Recently, the rapid development of visual-language
alignment methods [19, 44–49] and LLMs [50–54] has significantly accelerated the progress of
LVLMs, which extend LLMs with visual modalities and demonstrate impressive visual understand-
ing by unifying the encoding of visual and text tokens [34, 55–57]. However, LVLMs still face the
problem of hallucination [58, 59], where generated text descriptions contradict the visual modal-
ity information. Various approaches have been proposed to address hallucination in LVLMs, in-
cluding enhancing dataset quality for fine-tuning [60, 8, 61, 9], manipulating the decoding pro-
cess [37, 62–66], and leveraging external closed-source models to facilitate post-hoc mitigation of
hallucination [58, 67–70]. Though these approaches alleviate hallucination to some extent, they do
not focus directly on improving modality alignment.

Preference and Modality Alignment. In large models, alignment is necessary to ensure their be-
havior aligns with human preferences [71, 15, 72]. In LVLMs, alignment manifests as modality
misalignment, where the generated textual responses are supposed to follow the input visual in-
formation. Recently, preference optimization has been used to address the modality misalignment
problem. These optimizations involve preference data curated by human annotators [8, 60, 30] and
additional models (e.g., GPT-4) [9, 10]. While these methods improve the ability of LVLMs to align
modalities, their reliance on human annotation or additional models is resource-intensive and may
introduce additional biases. Furthermore, these models cannot fully capture the inherent preferences
of LVLMs, making the curated preference data less effective. Instead, CSR leverages a calibrated
self-rewarding strategy, aiming to stimulate the LVLMs’ self-correction and enhancement capabili-
ties, thereby further improving modality alignment.

Self-Improvement in Large Language Models. Self-improvement emerges as a powerful
paradigm for LLMs to enhance themselves without significant external intervention. For exam-
ple, self-rewarding and online alignment propose a method that selects consistent answers generated
by the model to fine-tune itself [73, 74] , thereby improving its reasoning ability. Similarly, Chen
et al. [12] utilizes self-play to enhance the model’s performance by distinguishing its self-generated
responses from those in human-annotated training data. Unlike prior methods that primarily target
LLMs, CSR addresses the modality misalignment issue in LVLMs during the preference modeling
process by introducing visual constraints, making it particularly well-suited for LVLMs.

7 Conclusion

In this paper, we investigate the challenge of enhancing modality alignment in LVLMs by intro-
ducing a calibrated self-rewarding approach, which integrates visual constraints into the preference
modeling process of the self-rewarding paradigm. Empirically, CSR enhances the alignment be-
tween image and text modalities, significantly reducing hallucination and improving performance
on various LVLM evaluation benchmarks. These empirical results are further supported by rigorous
theoretical findings. Additionally, CSR is capable of continuously enhancing LVLM capabilities
over iterations, leading to better utilization of visual information.
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A Additional Results

A.1 Experimental Setup

A.1.1 Hyperparameter Settings

Figure 8: Distribution of preferred responses
and dispreferred responses based on the
sampling probability scores generated by
LVLMs’ language models.

Sentence-Level Beam Search. We configure our pa-
rameters as follows to ensure both diversity and qual-
ity in the sampled data. The num_beamsparameter,
set to 5, determines the capacity of input at each
search layer. Additionally, num_token_beams, also
set to 5, ensures that each beam search returns 5
token-level search results. The eos_token_id is set
to the token for a period, effectively controlling
the sentence-by-sentence generation process. The
max_length parameter, set to 1024, prevents trunca-
tion errors and infinite repetitions by controlling the
maximum length, while max_new_tokens, set to 74,
limits the maximum length of newly generated con-
tent to avoid exceeding the CLIP encoding limit.

To further enhance data diversity, we utilize group beam search by setting the num_beam_group
parameter to 5. This approach, when matched with token-level search, significantly boosts the
diversity of each data point. The diversity_penalty parameter, set to a value of 3.0, effectively
controls the diversity and quality of the sampled data among different beam groups.

Calibrated Rewarding. We set the clip score weight to 0.9 and the language score weight to 0.1
when calculating the scores, giving greater emphasis to visual calibration.

A.2 Evaluation Metrics and Benchmarks

• MME [20] is a comprehensive benchmark for assessing the capabilities of LVLMs in multimodal
tasks. It systematically evaluates models across two primary dimensions: perception and cog-
nition, through 14 meticulously designed subtasks that challenge the models’ interpretative and
analytical skills.

• SEED-Bench [21] is designed to evaluate the generative comprehension capabilities of LVLMs.
It features an extensive dataset of 19K multiple-choice questions with precise human annotations,
covering 12 distinct evaluation dimensions that assess both spatial and temporal understanding
across image and video modalities.

• LLaVAW [19] is a comprehensive benchmark for evaluating visual reasoning models. It comprises
24 diverse images with a total of 60 questions, covering a range of scenarios from indoor and
outdoor settings to abstract art.

• MMBench [22] introduces a dual-pronged approach: a meticulously curated dataset that signif-
icantly expands the scope and diversity of evaluation questions, and a pioneering CircularEval
strategy that leverages ChatGPT to transform free-form predictions into structured choices.

• MM-Vet [23] is an evaluation benchmark tailored for assessing the multifaceted competencies
of LVLMs. It systematically structures complex multimodal tasks into 16 distinct integrations
derived from a combination of 6 core vision-language capabilities, providing a granular analysis
of model performance across diverse question types and answer styles.

• ScienceQA [24] is a multimodal benchmark designed to evaluate and diagnose the multi-hop rea-
soning ability and interpretability of AI systems within the domain of science. It offers an expan-
sive dataset of approximately 21k multiple-choice questions across a broad spectrum of scientific
topics, complemented by detailed answer annotations, associated lectures, and explanations.

• VizWiz [25] is a dataset in the field of visual question answering (VQA), derived from a natural-
istic setting with over 31,000 visual questions. It is distinguished by its goal-oriented approach,
featuring images captured by blind individuals and accompanied by their spoken queries, along
with crowdsourced answers.
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• GQA [26] is a dataset engineered for advanced real-world visual reasoning, utilizing scene graph-
based structures to generate 22 million diverse, semantically-programmed questions. It incorpo-
rates a novel evaluation metrics suite focused on consistency, grounding, and plausibility, estab-
lishing a rigorous standard for assessing in vision-language tasks.

• POPE [27] is an assessment methodology designed to scrutinize object hallucination in LVLMs.
It reformulates the evaluation into a binary classification task, prompting LVLMs with straight-
forward Yes-or-No queries to identify hallucinated objects. POPE offers a stable and adaptable
approach, utilizing various object sampling strategies to reveal model tendencies towards halluci-
nation.

• CHAIR [28] is a widely-recognized tool for evaluating the incidence of object hallucination in
image captioning tasks, which has two variants: CHAIRI and CHAIRS, which assess object hallu-
cination at the instance and sentence levels, respectively. Formulated as:

CHAIRI =
|{hallucinated objects}|

|{all mentioned objects}|
CHAIRS =

|{captions with hallucinated objects}|

|{all captions}|

Specifically, we randomly sampled 500 images from the COCO [75] validation set and evaluated
object hallucination using the CHAIR metric.

A.3 Overview of the Baselines

• LLaVA-1.5 [1] is an improvement based on the original LLaVA [19] model demonstrating excep-
tional performance and data efficiency through visual instruction tuning. It enhanced with a CLIP-
ViT-L-336px visual backbone and MLP projection. By incorporating academic-task-oriented
VQA data and simple response formatting prompts, LLaVA-1.5 achieves the state-of-the-art re-
sults at that time with a remarkably modest dataset of just 1.2 million public images.

• InstructBLIP [31] leverages instruction tuning on pretrained BLIP-2 models, integrating an
instruction-aware Query Transformer to enhance feature extraction for diverse vision-language
tasks. It achieved state-of-the-art zero-shot performance at the time across 13 datasets and ex-
celled in fine-tuned downstream tasks, such as ScienceQA, showcasing its advantage over con-
temporaneous multimodal models.

• Qwen-VL-Chat [32] is built upon the Qwen-LM [4] with a specialized visual receptor and input-
output interface. It is trained through a 3-stage process and enhanced with a multilingual multi-
modal corpus, enabling advanced grounding and text-reading capabilities.

• mPLUG-Owl2 [33] employs a modular network design with a language decoder interface for
unified modality management. It integrates shared modules for cross-modal collaboration and
modality-adaptive components for feature retention, enhancing generalization in both text-only
and multimodal tasks.

• BLIP-2 [34] is a vision-language pre-training framework that efficiently leverages off-the-shelf
frozen image encoders and LLMs. Employing a two-stage pre-training strategy with a lightweight
Querying Transformer, BLIP-2 bridges the modality gap between vision and language, enabling
zero-shot image-to-text generation that adheres to natural language instructions while maintaining
high compute-efficiency.

• IDEFICS [35] is an open-access visual language model that expands upon the Flamingo [44]
architecture, offering both base and instructed variants with 9 billion and 80 billion parameter
sizes. It is developed using solely publicly available data and models.

• POVID [10] is a novel training paradigm aligns the preferences of VLLMs through external pref-
erence data from GPT4 and the inherent hallucination patterns within the model triggered by noisy
images.

• RLHF-V [30] collected fine-grained paragraph-level corrections from humans on hallucinations
and performing dense direct preference optimization on the human feedback.

• Silkie [9] constructed a VLFeedback dataset using VLLMs annotation. Specifically, the responses
were generated by 12 LVLMs models conditioned on multimodal instructions extracted from dif-
ferent datasets. The entire dataset was evaluated using GPT-4V to assess the generated outputs in
terms of helpfulness, visual faithfulness, and ethical considerations. In this paper, the VLFeedback
dataset was utilized to perform one round of DPO on LLaVA-1.5.
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• LLaVA-RLHF [8] proposes a novel alignment algorithm called Factually Augmented RLHF,
which enhances the reward model by incorporating additional factual information such as im-
age captions and ground-truth multi-choice options. In this paper, the annotated preference data
is used to conduct one round of preference learning on LLaVA1.5.

• Self-rewarding [29] introduces a method for self-feedback learning in LLMs and serves as a base-
line for our approach, referred to as CSR. Specifically, for each input image and prompt, two
outputs are sampled from LLaVA-1.5. The model is provided with the prompt mentioned in Ta-
ble 3 and is tasked with determining which output is better. Finally, LLaVA-1.5 is fine-tuned using
the collected preference data, with the entire setup and the images and prompts used for inference
matching those of CSR.

A.4 Do Different Sources of Preference Data Have Different Impacts?

The sources of preference data generally fall into two main categories: external preference data and
self-generated data. External preference data typically represent preferences obtained from human
annotations or GPT-4. Although external preference data generally have higher quality compared
to self-generated data, are they really more effective? We conducted an analysis using 500 samples
obtained from the original LLaVA-1.5 7B model. Following the same pipeline as CSR, we selected
samples with the highest and lowest rewards as preferred (chosen) and dispreferred (rejected) re-
sponses. We further employed the GPT-4 API to transform preferred responses into dispreferred
ones, with specific prompts referenced in Table 4.

In Figure 8, we present the distribution based on both the sampling probabilities score generated by
the target LVLM, which describes the probability of the LVLM generating this response. Clearly,
compared to the model’s own generated dispreferred responses, the dispreferred responses modified
by GPT-4V are not as easily confusable for the model. This result partially supports the idea that
dispreferred responses generated by external models are more easily distinguishable by the target
LVLM, making them less effective.

Table 3: Prompt for self-reward: utilizing the model itself as a judge to determine whether the
corresponding response is a chosen response or a reject response.

Now you act as a judge, helping me determine which of the two texts I provide is closer to the
given image and has fewer errors.

*****************************************************************************

Response 1:

{response 1}

Response 2:

{response 2}

******************************************************************************

Please strictly follow the following format requirements when outputting, and don’t have any
other unnecessary words.

Output Format:

response 1 or response 2.

A.5 Additional Experiments

In this subsection, we provide a comparison of CSR with other state-of-the-art models, a perfor-
mance comparison of different CSR iterations, a comparison of hallucinations in different CSR
iterations, validation experiments of CSR on other models, ablation study on λ in Eqn (4), and the
relationship between reward score and average performance score. Experiments strongly demon-
strate the effectiveness of CSR.

For the ablation study on λ in Eqn (4), our training settings are consistent with Table 1, with three
rounds of iteration. The experimental results in Table 9 show that as the value of λ increases, the
models performance on various benchmarks improves. This suggests that calibrating the models
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Table 4: Prompt for GPT-4 API: transform the provided response into negative ones based on the
provided image.

Transform the provided response into negative ones based on the provided image.

*****************************************************************************

Response:

{chosen response from another LVLM or ground truth}

Requirements:

(1) Revise the response while maintaining its original format and order as much as possible.

(2) Based on the provided image, primarily add, replace, or modify entities in the input response
to make them related to the image but incorrect. Adjust their attributes and logical relationships
accordingly.

(3) The modifications in (2) must align with the image information, making the revised result
difficult to discern.

*****************************************************************************

Please strictly follow the following format requirements when outputting, and don’t have any
other unnecessary words.

Output Format:

negative response

Table 5: Comparison of LLaVA-1.5 with CSR and other open-sourced state-of-the-art LVLMs.

Comprehensive Benchmark General VQA

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA

BLIP-2 1293.8 290.0 46.4 38.1 - 22.4 61.0 19.6 41.0
InstructBLIP 1212.8 291.8 53.4 60.9 36.0 26.2 60.5 34.5 49.2
IDEFICS 1177.3 - 45.0 45.0 48.2 30.0 - 35.5 38.4
Qwen-VL-Chat 1487.6 360.7 58.2 67.7 60.6 47.3 68.2 38.9 57.5
mPLUG-Owl2 1450.2 313.2 57.8 59.9 64.5 36.2 68.7 54.5 56.1

CSR iter-3 7B 1524.2 367.9 60.3 71.1 65.4 33.9 70.7 54.1 62.3

CSR iter-3 13B 1530.6 303.9 62.9 74.7 68.8 37.8 75.1 56.8 63.7

Table 6: The performance of CSR online iteration with LLaVA-1.5 as the backbone on comprehen-
sive benchmarks and general VQA.

Comprehensive Benchmark General VQA

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA

LLaVA-1.5-7B 1510.7 348.2 58.6 63.4 64.3 30.5 66.8 50.0 62.0
+ CSR iter-1 1500.6 367.5 60.4 69.7 64.7 32.2 70.3 54.0 62.1
+ CSR iter-2 1519.0 368.9 60.3 70.4 65.2 33.7 70.1 54.0 62.3
+ CSR iter-3 1524.2 367.9 60.3 71.1 65.4 33.9 70.7 54.1 62.3
+ CSR iter-4 1524.6 368.8 60.4 71.0 65.3 33.9 70.4 54.0 62.2
+ CSR iter-5 1520.1 367.2 60.5 71.3 65.4 33.8 70.8 54.2 62.4

LLaVA-1.5-13B 1531.3 295.4 61.6 70.7 67.7 35.4 71.6 53.6 63.3
+ CSR iter-1 1533.1 303.6 63.0 74.4 68.4 37.4 74.8 56.8 63.2
+ CSR iter-2 1530.4 301.1 63.0 74.3 68.5 37.2 75.0 56.0 63.2
+ CSR iter-3 1530.6 303.9 62.9 74.7 68.8 37.8 75.1 56.8 63.7
+ CSR iter-4 1530.4 301.4 63.0 74.2 68.3 37.3 75.2 56.6 63.4
+ CSR iter-5 1531.1 302.2 62.8 74.0 68.2 37.4 74.8 56.7 63.7

rewarding process using the visual score can enhance the preference learning process, thereby boost-
ing performance.
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Table 7: The performance of CSR online iteration with LLaVA-1.5 as the backbone on hallucination
benchmarks.

Hallucination Benchmark

Method POPEacc POPEf1 CHAIRS CHAIRI Avg Length

LLaVA-1.5-7B 85.90 84.29 48.8 14.9 89.03
+ CSR iter-1 86.94 85.80 26.6 7.2 80.59
+ CSR iter-2 86.82 85.62 23.0 6.1 82.62
+ CSR iter-3 87.01 85.93 21.0 6.0 83.29
+ CSR iter-4 87.05 85.95 19.0 5.9 81.34
+ CSR iter-5 87.16 85.98 18.3 5.4 82.07

LLaVA-1.5-13B 85.90 84.87 48.3 14.1 89.73
+ CSR iter-1 87.28 86.29 36.0 9.0 98.85
+ CSR iter-2 87.33 86.36 36.0 7.8 105.0
+ CSR iter-3 87.30 86.31 28.0 7.3 107.8
+ CSR iter-4 87.20 86.58 27.4 7.4 112.3
+ CSR iter-5 87.18 86.51 28.0 7.3 102.4

Table 8: The performance of CSR online iteration with Vila 7B as the backbone.

Comprehensive Benchmark General VQA Hallucination Benchmark

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA POPE CHAIRS CHAIRI

Vila 1533.0 316.4 61.1 69.7 68.9 34.9 68.2 57.8 62.3 85.50 31.0 8.8

+ CSR iter-1 1520.6 321.9 63.2 73.5 69.3 38.3 71.9 62.3 62.2 86.82 29.2 7.9

+ CSR iter-2 1536.0 322.6 63.4 74.2 69.1 39.7 72.3 62.6 62.1 87.30 28.2 8.0

+ CSR iter-3 1542.2 321.5 63.4 74.3 69.3 39.8 72.2 62.7 62.4 87.31 28.0 8.2

Table 9: Performance comparison of CSR on LLaVA-1.5 7B with different λ values on various
benchmarks.

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA POPE CHAIRS CHAIRI

(λ = 0.1) 1508.6 369.3 60.0 66.7 64.9 31.6 70.0 54.0 62.0 86.90 40.8 10.2

(λ = 0.5) 1515.4 364.5 60.1 68.2 64.9 32.4 69.7 54.0 62.1 86.90 28.2 6.7

(λ = 0.9) 1524.2 367.9 60.3 71.1 65.4 33.9 70.7 54.1 62.3 87.01 21.0 6.0

Table 10: Reward score and average performance score across multiple iterations of CSR on LLaVA-
1.5 7B.

Iteration Iter-1 Iter-2 Iter-3 Iter-4 Iter-5

Chosen reward 0.4885 0.5040 0.5052 0.5055 0.5066
Rejected reward 0.4551 0.4788 0.4789 0.4794 0.4799
Avg performance score 66.61 71.02 71.74 72.09 72.24

B Proofs

Proof of Theorem 5.1. Let us first denote the distribution of yw by π∗
θt
(y | x). As we take yw =

argmaxy R(y), this distribution is a point mass. As a result, the global minimizer to (5) will then
converge to π∗

θt
(y | x).

In the following, we analyze how π∗
θt
(y | x) is shaped.

By the CSR procedure, we have

yw = argmax
y

(1− λ))⟨U⊤
1 xv, U

⊤
1 y⟩ − λ∥y − V1xv + V2xt∥

2 =
1− λ

λ
U1U

⊤
1 xv + V1xv + V2xt.

We can see that CSR up-weights the signal of the image input.
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Figure 9: A case including both self-generated preferred and dispreferred responses.

Then

L(y) = min
β∈Rdt

E[(z − β⊤y)2] = min
β∈Rdt

E[(β∗⊤ytruth − β⊤y)2]

= min
β∈Rdt

E[(β∗⊤(V ∗
1 xv + V ∗

2 xt))− β⊤y)2] + V ar(ϵy)∥β
∗∥2

We have

E[(β∗⊤(V ∗
1 xv + V ∗

2 xt))− β⊤y)2] = E[(β∗⊤ (V ∗
1 xv + V ∗

2 xt))

− β⊤

(

(
1− λ

λ
U1U

⊤
1 + V1)xv + V2xt

)

)2]

As we assume
∥V1∥

∥β∗⊤V ∗

1 ∥
≪ ∥V2∥

∥β∗⊤V ∗

2 ∥
and due to the smoothness over parameters. Without loss of

generality, we prove the claim for the case where ∥V1∥ = 0, that is V1=0.

In this case, we want to show that there exists λ ∈ (0, 1), such that

min
β∈Rdt

E[(β∗⊤ (V ∗
1 xv + V ∗

2 xt))− β⊤

(

(
1− λ

λ
U1U

⊤
1 )xv + V2xt

)

)2]

< min
β∈Rdt

E[(β∗⊤ (V ∗
1 xv + V ∗

2 xt))− β⊤ (V2xt))
2]

Due to the independence between xv and xt, the right-hand sides is lower bounded by
β∗⊤V ∗

1 Cov(xt)V
∗⊤
1 β∗.

The left-hand side, on the other hand, can be upper bounded by the value when we take β0 such that
1−λ
λ

U1U
⊤
1 β0 = U1U

⊤
1 V ∗⊤

1 β∗, which equals to β∗⊤V ∗
1 (I − U1U

⊤
1 )Cov(xt)(I − U1U

⊤
1 )V ∗⊤

1 β∗.

As we assume ∥β∗⊤V ∗⊤
1 β∗∥ ≫ ∥β∗⊤V ∗⊤

2 β∗∥, this is a dominating term when the left-hand side is
evaluated at β0.

In addition, we assume Cov(ξ1) is well-conditioned, implying Cov(xt) is well-conditioned, and
therefore

β∗⊤V ∗
1 (I − U1U

⊤
1 )Cov(xt)(I − U1U

⊤
1 )V ∗⊤

1 β∗ < β∗⊤V ∗
1 Cov(xt)V

∗⊤
1 β∗.

We complete the proof.

C Limitations

Due to limitations in computing resources, we conducted only three iterations of CSR. Additionally,
our experiments were confined to 7B and 13B models. This restriction prevents us from determiing
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if our method adheres to a scaling law. We hope to continue iterative training in the future and to
train larger models, given access to more computing resources, to explore the upper limits of our
method.

D Broader Impacts

Our approach requires no additional human annotations and significantly enhances model perfor-
mance using the model itself. Technically, our method may inspire more researchers to explore
how multimodal models can learn from themselves. From a societal impact perspective, our method
significantly reduces hallucinations in LVLMs, a major factor affecting the application of AI in real-
world scenarios. Our approach promotes more responsible use of LVLMs. However, it is important
to note that while our method significantly reduces hallucinations, they still occur. Therefore, it is
crucial to employ various measures to ensure safety and stability when applying this approach in
real-world scenarios.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we have thoroughly detailed the background,
motivation, scope, main experimental results, and contributions of our work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section C, we discussed that due to a lack of computing resources, our
method was not trained for more iterations and was not tested on larger models.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: In Section 5 and Appendix B, we provide a complete theoretical analysis and
proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In our paper, we provide comprehensive details about the backbone, dataset,
algorithm, training hyperparameters, and hardware platform used to ensure experiment re-
producibility. Additionally, we will open-source all training code and logs.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data we used is publicly accessible, and we will release the code upon
acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental setups and specifics in Section 4.1 and
Appendix A.1 of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We adopt standard evaluation benchmarks and metrics, which are accompa-
nied by statistical significance.
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• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments are sufficiently discussed to be run by others.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The conducted research conforms in every respect with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have explained the impact of our work from both technical and societal
perspectives in Section D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve any high risks or potential misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the mentioned previous work are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The code will be made public upon acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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