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Abstract

Modern machine learning methods have re-
cently demonstrated remarkable capability
to generalize under task shift, where latent
knowledge is transferred to a different, often
more difficult, task under a similar data dis-
tribution. We investigate this phenomenon
in an overparameterized linear regression
setting where the task shifts from classifi-
cation during training to regression during
evaluation. In the zero-shot case, wherein
no regression data is available, we prove
that task shift is impossible in both sparse
signal and random signal models for any
Gaussian covariate distribution. In the few-
shot case, wherein limited regression data is
available, we propose a simple postprocess-
ing algorithm which asymptotically recov-
ers the ground-truth predictor. Our anal-
ysis leverages a fine-grained characteriza-
tion of individual parameters arising from
minimum-norm interpolation which may be
of independent interest. Our results show
that while minimum-norm interpolators for
classification cannot transfer to regression
a priori, they experience surprisingly struc-
tured attenuation which enables successful
task shift with limited additional data.

1 INTRODUCTION

The fields of modern statistics and machine learning
aim to develop models which generalize to a plethora
of application-specific tasks. For example, tasks in

Proceedings of the 28'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-

thor(s).

Kuo-Wei Lai*
Georgia Institute of Technology
klai36@gatech.edu

Vidya Muthukumar
Georgia Institute of Technology
vmuthukumar8@gatech.edu

computer vision range from classifying images into
discrete categories to object detection (Ren et al.,
2015), segmentation (Ronneberger et al., 2015), and
pose estimation (Cao et al., 2017), while tasks in
language modeling could be as basic as next-token
prediction (Vaswani et al., 2017), or involve summa-
rization (Liu and Lapata, 2019) or machine trans-
lation (Bahdanau et al., 2015). In statistics, basic
estimation tasks involve either classification or re-
gression; in the latter we wish to predict real-valued
quantities and performance is measured via a contin-
uous error metric. The traditional perspective on
task shift establishes a clear hierarchy in difficulty,
e.g., a statistical estimator which achieves a certain
error rate for a regression task will typically achieve
an equal or better rate on the corresponding classifi-
cation task'. Similarly, in empirical machine learning,
the most difficult task is considered to be represen-
tation learning. Indeed, learned representations are
commonly finetuned on simpler downstream tasks
and observed to generalize in a zero-shot or few-shot
sense, i.e., when finetuning data is unavailable or
limited, respectively (Bengio et al., 2013).

Perhaps more surprising are recent trends in modern
machine learning which appear to go in the other
direction: using models trained on an “easier” task to
successfully solve a “harder” task. Specifically, large
language models (LLMs) have shown a remarkable
ability to generalize in-context — without explicit
finetuning — to completing prompt-response pairs
despite being trained only on the more basic next-
token prediction task (Brown et al., 2020). From
a statistical perspective, a particularly intriguing
observation is that LLMs trained on next-token pre-
diction can successfully solve linear regression tasks

*Equal contribution; co-first author.

! This is most directly used in applying logistic regres-
sion procedures to classification tasks, but also works for,
e.g., least-squares regression (Kline and Berardi, 2005;
Rifkin et al., 2003).
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Figure 1: Task shift in language modeling and
statistical estimation. In our task shift setting,
latent knowledge is transferred between tasks under
a similar conditional distribution or ground-truth
signal. Task shift is compelling when the aim is to
shift to a fundamentally harder task, with little to
no data available from the new task.

by computing the ordinary least-squares estimate
in-context (Zhang et al., 2024). With this high-level
motivation, we propose the following statistical learn-
ing problem formulation:

Can estimators trained on a classification task gener-
alize, in a zero-shot or few-shot sense, to the regres-
sion task on the same data distribution?

Our contributions. We consider linear binary
classification on data {(xi, 9; = sign (XIG*)) }::1
and investigate whether an estimator trained on the
classification task can generalize to the correspond-
ing regression task, i.e., predict the regression label
x| 0* of a new datum x. We consider the overparam-
eterized regime wherein the dimensionality d of the
data greatly exceeds the number of training examples
n, and we study the minimum #;-norm interpolator
(MNI) on the binary labels {g;}?,, which we denote
by 6. We define the task shift error as the differ-
ence between the regression risk of the classification
MNI 6 and the regression risk of the regression MNI,
which we denote by 6. We show the following results
with high probability over the training data:

e (Classification data attenuates the signal 8* even
in the most favorable possible situation for ei-
ther task in minimum f>-norm interpolation, i.e.,
maximally anisotropic data covariance, sublin-
early sparse signal, and the existence of benign
overfitting of noise. Therefore, the classifica-
tion MNI 6 does not successfully generalize in a

zero-shot sense to regression data, except when
effective signal magnitude is equal to a specific,
pre-defined constant. See Theorem 8 for a formal
statement of this result.

e We also produce an “ansatz”’ prediction of task
shift error for more general signal models under
a simplifying assumption on the regression la-
bels (Theorem 12). Corollary 13 then shows a
fundamental tradeoff between regression bias and
task shift error — they cannot be simultaneously
statistically consistent. Moreover, we show in
Theorem 23 that while a “dense” random signal
is known to suffer from poor bias, it achieves
vanishing task shift error if the covariance ma-
trix has large effective rank compared to n, i.e.,
its eigenvalues decay sufficiently slowly.

e Finally, we consider a t-sparse ground truth 6*
and propose a simple postprocessing algorithm
utilizing few-shot regression data. We show the
attenuation of the classification MNI is surpris-
ingly structured, culminating in Theorem 14
which proves the support of 8* can be recovered
simply by the ¢ largest elements (in absolute
value) of 6. Our postprocessing algorithm en-
sures O (%) regression error with m noisy regres-
sion examples or exact recovery from t noiseless
examples — in other words, successful few-shot
generalization from classification to regression.

Our techniques build on the recent literature on be-
nign overfitting of minimum #s-norm interpolators
in both regression (Bartlett et al., 2020) and classifi-
cation tasks (Muthukumar et al., 2021; Wang et al.,
2023). We are especially inspired by the separation in
statistical consistency derived in Muthukumar et al.
(2021), which showed that for certain anisotropic en-
sembles, classification may generalize while regression
does not. We substantially develop their tools to pro-
vide a fine-grained characterization of the individual
magnitudes {|6; |}4_,. Surprisingly, this characteriza-
tion can enable the success of our few-shot algorithm
even when the minimum #>-norm interpolator would
not generalize for either classification or regression.

1.1 Related work

The formulation of task shift in this paper, partic-
ularly our focus on the shift from classification to
regression tasks, shares both similarities and differ-
ences with several prominent areas of research in ma-
chine learning. Compared to transfer learning (Pan
and Yang, 2009), task shift similarly aims to general-
ize knowledge from one “job” to another. However,



while transfer learning emphasizes preserving useful
features for similar or downstream tasks, task shift
focuses on generalizing from a simpler task (e.g., clas-
sification) to a more complex one (e.g., regression).
Task shift is also related to the concept of distri-
bution shift (Moreno-Torres et al., 2012). In task
shift, the source data distribution remains unchanged,
but the conditional distributions of the labels dif-
fer at test time. Furthermore, our classification-to-
regression setup is closely connected to the one-bit
compressive sensing problem (Boufounos and Bara-
niuk, 2008). However, while one-bit compressive
sensing focuses on optimal estimators or algorithms
based on a known measurement process, our work
emphasizes unique properties of the £s-inductive bias.

The theoretical analysis in this work builds directly
on the literature on benign overfitting. Bartlett
et al. (2020) Tsigler and Bartlett (2023) charac-
terized benign overfitting for regression estimators,
while Muthukumar et al. (2021) provided a survival
and contamination analysis for sparse signals in both
classification and regression settings. Our analysis
substantially develops insights from these works to
estimate the support of a sparse signal even when
neither classification nor regression generalizes.

We discuss additional related work in Appendix A.

2 PRELIMINARIES

We now detail our classification-to-regression task
shift setting and introduce our proposed estimators
and assumptions on data covariance. We also recap
the definitions of effective dimension quantities ex-
tensively used in analysis of interpolating estimators,
e.g., by Bartlett et al. (2020).

Notation. We use uppercase bold symbols to de-
note matrices (e.g., X), lowercase bold symbols to
denote vectors (e.g., ), and lowercase italicized sym-
bols to denote scalars (e.g., ). We denote random
variables using non-italicized symbols, e.g., X for a
random matrix and x for a random vector. Let Py
and E, denote a probability and expectation with
respect to a random vector x, respectively.

Let < denote equality in distribution. Let S¢ de-
note the complement of a set S. Let x ~ N (u, )
denote that x is sampled from a multivariate Gaus-
sian distribution with mean g and covariance ma-
trix . Let diag(aq,...,a,) denote an n X n ma-
trix with aq, ..., a, on the diagonal and zeroes else-
where. Let uj(A), u2(A),... denote the eigenval-
ues of a matrix A in non-increasing order. Let

|All == pi(A) and Tr(A) == >, u;i(A) denote the
operator norm and trace of A. For clarity, we use
the shorthand [t] :== {1,2,...,t} for t € N. Finally,
we use C, ¢, c1, ... to denote constants not depending
on n,d which can change from line to line.

2.1 Minimum-norm interpolating estimators

We consider a noiseless linear regression problem
where data undergoes centered Gaussian featuriza-
tion? in d dimensions such that x ~ A(0,X). We
denote the ground-truth regressor, also called sig-
nal, by 8 € R%, so the regression and classifica-
tion label for a datum x are y := x'0* € R and
¥ :=sign (x'0*) € {£1}, respectively.

We assume noiseless labels in the classification
dataset for ease of exposition, but our zero-shot lower
bounds and few-shot upper bounds can be easily ex-
tended to handle classification label noise®.

We assume access to a classification dataset
{(xi,9:)}i=; where d > n and lim, o £ = oo,
i.e., the data is heavily overparameterized. We de-
note the data matrix by X = [x1,...,%,]T € R"*?
and the regression and classification label vectors by
y = [yla"'ayn]—r € R" and y = B’la""yn]—r €
{£1}". We study the minimum-norm interpola-
tor (MNI), which is obtained directly via the im-
plicit bias of gradient descent on the squared loss
and also enjoys close links to the implicit bias
of popular classification losses (Hsu et al., 2022).
The MNIs on regression and classification labels
are defined by 6 = argmin{|0|, : X8 =y} and
6 = argmin{||0||, : sign (X@) = §}, respectively.
Since X is full rank almost surely under Gaussian
design, both estimators have simple closed forms:

6=XT(XX") 'gand=XT (XXT)'y.

The excess risk of any linear estimator @ € R? is given
by L(6) = Ex (x'6 — XTH*)2 . The central goal of
this paper is to bound the excess regression risk of
the MNI classifier L(0) — and, later, postprocessed

variants of this classifier. We say 0 achieves task shift
if it is regression-consistent, i.e., lim,, 4 oo L(0) = 0.

2.2 Effective rank and covariance structure

As shown in Bartlett et al. (2020); Muthukumar et al.
(2021); Tsigler and Bartlett (2023), the performance

2 We expect many of our results to generalize to the
case of independent, sub-Gaussian features by building
on Cao et al. (2021); Tsigler and Bartlett (2023).

3 For example, if IP’(Q = sign (xTO*) | X) =1-v* we
require v* < 0.5, i.e., the sign is preserved on average.



of the regression MNI on regression labels or classifi-
cation MNI on classification labels can be character-
ized by two notions of effective rank of the spectrum
of the data covariance matrix 3. We let \1,..., \g
denote the eigenvalues of 3 in non-increasing order
(i.e., Nj == p;(X) for all j € [d]).

Definition 1 (Effective rank). For an index k > 0,
two notions of the effective rank of X are

ki1 A (Z?Z’““ )\j)Q
S and Ry(B) = ~—0r——— 2

d 2
Akt1 2iimki1 2

rk(E) =

These are essentially two notions of effective dimen-
sion of a “tail” component of the covariance matrix
restricted to eigenvalues A1, ..., Aq. For a constant
b > 1, denote k* := min{k > 0 : r,(X) > bn} where
the minimum of the empty set is defined as co. In
other words, k£* is the minimal index after which the
spectrum has large (first) effective rank compared to
n. We will make the following assumptions on 3.

Assumption 2. We assume that 3 is diagonal and
positive definite for any d,n < co. We also assume
that k* < % for some universal constant ¢ > 0.

The diagonal assumption is without loss of gener-
ality for our zero-shot lower bounds but required
for our few-shot upper bounds. The assumption on
effective rank essentially requires a “long tail” on the
covariance and ensures that the data is actually high
dimensional in nature.

We situate our results in two covariance ensembles
considered in Bartlett et al. (2020); Muthukumar
et al. (2021) which enable us to state precise rates.

Definition 3 (Spiked covariance matrix). A spiked
covariance matriz X is parameterized by p € (1,00),
r€[0,1), and g € (0,p —r). We set the data dimen-
sion to d = nP, the length of the “spike” to s = n'",
and a =n~9 to be a parameter controlling the ratio
of the eigenvalues. Then, the ensemble is defined by

ad
)\j = (Sl—a)d

d—s

Jj € [s]
otherwise.

This ensemble satisfies Assumption 2 with k* = s
when ¢ <1 —7r and k* =0 when ¢ >1—1.

Definition 4 (Polynomial decay covariance matrix).

A polynomial decay covariance matriz X is parame-
terized by p € (1,00) and u,v > 0 such that

A= (i + 1)

and d = nP. We consider two versions of the co-
variance. We set u =1, v =2 to study an instance

of the regime wherein benign overfitting is achieved,
and we set u € [0,1), v =0 to study a case wherein
it is not achieved (Bartlett et al., 2020). These pa-
rameterizations satisfy Assumption 2, but unlike the
spiked covariance matriz, characterizing k* is rather
delicate. In particular, if k* is nonzero we may only
be able to characterize its order (see Appendiz C.3).

Formally, we take limits over a sequence of covariance
ensembles {X,,}°2; (e.g., Theorem 8, Corollaries 9
and 13), but we drop the subscript n for clarity.

3 ZERO-SHOT TASK SHIFT

In this section, we study task shift performance in
the zero-shot setting, wherein no regression data is
available. We show that task shift is impossible un-
der sparse and random signal models with maximally
favorable data covariance. While our negative results
are perhaps expected — since the magnitude of the
regression labels is irrevocably lost in the classifica-
tion task — our analysis leads to some unexpected
conclusions. Specifically, in Section 3.1, we show that
the attenuation of the classification MNI is surpris-
ingly structured (which enables recovery of the true
signal up to a magnitude factor), and in Section 3.2,
we show that the nature of the failure of zero-shot
task shift is closely linked to the index k*.

3.1 The case of sparse signal

We first consider a signal with sublinear sparsity.

Assumption 5 (t-sparse signal model). Denote the
support of the signal 0* by S == {j € [d] | 0% # 0}.
We assume 0* is t-sparse, that is |S| =t < NIt <
d, where € € (0, 7). We write 0% := \;;\7 forjes

with a; # 0. Moreover, we assume the total signal

strength | £20%|2 = djes a3 is constant for all n.*

We note that the sparsity assumption is justified
since in its absence, regression generalization is
information-theoretically impossible in the overpa-
rameterized regime (Wainwright, 2009; Aeron et al.,
2010). For the regression MNI, Tsigler and Bartlett
(2023) showed one must have approximate sparsity in
the direction of the top eigenvalues to ensure low bias,
i.e., sparsity is required for statistical consistency.

Rather than the standard bias-variance decomposi-
tion, we directly investigate the relative preserva-
tion of the true signal (survival) and the pollution

4 The assumption on total signal strength is only neces-
sary for limits over over {3, }721, i.e., it is not required
for our few-shot results in Section 4.



of false signal (contamination), which were shown
in Muthukumar et al. (2021) to tightly characterize
regression and classification tasks. We define these
quantities formally below, using shorthand notation
A=XXT = Z?zl )\jzjz;r where z; = Xe;/\/\;
and z; ~ N(0,1,) is an independent isotropic Gaus-
sian vector for j € [d].

Definition 6 (Survival and contamination). Under
Assumptions 2 and 5, we define the survival SU; for
all j € S and contamination CN by

-1

0, e XT(XX")"'y N +. ..
SU; = 0—1 =2 (aj ) = a—J_ZjTA v,
J \/x J

= > N02
JES®

Intuitively, we desire survival to be close to one and
contamination to be small. In the remainder of
this section, we substantially generalize the anal-
ysis in Muthukumar et al. (2021); Wang et al. (2023),
which assumed ¢ = 1 and spiked covariance, to t-
sparse and general covariance models. Using As-
sumption 5 and Gaussian design, we may write

y =X0" = Z VAitiz; = Zajzj,
JES JES
y = sign (X6*) = sign(Zajzj).
JES

This expression enables us to perform careful leave-t-
out analyses and decouple the survival and contami-
nation terms in the following key lemma.

Lemma 7. Define S == S U [k*] and denote by
{5\]-};1;‘15' the diagonal entries of the matriz X_g3,
, X with rows and columns indexed by S left out,

and A_s= Zd SN, JZ;Z T. Under Assumptions 2
and 5 and for large enough n, we have for all j € S,

1 01t ;T 5
SUJ<\/E.1E(+ ))A’ITE(ASZ)
)T\ Bes

B ——C

~\ nlzze0)3 1+Aj(

2
SUJZ\/E'

Sy
SR

)

0431%(275))

G LRI GE)
1+( o) 0 T (AZE)

CgM ’
1+ (/\17"0(2 s))

with probability at least 1 — cte™™"". When n,d — o0,
the limit converges as

2
SRR

almost surely. Moreover, we have

A Tr (AZE)

lim SU; Y Tr( S)

n,d— oo

k* n
CN < ¢t (n + Ro<2_§)> In (n)

with probability at least 1 — <

Lemma 7 is proved in Appendix B. In addition to
being useful for the results of this section, Lemma 7
is also used for our postprocessing algorithm which
has access to few-shot data in Section 4. Equipped
with bounds of survival and contamination, we can
now relate the classification MNI excess risk with
{SU;}jes and CN. Under Assumptions 2 and 5, we
can write the excess risk of the classification MNI as

L(0) = By [(x—ré - XTB*) 1
- Zd:Aj (éj 70;.)2
=> 057 ( —1)2

JES

= a2 (SU; —1)° + CN?, (1)

jES

+ > A6

jese

where we substitute the expressions for 07 from As-
sumption 5 and {SU;};cs and CN from Definition 6.
Note that this decomposition is valid for any estima-
tor of 8* (not just the classification MNI ). Sub-
stituting the bounds on survival and contamination
from Lemma 7 yields our main result of this section.

Theorem 8. Define b; := hm Aj Tr< 1—). Un-

n, —>OO S
der Assumptions 2 and 5, for any covariance 3 sat-
isfying lim ER () _ gy Endn(m) g
n,d—o0 n n,d—o0 RO( 75) ’
have
2 b ’
lim L(é):Za? . I 1
n,d—o00 es 7T||2§9*||% 1+ bj

almost surely.

Theorem 8 is proved in Appendix C.1. It shows that,
even for data covariances that satisfy benign overfit-
ting of noise in linear regression (Bartlett et al., 2020),



perfect survival of signal is required for consistent
task shift. Notably, it is not possible for the classifi-
cation MNI 6 to satisfy regression consistency for all
possible magnitudes of the ground truth, i.e., for all
possible values of | £26*||2. This is because the coef-
ficients {b;};es in Theorem 8 clearly do not depend
on 08*. We can, however, ask the more specialized
question (posed in one-bit compressive sensing, e.g.,
Plan and Vershynin (2012)) of whether it is possible
to generalize on all signals of a specific magnitude.
Theorem 8 shows this will be the case if and only if
b; — oo for all j € S and |3226%||2 = 2: a positive
result in the flavor of one-bit compressive sensing.

As a corollary of Theorem 8, we present characteriza-
tions of zero-shot task shift for the spiked covariance
model (Definition 3). We present similar results for
the more delicate polynomial decay covariance model
(Definition 4) in Appendix C.3 (Corollary 18).

Corollary 9. Suppose Assumptions 2 and 5 are

satisfied with t < min {1 [ty \/ %} Under

the spiked covariance model (Definition 3),

e Forq<1—r, we have: lim L(6) =

n,d— o0

2
2
S (ot ) ¢ T 4
j<sjes w2263 j>5j€S

This implies regression consistency if and only
if the signal magnitude is fized at |$20%|2 = 2
anda; =0 forallj € SN{s+1,...,d}, i.e., the
signal is only supported within the “spike”. The
latter condition is also required for regression
consistency of the regression MNI (Tsigler and
Bartlett, 2023).

lim L(0) =3 s aj.

n,d— oo
As in the case of the regression MNI (Muthuku-
mar et al., 2021), regression consistency would
not be possible unless we had zero signal, i.e.,
6* =0.

e Forq>1—r, we have:

Corollary 9 is proved in Appendix C.2.

3.2 The case of random signal

We now provide results for random signal models
which may be dense. In this section, we study a gen-
eral random signal model and introduce a simplifying
ansatz which enables upper and lower bounding the
task shift error. In Appendix E (Theorem 23), we
show a more specific “dense” random signal model —

wherein 6* has similar magnitude in all dimensions
— which does not require the simplifying ansatz.

The key idea is to interpret classification labels as
regression labels under a dependent noise model and
explicitly connect to characterizations of the regres-
sion MNT (Bartlett et al., 2020; Tsigler and Bartlett,
2023). For regression labels, one usually has additive
sub-Gaussian noise, which means that ¥ — x' 8* is
sub-Gaussian and conditionally independent given x.
But for classification labels, we have

_ sign (XTQ*) —x' 0" <To*

Te*
x'0* ’

v—x

which is clearly dependent on x. We will write y —
y = DX6*, where D = diag(d;,...,d,) and d; ==

si Tg* _ To* . . . . .
%, to make this relationship explicit.

We begin with a decomposition of the regression risk
of the classification MNI, proved in Appendix D.1.

Lemma 10. The regression risk of the classification
MNI 0 can be decomposed as

2

L(0) = L(6) + Bx (x 0 —x76) .
Clearly, L(8) is the regression error of the regression
MNI: when there is no noise in regression labels
this is equivalent to the bias. Likewise, we refer to
Ex(xTé — x—r0~)2 as the task shift error, which can
be interpreted as the “variance” under our dependent
noise model.

The bias is a standard term, characterized as follows.

Lemma 11. For any 3, there exists a constant ¢ > 1
such that the following hold.

Upper bound. (Bartlett et al., 2020, Lemma 35).
For any 6* (not necessarily random), we have

L(0) < Ve || 6% max ( no(®) 7“0(2>>

n n
with probability at least 1 — e~ .

Lower bound. (Tsigler and Bartlett, 2023,
Lemma 8). Suppose random signal 0* is generated
from the ground truth @ by 07 = rjéj where each 1;
is an independent Rademacher random variable. We
have

~ 1 )02
Eo:L(0) > -) ————
j=1 (1+ 7 )
k=1 "k

n

with probability at least 1 — ce™ <.



We now provide a characterization of the task shift
error under the simplifying ansatz that D = ol
for some o # 0. The interpretation for this as-
sumption is that all regression labels have the same
magnitude (say, equal to R), which would result in
d; = % — 1 =: a5 clearly a # 0 except in the special
case where R = 1. Thus, we are considering regres-
sion problems that are, in essence, a scaled version of
classification. From a technical perspective, it is dif-
ficult to obtain closed-form bounds on the task shift
error without the simplifying ansatz, as dependen-
cies which arise for general D may invalidate certain
concentration arguments. Nevertheless, as we expect
generic regression problems to be even harder than
scaled classification, providing a lower bound even
for this simpler setting is meaningful. Our next the-
orem does precisely this, via an extension of benign
overfitting techniques to our dependent noise model.

Theorem 12. For any 3, there exist constants
c,c1 > 1 such that the following hold.

Upper bound. If k* < -, then for any 6* (not
necessarily random), we have
*

T4 .|_~2 k n 1
Ex(x'0—-—x0) < —_t — 2072
x( ) cn<n Rk*(E)) H H2

n

with probability at least 1 — 18e™ <.
Lower bound. Suppose D = ol and 0* is any
random signal such that E9;2 > 0?2 for all j € [d]. If
k* < %, then

N - 2
Eg- x (xTe - xT0>

OZ2O'2 s n d
> E Ajt+ 5y g Aj
c \ & Re(®) 4
J= j=k*+1

n

with probability at least 1 — 14e~ <. On the other
hand, if k* > %, then

a?o?

. N
Eo+ x (xTQ — XTO) >
c

n

with probability at least 1 — 10e™ <.
Theorem 12 is proved in Appendix D.2. An interest-
ing consequence of Theorem 12 is that there do exist
covariance ensembles for which the task shift error
decays to zero — implying that the classification and
regression MNIs would generalize equivalently on a
regression task! However, these are ensembles for
which k* = 0, and therefore regression bias would
stay constant. Ultimately, our results imply a fun-
damental tradeoff between bias error and task shift
error for random signals, stated below.

Corollary 13. For any sequence {3,}52, denote
k= limy, g o0 K*. Suppose random signal 6* is gen-
erated from the ground truth 0 by 07 = r;0;, where
each r; is an independent Rademacher random vari-
able, such that |22 0|2 is constant for all n. Assume
that 9? >1 forall 1 < j <d. Then, under the same
conditions as the lower bound of Theorem 12, the
almost sure limits of bias and task shift error are
characterized in two distinct regimes:

1. kK =0: the limiting bias is nonzero, i.e.,

~ 302
lim E.L(6) > 122912

n,d— o0 C

2. k > 0: the limiting task shift error is nonzero,
i.e.,

a2
c

R N 2
lim Eo-x (x0-x76) >

n,d— oo

The proof of Corollary 13 is in Appendix D.5.

4 FEW-SHOT TASK SHIFT

In the previous sections, we demonstrated that task
shift from classification to regression without any re-
gression information is generally unachievable. There-
fore, in this section, we investigate task shift in the
few-shot setting, where limited regression information
is available. We propose a simple two-step approach
to recover a sparse signal 8*. In the first step, we
leverage the structured attenuation of the classifi-
cation MNI to recover the support of 8*. Second,
we perform least-squares regression with reduction
to the dimensionality of the support to recover the
magnitude of 8*. Our results require a diagonal
covariance matrix (Assumption 2).

4.1 Support recovery via attenuation

The survival and contamination bounds of Lemma 7
show that while the classification MNI 6 attenuates
the sparse signal 8*, it does so in a highly structured
manner. This suggests it is possible to distinguish
the support components of 8* using the relative mag-
nitudes of entries of 6. If the true signal is supported
within the top k* indices of the covariance spectrum,
the survival is bounded below by a constant; in con-
trast, contamination decays to zero with n at a faster
rate than the survival terms (Muthukumar et al.,
2021). Surprisingly, even when the signal is sup-
ported outside the top k* indices, its decay rate may
still be slower than the non-support components.



Algorithm 1 Support recovery

Algorithm 2 Least-squares on recovered support

Require: X, y, (¢t or {/\j};l:l)
6 XT(XXT) 'y
S+ 10
if ¢ is known then
S « argtopt(|6])
else if X is known then

for j € [d] do
. _1
if [0;/ > A; * then
S+ SuU{j}
return S

With this in mind, we propose Algorithm 1 assuming
we either know the sparsity level ¢ or the covariance
spectrum {\; };-l:l (equivalently X by assumption).
Below, we state the general-purpose support recovery
guarantee for Algorithm 1.

Theorem 14. Under Assumptions 2 and 5, suppose
S C [k*], i.e., 0% is only supported in the top k* in-
dices of the covariance spectrum. Denote by {S\J }?;f*
the diagonal entries of the matriz X _ 3+, i.e., 3 with
the first k* rows and columns left out. Algorithm 1
recovers the support of the true regressor with prob-
ability at least 1 — ctde="" if either (1)t is known

and the additional conditions \; < A 7
A< % hold for all j € S, q € SN[k,
> k*, or (2) X is known.

and

The first case of Theorem 14 utilizes Lemma 7 to
ensure the lower bound of support components of 0 is
larger than the upper bound of non-support compo-
nents of 8. The two additional conditions in the first
case of Theorem 14 are necessary to avoid scenarios
wherein the support components of 01* decay very
quickly with n (recall that 05 = aj)\j_i, so a larger
A;j implies faster decay). Roughly, the first condition
states that support eigenvalues should not be much
larger than non-support eigenvalues in the top k*
indices, and the second condition states that the top
k* eigenvalues should not be much larger than the
squared sum of the “tail” eigenvalues. We analyze
these conditions for specific covariance ensembles in
Appendix F. On the other hand, the second case of
Theorem 14 does not require any additional assump-
tions, as we show |0;| is lower bounded by /\;% if
j € S but decays at a faster rate if j ¢ S.

We provide the proof of Theorem 14 in Appendix F.
We include extensions to cases wherein 0* is sup-
ported outside the top k* indices of the covariance
spectrum for spiked and polynomial decay models —

Require: X, y, {x}, v/},
0+ X" (XX") 'y
S + from Algorithm 1
épost < arg minBeRd Zyil (X;Te - y;)2
s.t. 9j =0 Vjedse
return épost

surprisingly including isotropic covariance, despite
isotropy not being conducive to generalization even
in classification tasks (Muthukumar et al., 2021).

4.2 Least-squares on recovered support

In this section, we leverage few-shot regression data
{(x},y5)}™, to recover the magnitude of the ¢-sparse
signal 6*. Since the support of 8* has already been
recovered, we employ a straightforward least-squares
estimation technique considering only the ¢t compo-
nents of each regression datum which lie in the sup-
port. Algorithm 2 describes this method in detail.

We recall that the few-shot regression dataset is al-
lowed to be noisy, i.e., for some o2 > 0, we may
have 3 = x."0* + & where € ~ N(0,02I). There-
fore, provided that m > ¢, Algorithm 2 enjoys the
standard least-squares guarantee of O(%) regres-
sion risk, or zero regression error with only ¢ noiseless
samples. Either of these imply the desired regression

consistency, i.e., task shift is achieved.

In Figure 2, we demonstrate the performance of our
postprocessing procedure, combining Algorithm 1
and Algorithm 2. Notably, our task shift estima-
tor épost generalizes even for covariance ensembles
wherein minimum #s-norm interpolation fails, i.e.,
the regression MNI is statistically inconsistent with
respect to regression labels. In fact, Appendix I
demonstrates that this success persists even when
the classification MNI is inconsistent for classification

tasks — including the case of isotropic covariance.

A remaining question is whether we can recover the
magnitudes of the support of 6 without any few-
shot regression data. Lemma 7 implies that if the
effective signal strength ||£26*|2 is known, then a
simple scaling procedure is sufficient. Specifically, for

= 0;1/51267[13, and
Opost,; = 0 otherwise. Lemma 7 then directly implies
that épost — 0" as n,d — oo as long as b; — 1 for
all j € S. But while this approach is specialized to

Gaussian covariates and noiseless classification data,
Algorithm 2 is more robust to modeling assumptions,

all j € S we may set éposw-
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(ii) Task shift for spiked covariance when regression does not generalize. We set p = 1.5, ¢ = 0.5, and

r = 0.55 so that ¢ > 1 — r. In this regime, our task shift estimator épost generalizes, but the regression MNI 6 does
not. Note that k* = 0 here, so 8* is necessarily supported outside the “spike”.

Figure 2: Postprocessing achieves task shift even when minimum /;-norm interpolation fails for
both classification and regression. The left column demonstrates the survival of ¢-sparse signal support
components in the classification MNI 6 while non-support components decay quickly. The middle column
shows the O (%) regression error of least-squares with reduction to ¢ dimensions using m regression samples
under standard Gaussian noise. Finally, the right column displays the regression risk of the classification
MNI, regression MNI, and our postprocessed predictor. The signal 8* is 2-sparse with a; =1 and ay = —0.5
(see Assumption 5). The middle column fixes n = 2500. We plot the mean and standard deviation over 10

draws of the training dataset X. See Appendix I for additional simulations.

and we believe it can handle even unknown label noise cessful few-shot procedure in the absence of any spar-
and sub-Gaussian covariates by building on Cao et al.  sity or data covariance assumption and studying task
(2021); Wang et al. (2023). shift for minimum #,-norm estimators where p # 2.

While we use task shift in large language models
5 DISCUSSION (LLMs) only as a motivating example for our theo-

retical investigation, our work could inform future
Our results paint a pessimistic picture for zero-shot analyses of of LLMs and in-context learning. In par-
task shift (perhaps as expected), but an optimistic ticular, our survival and contamination analysis may
one for the few-shot case. Our key insight is that the = be extended to the neural tangent kernel regime via
attenuation of the classification MNI is surprisingly — recent frameworks for kernel interpolation, e.g., Malli-
structured, which suggests one can get more “mileage”  nar et al. (2022); Tsigler and Bartlett (2023); Kaushik
out of the MNI than previously known, including for et al. (2024). Furthermore, recent work has charac-
few-shot task shift to regression. A principal open terized linear attention as high-dimensional linear

question is whether there exist alternative formula-  regression under a specific data embedding (Lu et al.,
tions (e.g., shifting from multiclass classification to 2024), which could be analyzed in our framework to
regression) more conducive to zero-shot task shift.  explain few-shot task shift in linear Transformers.

More close-ended questions include providing a suc-
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A Expanded related work
We organize related work under four verticals.

Task shift vis-a-vis transfer learning. Our problem formulation differs from the popular transfer
learning paradigm, which utilizes a pretrained representation on downstream tasks, e.g., via finetuning or
knowledge transfer. Numerous works have analyzed the generalization of transfer learning, including for
high-dimensional linear regression (Dar and Baraniuk, 2022) and general function classes (Tripuraneni et al.,
2020). In the transfer learning literature, improved sample complexity guarantees are often provided as
compared to learning each of the tasks from scratch; our few-shot results in Section 4 also have this flavor at
a high level. In our task shift setting, the ground-truth signal does not change between the tasks — only the
nature of the task in terms of its metric, i.e., test loss function, changes. Task shift is particularly compelling
when the aim is to shift to a fundamentally harder task, as in this work where we transfer a classification
estimator to a regression task. Conversely, recent work formulating regression as a multi-class classification
problem showed that despite discretization, the classification loss can aid in feature learning (Stewart et al.,
2023). Earlier, multi-label classification problems (i.e., prediction of a vector-valued discrete output) were
modeled as binary classification utilizing a sparsity assumption on the labels (Hsu et al., 2009).

Task shift vis-a-vis distribution shift. Though ultimately very different, task shift shares some
similarities with distribution shift, wherein the training distribution p and test distribution ¢ over the feature
space X' and label space ) differ. Task shift is not directly related to the common settings of covariate
shift, wherein p(z) # q(z) but p(y | z) = q(y | ), or label shift, wherein p(y) # q(y) but p(z | y) = q(x | y).
In particular, recent results leveraging benign overfitting and random matrix theory to analyze covariate
shift (Tripuraneni et al., 2021; Mallinar et al., 2024; LeJeune et al., 2024) are generally inapplicable in our
setting. Task shift is more closely related to concept drift, where p(x) = q(x) but p(y | =) # q(y | ), though
concept drift is typically studied in the context of temporal changes (Moreno-Torres et al., 2012). Task shift
also has similarities to generalized settings including the “generalized target shift” of Zhang et al. (2013),
in which p(y) # ¢q(y) and p(x | y) changes with constraints, and the “generalized label shift” of Tachet et al.
(2020), in which p(y) # ¢(y) and p(g(z) | y) = ¢(g9(x) | y) for some representation g. While these works
assume that X and ) remain constant during the distribution shift, in task shift we study different or even
disjoint label spaces Yipain and YViest- Similar models have been proposed, such as Disjoint Label Space
Transfer Learning (Chang et al., 2019), wherein Vi ain and YViesy are completely disjoint but share a common
representation, and Open Set Label Shift (Garg et al., 2022), wherein p(y) # ¢(y) and new classes may arrive
during test-time as long as p(z | y) is constant for existing classes, Yet, our task shift formulation goes one
step further in that the objective function also changes.

One-bit compressive sensing. Our problem formulation for zero-shot estimation is deeply connected to
the one-bit compressive sensing problem (Boufounos and Baraniuk, 2008). In this setting, the data matrix X
is designed, the ground-truth signal 8* € R? is unknown but ¢-sparse, and the objective is signal recovery from
n < d quantized measurements of the form §; = sign (x; 6*). The most prominent difference between our
frameworks is that the focus in one-bit compressive sensing is designing the optimal estimation procedure with
knowledge of the measurement process. This procedure involves either solving a convex program to maximize
the average margin on training data subject to a ¢1-norm constraint (Plan and Vershynin, 2012; Awasthi
et al., 2016; Chinot et al., 2022) or combinatorial optimization routines (Gopi et al., 2013). In contrast, we
have no control over the design of the estimator and assume de facto the ¢5-inductive bias, which due to the
implicit bias of gradient descent is one of the most commonly observed in machine learning (Soudry et al.,
2018; Ji and Telgarsky, 2019). Accordingly, while one-bit compressive sensing tends to consider isotropic or
near-isotropic ensembles, we consider a gamut of anisotropic ensembles which can be more favorable to the
{5-inductive bias®. Moreover, one-bit compressive sensing allows the design of biases which leak information
about not only the signal direction but also its magnitude. For example, one can design known biases 7 € R™
and modify the measurements to §; = sign (x;/ * 4+ 7;) (Knudson et al., 2016; Dirksen and Mendelson, 2021).

5 While, surprisingly, our few-shot guarantees hold even for the isotropic ensemble, the sample complexity is
1
suboptimal compared to one-bit compressive sensing, requiring n = d» for some p > 1.



We have no such flexibility in our framework — any error terms that may arise would be of the form of
unknown regression or classification label noise, and would therefore worsen our zero-shot lower bounds.
Nevertheless, our results in Theorem 8 show that even under the weaker ¢5-inductive bias, positive results in
the flavor of one-bit compressive sensing are possible: specifically, we can estimate the signal correctly only if
its total magnitude is known and given to be | £260*|2 = 2,

The />-inductive bias and benign overfitting. The minimum /¢s-norm interpolator has been shown, for
certain “effectively high dimensional” data covariances, to overfit noise in a benign manner, meaning that
the extra error arising from such interpolation can decay to zero as n,d — oo (Bartlett et al., 2020; Tsigler
and Bartlett, 2023). Despite the possible absence of noise in our setting, we find effective dimension useful —
indeed, we propose an interpretation of the difference between regression and classification labels as effective
noise. The classical shortcoming with minimum ¢s-norm solutions is not overfitting noise, but instead their
propensity to attenuate signal (Chen et al., 2001); even for 1-sparse 8* = e; and d > n we would have
91 — 0 for isotropic data covariance (Hastie et al., 2022). Statistically speaking, minimum £s-norm solutions
suffer from a constant bias and therefore inconsistent regression error even when trained on regression labels.
Despite this, Muthukumar et al. (2021); Cao et al. (2021); Wang and Thrampoulidis (2022) showed that
for sufficiently anisotropic ensembles, one can achieve classification consistency on classification labels when
regression would not be consistent on regression labels. The key insight, developed primarily for 1-sparse signal
and spiked covariance models, was that the relative magnitude of the true feature 6, (quantified through
a metric called survival) is preserved with respect to the total magnitude of the “false” features {OAJ }?:2
(quantified through a metric called contamination).

We substantially develop this insight to show that the relative feature magnitudes can be used to estimate
the support of a sparse signal even when neither classification nor regression generalizes — including isotropic
covariance, the worst-case data model for minimum f5-norm solutions — which in turn enables few-shot
regression consistency. Our support recovery procedure is also generally applicable; it only requires a diagonal
covariance and either the sparsity level ¢ or or the covariance spectrum {\; }?:1 to be known.

B Key lemma: general survival and contamination bounds

In this section, we provide the proof of Lemma 7: our extension of survival and contamination bounds to
t-sparse signal 8* and general covariance matrices 3. In contrast to the 1-sparse 8* result of Muthukumar
et al. (2021), we consider a more general t-sparse 8* setting. To overcome this technical obstacle, we utilize
the leave-k-out technique of Wang et al. (2023) to complete the proof. For bounds on the survival term SUy,,
where s, is the £*" element in S for ¢ € [t], we show the result when ¢ = 1 without loss of generality. Before
we begin the proof of Lemma 7, we define the following notation for ()5, and QSZ:

Qse = Z A—il sly (2)
QS[/ — Z A—il s[z517 (3)

where we denote shorthand notation A := XX and the leave-f-out matrices corresponding to A . s =
Z;l 1,j#s1 , AJZjZ j . We also need the following auxiliary lemmas which are generalized from lemmas
in Wang et al (2023) Note that lemmas in Wang et al. (2023) only apply to leave-top k-out matrices, while

we generalize them into leave-discrete t-out matrices. Proofs of these lemmas can be found in Appendix G.

Lemma 15 (Generalization of Lemma 15 in Wang et al. (2023)). Under Assumptions 2 and 5, for large
enough n, we have

Qs, <sign (ag,) ﬂsl Tr(AZl.,) +2c |AZL,. St||2~n%+€,

—81:8¢
: Qﬂ 1 1
QSt > sign (as1) 7:1 Tr (A781 st) 2¢1 HA,SI 1St H2 . n2+e,
,\529;2 a2, ‘ o _n?
where B, == a7 for £ € [t], with probability at least 1 — 2e™"

ZJES Z ES



Lemma 16 (Generalization of Lemma 16 in Wang et al. (2023)). We have that Qs, is tight up to an additive
factor in Qs, as

ct

. cyt
) Qs, < Qs, < (1 + sign (as, ) ) Qs,
c3n 2 R | C3n —1

(e

with probability at least 1 — cte™™

)\ézzb/A751 5oYso_1

1 Sy
1+>‘bzzs/A—sl g %5y

Lemma 17 (Generalization of Lemma 21 in Wang et al. (2023)). Define s, == ¥s,_, —
and ys, = for £ € [t]. Then,

g, z] AL Vo s

Sesy —81:8¢

14+ A,z] A”!

Sefspth—s1: se

<ec

with probability at least 1 — ct?e™™

Now we can prove Lemma 7.

Proof. (Lemma 7) We start with the survival upper and lower bound. By the survival definition in Definition 6,
we can write SUy, as

A

SUs1 = a: Z;Afly
s <A_ M ATL Lz a] AT ) ;
asl T 1+ )\slstlA_il s, Doy
Aozl AZLLY
- as, 1+ Aslz;A7i1 w1 Zsy
_ A Qs
as; 14 A, Qs,
_ s, sign(as,) Qs (4)

|a81| 1 + )\51(231

where we apply the Sherman-Morrison-Woodbury identity in the second equality. Next, recall that QS , =
z. A,S 1:s,Zs; 10 Equation (3), and by the Hanson-Wright inequality (Lemma 32), we have

Q < Tr (A*il Sl) +cl HA781 31H2.n%_‘—e

- -1
<Tr (A_(s 5t)U[k*]) +c1 ‘ A

1

i+
. 2
—(sus)ulkr]|l, M

where the second inequality follows because A_, .5, = A_(,.s,)uk+] and therefore A_il s = A:(91 s)Ulk*]"
On the other hand,
Q > Tr (A ! ) cl ||A n3te

—S1:81 —S1: 81||2

= (“ﬁ)k T (A e

where the second inequality follows from the trace lower bound in Lemma 36. Next, we need to derive the
bounds for sign (as, ) @s, term in Equation (4). Note that we need to adjust the bounds of Qs, in Lemma 16
according to the sign of as,. Considering the sign of ag,, from Lemma 16, we can have

“+e

1
. 2
n )

—1
‘A—(slzst)u[k*] 9

C4t

1) sign (as, ) Qs, -

€ 03n§—e _

c3nz " —

cyt
<1 — 141) sign (as,) Qs, < sign(as,)Qs, < (1 +



From Lemma 15, we can further bound the sign (as, ) Qs, term as

sign (as,) Qs, < 2,681 Tr (A ; ) + 2¢; HA*81 StH2 : n%+6a

—81:8¢

sign (as,) Qs, > ﬂsl Tr (AZ ! ) =21 HA e,

—S1:5t

—s1: StH2 n

As a result, we can apply the bounds of Qsl and the bounds of sign (as, ) Qs, above to get the upper and
lower bound of SU;, from Equation (4). We then obtain the SU;, upper bound as

cat 285 1 g
e () () () i o)

R , 1.
s L+ A ((1 - 7) e (A %51 i8¢ )U[k*]) —a HA—zSuSt)U[k*] 2 it )

-1 —1 1.
3 (14 g ) 2 (A )+ A 0t )
VAR 1 (1= ) Ty (A A- @
2 + Asy (( _;) r( —(s1:80)U[k*] ) €1 H —(31 so)ulk*] ||, " )

and the lower bound of SU,, as

\ (1_nt_1)< 205 Ty (A7) — 2clHAslstH2.n§+e>
Wz (22) =

|, | 1+/\51< (A_(s - [k*)+cl ‘A .n%+e)

—(s1:8¢)U[k*]

cat 1 B

F (1—1> Ao (Tr(ATLL) = e |ATE L Il ni )
) : 6)

12 -1 - b (
7TH220 HQ 14 As, (TI‘ (A—(slzs,,)u[k*}) +c ’A—(slzm)U[k*] 2 ‘nat )
a2
faer \ﬁ = Toul ﬂgj;a? = \/mrstera Next, we need to upper bound
™ 2

and lower bound Tr (A_i1 91) terms; we achieve this by relating A_;, ., to

Tr (A ! ) and HA

51:8¢ —S81: 91”2
A_(s,:5,)uk*)- Lemma 36 provides that

- 1 c\** -1
(A—(sl s¢)Ulk* ]) > Tr (A—sl st) z (1 - E) Tr (A—(sl:st)u[k*]) )

and we also have A~} <A}

—51:8¢ — T —(s1:8¢)U[k*]”

cat 1 —1
2 (1 * 63"545_1) As ( (A (s1: St)U[k*]) e HA*(Sl‘s,:)U[k*] 9
SU, < RISIPNTE \ Rl (a1 A-
2 | 1+ Ay ((1 - %) ( —(s1:50)U[k*] ) ‘1 H —(51 s0)UlE*] ||,
c c k> — 1ie
2 (1 B cgn;“11) Ao (=8 (A i) = 2 [ AL g, 74)
>
SUs, > ﬂ_HE%G*HQ 1 — lie
2 LA (Tr (AT sue) 0 | A o ||, 72

Next, Lemma 35 shows that all eigenvalues of A~}

As a result, Equation (5) and Equation (6) now become

.n%+e)

.n%+e)

Z(s1:s0)Ulk+] ATC identical up to a constant such that

4%

oo fl,

& (A_[k*]U(el ef))

Sla



By dividing Tr (A:[lk*]u(slzm) in the numerator and denominator of Equation (7), we can have the upper

bound of SUy, as

caqt 1
<1 + %n;—‘_1> As (Tl" (A (s1:8¢)ULk* ]) T HAf(Sl s )UlR7]

: n%+e)
2

|22 9*H2

k* 1
1+ )\Sl ((1 - 7) " (Afésl s¢)U[k*] ) ! HA*(S1 15¢)U[k*]

%+e)

n2+

—(s1:8¢)U[k

7TH229*H2

cat CQHA—(sl s¢)ULE*]
(1 + W4—5_> As Tr (A (s1:8¢)U[k* ]) (1 T Tr(A !

B k-1
14 A, Tr (A o W]) ((1) .

cyqt !
(1 + n—_> Asy ¥ (A (suise) ULk ]) (

('1HA

—(s1:8¢)U[k*]

1
’I‘I‘<A7(sl se)U[ k*]

3
%—e

|22 9*H2
7TH229*H2

(1 + —gat ) As; Tr <A_(s1 ts¢)U [k*]>
1+ (1 -

142, Tr (Aisl 130U [k*]) ((1 - -

n) M T (A o)

C4q )
1_
n2" ¢

9)

where we apply the bounds in Lemma 35 in the second inequality, and in the last inequality we introduce

some new constants since ¢ < nz ¢ and € € (0,
SUs,. From Equation (8), we have

cat c k* -
2 (1 — Cgﬂ;ﬂ) )\81 ((1 - E) (A‘—(sl 3t)U[k* ) €2 HA_(SI st)U[k*]

1). We repeat the same derivation for the lower bound of

.n%+e)

SUg, >
1+ >‘81 (TI' (A (s1:8¢)U[k*] ta

[z 613
t
(1_M) ] G (

7+€
—(91 s¢)ULk*] e )
—(s1:8¢)U[k*]

1 'n%+e
( —(s1: 91)U[k*])

czHA

1+)\51Tr(

|
>

AL
Lte
*(51 St)U[k*] n2
(51 <t)U[k*])

Cc3 )
L
n27E

cat
2 (1 B gn;> A Tr( EA ) (

7 26¢3 L4 A, Tr (A7 L+ -

F (15
mlI2043 \ 1+ (1

Finally, Lemma 35 also implies the bounds of Tr (A_L 50)Ulk*]

(s1:8¢)U] k*

))\SITY(A 1

(s1: st)U[k*

))\81 Tr (A7 e )
)

n

such that

cn

(A:(sl M)U[k*]> - ; ( )

i A—(sl :st)U[k*])
n

05\17’0 (2—(81:St)U[k*])

Tr (A* »

(1 sau[k*]) =

where we denote {)\ }d [(s1:8¢)U

E_(slzst)u[k*]. By substituting the bounds of Tr (A:%Sl:St)U[k*]

/\17"0 (Zf(slzst)U[k*])

)

1 the diagonal entries of the leave-t and k*-out covariance operator

) into Equation (9) and Equation (10),



the survival proof is done. Next, we show the convergence of SU;,. From Equation (9), since ¢ < nz=¢ and
e € (0, %), for n,d — oo, we have
) )‘91 Tr (A_(ql ef)u[k*])

o

Jm SU,, < lim m 14 ( ) Asy Tr (A_(el s0)Ulk* ])
. F As, Tr (A:(é g,)u[k*])
C\VrlIBie 314, T (A ( )

(s1:8¢)U[k*]

Similarly, for the lower bound of SUy,, from Equation (10), we have

2 (1— ))\qlTr(A_ )
lim SU,, > lim N 5 ni= (s1:8¢)U[k*]
n,d—o0 n,d— o0 7T||220*||2 1+ ( ) )\sl Tr <A_(€1 s)Uk* ])

_F As; Tr (A:(s Qt)u[k*])
VA= B, (A )

(s1:5¢)U[k*]

Therefore, we can conclude the convergence of SU,, by its matching upper and lower bounds.

Next, we prove the contamination upper bound, and the proof follows the proof idea of Lemma 5 in Wang

et al. (2023) closely. We start with the classification MNI with the indices not supported in 8*. For j € S¢,
we have

14+ Xzl AL 7,

1 1
_ \/)\»Z (A— o )\ A—31 slzbl alA—sl sl> ~
- J ] —81:81 y

S$1%sq —S81:81
1 A
=/ TA— S )\SIZS1A*S1 51y
- JZ —81:81 y 1 \ TA_ Zs,
+ Slzsl —S81:81 51
=,

=V JZTA:sl e1y91
=V JZTAfil Styst’ (11)

Where we apply the Sherman-Morrison-Woodbury identity recursively and also denote y;, = ¥, , —

Ao 7l AT s . A .
H_; i Xl fy zz’l z,, and y,, = ¥ for £ € [t]. Next, we take the square of 6; and according to the CN
—s1:8p28g
definition in Definition 6, we have 9?— = /\]yng_i1 s, Z TA_il s,¥s, and therefore
=D Af;
jese
2
- Z /\ yst —31 stZJ 7 A—31 Styst
jES®

§ : 2 T —
- y$¢ 781 St )‘ 7 ] A751 i8¢ ySt'
jeS*

=C

Next, we apply the triangle inequality such that \/(x - y)T M (x —y) < VXTMx + /y My t times to



decompose y,, and get

14+ A\s,z] A”L

Sefsy —S71: Sg

t 1 2
)‘S s Afs 'S S ~
CN = \/y C}’st < \/yTCy Z < eZs, 1iseY s ) 2] Cz.,. (12)

Since § = {s1,---, s}, ¥ and all z, are independent to C, we can apply the Hanson-Wright inequality in
Lemma 32 to obtain

y' Cy <Tr (C) (1 + 1) In(n) and
. N 1
zSTZCzS[ < Tr (C) <1 + c> In(n),

with probability at least 1 — % Substitute these inequalities into Equation (12), we get

t T
s, z) A”L Vs ~ 1
CN< |1+ £ Se TSt 7e ) Tr (C (1+)1
_< ; 1+)\5’5Z;|;A*;1 seLse ( ) ¢ n(n)

< (1+te2) \/H (€) (1 + i) In (n),

where we apply Lemma 17 in the last inequality. It remains to upper bound Tr (C) to complete the proof of
the upper bound of CN. Then we can use Lemma 11 in Bartlett et al. (2020) to show

Tr (c) =T (AT [ Y Nz | AT

JjES*®
_ 2, TA—
=D Nz ATz
Jjese
2, T A —2 2, T A—2
= Z )\ ,Afs1 iS¢ j + Z )\ A751 St
J<k*,jese J>k*,jese
d 2
<c L +n 2k 1,ies )
- n d A 2
Zj:k*-&-l,jesc J
The proof of the upper bound is completed. O

C Zero-shot task shift in the case of sparse signal

In this section, we provide proofs from Section 3.1 concerning our sparse signal model. In Section C.1,
we leverage Lemma 7 to prove the convergence of the regression risk of the classification MNI for general
covariances. The results of Section C.1 are left in terms of the inverse leave-t-out Gram matrix; in the
following sections, we provide more precise derivations for specific covariance ensembles. In Section C.2, we
provide closed-form expressions for the limiting regression risk of the classification MNI under the spiked
covariance model. Finally, in Section C.3, we provide corresponding expressions for the more delicate case of
the polynomial decay covariance model.

C.1 Characterization of zero-shot task shift for general covariance

In this section, we provide the proof of Theorem 8.



Proof. (Theorem 8)

The excess risk expression of Equation (1) in terms of {SU;} es and CN gives us

Za (SU; —1)* + CN2.

JjES

We now characterize the limiting regression risk lim,, g—00 L(@). Since the covariance matrix is benign and

t2. k>

1 . -1
nn(n) _ hmn,d%oo t>.n-In(n) _

(s s) 0, we can apply Lemma 7. We then have

satisfies lim,, 400

k*
lim CN2< lm (> +—")In(n) =0.
n,d— oo n,d— oo n R(] (2_5)

Since CN? > 0 by definition, we have lim, 400 CN? = 0. Hence, we have limy, 4— 00 L(é) =

Y jes 4 2(SU; — 1)%. Then, Lemma 7 tells us that

lim SU; 12 . )\jTr(A:é) .
n,d—00 \/ TIZ20%3 14\ Ty (A:};)

Denoting b; := limy, g 00 Aj Tt (A:l—) as shorthand and putting it all together, we have

5
2 5 b 2
lim L) = 1l 2(su, —1)? = 2( _1) = 2 i q)
n,dlgloo ( ) n,dlgooza] (SU] ) ZaJ n dlgloosu Za 7TH2 0*“2 1—|—b
JES jES jes
This completes the proof of the theorem. O

C.2 Closed-form expressions for spiked covariance

In this section, we provide the proof of Corollary 9.

Proof. (Corollary 9)

First of all, we show that the following limit holds
2 k* -1 t?n-1
LRI o Eenein(m)
n,d—oo n n,d— oo RO (E_S)

This ensures that the assumption in Theorem 8 is satisfied. By the definition of spiked covariance (Definition 3),

we observe that £* = s =n" for ¢ <1 —r and k* =0 for ¢ > 1 — 7. This implies lim,, 4o %n(”) =0. On

the other hand, we also have Ry (2_5) =d—|S|= % which leads to lim,, g— oo ﬁ("{) = 0. Additionally,
S

nP—1

hty } Combining these results, we conclude

the corollary assumption guarantees that ¢ < min{ ﬁn(n)

t2.k*In(n)

that lim,, g0 -

=lim, 400 2ninn) _ 0, and therefore, Theorem 8 holds.
T Ro(Bs)

Next, recall that b; = lim, 00 A; Tr (A:}g), according to Theorem 8, when n,d — oo, the limiting

regression risk is equal to

2
b
lim LB a i
n,d— o0 jez; ( 7T||E 0*|‘21+b )
2 b 2 ) b 2
2 ' 9 ;
= a: —1 + as -1 , (13)
jél;es '7< ml|=20%(3 1+ b ) j>,;es ]< T|Se521+b; )




b; .
Z— for two sections:

where we separate the summation into two sections. Therefore, it suffices to characterize

1+bj
j < k* and j > k*. In both sections, we have
b; 1 1
1+b; o t1  ndooo 1
A; Tr (A—S)

Next, since 7¢ (E,g) > bn, we can bound Tr (A:}S) according to Lemma 10 in Bartlett et al. (2020) such
that

N
N

1 n cn cn
Tr(A"L) = < < = =
( *S) ; i (A_S) Hn (A_g) )\1T0 (E_S) Z?:k*Jrl,jeSC A]

1 n n n
Tr(AL) = > > — = .
( 75) ; ri (A_s) ~ i (A_s) ~ eliro (=_s) Cijk*H,jeSc Aj

V
\%

Recall that, in the above, we denoted {S\J }?;‘1‘9' the eigenvalues of the leave-t and k*-out covariance matrix

3._s. Therefore, we can upper and lower bound Equation (14) as below:

1 b; 1
ldim s A = 1 —|—jb = Lim s A ’ (15)
n,d— o0 c P < Ak ; n,d— oo P < Ak
( k k)\J;;keS ) + 1 J ( k=k CJ;\ljZes ) + 1

. . .. Zd.: Ak . .
As a result, it suffices to characterize the limit of % as n,d — oo. We discuss our evaluation of
J

the spiked covariance ensemble in two cases.

e Spiked covariance with ¢ < 1 —r (Definition 3):
Recall that, for this choice of parameters, the regression MNI would generalize (Muthukumar et al.,
2021). Define k := |S| as shorthand. From Definition 3, we have k* = s. Therefore, for j € SN [k*],

d 7\ (1—a)d
lim 2k=k+ 11 kese M . (d—k) "=
n,d— o0 )\j’I’L n,d— o0 %d n
(np _ ];‘) (17n’q)np
= lim (n?—n")
n,d—oo n(l’—q—’”“‘l)
(7 — k) $=)
= lim (1-n"77)
n,d— oo n(piqir+1)
= O7
where the last equality followed because 1 — ¢ —r > 0. As a result, from Equation (15), we have 1ijb- =1
for j € SN [k*]. On the other hand, for j € SN{k* +1,...,d}, we have
d 7\ (1—a)d T
lim Dk—kr 41 ks M — lim (d—Fk) S5 — lim (n” — k) —
n,d— o0 Aj?’l n,d— o0 u{;%)d .n n,d— o0 n ’
Therefore, from Equation (15), we have 1ijb; = 0 for this case. Substituting these values back into Equa-

tion (13) completes the proof of the corollary for this case.

e Spiked covariance with ¢ > 1 —r (Definition 3):
Recall that, for this choice of parameters, the regression MNI would not generalize (Muthukumar et al.,



2021). In this case, we have k* = 0. Define the number of support indices that are contained within the
spike as t1 := |S N [s]|, and note that 0 < t; < min{s,t}. Therefore, for j € S N [s], we have

d a —a)d
Shoisess M _ (5ot S+ (d—s— (- 1) S

g
|

n,d—o00 Ajn n,d—o00 a?d "n
B AP
. (nr_tl)n(p*qfr) +(np—n’"—(t—t1))%
- n}dlinoo TL(piqiTJrl)
= OO,
bj

where the last equality follows because 1 — ¢ —r < 0. As a result, from Equation (15) = 0 for

j € SN |[s]. Similarly, for j € SN{s+1,...,d}, we have

7 14-b;

d d

> A > A
. k=k*+1,keSc 'k . k=k*+1,keSc 'k
lim t1,ke lim t1,ke

= =00
n,d—oo )\jn n,d— oo )\1n ’

where the last equality follows from the preceding calculation. Substituting these values back into Equa-
tion (13) completes the proof for this case.

C.3 Closed-form expressions for polynomial decay covariance

Next, we provide corresponding expressions for the limiting regression risk for the more delicate case of the
polynomial decay covariance ensemble. It is worth noting that, unlike the spiked covariance case—where
regression consistency can be achieved when the true signal is confined to the top k* components and the
signal magnitude is fixed at |£20*|2 = 2 (Corollary 9)—the polynomial decay covariance case requires
stricter conditions. Specifically, the true signal must be restricted to the top k1 components, which depend
on both the polynomial decay parameters and the sample size n.

Ro(Z_s
n-ln(n

Corollary 18. Under Assumptions 2 and 5 with t < min {1 /k*ilﬁ(n),

covariance (Definition /),

>} and polynomial decay

o Foruel[0,1),v=0, andp- (1 —wu)> 1, we have

lim L(Q) = Za?.

n,d— oo ‘
JES

In this case, we have L(é) > 0, and regression consistency is not possible unless we have zero signal, i.e.
0 =0.

e Forue (0,1),v=0, andp- (1 —u) <1, we have

2
. 2 _
li L) < 2 R 2 2
S O 2 o <v7r||z%0*|5 ) AP AP I
j<k1,jES k1<j<kz2,j€S k2<j,j€S
2
N 2
lim L() > o I C 2 2
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l-—p-(1—wu)

we define k1 ::max{kzO:kzo(nf)} and ko ::min{kz():k:w(nw>}, and

2 2
— 2 . 2
C = max — ¢ —1 R C = min i3 1 .
k1<j<k2.jes || X2 6|3 k1<j<kz,j€S || X20%||3



Recalling bj = lim,, gy00 A; Tr (A:é), we define ¢; = %jbj, and {cj},;1<j<,-€2’jes is a non-increasing
sequence in (0,1). This implies regression consistency if and only if the signal magnitude is fized at
HE%O*H% = % and a; =0 for all j > k1,5 € S. Note that benign overfitting of the regression MNI is

attained for this choice of parameters (Bartlett et al., 2020).

t2k* t2.n-In(n)

Proof. As in the proof of Corollary 9, we first need to show lim,, 4o Ll () limy, g— 00 Fo(®s)
0 S

n

and therefore, Theorem 8 holds. Then, we can write the limit of the risk in Equation (13) as

2
. 2 b
lim L(6 a? J_ 1
B0 ;J<vﬂ|z%e*31+bj )
2 b ? 2 b ?
= i \/ 1) + a’ |
Z aj( w\\E%B*H%l—i—bj _ Z / w\\E%H*Hgl—i—bj
j<ki,jes k1<j<kz,jeS
2
2 b
+ a? . I 1], (16
P ( r[=ie (3 1+t ) e
2<j,j€S

1+b
by Equation (15) as
1 b; 1
lim <2< lim y . (17)
n,d—00 ( POy k*)\+1 kese ) +1 14 b, n,d—o0 (Zkk*-&l.,kesc Ak) +1
G CA; v
Hence, for each Jj, it suffices to characterize the limit of w as n,d — oo in order to characterize
the value of —=2—. The proof follows the idea of Theorem 31 in Bartlett et al. (2020) closely.

1+b

e Polynomial decay covariance with v € [0,1), v =0, p- (1 —u) > 1 (Definition 4):
Firstly, we show that this choice of parameters satisfies the assumption in Theorem 8 such that

2 7% 2

: D . 2 s

limy, 400 tnin(”) = limy, 40 ﬁ = 0. From Definition 4, we have \; = ]% and we can show
-8

Z;l:l \j < d'=" = nP (=% by showing

d d d 1—u 1—u
1 1 T d d—" -1
Aj=1 — <1 —dr =1 =14+ —— 18
,Zj +Z]“_ +/1 zu +1—u1 + 1—u (182)
j=1 Jj=2
d d d
1 1
TS IE S R st
]: j:1 :
. SN 1— 1—u) *
Therefore, we can derive ro(X) = =5 = ZJ (A > d =P (W > nso k* = 0. Next, we need
to verify lim,, g—00 % = 0, and we have
d d d 1 d 1
1 Ses ¥ e _ (14 J)' hede) ) (14 f' shede)

Ro(E_s) (ijl,je& )\j)z (Zj 1jese %)2 ) (Z;‘izl,je& d%)2 (d—t)* d-2v’



The integral fld #dw varies for different values of u, and we have

7_172u d 1—2u _
= = d = L for u €0,0.5),
d
/ ﬁdm =4 In(2) ’1 = In(d), for u = 0.5,
1-24 |4 _-2u
= L 22_1 , forue (0.51).
Therefore, we can upper bound "ln(") as

Ro(Z-s)

nln(n) (14 dl;f“;1 cinintn S
(dEt)"’.dfhi ) <= d( ) = a np( ), for u € [0,0.5),
nln(n) nln(n)(1+In(d)) can ln(n) In(d) _ can- plnz(n)
Ro(® o) ) @omdt = = 2P for u = 0.5,
nln(n) 1+1—‘117:2u cam In(n .
(dgt)zdizul ) S 3d2172(u ) = nSP(Ql,gu)), for S (05, ]_)

Note that since p - (1 —u) > 1, the limit of all three cases goes to zero by L’Hépital’s Rule, and

we have lim,, g o0 RZ(l;(n)) =0 for u € [0,1). Combining these results with the corollary assumption

. n R -3 . 2. k*.In(n n-ln(n
t < min {4 [ o Tntny 1/ z‘ln(n‘;) }, we have lim,, 400 # = limy,d— o0 ﬁ = 0 and Theorem 8

d
Zk:l,k€5c Ak

holds. Next, we characterize the limit as n,d — oo to evaluate b For J € [d], since

Ajn 140,
p- (1 —wu)> 1, we have
S kess N d0w pp(i-w)
lim —/———————— > lim = lim = 00.
n,d—o0 )\jn n,d—o0 c)\ln n,d—oo cn
By substituting the value of li Zicikes M 40 Bquation (17 —0f d
y substituting the value of lim,, g, = into Equation (17), we get 14— = 0tfor j € [d].

Finally, we substitute = 0 into Equation (16) and complete the proof for thls case.

by
1+bj -
e Polynomial decay covariance with v € (0,1), v =0, p- (1 —u) < 1 (Definition 4):
Recall that, for this choice of parameters, we attain benign overfitting in regression (Bartlett et al., 2020,

Theorem 31). This result implies that lim, g0 %* =lim, g0 ﬁ = 0. However, to ensure that
0

S

Theorem 8 holds, we require a stronger condition lim,, 43—, tk*%(") =lim,, g0 % = 0. We first
0 S

check the rate of k*. For any k € [d — 2] and \; = j~", we have

F(d)—F(k+1):/d v < Z v </ 2 da = F(d) — F(k),
k

+1 j=k+1

where F(z) = “;1:: Therefore, we have ZJ o1 A

of the effective rank r, = Tl _ O(k® - dt~ “) According to the definition of k* such that

Ak+1
u—1 1—p-(1—u)

k* = min{k > 0 : r4(2) > bn}, we have k* = O(nw -d"" ) = O(n~ ), where W <1
since p > 1 and p- (1 —u) < 1. This result implies limy, 4— 00 k*'l,r:(") = 0. Next, we show that

limy, 400 % = 0. Similar to the rate of Z Aj, we have the rate of Z] f1 )\] as

= O(d'~"). Next, we can calculate the rate

j=k+1
O(d*=2%),  for u € (0,0.5),

d
Z )\?: O(ln(%)), for u = 0.5,

j=k+1
O(k'=2w),  foru € (0.1,1).



Therefore, recalling that ZJ k1 A = O(d*~"), we can calculate Ry (2_5) as

o) = O(n?), for u € (0,0.5),
2
Zd: * 5 c )\
RO (278_) — ( .7d k*+1,7€S8 32) — O <1n(dd)) = O (%) y fOI‘ u = 05,
Dk 41jese A :
o <d2 2u ) -0 (nQ—y) , forue (0.51).

As a result, we can conclude that

16) (1;;(?3) , for u € [0,0.5),
M _ @) (lf;(fﬁ)) , for u = 0.5,

Ro(E_s)
o (%) , forue(0.51).

Since M < 1, the limit of all three cases goes to zero by L’Hopital’s Rule, and we have

lim,, g—y00 R”O(lg(") = 0 for u € (0,1). Combining these results with the corollary assumption

t < mln{1 = 1n(n)’“ R;i m(n }, we have lim,, 400 ik ln(") = lim, 40 % — 0 and Theo-

rem 8 holds. Next, from Equation (16), we will present our calculation in three sections: j < k1,
/;‘1 < j < 12;2 and 152 < j, where we recall l~€1 = max{k:EO:kzo(nlfp'«(ﬁm)} and 2:2 =

min {k >0:k=w (nlfp.sfu»}. We first consider the case j < k1, and we have

d d ~
s e Ak DV ql—u p-(1—u) Ly
lim  ZkokiLkes < lim iz < lm &= gim T gm0
n,d— oo )\jn n,d— oo )\]; n n,d—oo )\]; n n,d— o0 )\/;c n n,d—oco nl=P (1—w)
1 1 1
where we apply Equation (18a) in the second inequality. Therefore, by Equation (17), 1_l;b =1

for 7 < k1. Next, for Ky <j< 152, we have

~ u
d d _ . —
. Zk:k*+1,ke$c Ak : Ej:l Aj : cd' v c <k2 1)
lim < lim —/—< lim —— = lim ————%— < o0,
n,d— o0 )\jn n,d— o0 >\I_c _n n,d— o0 A]; _n n,d—oo =P (1-u)
2 2
4 ~ -
. Ek:k*+1,k€8° Ak d (kl + 1)
lim > lim — = lim —%— >0,
n,d— oo )\jn n,d— oo C/\k 1 n,d—oco cnl—p(1-w)

by applying ZZ o> L, reSe )\k = di—v and the deﬁnition of k1 and ks. As a result, according to Equa-

tion (17), . Finally, for ky < j, we have

1+b
d ~
1—
) Zk:k*Jrl,keSC Ak . “ ) kY
lim > lim = lim ——=—— =o00.
n,d— oo )\jn n,d— oo C)\fczn n,d— oo cnl—p-(1-v)
. . b; =
Therefore, according to Equation (17), we have 5 - = 0 for ky <
J

into Equation (16) for all three cases completes the proof.



D Zero-shot task shift in the case of random signal

In this section, we provide proofs from Section 3.2 concerning our random signal model. In Section D.1 we
detail the decomposition of the regression risk of the classification MNI into regression bias and task shift
error. In Section D.2, we provide the main proofs of the upper and lower bounds on task shift error in our
random signal model. In Section D.3, we bound the deviation of the classification and regression labels.
Then, in Section D.4, we adapt the benign overfitting analysis of Bartlett et al. (2020) to our dependent
noise setting. Finally, in Section D.5, we prove a fundamental tradeoff between the statistical consistency of
regression bias and task shift error.

D.1 Task shift error decomposition
In this section, we provide the proof of Lemma 10.

Proof. (Lemma 10)
Recall that the MNI on regression labels and the MNI on classification labels are defined as

6 == argmin {||0]|, : X0 =y},
6 := argmin {||6]|, : sign (X0) = y},

respectively, and they have closed forms

Now, we have

L(0) = Ey (XTé - XTO*)2

Ex ((xT6-xT0") + (x 0 -x0))

= L(0) + Ex (xTé - xTé>2 + 2E4 [(XTH~ - xT0*> (XTé - XTGN)} .

2

We will show that the third term is precisely zero. Write
E= (X7 (XXT) X~ 1)=XT (XX7) .
Substituting ¥ := X6* and the closed-form expressions for the minimum-norm interpolators,
Ex[(x76-x"0") (x"0-x"0)]
— E, [(XTXT (XXT) ' X0" — xTe*) (xTxT (XX y o x X (xxT) y)}
=B [(x" (X7 (xXT) ' x-1)07) (x X7 (XXT) (7 - 9))]
=0""E(y - y).

sign(x ' 0*)—x" 6*
Recall that y — y := DX60* where D := diag (ds,...,d,) and d; == %. Note EDX is nilpotent:
we have XE = 0, so (EDX)? = 0, and hence all eigenvalues of EDX are zero. Therefore,
0*"E(y —y) = 6" TEDX68* =0,

which completes the proof. O



D.2 Upper and lower bounds on task shift error

In this section, we provide the proof of Theorem 12. First, let us define
Cc=(xX")"' x=xT (xx7)"

sign(xTG*)fxTG*
x ! 6* '

Recall also that y — § :== DX6* where D := diag (dy,...,d,) and d; ==

We now introduce several lemmas. The first lemma upper bounds the deviation of the classification and
regression labels. The proof is in Appendix D.3.

Lemma 19. For any ¥ and 0*, there exists a constant ¢ > 1 such that

Iy = 3115 < enl| 2673

n
c

with probability at least 1 — e~

The remaining lemmas bound traces involving C and X in high probability. The first of these is a restatement
of the main technical result of Bartlett et al. (2020).

Lemma 20. For any 3 and 0*, there exist constants c,c1 > 1 such that the following hold. If k* < %, we

have
1 /k* n k* n
(L " )<« < X
c <n +Rk*(2)) = T(©) _c<n +Rk*(2))

with probability at least 1 — 17e~ <. On the other hand, if k* > 2, we have

_Cl7

Tr(C) >

[

with probability at least 1 — 10e™ <.

The final lemma characterizes the key additional term arising in our dependent noise model. The proof is in
Appendix D 4.

Lemma 21. For any X and 6*, there exist constants c,cy > 1 such that the following hold. If k* < %, we
have

"
;Aj Rk* Z A | < Tr(CXXT) < Z i+ Rk* Z by

J k*+1 ] =k*+1

with probability at least 1 — 14e~ <. On the other hand, if k* > —1, we have

Tr(CXX'") > !
C

with probability at least 1 — 10e™ < .

We are now ready to prove Theorem 12.

Proof. (Theorem 12)

We begin with the upper bound. Substituting the closed-form expressions for the minimum-norm interpolators,
. N\ 2 _ _ 2
Ex (x70-x70) =By (x X" (XX7) "y -x'X" (XX")"'y)

—E, (XTXT (xXxT) " (3 - 5'))2



By definition of operator norm and trace,
" A A a2 A2
(¥ =9 C -y <ICllly -5 < Tx(C) |y — ¥ll5-

Since k* < %, by Lemma 20, there exists a constant ¢ > 1 such that

Tr(C) < ¢ (ljl + R}:ZE)> (20)

with probability at least 1 — 17e . Moreover, by Lemma 19, there exists a constant c3 > 1 such that
A a2 1
Iy = 3ll5 < esnl| 22673 (21)

with probability at least 1 — e . Combining Equations 20 and 21 with a union bound completes the upper
bound.

Now we will prove the lower bound. Starting from Equation (19) and using the assumption that D = oI,

. N\ 2
Eox (x0-x70) =Eo-(y - )7C(y ~9)
= Eg.0* " X "DCDX6*
= aEg-0* "X CX6*.
By assumption, Eg-0*0* T > ¢2I. Using the cyclic and linear properties of trace,

aEg-0*TXTCX0* = o Tr(X " CXEg.00* ") > ao? Tr(X ' CX). (22)

If ki < %, then by Lemma 21 there exists a constant ¢4 > 1 such that

k* d
1 n
Tr(XTCX)> — | Y N+ o—=r D N (23)
Cy j=1 J Rk‘*(z) j=k*+1 !

with probability at least 1 — 14e” % . On the other hand, if £* > %, then by Lemma 21,

1

Tr(X'CX) >
Cy4

(24)

with probability at least 1 — 10e” @1, Substituting Equations 23 and 24 into Equation (22) and choosing
¢ = max(cacs, ¢q) completes the proof. O

D.3 Deviation of classification and regression labels
In this section, we provide the proof of Lemma 19.

Proof. (Lemma 19)
First, note that

n
A 112 ~112 ~ A
915+ 1315 =2 5:9;
j=1

~ 112 ~
n+ Iyl =210yl -

A2
1y =yl

Write 12 == || 226*||2 so that §; ~ AM(0,¢?) for all 1 <i < n. In particular,

L 8
Ex ||y — ¥l5 = n+np? — \/;m/f- (25)



For v > 1, define the sub-Gaussian and sub-exponential norms of a random variable X by
X1y, : =inf {t > 0:Exexp(X?/t*) <y} and
X1y, : =inf {t > 0: Ex exp(|X|/t) < v},

respectively.

By definition, ¥, is sub-Gaussian for any 7 with ||y,|| b, = &% where £ > 0. Moreover, because y; is symmetric,
¥; is Bernoulli and therefore sub-Gaussian with ||y;/,,, = {. Combining terms, §; — ¥, is sub-Gaussian with

19 = Filly, = & + &, and (§; — §,)? is sub- eXponentlal with [[(5; — 5:)%[],,, < (€ + €)%

By Bernstein’s inequality, there exists a constant ¢; > 0 such that for any ¢t > 0,

. N ) t2 t
Px (”y - .Y||§ - Ex ||y - Y||§ = t) < exp <_Cl min (n(f + 51/))47 €+ £¢)2>) )

15 13 < Bx 15~ 915 + /2 e (/2 V) €+ € (26)

’I’L

Hence,

Defining ¢y == max(c; ', ¢; e ) and using (a + b)? < 2(a? + b?) for any

\f max([ )<§+£w)gczn(s+w>2

< 2con€%(1 + 9. (27)

with probability at least 1 — e
a,b € R, we have

Substituting Equations 25 and 27 into Equation (26) and dropping the negative term, we have
Iy = 3ll5 < n+ny? + 2e0n€(1+ 47
< (14263 (1 4+ ¥?)n.
Treating 12 as a constant, there exists a constant ¢z > 1 such that 1 4 12 < c312. Hence,
Iy = 315 < cacs(1+26%)ny).

Choosing ¢ = coc3 completes the proof. O

D.4 Benign overfitting analysis in our dependent noise model

In this section, we provide the proof of Lemma 21. First, we write a convenient representation of the data

matrix X. Let Z € R™*? have i.i.d. standard Gaussian elements, then X 4 Z%%. The matrix Z is known as
the whitened data matrix. We write z; € R"™ to denote the 4t column of Z.

Using this notation, write

d
A=7Z3Z2" =) \zjz],

and similarly,
T
Z%°Z Z/\Qz] z) .
Note that XX T < A. Finally, let A_; = Zﬁék )\jzjz;r denote the leave-one-out Gram matrix for some

1<k <d.

We will use the following lemma in the proof. It is a short consequence of the Sherman-Woodbury-Morrison
identity applied to a matrix-vector product.



Lemma 22. Suppose A and z; are defined as above for some 1 < j < d. Then,

-1
A -Zj

-1, _ —J
7 TA-L, -
1+)\ij A_]zj

Proof. By the Sherman-Woodbury-Morrison identity,

)\A Z Al
_ —1 J
Al—A~ —jl

—J 1—|—/\ij 7ij.

Multiplying by z; on the right we obtain

A-lg, = A-lg, - AT A
PO 14Nz Al

ATlz;(1+ \jz] AZlz)) — /\A izj7] AZ]
1+)\Jz AZ;

-1
A -Zj

—J

N 1 + )\jZ;-rA:;Zj ’

as desired. O
Now, we begin the main proof of this section.

Proof. (Lemma 21)
Substituting the whitened data matrix,
Tr (XTCX) = Tr (X=X (XXT) )

LT (AZx%ZT)
= Z Nzl A7! (28)

It is instructive to compare this term with Lemma 8 of Bartlett et al. (2020). In contrast to their formulation,
we have one fewer A~! in the center of the expression due to our dependent noise model. The remainder of
the proof utilizes a leave-one-out technique similarly to Bartlett et al. (2020), except the j** summand carries
an additional n);. Applying Lemma 22,

k* 2, T A—1
Nz, Az,
)\2 TA )] —J_] )\2 TA
Z Z; 1 +)\jz;l'A_}Z Z

j=k*+1

Clearly, the first term is at most 25;1 A;. For the second term, we have

d d 2
£ oyt < Shoe Bl
V] = A ’
j:k*+1 ,U’VL( )
By Lemma 10 of Bartlett et al. (2020), since k* < 2, there exists a constant ca > 1 such that p,(A) >
A1t (B) i probability at least 1 — 2¢ %, Moreover, by Lemma 12 of Bartlett et al. (2020), there exists

co
d d
2
Z /\?szHQSc?,n Z /\?

a constant ¢z > 1 such that
j=k*+1 j=k*+1



with probability at least 1 — 2 7. By a union bound,

d 2

CQC3nZ a1 Af

r(XTCX) <) N J ?
Z )\k*+17"k* (E)

d

k*
n
< coc i+ ——— i
2C3 Zl ) Rk* (E) .72* J
J= j=k*+1
with probability at least 1 — 467ﬁ, which completes the upper bound.
We now prove the lower bound. Beginning from Equation (28) and applying Lemma 22,

d )\2 TA

d
Z)\?ZIA_ z:: T

j=1 z

By Lemma 14 of Bartlett et al. (2020), for any k < -, there exists a constant ¢4 > 1 such that for any
1<j<d,

i+ A b A
1+/\]zTA <c4)\JzTA— (n i+ Merre(E) +n k+1)

n)\j

with probability at least 1 — e . By Lemma 15 of Bartlett et al. (2020),

d 2, T A1 d 2 T 71
it B i i ( n )
1+ Nz ATz T C4AJZTA 5 \ A 4 Xeg17k(B) + 1A

Jj=1

d 2
n/\j

1
B a ; n)\j + >\k+17’k(2) + TL)\k_;,_l

with probability at least 1 — 10e e, By the mediant inequality, there exist constants b, c; > 1 such that
n\; 1< X2 A2
— Z — Z min | Ay, I __ .
/\k+1rk + n/\k+1 + TL)\ bC5 = )\k+1rk(z) )\k+1

If ri(X) < bn, the second term in the minimum is larger than the third term. In this case,

b2 A2 1 <& A2
Aj R — > min | \;, —2
( I Ner17k(E) )\k+1> ~ bes ; DY

S+ > . (29)
= j=kt1 Ak+1

On the other hand, if r(X) > bn, the second term in the minimum is smaller than the third term. In this
case,

d 2 2 d 2
1 bn Az AZ 1 bnAs
— min | A, EA—— > — min | \j, ——L—
bC5 ]z:; < J )\k+1rk(2) )\k+1> - bC5 ; ( J )\k+1’l’k(2)>

’
bn
— 1min E )\J—i—izj 1y
j=1

b(:5 1<e<k Aet17%(X)



Recall that k* :== min{k > 0: 7,(X) > bn}. By Lemma 17 of Bartlett et al. (2020), there exists a constant
cg > 1 such that

14

1 bn n x
—~ min Z}\j + Z] £+1 J o Z}\ Z] k*+1 _7
j=1

bC5 1<¢<k )\k—&-lrk( )\k+1m(2)

Therefore, if £* < %,

Tr(X'CX) > Z j+Rk Z by

j=k*+1
On the other hand, if k* > 2, then 7 (%) < bn for all k < 2. Equation (29) then implies

. A2 1
Tr(X ' CX) >7 Z Z > G

Pt Az

Choosing ¢ = max(cacs, ¢4, bes) and taking a union bound over the upper and lower bounds completes the
proof.

O

D.5 Tradeoff between regression bias and task shift error

In this section, we provide the proof of Theorem 13.

Proof. (Theorem 13)

Note that for the given signal model we have Eg- 9;2 = 5? and _j2- > 1forall 1 <j < d. Hence, the assumption
of the Theorem 12 lower bound is satisfied with o2 = 1.

We first prove the case where x = 0. In this case, there is some finite n after which 7¢(X) > bn for a constant
b > 1. By the lower bound of Lemma 11, there exists a constant ¢; > 1 such that

d 04
EB*L(é)ZlZ#

with probability at least 1 — 0167%. Since r¢(X) > bn, for any 1 < j < d we have

’ﬂ)\j TL>\1 1
d S Sa < b
Zj:l Aj Zj:l Aj

Therefore,

NPT 1012
Eo-L(6) > iz L 0H22.
T (1+1 ) a(1+1)

In the limit as n — oo, the term cle_% is zero. Hence,
- »20|]2
i 10y 2 1D
n,d— oo 1 (1 + E)
almost surely.
We now prove the case where 0 < k < n. By assumption, |£26)|2 is constant for all n and 9? > 1 for

all 1 < 5 < d. Hence, there exists a constant co > 1 such that either (i) lim, g— o0 Z;”:l Aj > L or (ii)

= co

limy, 400 Z] —wt12j = o+ (In other words, we cannot have both terms go to zero).



In case (i), by the lower bound of Theorem 12, there exist constants cs, c4 > 1 such that if k* < 2, then

o2 &

Z A >—Z>\

j=k*+1

*

E*X(Té— T~) >7 A\
o x | X bd le JrRk

with probability at least 1-— 146_6l In the limit as n — oo, the term lde™ %1 is zero, and any k < n satisfies
the condition x < Z-. Using the assumptlon of case (i),

R N2 o ad o
lim Eg« x (XTH — XT0> > lim — ZAj >
n,d—oo n,d—oo Cq 4 1

=

almost surely.

In case (ii), since case (i) is not satisfied, we have \16%,... \.02 — 0. But by assumption, 932 > 1 for all
1 <j <k, sothen Ay,...,A\; = 0. This implies ¥ — 0, a contradiction with positive-definiteness.

Finally, we prove the case where x > n. By the lower bound of Theorem 12, we have
2

“ A 2
Eg- x (xTe - xTe) >4
Cq

with probability at least 1 — 10e” % . In the limit as n — o0, the term 10e” % is zero. Hence,

. N 2 2
lim Eg- x (xTa - xTe) >4
n,d— oo Cq
almost surely. Choosing ¢ = max (cl (1 + %)2 , 0204) completes the proof. O

E Zero-shot task shift in the case of dense signal

We conclude the random signal section with a model which does not require the ansatz D = oI introduced in
Section 3.2. In this section, we first introduce the settings and characterize the task shift of the dense signal
model in Section E.1. In Section E.2, we prove that dense signal implies poor bias, and we reduce the task
shift error to a benign overfitting term via high-dimensional probability arguments. In Section E.3, we show
concentration of task shift error terms via an adaptation of standard sub-Gaussian random matrix analysis.

E.1 Dense random signal model without simplifying ansatz

We study a “dense” signal, i.e., one which has similar magnitude in all dimensions. Specifically, we let

05 ~ N (0, ﬁ) for all j € [d] so that |£26*]]2 = 1. Writing X 4 Z31/2 where Z € R"*? has independent
J

standard Gaussian entries, we can see that

o xgrd (gs12) (L sg-12,) _ L
7 = X6 (zz )(\/Ez z) N

where z € R? is a standard Gaussian vector with independent entries. Therefore, this setting of 8* is
equivalent in distribution to scaled Gaussian random signal under isotropic covariance, clearly a “dense’
problem instance.

)

In this regime, we show that while the limiting bias is nonzero, the limiting task shift error is zero as long as
the covariance matrix has large effective rank compared to n. Note that this condition is necessary, but not
sufficient, for 3 to exhibit benign overfitting.

Theorem 23. For any X there exists a constant ¢ > 1 such that the following holds. Suppose 8* is such that
. A 2
05 ~ N (0, ﬁ) for all j € [d]. Then we have lim,, 4_,oc Eg~L(0) > % but limy, 400 Eor x (XTO - xTG) <



climy, g—yo0 (% + Rk+(2)) almost surely. In particular, if lim, 4— oo % =lim,, 400 Rk%(z) =0, then
. N2
limy, 400 Eor x (XTO — xT0> = 0 almost surely.

The proof of Theorem 23 is in the following Appendix E.2.

E.2 Analysis of bias and task shift error via benign overfitting

In this section, we provide the proof of Theorem 23, which lower bounds the bias and upper bounds the task
shift error of a “dense” random signal.
Proof. (Theorem 23)

We begin by characterizing the bias term Eg- L( ~) Since the Gaussian distribution is symmetric, we may
write 07 = rjﬁ where each r; is an independent Rademacher random variable and 0 is drawn according to a
Gau551an distribution. Applying the lower bound of Lemma 11, for a constant ¢y 2 1 we have

~ 1 )\, E6?
Eg- L(8) > — A

2
1 N
(1+ f 1)‘k)

with probability at least 1 — cre 16, As previously mentioned, setting 67 ~ N (0, ﬁ) foralll1 <j<d
J

under general covariance is equivalent in distribution to setting 7 ~ N (O, é) for all 1 < j < d under isotropic
covariance. In this case, Eéjz = é and \; = --- = Ay = 1. Therefore, we have

_mn
In the limit as n — oo, the term cye ©1 is zero. Hence,

~ 1
lim Ee-L(0) > —

n,d—00 C1

almost surely.
R N2
For the task shift error Eg« (XTH - xT0> , we begin with a lemma.

Lemma 24. Let uy,...,u,, e € R? be independent standard Gaussian random vectors. We have for any
1<,k <n,
2 u, uy

]Ee [Slgn( ZTE) u;—E] = ;W
2112

The proof is in Appendix E.3. Now, have by Equation (19) that

~ ~\ 2
Eo-x (xT0—x70)" =Eo- (¥ -3)7C( ~¥)]
=Eg- [y Cy] — Eo: [y C¥y] — Eo: [y C¥] + Eo- [y Cy] .

5 The statement of Lemma 11 is for deterministic 8, but the same result holds for 6 with random coordinates
independent of each other and r by taking the expectation over 6.



By the cyclic property of trace,

Eo. [y Cy] = Tr (CEo- [yy])
= Tr (CEe- [X0*0*'XT])

where u ~ N(0, I). Next,
Ee« [y ' Cy] = Tr (CEg- [§5]) = Tr (CF),

where we define

Fy = Eg« [sign (XE—O*) X,IG*]

_ ﬁEE [|uzsu 1=k
ﬁEe [sign (u;re) u;—e] 1#£k
Ve
- 2 u?uk . 7& k
mdTwll,

by Lemma 24. Similarly,
Ee- [y Cy] = Tr (CEe- [y ']) = Tr (CG),

where we define

Gir = Eg~ [sign (xiTO*) sign (ng*)}

1 1=k
B {EE [sign (u;'—s) sign (ukTe)] 1# k

{1 i=k

=932 ..-1 u uy, '

2sin! (i) %k

by Grothendieck’s identity (Lemma 3.6.6 in Vershynin (2018)). Putting everything together, we have

Eo+ x (xTé — XTé)2 = Tr (CS)

where
1 2 2 o
o 7 lilly =24/ 55 lwsl[, + 1 i=k
ik laTu. — 2u/w _ [2uluw T 2gipn~! u u i#k
dti ok md |Jukll, md lugll, T o s ls T ll, ’

By concentration of a standard Gaussian random vector and a union bound, for all 1 < ¢ < n we have

d—Vd<|w|?<d+Vd,

Vd—Vd < |ull, < \/d+Vd

with probability at least 1 — 2ne~¢. By Bernstein’s inequality and a union bound, the above holds simultane-

ously with
luw| <\ d+Vd

for all 1 < i # k < n, with probability at least 1 — 2n®e~?. Therefore, since | sin™!(z)| < |z| for -1 <z <1,
there exists a constant ¢ > 1 such that

.
G-l <W>' <
il lagll,

T
u, ug

[[willy [l

C2

= Vi




over the same randomness as above. Thus, there exists a constant ¢3 > 1 such that for all 1 < i,k < n,

1
—<Sii<cs (30)
C3

13| < ﬁ ik (31)

with probability at least 1 — cgn®e~¢. These high-probability bounds will be used to prove the following
lemma, detailed in Appendix E.3.

Lemma 25. There exists a constant ¢ > 0 such that p1(S) < ¢ with probability at least 1 — cn3e™ 4.

By Lemma 25, since C is positive semi-definite, there exists a constant ¢4 > 0 such that
Tr(CS) < Tr(C)yua(S) < e4 Tr(C)

with probability at least 1 — c,n®e” ¢, By Lemma 20, there exists a constant c5 > 1 such that

Tr(C) < 5 (i*R,ﬁn(z))

with probability at least 1 — 17e” % . In the limit as n,d — oo, the terms ¢yne” ¢ and 17e” % are zero.
Therefore, by a union bound,

: T5_ T\ ; k* n
Jim Eox (x70-xT0) < cies )

almost surely. Choosing ¢ = max(¢y, c4c5) completes the proof. O

E.3 Concentration of task shift error terms

In this section, we provide the proofs of the technical Lemmas 24 and 25 used in the proof of Theorem 23.

Proof. (Lemma 24)
Note that u e ~ (0, ||u;]|2) and u; e ~ N(0, [ug||3). Their correlation coefficient is

T
u, ug

Pik = | (32)

iy [[unll,

Let Zy ~ N(0,1) and Z5 ~ N (0,1) be Gaussian variables independent of each other and u;, uy. We may
write

d
uiTE = [Juill, 21
T d . 7 1— 2 7.
u, € = pik [[uglly Z1 + Pix [1aklly Za.
Since Z; and Zs are independent and centered,

E. [sign (u] €) €] = Ez, [sign (Z2) pie [welly 21 + Bz, 2, [sign AN T Zz}

= Egz, [sign (Z1) pix [urll, Z1]
= pir |[ugll, Bz, [sign (Z1) Z1].

Since Z; is standard Gaussian, we have

. 2
Ez, [sign (Z1) Z1] = Ez,|Z1] = \/;



Using the value of p;; derived in Equation (32),

2ur
E. [sign (u/e) uge] = ;H.
ill2

Proof. (Lemma 25)

We will adapt the proof of Theorem 5.39 of Vershynin (2012). By the approximate isometry lemma (Lemma
5.36 in Vershynin (2012)), if for some ¢ > 0 we have

1
HnSTS - IH < max(c, c?)

then p1(S) < ¢ as desired. Let A be a %—net of the unit sphere S"~! with respect to the Euclidean metric,
and by Lemma 5.2 of Vershynin (2012) put |NV| < 9”. Then, by Lemma 5.4 of Vershynin (2012),

1
~sTs — IH < 2max
n xeN

1 2
L sal? - 1\ |

1
<(STS — I) a:,a;>‘ = 2max
n zeEN | N

Now consider a fixed vector & € S"~1. We have

<Si’x>2

M=

2
ISz||; =
1

(Bsen)
<Z|sm||xk>2.

k=1

.
Il

I

?

<

-

i=1

By the concentration results in Equations 30 and 31, there exists a constant ¢; > 0 such that

|Sik] < 1
C1

Vd

|Sik| <

ik

3

with probability at least 1 — ¢;n®e~%. In particular,

n
&]
Sz||s < c1lxi| + —|z
ISall <3 | caoil + 3

i#k
with probability at least 1 — c;n?e~?. Using (a + b)? < 2(a® + b?) for a,b € R and the fact that x € "1,

2
5 n 1 n
ot <26 (3ot 4 (S 1)

=1 i=1

<2 (1+ %)

with probability at least 1 — ¢;ne~%. Therefore

1 s o1 1
SISl <2 (= + =
s < cl(n+d),



so for ¢ > max(1,4c¢? — 1), we have
1 2
—[[Sx||5 —1| <
sl 1] <

3,—d

with probability at least 1 — cin’e™%.

Taking a union bound over A/, there exists a constant ¢4 > 1 such that

P <max
zeN
d

Therefore, for ¢ = max(c3, c%), we have u;(S) < ¢ with probability at least 1 — en3em .

1 ) ;
— ||S:c||§ — 1‘ > c) <9".cnde ™ < eqnlen 4.
n

F Support recovery: analysis beyond survival and contamination

In this section, we provide all of the proofs of our support recovery results from Section 4 under the diagonal
covariance assumption. In Section F.1, we introduce our key lemma of this section, then use it to prove
Theorem 14, which characterizes the magnitudes of individual parameters arising from minimum-norm
interpolation. In Section F.2, we provide proofs for the support recovery of spiked and polynomial decay X
when 6* is supported entirely in the top £* indices of the spectrum of 3. Finally, in Section F.3, we show
that support recovery works even when 8* is supported outside these top k* indices — thereby handling
cases wherein k* = 0, such as isotropic covariance — under some additional conditions.

We remark that repeated application of the Sherman-Morrison-Woodbury identity induces a linear dependence
on the sparsity parameter ¢ in Lemma 26. This necessitates t < n? when the support lies entirely within
the top k* indices of the covariance spectrum (Section F.2) and t < ni otherwise (Section F.3). It is
conceivable that these bounds could be improved with a finer analysis. A relevant work is Wu and Sahai
(2023), who study a multiclass classification setting where y is a one-hot encoded vector and develop an
improved Hanson-Wright inequality utilizing the sparsity in ¥ in the multiclass settings. Unfortunately, we
cannot directly apply their bound: even though our 6* is sparse, our §; have Rademacher distribution and
are generally not sparse.

F.1 Characterization of classification MINI parameters
Before we prove Theorem 14, we prove the following lemma which lower bounds support indices of 6 and
upper bounds non-support indices of 6.

Lemma 26. Define S .= S U [k*] and denote by {)\;}
Assumptions 2 and 5, for large enough n, we have

d—|8|

j=1 the diagonal entries of the matriz 3_5. Under

6| > |25 . <01X”°(Es))

A o forj €S,
J . Can
1+ A (;\ITO(ES)>

0, <t % forj € [k*]N &S,
J

. 14+2€e ) .

b <¢ |24 fork* <j<d,jeS,
(Miro (2-s))

A 0*2 a? 2¢
where B; == A i for j € S, with probability at least 1 — ctde™™ .
S Yk

Zkes )‘keiz o ZkE

Proof. We start with the lower bound for the support ‘éj’ for j € S; this term is related to the survival term



SU;. According to Lemma 7, for any j € S, we have

Ai | —B—— o[ —n
; , ) — Soma) w @ (eeE)
o =su-ll =, 2 st U\ '
J R G =) R ()

170 -8 170 -8
(33)

Next, we derive the upper bound of ‘é]‘ for j € §¢. This term is related to CN, but note that CN is

the summation of all non-support dimensions. Here, we only need bounds for individual éj for j € S°.
Since the covariance operator satisfies ri« (X) > bn, we have two cases such that for j € [k*] N S® and

k* < j <d,j € S§° where they may have different covariance eigenvalue magnitude range. Based on the 9j
definition in Equation (11), we follow the proof steps in Lemma 7 and get

’é’ = ’\/)TjZTA:il:stySt,
\/} |)\ ZTA : yst‘

—81:8¢
= L TA— ()\22] ])A 1 ys,,

/A' —S1:5¢t —S1:8t
J

::C]‘
1 ' Azl Ay ?
< ~ é Se%sp " —s1150Y Se—1 ZTC‘ZS , 34
_\//\7' Y ; (1+>‘SZZ;—£A_81M R ( )

Xoy2i, AL L, . 5
where we apply the definition of ¥, such that ¥,, = ¥, , — —ot =¥ty and §,, = for £ € [t].

T
1+)\51]ZVA—<1 sp%se

For the inequality, we apply the triangle inequality such that \/(x - y)T M(x —y) < VxTMx + \/yTMy
a total of ¢ times. Next, we discuss the upper bounds for j € [k*] NS and k* < j < d,j € S° respectively.
For j € [k*] NS¢, by the Sherman-Morrison-Woodbury identity, we have y ' C,y as

2
B /\2 TA_ Z; ZT _1‘ . i )A’ (ZTAils s j y)
chjy ATA— ()\2ZJ j )A 1 A _ —(s1:84)U(5) Y —(s1:8¢)U(4) < J (s1:5:)U(J) )

T Y (1+)\ 2] AT, o002 )2 : (ZJTA:%sl:snu(j)Zj)Q

Next, for j € [k*] NS¢, by the Hanson-Wright inequality (Lemma 32), we have the upper bound for
as

<>
_‘
)
<.
<>

2
2 -1 L1426
T A il HA_(S sOUG) ||, T
yTC;y < - ' : —
_ B _ 1o
\ (TT (A—(susoum) €1 (| AZGrsou0) ||, ™2 )
2
c? ‘A:% ,n1+25
= 7 (35)
-1 _ ) 1.
(Tr (Af(sust)u(j)) Af(sl s)Ulk] ||, T )
where in the second inequality, we use the fact that A~ 25 50)Ulk*] - A::(le:st)u(j) for all j € [k*]. Next, we



use Lemma 36 to get the lower bound for the trace term in the denominator, and get

2
2 -1 . 14+2e
(35) < “a HA—(SIZSt)U[’“*] "
- 1— )"ty (A2 A~ b4e)?
(( - %) r( —(slzst)U[k*> ! H —(51 so)Ulk*] |, " )
1

(1- 2)’“*—1 (AL oont) 1 i
" 01”A’1 Ste

—(spssp)ulk] ||,

Finally, we apply Lemma 35 to show that eigenvalues in A~}

(s1:50)Uk+] r€ identical up to a constant.

1 C3
1 1. 7 = ni—2¢’
(-9 ek o)

Since z,, is independent to C; for j € [k*] NS¢ and £ € [k*], following the same procedure, we can show

\/ 24, Cjzw is upper bounded in the same rate. As a result, from Equation (34) we have

(36) <

A Ae,z] ATy, c3
9‘ _ 1_|_ L8y 81:8¢Y Se—1
J \/7 ( Z 14 /\QZZ;FZ‘A:S:1 6[ nl—2¢
1 C3
< ——(1+¢ —
= \/x( + C) n1—26’

where we apply Lemma 17 in the last inequality. Next, starting from Equation (34) again, we show the upper

bound of ‘éj‘ for k* < j <d,j € §¢. By the Sherman-Morrison-Woodbury identity, we have yTij as

yTCy = \3TATL., (N2 ) ATy
20T AL - S
A TALL o) A )Y
- 2
(1 -+ )\ iZ . A_(sl st)U(j)Zj)

25T ~
< \/)\ VAT (51 s0)U(j) Zi%j JAZ (81 s )U()Y (37)

Next, we apply the Hanson-Wright inequality (Lemma 32) to obtain

2
. 1 1.,
(37) < \/Ag (2e1 AL o], 72

2
2 — ite
< %8 (2 [ A ], )
2 L4 2
_ )\? ( C1-Nn2 ) ’ (38)
pn (A= (sy:80)0)Uk+)
where in the second inequality, we use the property that A:%slzst)u(j) = A:éslzst)u(j)u[k*] for k* < j <

d,j € §°. Finally, we apply Lemma 34 to show that 3_ .5, )u(juk+) satisfies ro (2_(81:St)u(j)u[k*]) > bn.
Therefore, by Lemma 10 in Bartlett et al. (2020), we have

1
Hn (A—(Sﬂsn)U(j)U[k*]) 2 c Z .
k=k*+1,k€S,k#j



Applying the inequality to Equation (38), we get

cy - n1+25

2
(Zk:k*Jrl,keSC,k;éj Ak)

(38) < | A2 (39)

1 ¥ c
1,kEST ks Nk D k—k*41,hesC Ak

Next, we want to upper bound = , and we have
k=k*

1 B 1 Zkzk*+1,kesc Ak
Zk:k*+1,ke$°,k¢j A Zk:k*+1,ke$° Ak Zk:k*—o—l,keé‘ﬁk;ﬁj A

1 Aj
- 1+ : (40)
(Zk_k*+1,kesc )‘k> < Zk:k*-}-l,kesc,k#j )‘k>

According to the effective rank of X, for k* < j < d,j € S§°, we have Ek:k*ﬂ’kesc Ak 2 DApsyp1in > bAjn.
By deducting A; on both side, we get

> Ak > bAn — ).
k=k*+1,keS,k#j

Therefore, we can write

(40) < 1 (1+ Aj )— ! (1+ ! )
B Zk:k*-}-l,kesc A bAjn — A; Zk:k*-&-l,kesc A bn—1)"

Substituting this inequality into Equation (39), we finish the upper bound for \/yTéjy. Follow this procedure,
we can show 1/Z;; (NljzsZ is upper bounded by the same term. As a result, we have for k* < j < d, j € S,

T A1 ~
A z A 31:Sgy52—1

t
1 s0Zg - 02n1+25
< — 14 ‘ A3
= ’ k=k*+1,keSc "k
c n1+26
S (1 + tC) 2 2
(Zk:k*+1,k€$° Ak)
where we apply Lemma 17 in the last inequality. This completes the proof of the lemma. O

Equipped with Lemma 26, we can now prove Theorem 14. While it restricts to the case where 8* is supported
only in the top k* indices of the covariance spectrum, we handle support recovery outside the top k* indices
in Section F.3.

Proof. (Theorem 14)
We show that as long as one of the following conditions hold, the support recovery is guaranteed: (1) ¢ is
known and

/\q _n1—25 dA (;\1’/‘0 (2,[/{*]))2
and Aj < =5~ (n1+2) .\,

hold for all j € S, g € SN [k*], £ > k* or (2) X is known. To start with, we first show the support recovery
under condition (1). By assumption that 8* is supported only in the top &* indices of the covariance spectrum,



we have j € [k*] for j € S. According to Lemma 26, we have the lower bound of 0 as

)\A ( ) i )
‘9 ‘ = iﬂj Bl iﬁj Maro(E 1) = iﬂj Airo(® 1) - \C/i - (D)
71' can i C1A1TO -8 T Ci1A1TO .
1+ )\j (5\17‘0(22_5)> J pyrn + cic9 our (E s + ci1c2 J

where we apply A17g (=_5) = ZZ:k*H,kesc Ak < A < A\jn for j € [k*] by the definition of k*. As a result,

1
VA

support is lower bounded in the rate of Next, for non-support indices j € SN [k*], by Lemma 26, we

have the upper bound by

C
<t |——. 42
- )\jnl—Qe ( )

Therefore, for j € 8¢ N [k*], non-support is upper bounded in the rate of . ( ¢ ) Lastly, for

Vnl—2e

J

non-support indices j > k*, by Lemma 26, we have the upper bound by

R Cn1+26)\.
;| <t | —— . (43)
()\17”0 (2_5))
21426 )\2
Theref for j > k* - t i bounded in the rate of —— -,/ ———". A 1t
eretore, for j , non-support 1s upper bounded 1n the rate o ey (Alro(E,g))Q S a result, we

need the following conditions to guarantee the lower bound of the support indices is larger than the upper
bound of the non-support indices:

t /\k -pl—2e \
\/ T PearE @
~ 2
Loy Y ()‘”"0 (2*5)) >\
VA (Mo (2_5))2 £ (nit2) 5, ~

for all j € S and k € SN [k*] and ¢ > k*. In this way, since we also know ¢, we can achieve support recovery
by choosing the largest ¢ indices of 6.

On the other hand, for condition (2), if we have access to all the eigenvalues {);}9_, of X, we can determine

whether 9 is a support by checking if ‘9 ‘ = \/» for some constant ¢ > 0 according to the support lower
bound in Equation (41). For non-support rate, we can further upper bound Equation (43) by ¢, /+—%— since

)\jn172€
entt2e); \/cn1+2€)\ ; et
<t I = (44)
N 2 = 2 A1 o¢’
(/\17“0 (Efg)) (bA]n) Ajnl 2

where we apply 170 (2_5) = Zi:k*-«—l,kesc Ak > bAjn for j > k*. As a result, according to the non-support

upper bound in Equation (42) and Equation (44), éj can be classified as non-support if AJ

which decays at a rate proportional to \/nltj This completes the proof of the theorem. O

F.2 Spiked and polynomial decay covariance: support inside the top k* indices

In this section, we characterize different covariance matrices wherein 8* is supported only in the top k* indices
of the covariance spectrum and we demonstrate the support identification guarantee (Theorem 14) is satisfied.



Corollary 27 demonstrates the characterization in spiked covariance defined in Definition 3, and Corollary 28
and Corollary 29 show the characterization in polynomial decay covariance defined in Definition 4. Note that
we do not allow the case k* = 0 (e.g., spiked covariance with ¢ > 1 — r) in this section. The analysis closely
follows Lemmas 32 and 34 of Muthukumar et al. (2021).

Corollary 27. Under Assumptions 2 and 5 with t < nz=< and spiked covariance matriz (Definition 3), we
assume support are all in the top k* indices of the covariance spectrum. By substituting spiked parameters in
Definition 3, for ¢ < (1 —r), we have

>nT 2 forjes
0;|{ < n="%" forjelk*]nSe .
<n % forkr<j<d

Therefore, if p > 2 — q —r, we can pick a threshold between bounds to distinguish support and non-support
such as T = n—"5""

Proof. Recall the spiked covariance in Definition 3 such that

oo ls el
J % otherwise.

First, we need to make sure the conditions in Theorem 14 scenario (1) are satisfied such that
)‘q . n1—25
2

(i 1)’

£2 - (nlt2e) . ),

A <

A K

forall j € S, ¢ € SN [k*], and ¢ > k*. For the first condition, we show it holds because

)\q.n172s_a?d.n1—2e ad_/\
2 e o

since \j = A\, for j € S, g € S°N[k*], and t <« nz~¢. For the second condition, we can show the right-hand
side as

2 2
3 o . (1—a)d o

()\17'0 (2—[k*])) _ ((d s) @) > _(l-a)d-(d—s)- n'=2 - 1n2p*2
B2 (1) A gz (nit2e) . (ald 2 n? c

for all j € S, ¢ € SN [k*], and ¢ > k*. On the left-hand side, we have
NI
s

Since the corollary assumes p > 2 — g — r, the second condition holds. Next, we show the precise threshold



value by using Lemma 26. We have the lower bound for support indices for j € S as

> |25 Y <Clx“"“n(25)>

i =
/\j?T .
L+ (xlmc(z;s))

o ( a- sDW)
V) ( )

. cn

(=a)d
d-181) =5

where we substitute \; = %4 = nP~%"" and 170 (Z_5) = (d—18]) 5 (-a)d a)d When ¢ < (1 —7), the n(1=7)~4
term dominates in the fraction part. Hence, we have

J

28; —ptat
ﬂjn piatr
m

>

. ¢10 (1 + cnq—(l—r))’

For non-support upper bound, we need to consider indices in j € [k*] NS¢ and indices in j > k*. According
to Lemma 26, for j € [k*] NS¢, we have \; = 24 = nP~97" and we get

A C —p+g+r—142¢ —ptqtr
9] S t W S Cltn 2 <cin 2 ,
since t < n2~¢. On the other hand, for j > k*, according to Lemma 26, we substitute A; % =

nP—n"

Lo and Aur (8_g) = (d— 18]) U222 and we have

~ C 7’L1+26A2-
bj <t | vz
7 (Mo (2_s))
2
_letd=s) ”1”6(“d“3d)

(I1-a)d <( 8)) & (1- a)d

c(nP —nr) nlt2e
=1
(L =n=0)-nP \ (np —18])?

—2p4142e

<citn 2
—2p+2

<cn 2,

since t < n27¢. As a result, since we assume p > 2 — g — r, we have support lower bound larger than the
non-support upper bound, and the support identification is guaranteed. O

Corollary 28. Under Assumptions 2 and 5 with t < nz=¢ and polynomial decay covariance in Definition 4
with w = 1,v = 2, we assume support are all in the top k* indices of the covariance spectrum. By substituting



1
)\j:m, we have
>>—1)\_ forjesS
J
PN t . * C
i1 <€ o= forj e kNS
<<ﬁ fO’I"k'*<j§d

G

If we get access to all {\; }] 1, we can therefore distinguish support and non-support by examining each éj

1 ; __t
has order w (\/Z) or decay in a rate of o (W)

Proof. Since the conditions in the first scenario in Theorem 14 are not satisfied, we need to assume ¥ is
known. Next, we show the rate of supports and non-supports based on Lemma 26. We have

A (n>
A' Z iﬂ J Cl)\lT‘o(Eig) ’
jﬂ- Ccom
vy ()

) / c : * c

R 142¢)) .
9]. <t %7
()\17“0 (E_g))

m for j € [d}, and also Z;}il Aj = Z;X;l m =

for j €S,

for k* < j<d,jeS".

For polynomial decay covariance, we have \; =
O (1). Therefore, for j € S, we have

Ao mn
CmilewEs) o JE— N—
/\ﬂ1+/\i <7~Qn)> T @) 4 ey M ednBe) ey VN

2

Ajn )\17‘0(2 s

where we apply 17 (275) = Z;‘l:k*-u Aj < Apen < Ajnfor j € [k*] by the definition of £*. For non-support,

j € [k*] NS¢, we have

A c
0| <t A nl=2e
For j > k*,j € 8¢, we have
5 o i n1+2e)\2 C n1+25)\2 el
J| = )\ )\ nl— 2¢”’
()\1,’,0 bA n
where we apply A17o (=) = ZJ a1 A = bAyn for § > k* O

Corollary 29. Under Assumptions 2 and 5 with t < nz=¢ and polynomial decay covariance matriz
(Definition /) with v € (0,1),v = 0, we assume support are all in the top k* indices of the covariance
spectrum. By substituting d = nP and \; = j%, forp-(1—wu) <1, we have

> forjed8

’9’ <<\/)\7 forj ek NS

<<m fork* <j<d
_7



If we get access to all {\; }J 1, we can therefore distinguish support and non-support by examining whether

. 1 ; __t
each 0 has order w (W) or decays in a rate of o <\/m>

Proof. Since the conditions in the first scenario in Theorem 14 are not satisfied, we need to assume ¥ is
known. Next, we show the rate of supports and non-supports based on Lemma 26. We have

9j = )\ g : )\ o s fOI'j S S,
+ /\17‘0(2 g)
~ C . N
9] St m, fOl"]E[k}ﬁSc,
~ C ﬂ1+26)\2-
0;| <t d for k* < j<d,jeS".

N (o (2s))

For polynomial decay covariance, we have \; = j% for j € [d]. We have the lower bound for support indices
for j € S as

Fastas)
QBj J* \e1 Xpsnr rese 7w

1 ( can )
G T
Zk>k* kesc k@

-
3
.
+

_ L /25 1
=
> 255 1
. " M + c1e62

1
Zk>k*,kesc 33

where we substitute \; = ]% and A7 (275) = Zpk* jese 7 L and by the definition of k*, we apply
Ln> D ks kt kese 7= for j € [k*] in the last inequality. For non-support, j € [k*] NS¢, we have

J
— )\jn172e'
< c n1+2€)\2 C n1+25A2 1
=~ A ()\17“0 b)\ TL )\ nl 2¢”’

where we apply Ai7o (£ _g) = Yi_pe i1 pese M = bAjn for j > k. O

2

For j > k*, 7 € 8¢, we have




F.3 Spiked and polynomial decay covariance: support outside the top £* indices

In this section, we show corresponding results to Corollary 27 and Corollary 29 in the case where 6* is
supported outside the top k* indices of the covariance spectrum. Note that this is necessary to handle
scenarios where k* = 0, including spiked covariance with ¢ > 1 — r (Corollary 30) and polynomial decay
covariance with u € [0,1), v =0 and p- (1 —u) > 1 (Corollary 31). We will see that the results in this section
require ¢t < ni=¢ and stronger conditions in p than those in Section F.2.

Corollary 30. Under Assumptions 2 and 5 with t < ni~¢ and spiked covariance matriz (Definition 3), for
g < (1—=r), if we have max{1.5 —q—r,1} <p < 2.5—q—r, we can recover support outside of the top k*
indices of the covariance spectrum such that

—ptag+r

>nT 2 forje kNS
> n 5t forj>k*,j €S8
—ptatr—0.5 . N c
z forjek]InS
<n™H5 fork*<j<djese
Therefore, we can pick a threshold between bounds to distinguish support and non-support such as T =
min{nipgqﬁ 72%2} On the other hand, for ¢ > (1 —r) and max{—-0.5+q¢+r,1} <p <05+ q+r, we
have
S forjels)nS
—2p+2 ; .
0. >n forj>s,jeSs
) « p=r e forjels]NSe
< n = HE fors<j<d,jeS&
Therefore, we can pick a threshold between bounds to distinguish support and non-support such as T =
. —pt+(1—r)—g+1l —2p+42
min{n z ,n" 2 }.

Proof. In the first part, for ¢ < (1 — r), we already showed the support lower bound for j € [k*] and
non-support upper bound for j € [k*] NS and k* < j < d,j € 8¢ in Corollary 27. Note that we apply a
different upper bound of ¢ for non-support upper bound and get different rates. We still need to show the
support lower bound for j > k*,j € S. Hence, for j > k*,j € S, according to Lemma 26, by substituting

A = (1—a)d _ (1=n"")n? and A1 (Z_5) = (d—18]) 5 - a)d , we have

d—s nP—n"
Z iﬂ )\J <015\17‘0(Es))
\l jﬁ1+>\j<“ CQ’I’L)

J

)\17”0(2 5)
1 a)d n
/ c1(d—18) ((1das>)d>
1 - a (1 a)d can
1+ d—s (d_lg‘) ((1dias))d

As a result, to recover support outside of top k* indices of the covariance spectrum, we need that the lower
bound of the support is larger than the upper bound of non-support. Hence, we need the following conditions

—2p+2 —p+q+r—=0.5

n oz >n 2 & 25—q—r>p,

—ptgtr —2p+1.5

n- 2 >n 2 &Sp>15—qg-—r




The proof of the first part is done.

For the second part, we have the support lower bound from Corollary 27 as
1 1-r)—
Y LT

0 - E——
= T 1+ con(l—m)—a

Since ¢ > (1 — r), the numerator part decays to zero as

206 —pt+(—-r)—qg+1
>4/ 26} o 2 .
™

Moreover, we have 7o () > bn and k* = 0, therefore; for all j € 8¢, according to Lemma 26, we have the
same non-support upper bound as

2

C
j‘ﬁt W

N (uro (2 5))2

n1+25>\?

Next, we substitute different values of A; for j € [s] and j > s. We also assume there are ¢; support in the
top s indices of the covariance spectrum, where t; < min{s,t}. For j € [s] N 8¢, we have

n1+26>\?

N (o ()

: e (1)

((S - tl) a?d + (d — s — (t _ tl)) (1dia£d)2

nlt2e (np—q—r)Q

v\ 2
((n’" —t1)nP=9" + (NP —n” — (t — t1)) u)

nP—n"
n1+2e (npqur)2
<t Cln*PJFqJF"' N S ——

=t |en—ptatr

n2p

—p+(1—7r)—qg+2e
= cotn 2

—p+(1—7r)—q+0.5
< cotn 2 ,

where we substitute ¢ < ni—¢. For j > s,j € 8% we have the same upper bound as ¢ < (1 —r) case in
Corollary 27 such that

~ —2p+1+2e —2p+1.5
‘Hj‘ <citn~ 2 <cn~ 2,

where we apply ¢t < ni=c. To recover support outside of top k* indices of the covariance spectrum, we need
that the lower bound of the support be larger than the upper bound of non-support. Hence, we need the
following conditions

—2p42 —p+(1—7)—q+0.5
n- 2 n 2 < 05+q+7>p,
—p+(A—r)—q+1 —2p+1.5
2 >n" 2 &p>-05+qg+r

The proof is done. O



Corollary 31. Under Assumptions 2 and 5 with t < ni=¢ and polynomial decay covariance in Definition /
with u € [0,1) and v =0, for p- (1 —u) > 1, by substituting \; = j~", we have

7 2u—2

<n'®.ds forjese’

{ >n-d'T forjeS

Therefore, if p- (1 —u) > max{1l,p — %}, we can pick T =n - d*z> as threshold to distinguish support and
non-support. Note that when u =0, 3 degenerates to isotropic covariance.

Proof. First, we already showed that polynomial decay covariance (Definition 4) with v € [0,1), v =0 and
p- (1 —wu) > 1 implies ¥* = 0 in Corollary 18. Next, we show the lower bound for support indices j € S and
upper bound for non-support indices j € §¢. Based on Lemma 26, we have

>\/%AJ(A°(2—S)> for j € S
=z )\jﬂ'l_'_/\j(L)a

Aro(S_s)

J

¢ n1+26)\2
<t | L= 7 for j € S°,

" A (5\17"0 (E—S))Q’

where ¥ _g has k* = 0 still by Lemma 34. Therefore, for j € S, we have

6;] > 2, Y (e a) _ 28 Ajn :\/Tﬁj VA
TV AT Aj (L) AT erdiro (Bs) + crc2dm T a EZ:Lkesc Ak + c1eaAjn

5\17“0(2—5)

Since ZZ:1 pese M < ZZ:1 Ak and Ajn < ZZ:1 Ak, we can upper bound the denominator by ZZ:1 A and
get

1/% V/\jn > % V)\jn > %mn_ n.dquz
T )

d \ =V x i = T ocadl-u
1 Zk:l,keSc kT Cic2A;n C3Zk:1 k 3

where we apply equation (18a) in the last inequality. For non-support, j € 8¢, we have

R nlt+2e)\2 142 ) . 14+2€ )\ . plt2eq2u &
0] <t g =t e St\/c 5 )\1 s =t/ Z — <an'Tdv
7 (Buro(®-s)) (S s M) (@=1Aa) @=9

where we apply Ay > A; for all j € [d] and Zi:l,kesc A > (d—1t)Ag. In the last inequality, we apply

t<nic Asa result, we need

u—2

. 1
n-dzT >nrd ! en? >>d"(:>n%>>np'“<:>§>p~u

to ensure the lower bound for support indices j € S is larger than the upper bound for non-support indices
j € §¢. Ultimately, we can combine the condition p- (1 — ) > 1 and % >p-uintop- (1 —u) > max{1l,p— %}
The proof is done. O

G Survival and contamination auxiliary lemmas

In this section, we provide proofs of Lemmas 15, 16, and 17 from Appendix B. While these are essentially
extensions of results of Wang et al. (2023), they are not entirely straightforward due to our analysis of

t-sparsity. For example, in Lemma 15, Wang et al. (2023) analyze E [Sign (z) zT] = \/gI where z is an



independent standard Gaussian vector representing the regression labels. On the other hand, given a support
set S, we must analyze the more complicated term E [sign (Z jes ajzj) } this leads to an interesting

quantification of the relative contribution of each index of 8*, which we denote by .

Proof. (Lemma 15)
According to the definition of @, in Equation (2), we have

_ , T A1 T 1 2 : e
Qst - ZslA—sl:sty Z A—51 IS¢ blgn aJZJ
JES

Since z;, and sign (Z jes ajzj) are independent to A” by applying the parallelogram rule and the

—éé’

Hanson-Wright inequality in Lemma 32, we get

Qst S 4 [ A_Sl St y] + 201 HA—Sl St||2 ’ n%+€7

Qs > E[z] AZ! | §] —2c ||AZL e

—s1: St||2' )

with probability at least 1 — 2e~ " Next, we calculate the value of E [ TA”!

—S1: St ]

E [z, A, v] = Tr (A7, E[yz,])
=Tr | A-. E sign Zajzj’l Zspa| T

—81:8¢
JES

=E [sign g a;jzj1 | zsi1 Tr(A:gl gt).
JjES

We now derive the value of E {sign (Zjes ajzj,l) 251,1]. We denote p = 25,1 ~ N(0,1) and q =
Yjes.izs Gizin ~ N0, o3) where o = D ies.jte a?. We then have

E |sign Za]—zﬂ Zs, 1| =E |sign | as, 2,1 + Z a;jzj1 | Zsi1
JES JES,j#s1
= By [Eq [sign (as,p + q)] - P]
=Ep [(1 = @4 (—as,p) = ®q(—as,p)) - ]
= 2E;, [®q (as,p) - P,



where @ is the cdf of q and we use the property that 1 — ®4 (—as,p) = @4 (as,p). Then, we have

Ep, [®4 (as,p) -p] = Ep []Eq [1q§as1p|P} 'P]
=Epq [1anslp : p]

oy [T (L
= sign (as / e*7a ——pe 2 dp | dq
' o0 4 /271'0'3 |a21\ \ 2m

o1 g1 g
= sign (as )/ €7 e’ | dq
[ \ /27rcr(2]1 V2T
(5 iesa?)a?
sign (ay,) /+°° 1| o)

e a%s; dq
V21 —oo /2#05

= aSI
2 (Zjesa?)
Bs,
= sign (a ,
g ( 31) o1
: . : Xsg 037 a3
where the second equality uses the law of total expectation, and we substitute g;, := Lr = £y
i > jes At Djes 45

in the last equality. The proof is done by substituting the expectation values in the Hanson-Wright
inequalities. O

Proof. (Lemma 16)

Recall the definition of @, in Equation (2) such that Q,, = stl A:;:sly for 1 < ¢ < t. Therefore, we can
write s, as

5, T A1 I
QSl - ZslA—sl:sly
1

= z;rl (A_51;32 + )\SZZSZZSTQ)_ y

—1 T A1

T —1 >‘S2A—sl:52z52z52A—31:52 A~

= Z81 A751152 - T —1 y
1 + )‘82Z52A751:52Z32
t —1 T A1
I —1 )\SZA—Sl:SZZSZZSZA—Sl:sZ ~
*Zsl A—Sl:Sf - TA-1 y
/=2 1 + )‘SezslA—slzszle

t T A1 TA-L
_ Q Z >‘5eZ51A751:SEZSeZSgA751:sey
=Qs, — T AT
=2 1 + )‘SZZszAfslzszZSZ
t T —1 T A —1 ~
_ Q 1 /\SzzslA—sl:sgzsézszA—slzsgy
= s, — E T AT
= Qs (14 X,z A Zs,)

—S81:8¢

t — — ~

_ 1 . )\Slz;rlA—inzzslz;l;A—;l:sly

=Qs, | 1 —sign(as,) Z Qul (L4 Azl A )
=2 | 5t| + Sezsz Zs,

—S81:S¢

where we apply the Sherman-Morrison-Woodbury identity recursively over £ = 2,... t. In the last equality,
we use that fact that the sign of @, is controlled by as, for large enough n from Lemma 15. According to



the sign of @s,, we have the upper and lower bound of Qg, by

t -1 —1 N
Z )‘SzZ;Afsl:ngsez;rgAfsl:sgy
1Qs,| (14 Asz] AZL ., 2,)

=2 Sesy —S81:8¢

)
)

)\SZ ‘Z;A:ingZSK | |Z;F1{A:§1:S(y|

—Z Qs | (L4 N5zl AZL . 2s,)

(=2 Spfsptr—s71:8¢
t — — ~
|Z;|71A—ilislzse ||Z;'|;A—i1:SZY‘

<
2 Q.| (24, A5, ,25:)

—81:8¢

Qs, < Qs, <1 + sign (as, )

t —1 —1 N
Z )‘Szz;A—slzsezszz;A—sl:szy
1Qs,| (1+ Aspz] AZL

/=2 Sesy —sl:slzse)

Q51 Z QSt (1 - Sign (as1)

Hence, it remains the upper bound the absolute value term above. We then have
t - _ N
Azl A”L zskz;Afilzszy

Z Sp¥s;tr—sq:i8y
Qs | (1+ X520, AT, 25,)

=2 Sesy —S81:S¢

T A1 TA-L
— Z |Z51A—51:slzse| |Z55A—51:s[y|
=2 |QS¢| ZSTI{A:;I:S[ZS[{ ?
—_—
2:T1 3:T2
where in the second inequality we deduct 1 in the denominator. Next, we aim to upper bound 77 and T5
respectively. According to the bounds of Qs, in Lemma 15, we can have the bounds of |Qs, | as

\/ 2”6% Tr (A:ilist) —2c; ||A:il;st||2 pite < 1Qs,| < \/%Tr (A:;:St) + 2¢1 HA:;:&H2 . pate (45)

For Ty, we can apply Hanson-Wright inequality (Lemma 32) in the numerator and apply the lower bound of
|Qs,| in Equation (45) in the denominator, and we get

201 A=) ],

T < —S81:S¢
1S
28, _ _ 1
Tl Tr (Afiust) -2 ||A7£128t H2 ‘nate
—1 1
2c1 Af(sltst)u[k*] ) .n2te
2Bs -1 -1 1
Tl Tr (A—Slist) —2c1 HA*(Sl:St)U[k*] , .pate
-1 1
_ 2cq HA—(Sﬁst)U[k*] ) .pate
/28 kx -1 -1 1
\/; (1-<)" T (A_(Sm)u[k*]) ~ 2 HA—@l:st)u[k*] b
1
_ (46)
— K
\/E (1 _ E)k* Tr<A—§51:5t>U[k*1> ~1
T n 261HA71 _ . n%Jre
—(s1:5¢)U[k*]]|o
where the second inequality follows by A~ ,, < AT{ ., X AT . . forall £ < ¢, and the third inequality

follows by the trace lower bound in Lemma 36. Next, Lemma 35 ensures eigenvalues of A:%sl:st)u[k*] are

identical up to a constant such that

-1
Tr (Af(slzst)u[k*]) > Q
C

— (47)
HA—(slzst)U[k*]

2
Substitute Equation (47) into Equation (46), we get

1 1
T < =

20 k* ,g—e c:n%_e—]_.
YEEXEREREN




For Ts, we use the sub-multiplicative matrix norm and get

||ZSF||2 HyHQ HA781 SFHZ

s TTAT
||zseH2||y|\2HAfSISZH2
CTr(ALL,) —al[AT Ll nE e

; [z, 115 19112 [[AZS, o, ]

e\ k*+Ht— Z =+e€
(1= 8" (ATl ) — o [ATh -t
120l 15712 || A=, e

= o\ =l
(1-5) (A 151 50Uk ]) —a

where the second inequality follows the Hanson-Wright inequality in Lemma 32 In the third inequality, we

use the trace lower bound in Lemma 36. The last inequality follows by A~ (S so)Ulk*] = A:.ilisz for £ < t.

| in Equation (47) again and get

" T (48)
-n2

+e
Af(sl:st)u[k*] 9

Next, we apply the tightness of eigenvalues of A~ (81 50 Uk

125, [l 131l cn
)k} ft Z < S C4;

> k¢ 1
—einate (1 — %) L —cnzte

T; <
(1-¢

where the last inequality follows Lemma 33 such that ||z, |, < c¢y/n. Put together the upper bound of T}
and T5, the proof is complete. O

(‘

Proof. (Lemma 17)
S s A:g s VS . . .o, . ~ ~
We show that ‘ 2 AT < cfor 1 < ¢ <t by induction. Recall the definition of y as ys, =

=
1+)\b/zspA_§1 Iy

)‘VZSzA*n Szyg@ 1y

ysz,l - T
1+>\qezszA7a1 spZss

zs, and ys, =y for 1 < /£ <t. For the base case £ = 1, we have

}Aslz;rlA:91 91 < |zT A:91 91 (49)
1 = 1
L+ Xzl AT . 2o, — 2] AT, ., 2,
IIZe1||2 JAZ: o, 19711
= -1
Tr (A*SI 51 -G HA*51 51 HZ n2+6
12,12 || A=t oo |, 1912 )
- 1 1 P
T (A7) — ’ o S
where in the second inequality, we use the sub-multiplicative of matrix norm in the numerator and Hanson-
Wright inequality (Lemma 32) in the denominator. In the last inequality, we use the fact that A:%Sl:St)U[k*] =
. k*+t— 1
A_;l s, - Next, we apply Lemma 36 and get Tr (A_i1 51) > (1 — %) (Ai51 st)u[k*]>' Therefore,
0 < 12 s | A= oo 1912
5
— k*+t— 1 1 —1 1
(1-%) (A—(51 st)u[k*]) - a HA—(slzst)U[k*} ) -n2te
_ s[5 1712
(1- %)’f“ﬂf—l (AL o) _eynite

—1
HA—(slzst)U[k*] 5




where in the second inequality we apply Lemma 33 to get ||z, ||, < ¢cy/n and we apply Lemma 35 to show

elgenvalues of A” (S se)Ulk+] BT€ identical up to a constant. The base case £ = 1 is proved. Next, we assume

Xsjzl ATL Vs
S

—s1:85 J—

< cis true for 1 < j < /¢ —1, and we show for j = ¢ the statement holds. We have the

1+)\ z—r A:ﬁ ;2%
j= E case
)‘S/zs/Afsl seysﬁ 1 |Z5/A751 s;ysﬁ 1’
T 1 T 1
1 + )‘Sezs[Afsl S/Z Z Afsl s; Se
zT AL -
TA 1 ~ Zl 1 As Sj s7A—sl s Ysj_1 z
—81:S¢ y — 7j=1 1+)\5 zT A:ﬁ . 7, sj
- z
Z —61 égz
T A1 -
-1 AejZay By i Y1 z/ A"l gz
|Z Afi S }A” 27: 1+>\9 ZT A*il Sj %55 SeTT TS
< 1-5¢ +
-, T 1 T 71
Z A751 :Sp Sz j=1 ZSgA'fslstZSg
A el
< Z —s1:50Y ClZs, A —s1:5,%s;
— o T AT TAL ’
Z A—sl sg j=1 ZszA—slzngSz

where we upper bound the term by taking absolute value individually, and in the last inequality we apply
the induction assumption for 1 < j < /¢ — 1. For the first term, we can achieve a constant upper bound by
following the exact procedure in the base case ¢ = 1. For the second term, we can use the Hanson-Wright
inequality (Lemma 32) and show

TA-1 3
|Z A—51 szz5j| < 61HA751 sz||2-n2+6
TA-L = - 3
Zs A781 seZse (A—S1 82> a HA—81 Se||2 nate
_ . l+€
1 A—(slzst)U[k*] ,
1 —1 14
(A751 52) - a Af(slzst)u[k*] 9 T
—1 14
c1 HA—(slzst)U[k*] ) -nzTe
- -\ k*Ht—L 1 -1 1.
(1-13) Tr (A7<51 st>u[k*1) —a HA%smnu[m ,
B 1
k*4t—2 Tr<A_éq1 st)u[k*])
(1 - 7) - 11
CIHA*(SU%)U[’C*] 2 n?
1
< k*4t—€ 5=
(1= — 1
c
S
nz2—¢
where we use the fact that A:%Sl:sf)u[k = =A” 81 s, for £ <t in the second inequality and we use Lemma 36

to get the trace lower bound in the third inequality. Finally, we again apply Lemma 35 to show eigenvalues
in A” (51 so)Uk*] A€ identical up to a constant. Putting together the bounds for the first term and the second
term, we complete the induction proof for j = ¢ — 1 case. The proof is done.

O

H Background lemmas

In this section, we provide statements and/or proofs of some miscellaneous lemmas.



The first lemma is the Hanson-Wright inequality, which demonstrates the quadratic term z' Mz of sub-
Gaussian random vector z concentrates around its expectation.

Lemma 32. (Hanson-Wright Inequalities, Rudelson and Vershynin (2013)) Let z be a random vector with
i.i.d. sub-Gaussian entries z; such that E [z;] = 0 and ||z, < 1. There exists a universal constant ¢ >0
such that for any positive semi-definite matriz M and for every t > 0, we have

PHZTMZE[ZTMZ]{>t]§2exp{cmin{ #* t }}

M2 1M,
Note that [|[M||Z < n |M|5 and we substitute t = ¢y |[M]|, - n2¢ where ¢3 = L and e € (0,7) to get
‘ZTMZ - E [ZTMZ]’ < ¢ [M], -pate

with probability at least 1 — 2e~""". Again, note that IM]l, < Tr (M) and ||M|\i = Tr (M?) < (Tr (M))?,
and we substitute t = 1 - Tr (M) - (Inn) to get

1 1
z'Mz <E[z'Mz] + - Tr (M) - (Inn) < (1 + ) ~Tr (M) - (Inn),
c c
with probability at least 1 — % Note that the probabilities are over z only and M is positive semi-definite and
is independent to z.

The next lemma restates a bound on the squared norm of a Gaussian random vector.

Lemma 33. Let z ~ N(w,1,,) and for § € (0,1) and ¢ > 1, we have
n 2
2 (-8 < [l < n(1+5) = en,
c

with probability at least 1 — 2e~ "m0’

The following lemma guarantees that if ¥ exhibits a heavy tail such that rg« (X) > bn, it retains a heavy tail
even after removing t < ne components from the tail.

Lemma 34. For any data covariance matriz 3 satisfying k* < 2 such that rj- (3) > bn, for any set of
indices S such that S = {j | k* < j < d} and |S| =t < n? < d, we have - (E_4,.5,) > bn —t > byn.

Proof. By the definition of effective ranks, 3 satisfies

d
Zj:k*—‘rl Aj

> bn.
Akr 41

Th* (2) =

By removing ¢ components whose index is larger than k*, and denote j* = min{j | k* < j < k*+1+4t,5 € S},
we have

d d d
Zj:k*-i—l,jesc )‘j Zj:k*+1,je$c >‘J’ Zj:k*+1 )‘j Zjes )‘j
Tk (E—slzst) = > = —

= Z bn - t)
Aj Ak 1 Ak 41 Ak 41

where the first inequality follows Ap.41 > Aj« and the last inequality follows the lemma assumption on & and
Akst1 > Aj for all j € S. As a result, since ¢t < nz, the proof is complete. O

Next, we apply Lemma 34 to demonstrate that the eigenvalues of the tail of 3, after removing ¢ < n
components, remain identical up to a constant factor.



Lemma 35. For any data covariance matriz X satisfying k* < 2 such that r (3) > bn, for any set of indices

S such that S = {j | k* < j < d} and |S| =t < nz~¢ < d, we have rq (B ke juisizsn)) = Thr (Bsyis,) = bn.
Therefore, we have

A *
e H —[k JU(s1:st) || < 27
cn 1 n
T (A b oo
for ¢ > 1 with probability at least 1 — 2e” Ve,
Proof. According to Lemma 34, we have ri (X_g,.5,) = M > bn, where we denote J* = min{j |

k* <j <k*+1+4t,j € S}. Furthermore, by re-indexing eigenvalues, we denote {)\j } j:l ! the eigenvalues
d—k*—t
of the leave-k* and t-out covariance matrix 3 _, .5, ur+), and we have rq (2—(s1:s,)u[k*]) = Zjl)\; =
g 1
e (B_5,:5,) > bn. Based on Lemma 10 in Bartlett et al. (2020), for X_(,, .5, upk+], we have

1- -
E>\17’0 (B (simsuir]) < o (A—(srisnupe]) < o1 (A—(srsnupe]) < cAiro (B_(syis)ume]) »

A—l

with probability at least 1 — 2e~ <. Therefore, we have the bounds for UGt | as
1 c
e
[k*]U(s1:st) (A [k*]U (Sl:st)> A1T0 (2—(s1:st)u[k*])
1 1 1
b > |
0 saise) fin (A egosisn) o (Aomgueisn) — eMro (B (spsoupe])

. -1
Similarly, for Tr <A_[k*]u(8128t)), we have

v (A 1 - ) < n <. cn
1:8) ; ti (A piugsiis)) — Hn (A—e]usis)) — Airo (B (s1:s0)uk*])
AL ) > o > — o .
( (s1:80) ; —[k*]U(s1: St)) 1 (A—[k*]U(SliSt)) C/\er (Zf(sl:st)u[k:*])
—1
By substituting these bounds into m the proof is done. O

(A_UC*]U(H ?t))

The following lemma extends Lemma 25 from Wang et al. (2023) to show the trace bounds when removing
distinct components in 3, whereas the original result only provided the lower bound for removing the top &
components.

Lemma 36 (From Lemma 25 in Wang et al. (2023)). For any data covariance matriz X satisfying k* < %

such that . (2) > bn, for any set of indices S such that S = {j | k* < j < d} and |S| =t < n? < d, for
any 0 <y </l <t and 0 < k| < ko < k* and sufficiently large n, we have

ko—k1+L2—4
- (A S(1-¢ .
Tr <A—(sl:sz2)u[k2]> >Tr <A (s1: szl)U[k1]> = (1 n) Tr (A_(Slzsez)u[k2]> )

with a probability at least 1 — 2 (ko — k1 + €2 — €1) e™

o3

Proof. For the first inequality, it directly holds since A_(q 50, )Ulka] A —(s1:505)Ulk2] implies A~} ( Yolkal >
S1:50y 1 1-5€2 S$1:8¢45 2

Next, according to Lemma 25 in Wang et al. (2023), by removing the top component in 3,

_1 c\ k2—k1 .
> — —
Tr (A(Sl:sgl)u[k1]> Z (1 n) Tr (A(Slzsh)u[bo .

-1
_(sl S0y )U[kl] :
we have



Next, following the proof steps in Lemma 25 in Wang et al. (2023), by the Sherman-Morrison-Woodbury
identity, we have

Al z] A7
S€1+1 ( —(s1: szl+1)u[k2] Zsey 41250, 41 — (5110, 41)Ulk2]

(A (91 sey )Ulks] > Tr (A 91 se +1 U[kz]) 1+ A AL v
1 1 S(1+1 sz +1 —(31:551+1)U[k2] Se1+1
—2
SelJrl 351+1A (51 se1+1)U[k2]ZSel+1

=Tr A 9 :s U[k] -1
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T —1
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= Ulk Ulk -1
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(51)

-1 — -1
=0 (A(51:821+1)U[k2]> HA(SI:S““)U[M 2

where in the first inequality, we use the property that x "M?x < | M]|, - x Mx. Next, we have

—1 A—l A—l
H —(sl:sglJrl)U[kz] 5 H —(31:341+1)u[k*] 9 —(sl:sgl+1)u[k*] ) c

Tr (A~} - Tr (A~} N (1 — £)k*_k2 Tr (A~} N (1 - %)k*_’m n
7(8128@1+1)U[k2] 7(5125g1+1)u[k2] n 7(81:S£1+1)U[k)*]

1 < A—l
(91 341+1)U[k2] —(31:351+1)U[k*]
inequality, we use Lemma 25 in Wang et al. (2023), and in the last inequality, we apply Lemma 35. As a

where in the first inequality, we apply the property that A~ , in the second

result, from Equation (51), by dividing Tr <A % Yok ]> on both sides, we have
S1:801+1 2

Tr (A~} AT
T < —(511821)U[k2]> >1_ H —(s1:stzl+1)U[/€2] 2 S q_ c >1— a

- - k*—kz ey )
-1 —1 1— < n n
Tr (A(51:5z1+1)u[k2]> Tr (A(Slzszﬁl)u[kz]) ( n)

By applying the steps £5 — ¢ times, the proof is complete. O

I Additional simulations

In this section, we present additional simulations of our few-shot postprocessing algorithm. In general, we find
that our postprocessing algorithm can recover t-sparse signal in cases where the classification and regression
tasks fail — even including the worst-case scenario of isotropic covariance.

Our simulations were run on an Nvidia A5000 GPU with 24GB VRAM, but this level of compute is not
necessary. Our code is available at https://github.com/tmlabonte/taskshift.


https://github.com/tmlabonte/taskshift
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Figure 3: Task shift for spiked covariance with ¢ < 1 — r and signal outside the spike. We set
p=1.5,¢=0.5, and r = 0.25 so that ¢ < 1 —r. Moreover, we add an additional signal component which lies
outside the covariance spike for any n < 2500. Our task shift algorithm correctly recovers the support and
generalizes well; note that the decay of the component outside the spike (index 8) is faster than those in the
spike (indices 1-2), but still slower than those outside the support (indices 3-7 and 9-10). The true signal 6*
is 3-sparse with a1 = 1, ag = —0.5, and ag = —0.15 (see Assumption 5). Our postprocessing algorithm uses
top-t support recovery and least-squares on noisy m-shot regression data. We plot the mean and standard
deviation over 10 draws of the training dataset X.
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Figure 4: Task shift for polynomial covariance with v = 0.25,v = 0. Our task shift estimator
generalizes for polynomial covariance models. The true signal 8* is 2-sparse with a; = 0.2 and az = —0.1 (see
Assumption 5), and we set d = n'®>. Note that this parameterization satisfies the conditions of Corollary 31.
Our postprocessing algorithm uses top-t support recovery and least-squares on noisy m-shot regression data.
We plot the mean and standard deviation over 10 draws of the training dataset X.
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Figure 5: Task shift for isotropic covariance 3 = 50I. Our task shift estimator generalizes even in
worst-case scenarios for minimum #>-norm interpolation such as isotropic covariance. The true signal 6* is
2-sparse with a; = 1 and az = —0.5 (see Assumption 5), and we set d = n':5. Our postprocessing algorithm
uses top-t support recovery and least-squares on noisy m-shot regression data. We plot the mean and standard
deviation over 10 draws of the training dataset X.
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(i) Task shift for spiked covariance when classification and regression generalize. We set p = 1.5, ¢ = 0.3,
and r = 0.5 so that 0 < ¢ <1 —r. In this regime, the classification MNI 6 generalizes on the original classification
problem and the regression MNI 6 generalizes on the original regression problems.
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(ii) Task shift for spiked covariance when classification generalizes but regression does not. We set
p=15,¢=0.6,and r =0.5s0 that 1 —r < ¢ < (1—r)+ (p—1)/2. In this regime, the classification MNI 8 generalizes
on the original classification problem, but the regression MNI 8 does not generalize on the original regression problems.
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(iii) Task shift for spiked covariance when neither classification nor regression generalize. We set p = 1.5,
g=0.9,and r =0.5so that (1 —7r)+ (p—1)/2 < ¢ < p — r. In this regime, the classification MNI 8 does not on the
original classification problem, and the regression MNI @ does not generalize on the original regression problems.

Figure 6: Postprocessing achieves task shift in the three regimes of Muthukumar et al. (2021).
The left column demonstrates the survival of t-sparse signal support components in the classification MNI
6 while non-support components decay quickly. The middle column shows the O(%) regression error of
least-squares with reduction to ¢ dimensions using m regression samples under standard Gaussian noise.
Finally, the right column displays the regression risk of the classification MNI, regression MNI, and our
postprocessed predictor. The signal 8* is 2-sparse with a; = 0.2 and az = —0.1 (see Assumption 5). The
middle column fixes n = 2500. We plot the mean and standard deviation over 10 draws of the training
dataset X.
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