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Abstract

Modern machine learning methods have re-
cently demonstrated remarkable capability
to generalize under task shift, where latent
knowledge is transferred to a di!erent, often
more di"cult, task under a similar data dis-
tribution. We investigate this phenomenon
in an overparameterized linear regression
setting where the task shifts from classifi-
cation during training to regression during
evaluation. In the zero-shot case, wherein
no regression data is available, we prove
that task shift is impossible in both sparse
signal and random signal models for any
Gaussian covariate distribution. In the few-
shot case, wherein limited regression data is
available, we propose a simple postprocess-
ing algorithm which asymptotically recov-
ers the ground-truth predictor. Our anal-
ysis leverages a fine-grained characteriza-
tion of individual parameters arising from
minimum-norm interpolation which may be
of independent interest. Our results show
that while minimum-norm interpolators for
classification cannot transfer to regression
a priori, they experience surprisingly struc-
tured attenuation which enables successful
task shift with limited additional data.

1 INTRODUCTION

The fields of modern statistics and machine learning
aim to develop models which generalize to a plethora
of application-specific tasks. For example, tasks in
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computer vision range from classifying images into
discrete categories to object detection (Ren et al.,
2015), segmentation (Ronneberger et al., 2015), and
pose estimation (Cao et al., 2017), while tasks in
language modeling could be as basic as next-token
prediction (Vaswani et al., 2017), or involve summa-
rization (Liu and Lapata, 2019) or machine trans-
lation (Bahdanau et al., 2015). In statistics, basic
estimation tasks involve either classification or re-
gression; in the latter we wish to predict real-valued
quantities and performance is measured via a contin-
uous error metric. The traditional perspective on
task shift establishes a clear hierarchy in di"culty,
e.g., a statistical estimator which achieves a certain
error rate for a regression task will typically achieve
an equal or better rate on the corresponding classifi-
cation task1. Similarly, in empirical machine learning,
the most di"cult task is considered to be represen-
tation learning. Indeed, learned representations are
commonly finetuned on simpler downstream tasks
and observed to generalize in a zero-shot or few-shot
sense, i.e., when finetuning data is unavailable or
limited, respectively (Bengio et al., 2013).

Perhaps more surprising are recent trends in modern
machine learning which appear to go in the other
direction: using models trained on an “easier” task to
successfully solve a “harder” task. Specifically, large
language models (LLMs) have shown a remarkable
ability to generalize in-context — without explicit
finetuning — to completing prompt-response pairs
despite being trained only on the more basic next-
token prediction task (Brown et al., 2020). From
a statistical perspective, a particularly intriguing
observation is that LLMs trained on next-token pre-
diction can successfully solve linear regression tasks

→Equal contribution; co-first author.
1 This is most directly used in applying logistic regres-

sion procedures to classification tasks, but also works for,
e.g., least-squares regression (Kline and Berardi, 2005;
Rifkin et al., 2003).

mailto:tlabonte@gatech.edu
mailto:klai36@gatech.edu
mailto:vmuthukumar8@gatech.edu


(a) Language modeling (b) Statistical estimation

Figure 1: Task shift in language modeling and

statistical estimation. In our task shift setting,
latent knowledge is transferred between tasks under
a similar conditional distribution or ground-truth
signal. Task shift is compelling when the aim is to
shift to a fundamentally harder task, with little to
no data available from the new task.

by computing the ordinary least-squares estimate
in-context (Zhang et al., 2024). With this high-level
motivation, we propose the following statistical learn-
ing problem formulation:

Can estimators trained on a classification task gener-
alize, in a zero-shot or few-shot sense, to the regres-
sion task on the same data distribution?

Our contributions. We consider linear binary
classification on data

{(
xi, ŷi = sign

(
x→
i ω

ω
))}n

i=1
and investigate whether an estimator trained on the
classification task can generalize to the correspond-
ing regression task, i.e., predict the regression label
x→ωω of a new datum x. We consider the overparam-
eterized regime wherein the dimensionality d of the
data greatly exceeds the number of training examples
n, and we study the minimum ω2-norm interpolator
(MNI) on the binary labels {ŷi}ni=1, which we denote
by ω̂. We define the task shift error as the di!er-
ence between the regression risk of the classification
MNI ω̂ and the regression risk of the regression MNI,
which we denote by ω̃. We show the following results
with high probability over the training data:

• Classification data attenuates the signal ωω even
in the most favorable possible situation for ei-
ther task in minimum ω2-norm interpolation, i.e.,
maximally anisotropic data covariance, sublin-
early sparse signal, and the existence of benign
overfitting of noise. Therefore, the classifica-
tion MNI ω̂ does not successfully generalize in a

zero-shot sense to regression data, except when
e!ective signal magnitude is equal to a specific,
pre-defined constant. See Theorem 8 for a formal
statement of this result.

• We also produce an “ansatz” prediction of task
shift error for more general signal models under
a simplifying assumption on the regression la-
bels (Theorem 12). Corollary 13 then shows a
fundamental tradeo! between regression bias and
task shift error — they cannot be simultaneously
statistically consistent. Moreover, we show in
Theorem 23 that while a “dense” random signal
is known to su!er from poor bias, it achieves
vanishing task shift error if the covariance ma-
trix has large e!ective rank compared to n, i.e.,
its eigenvalues decay su"ciently slowly.

• Finally, we consider a t-sparse ground truth ωω

and propose a simple postprocessing algorithm
utilizing few-shot regression data. We show the
attenuation of the classification MNI is surpris-
ingly structured, culminating in Theorem 14
which proves the support of ωω can be recovered
simply by the t largest elements (in absolute
value) of ω̂. Our postprocessing algorithm en-
sures O

(
t
m

)
regression error with m noisy regres-

sion examples or exact recovery from t noiseless
examples — in other words, successful few-shot
generalization from classification to regression.

Our techniques build on the recent literature on be-
nign overfitting of minimum ω2-norm interpolators
in both regression (Bartlett et al., 2020) and classifi-
cation tasks (Muthukumar et al., 2021; Wang et al.,
2023). We are especially inspired by the separation in
statistical consistency derived in Muthukumar et al.
(2021), which showed that for certain anisotropic en-
sembles, classification may generalize while regression
does not. We substantially develop their tools to pro-
vide a fine-grained characterization of the individual
magnitudes {|ε̂j |}dj=1. Surprisingly, this characteriza-
tion can enable the success of our few-shot algorithm
even when the minimum ω2-norm interpolator would
not generalize for either classification or regression.

1.1 Related work

The formulation of task shift in this paper, partic-
ularly our focus on the shift from classification to
regression tasks, shares both similarities and di!er-
ences with several prominent areas of research in ma-
chine learning. Compared to transfer learning (Pan
and Yang, 2009), task shift similarly aims to general-
ize knowledge from one “job” to another. However,



while transfer learning emphasizes preserving useful
features for similar or downstream tasks, task shift
focuses on generalizing from a simpler task (e.g., clas-
sification) to a more complex one (e.g., regression).
Task shift is also related to the concept of distri-
bution shift (Moreno-Torres et al., 2012). In task
shift, the source data distribution remains unchanged,
but the conditional distributions of the labels dif-
fer at test time. Furthermore, our classification-to-
regression setup is closely connected to the one-bit
compressive sensing problem (Boufounos and Bara-
niuk, 2008). However, while one-bit compressive
sensing focuses on optimal estimators or algorithms
based on a known measurement process, our work
emphasizes unique properties of the ω2-inductive bias.

The theoretical analysis in this work builds directly
on the literature on benign overfitting. Bartlett
et al. (2020) Tsigler and Bartlett (2023) charac-
terized benign overfitting for regression estimators,
while Muthukumar et al. (2021) provided a survival
and contamination analysis for sparse signals in both
classification and regression settings. Our analysis
substantially develops insights from these works to
estimate the support of a sparse signal even when
neither classification nor regression generalizes.

We discuss additional related work in Appendix A.

2 PRELIMINARIES

We now detail our classification-to-regression task
shift setting and introduce our proposed estimators
and assumptions on data covariance. We also recap
the definitions of e!ective dimension quantities ex-
tensively used in analysis of interpolating estimators,
e.g., by Bartlett et al. (2020).

Notation. We use uppercase bold symbols to de-
note matrices (e.g., X), lowercase bold symbols to
denote vectors (e.g., x), and lowercase italicized sym-
bols to denote scalars (e.g., x). We denote random
variables using non-italicized symbols, e.g., X for a
random matrix and x for a random vector. Let Px

and Ex denote a probability and expectation with
respect to a random vector x, respectively.

Let d
= denote equality in distribution. Let S

c de-
note the complement of a set S. Let x → N (µ,!)
denote that x is sampled from a multivariate Gaus-
sian distribution with mean µ and covariance ma-
trix !. Let diag (ϑ1, . . . ,ϑn) denote an n ↑ n ma-
trix with ϑ1, . . . ,ϑn on the diagonal and zeroes else-
where. Let µ1(A), µ2(A), . . . denote the eigenval-
ues of a matrix A in non-increasing order. Let

↓A↓ := µ1(A) and Tr(A) :=
∑

i µi(A) denote the
operator norm and trace of A. For clarity, we use
the shorthand [t] := {1, 2, . . . , t} for t ↔ N. Finally,
we use C, c, c1, . . . to denote constants not depending
on n, d which can change from line to line.

2.1 Minimum-norm interpolating estimators

We consider a noiseless linear regression problem
where data undergoes centered Gaussian featuriza-
tion2 in d dimensions such that x → N (0,!). We
denote the ground-truth regressor, also called sig-
nal, by ωω

↔ Rd, so the regression and classifica-
tion label for a datum x are ỹ := x→ωω

↔ R and
ŷ := sign

(
x→ωω

)
↔ {±1}, respectively.

We assume noiseless labels in the classification
dataset for ease of exposition, but our zero-shot lower
bounds and few-shot upper bounds can be easily ex-
tended to handle classification label noise3.

We assume access to a classification dataset
{(xi, ŷi)}

n
i=1 where d ↗ n and limn↑↓

d
n = ↘,

i.e., the data is heavily overparameterized. We de-
note the data matrix by X := [x1, . . . ,xn]→ ↔ Rn↔d

and the regression and classification label vectors by
ỹ := [ỹ1, . . . , ỹn]

→
↔ Rn and ŷ := [ŷ1, . . . , ŷn]

→
↔

{±1}n. We study the minimum-norm interpola-
tor (MNI), which is obtained directly via the im-
plicit bias of gradient descent on the squared loss
and also enjoys close links to the implicit bias
of popular classification losses (Hsu et al., 2022).
The MNIs on regression and classification labels
are defined by ω̃ := argmin {↓ω↓2 : Xω = ỹ} and
ω̂ := argmin {↓ω↓2 : sign (Xω) = ŷ}, respectively.
Since X is full rank almost surely under Gaussian
design, both estimators have simple closed forms:
ω̃ = X→ (

XX→)↗1
ỹ and ω̂ = X→ (

XX→)↗1
ŷ.

The excess risk of any linear estimator ω ↔ Rd is given
by L(ω) := Ex

(
x→ω ≃ x→ωω

)2
. The central goal of

this paper is to bound the excess regression risk of
the MNI classifier L(ω̂) — and, later, postprocessed
variants of this classifier. We say ω̂ achieves task shift
if it is regression-consistent, i.e., limn,d↑↓ L(ω̂) = 0.

2.2 E!ective rank and covariance structure

As shown in Bartlett et al. (2020); Muthukumar et al.
(2021); Tsigler and Bartlett (2023), the performance

2 We expect many of our results to generalize to the
case of independent, sub-Gaussian features by building
on Cao et al. (2021); Tsigler and Bartlett (2023).

3 For example, if P
(
ŷ = sign

(
x→ωω

)
| x

)
= 1→ ωω, we

require ωω < 0.5, i.e., the sign is preserved on average.



of the regression MNI on regression labels or classifi-
cation MNI on classification labels can be character-
ized by two notions of e!ective rank of the spectrum
of the data covariance matrix !. We let ϖ1, . . . ,ϖd

denote the eigenvalues of ! in non-increasing order
(i.e., ϖj := µj(!) for all j ↔ [d]).
Definition 1 (E!ective rank). For an index k ⇐ 0,
two notions of the e!ective rank of ! are

rk(!) :=

∑d
j=k+1 ϖj

ϖk+1
and Rk(!) :=

(∑d
j=k+1 ϖj

)2

∑d
j=k+1 ϖ

2
j

.

These are essentially two notions of e!ective dimen-
sion of a “tail” component of the covariance matrix
restricted to eigenvalues ϖk+1, . . . ,ϖd. For a constant
b > 1, denote k

ω := min{k ⇐ 0 : rk(!) ⇐ bn} where
the minimum of the empty set is defined as ↘. In
other words, kω is the minimal index after which the
spectrum has large (first) e!ective rank compared to
n. We will make the following assumptions on !.
Assumption 2. We assume that ! is diagonal and
positive definite for any d, n < ↘. We also assume
that kω ⇒

n
c for some universal constant c > 0.

The diagonal assumption is without loss of gener-
ality for our zero-shot lower bounds but required
for our few-shot upper bounds. The assumption on
e!ective rank essentially requires a “long tail” on the
covariance and ensures that the data is actually high
dimensional in nature.

We situate our results in two covariance ensembles
considered in Bartlett et al. (2020); Muthukumar
et al. (2021) which enable us to state precise rates.
Definition 3 (Spiked covariance matrix). A spiked
covariance matrix ! is parameterized by p ↔ (1,↘),
r ↔ [0, 1), and q ↔ (0, p≃ r). We set the data dimen-
sion to d = n

p, the length of the “spike” to s = n
r,

and a = n
↗q to be a parameter controlling the ratio

of the eigenvalues. Then, the ensemble is defined by

ϖj :=

{
ad
s j ↔ [s]
(1↗a)d
d↗s otherwise.

This ensemble satisfies Assumption 2 with k
ω = s

when q < 1≃ r and k
ω = 0 when q > 1≃ r.

Definition 4 (Polynomial decay covariance matrix).
A polynomial decay covariance matrix ! is parame-
terized by p ↔ (1,↘) and u, v ⇐ 0 such that

ϖj := j
↗u ln↗v(j + 1)

and d = n
p. We consider two versions of the co-

variance. We set u = 1, v = 2 to study an instance

of the regime wherein benign overfitting is achieved,
and we set u ↔ [0, 1), v = 0 to study a case wherein
it is not achieved (Bartlett et al., 2020). These pa-
rameterizations satisfy Assumption 2, but unlike the
spiked covariance matrix, characterizing k

ω is rather
delicate. In particular, if kω is nonzero we may only
be able to characterize its order (see Appendix C.3).

Formally, we take limits over a sequence of covariance
ensembles {!n}

↓
n=1 (e.g., Theorem 8, Corollaries 9

and 13), but we drop the subscript n for clarity.

3 ZERO-SHOT TASK SHIFT

In this section, we study task shift performance in
the zero-shot setting, wherein no regression data is
available. We show that task shift is impossible un-
der sparse and random signal models with maximally
favorable data covariance. While our negative results
are perhaps expected — since the magnitude of the
regression labels is irrevocably lost in the classifica-
tion task — our analysis leads to some unexpected
conclusions. Specifically, in Section 3.1, we show that
the attenuation of the classification MNI is surpris-
ingly structured (which enables recovery of the true
signal up to a magnitude factor), and in Section 3.2,
we show that the nature of the failure of zero-shot
task shift is closely linked to the index k

ω.

3.1 The case of sparse signal

We first consider a signal with sublinear sparsity.
Assumption 5 (t-sparse signal model). Denote the
support of the signal ωω by S := {j ↔ [d] | εωj ⇑= 0}.
We assume ωω is t-sparse, that is |S| = t ⇓ n

1
2↗ε

⇓

d, where ϱ ↔ (0, 1
4 ). We write ε

ω
j := aj⇔

ϑj
for j ↔ S

with aj ⇑= 0. Moreover, we assume the total signal
strength ↓!

1
2 ωω

↓
2
2 =

∑
j↘S a

2
j is constant for all n.4

We note that the sparsity assumption is justified
since in its absence, regression generalization is
information-theoretically impossible in the overpa-
rameterized regime (Wainwright, 2009; Aeron et al.,
2010). For the regression MNI, Tsigler and Bartlett
(2023) showed one must have approximate sparsity in
the direction of the top eigenvalues to ensure low bias,
i.e., sparsity is required for statistical consistency.

Rather than the standard bias-variance decomposi-
tion, we directly investigate the relative preserva-
tion of the true signal (survival) and the pollution

4 The assumption on total signal strength is only neces-
sary for limits over over {!n}↑n=1, i.e., it is not required
for our few-shot results in Section 4.



of false signal (contamination), which were shown
in Muthukumar et al. (2021) to tightly characterize
regression and classification tasks. We define these
quantities formally below, using shorthand notation
A := XX→ =

∑d
j=1 ϖjzjz→j where zj := Xej/

√
ϖj

and zj → N (0, In) is an independent isotropic Gaus-
sian vector for j ↔ [d].
Definition 6 (Survival and contamination). Under
Assumptions 2 and 5, we define the survival SUj for
all j ↔ S and contamination CN by

SUj :=
ε̂j

εωj

=
e→j X

→ (
XX→)↗1

ŷ
aj⇔
ϑj

=
ϖj

aj
z→j A

↗1ŷ,

CN :=

√∑

j↘Sc

ϖj ε̂
2
j .

Intuitively, we desire survival to be close to one and
contamination to be small. In the remainder of
this section, we substantially generalize the anal-
ysis in Muthukumar et al. (2021); Wang et al. (2023),
which assumed t = 1 and spiked covariance, to t-
sparse and general covariance models. Using As-
sumption 5 and Gaussian design, we may write

ỹ := Xωω =
∑

j↘S

√
ϖjε

ω
j zj =

∑

j↘S
ajzj ,

ŷ := sign (Xωω) = sign
(∑

j↘S
ajzj

)
.

This expression enables us to perform careful leave-t-
out analyses and decouple the survival and contami-
nation terms in the following key lemma.
Lemma 7. Define S̄ := S ↖ [kω] and denote by
{ϖ̃j}

d↗|S̄|
j=1 the diagonal entries of the matrix !↗S̄ ,

i.e., ! with rows and columns indexed by S̄ left out,
and A↗S̄ =

∑d↗|S̄|
j=1 ϖ̃jzjz→j . Under Assumptions 2

and 5 and for large enough n, we have for all j ↔ S,

SUj ⇒

√
2

ς↓!
1
2 ωω↓22

·

(
1 + c1t

n
1
2
→ω

)
ϖj Tr

(
A↗1

↗S̄

)

1 +
(
1≃ c2

n
1
2
→ω

)
ϖj Tr

(
A↗1

↗S̄

)

⇒

√
2

ς↓!
1
2 ωω↓22

·

ϖj

(
c3n

ϑ̃1r0(!→S̄)

)

1 + ϖj

(
n

c4ϑ̃1r0(!→S̄)

) ,

SUj ⇐

√
2

ς↓!
1
2 ωω↓22

·

(
1≃ c5t

n
1
2
→ω

)
ϖj Tr

(
A↗1

↗S̄

)

1 +
(
1 + c6

n
1
2
→ω

)
ϖj Tr

(
A↗1

↗S̄

)

⇐

√
2

ς↓!
1
2 ωω↓22

·

ϖj

(
n

c7ϑ̃1r0(!→S̄)

)

1 + ϖj

(
c8n

ϑ̃1r0(!→S̄)

) ,

with probability at least 1≃ cte
↗n2ω

. When n, d ↙ ↘,
the limit converges as

lim
n,d↑↓

SUj =

√
2

ς↓!
1
2 ωω↓22

·

ϖj Tr
(
A↗1

↗S̄

)

1 + ϖj Tr
(
A↗1

↗S̄

)

almost surely. Moreover, we have

CN ⇒ ct

√√√√
(
kω

n
+

n

R0

(
!↗S̄

)

ln (n)

with probability at least 1≃ ct
n .

Lemma 7 is proved in Appendix B. In addition to
being useful for the results of this section, Lemma 7
is also used for our postprocessing algorithm which
has access to few-shot data in Section 4. Equipped
with bounds of survival and contamination, we can
now relate the classification MNI excess risk with
{SUj}j↘S and CN. Under Assumptions 2 and 5, we
can write the excess risk of the classification MNI as

L(ω̂) = Ex

(
x→ω̂ ≃ x→ωω

)2


=
d∑

j=1

ϖj

(
ε̂j ≃ ε

ω
j

)2

=
∑

j↘S
ϖjε

ω2
j

(
ε̂j

εωj

≃ 1

2

+
∑

j↘Sc

ϖj ε̂
2
j

=
∑

j↘S
a
2
j (SUj ≃ 1)2 + CN2

, (1)

where we substitute the expressions for ε
ω
j from As-

sumption 5 and {SUj}j↘S and CN from Definition 6.
Note that this decomposition is valid for any estima-
tor of ωω (not just the classification MNI ω̂). Sub-
stituting the bounds on survival and contamination
from Lemma 7 yields our main result of this section.

Theorem 8. Define bj := lim
n,d↑↓

ϖj Tr
(
A↗1

↗S̄

)
. Un-

der Assumptions 2 and 5, for any covariance ! sat-
isfying lim

n,d↑↓
t2·kε·ln(n)

n = lim
n,d↑↓

t2·n·ln(n)
R0(!→S̄)

= 0, we

have

lim
n,d↑↓

L(ω̂) =
∑

j↘S
a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

almost surely.

Theorem 8 is proved in Appendix C.1. It shows that,
even for data covariances that satisfy benign overfit-
ting of noise in linear regression (Bartlett et al., 2020),



perfect survival of signal is required for consistent
task shift. Notably, it is not possible for the classifi-
cation MNI ω̂ to satisfy regression consistency for all
possible magnitudes of the ground truth, i.e., for all
possible values of ↓! 1

2 ωω
↓
2
2. This is because the coef-

ficients {bj}j↘S in Theorem 8 clearly do not depend
on ωω. We can, however, ask the more specialized
question (posed in one-bit compressive sensing, e.g.,
Plan and Vershynin (2012)) of whether it is possible
to generalize on all signals of a specific magnitude.
Theorem 8 shows this will be the case if and only if
bj ↙ ↘ for all j ↔ S and ↓!

1
2 ωω

↓
2
2 = 2

ϖ : a positive
result in the flavor of one-bit compressive sensing.

As a corollary of Theorem 8, we present characteriza-
tions of zero-shot task shift for the spiked covariance
model (Definition 3). We present similar results for
the more delicate polynomial decay covariance model
(Definition 4) in Appendix C.3 (Corollary 18).
Corollary 9. Suppose Assumptions 2 and 5 are
satisfied with t ⇓ min


n

kε·ln(n) ,


np→1

ln(n)


. Under

the spiked covariance model (Definition 3),

• For q < 1≃ r, we have: lim
n,d↑↓

L(ω̂) =

∑

j≃s,j↘S
a
2
j

(√
2

ς↓!
1
2 ωω↓22

≃ 1

2

+
∑

j>s,j↘S
a
2
j .

This implies regression consistency if and only
if the signal magnitude is fixed at ↓! 1

2 ωω
↓
2
2 = 2

ϖ
and aj = 0 for all j ↔ S∝{s+1, . . . , d}, i.e., the
signal is only supported within the “spike”. The
latter condition is also required for regression
consistency of the regression MNI (Tsigler and
Bartlett, 2023).

• For q > 1≃ r, we have: lim
n,d↑↓

L(ω̂) =
∑

j↘S a
2
j .

As in the case of the regression MNI (Muthuku-
mar et al., 2021), regression consistency would
not be possible unless we had zero signal, i.e.,
ωω = 0.

Corollary 9 is proved in Appendix C.2.

3.2 The case of random signal

We now provide results for random signal models
which may be dense. In this section, we study a gen-
eral random signal model and introduce a simplifying
ansatz which enables upper and lower bounding the
task shift error. In Appendix E (Theorem 23), we
show a more specific “dense” random signal model —

wherein ωω has similar magnitude in all dimensions
— which does not require the simplifying ansatz.

The key idea is to interpret classification labels as
regression labels under a dependent noise model and
explicitly connect to characterizations of the regres-
sion MNI (Bartlett et al., 2020; Tsigler and Bartlett,
2023). For regression labels, one usually has additive
sub-Gaussian noise, which means that ỹ ≃ x→ωω is
sub-Gaussian and conditionally independent given x.
But for classification labels, we have

ŷ ≃ x→ωω =
sign

(
x→ωω

)
≃ x→ωω

x→ωω
· x→ωω

,

which is clearly dependent on x. We will write ŷ ≃

ỹ := DXωω, where D := diag (d1, . . . , dn) and di :=
sign(x↑ωε)↗x↑ωε

x↑ωε , to make this relationship explicit.

We begin with a decomposition of the regression risk
of the classification MNI, proved in Appendix D.1.
Lemma 10. The regression risk of the classification
MNI ω̂ can be decomposed as

L(ω̂) = L(ω̃) + Ex

(
x→ω̂ ≃ x→ω̃

)2
.

Clearly, L(ω̃) is the regression error of the regression
MNI: when there is no noise in regression labels
this is equivalent to the bias. Likewise, we refer to
Ex(x→ω̂ ≃ x→ω̃)2 as the task shift error, which can
be interpreted as the “variance” under our dependent
noise model.

The bias is a standard term, characterized as follows.
Lemma 11. For any !, there exists a constant c ⇐ 1
such that the following hold.

Upper bound. (Bartlett et al., 2020, Lemma 35).
For any ωω (not necessarily random), we have

L(ω̃) ⇒
⇔
c ↓!↓ ↓ωω

↓
2
2 max

(
r0(!)

n
,
r0(!)

n



with probability at least 1≃ e
↗n

c .

Lower bound. (Tsigler and Bartlett, 2023,
Lemma 8). Suppose random signal ωω is generated
from the ground truth ω̄ by ε

ω
j = rj ε̄j where each rj

is an independent Rademacher random variable. We
have

EωεL(ω̃) ⇐
1

c

d∑

j=1

ϖj ε̄
2
j(

1 + nϑj∑d
k=1 ϑk

)2

with probability at least 1≃ ce
↗n

c .



We now provide a characterization of the task shift
error under the simplifying ansatz that D = ϑI
for some ϑ ⇑= 0. The interpretation for this as-
sumption is that all regression labels have the same
magnitude (say, equal to R), which would result in
di =

1
R ≃ 1 =: ϑ; clearly ϑ ⇑= 0 except in the special

case where R = 1. Thus, we are considering regres-
sion problems that are, in essence, a scaled version of
classification. From a technical perspective, it is dif-
ficult to obtain closed-form bounds on the task shift
error without the simplifying ansatz, as dependen-
cies which arise for general D may invalidate certain
concentration arguments. Nevertheless, as we expect
generic regression problems to be even harder than
scaled classification, providing a lower bound even
for this simpler setting is meaningful. Our next the-
orem does precisely this, via an extension of benign
overfitting techniques to our dependent noise model.
Theorem 12. For any !, there exist constants
c, c1 ⇐ 1 such that the following hold.

Upper bound. If k
ω
<

n
c1

, then for any ωω (not
necessarily random), we have

Ex

(
x→ω̂ ≃ x→ω̃

)2
⇒ cn


k
ω

n
+

n

Rkε(!)


↓!

1
2 ωω

↓
2
2

with probability at least 1≃ 18e↗
n
c .

Lower bound. Suppose D = ϑI and ωω is any
random signal such that Eεω2j ⇐ φ

2 for all j ↔ [d]. If
k
ω
<

n
c1

, then

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2

⇐
ϑ
2
φ
2

c




kε∑

j=1

ϖj +
n

Rkε(!)

d∑

j=kε+1

ϖj





with probability at least 1 ≃ 14e↗
n
c . On the other

hand, if kω ⇐
n
c1

, then

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
⇐

ϑ
2
φ
2

c

with probability at least 1≃ 10e↗
n
c .

Theorem 12 is proved in Appendix D.2. An interest-
ing consequence of Theorem 12 is that there do exist
covariance ensembles for which the task shift error
decays to zero — implying that the classification and
regression MNIs would generalize equivalently on a
regression task! However, these are ensembles for
which k

ω = 0, and therefore regression bias would
stay constant. Ultimately, our results imply a fun-
damental tradeo! between bias error and task shift
error for random signals, stated below.

Corollary 13. For any sequence {!n}
↓
n=1, denote

↼ := limn,d↑↓ k
ω. Suppose random signal ωω is gen-

erated from the ground truth ω̄ by ε
ω
j = rj ε̄j, where

each rj is an independent Rademacher random vari-
able, such that ↓! 1

2 ω̄↓22 is constant for all n. Assume
that ε̄2j ⇐ 1 for all 1 ⇒ j ⇒ d. Then, under the same
conditions as the lower bound of Theorem 12, the
almost sure limits of bias and task shift error are
characterized in two distinct regimes:

1. ↼ = 0: the limiting bias is nonzero, i.e.,

lim
n,d↑↓

EωεL(ω̃) ⇐
↓!

1
2 ω̄↓22
c

.

2. ↼ > 0: the limiting task shift error is nonzero,
i.e.,

lim
n,d↑↓

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
⇐

ϑ
2

c
.

The proof of Corollary 13 is in Appendix D.5.

4 FEW-SHOT TASK SHIFT

In the previous sections, we demonstrated that task
shift from classification to regression without any re-
gression information is generally unachievable. There-
fore, in this section, we investigate task shift in the
few-shot setting, where limited regression information
is available. We propose a simple two-step approach
to recover a sparse signal ωω. In the first step, we
leverage the structured attenuation of the classifi-
cation MNI to recover the support of ωω. Second,
we perform least-squares regression with reduction
to the dimensionality of the support to recover the
magnitude of ωω. Our results require a diagonal
covariance matrix (Assumption 2).

4.1 Support recovery via attenuation

The survival and contamination bounds of Lemma 7
show that while the classification MNI ω̂ attenuates
the sparse signal ωω, it does so in a highly structured
manner. This suggests it is possible to distinguish
the support components of ωω using the relative mag-
nitudes of entries of ω̂. If the true signal is supported
within the top k

ω indices of the covariance spectrum,
the survival is bounded below by a constant; in con-
trast, contamination decays to zero with n at a faster
rate than the survival terms (Muthukumar et al.,
2021). Surprisingly, even when the signal is sup-
ported outside the top k

ω indices, its decay rate may
still be slower than the non-support components.



Algorithm 1 Support recovery

Require: X, ŷ, (t or {ϖj}
d
j=1)

ω̂ ′ X→ (
XX→)↗1

ŷ
S ′ ∞

if t is known then

S ′ arg top t(|ω̂|)
else if ! is known then

for j ↔ [d] do

if |ε̂j | ⇐ ϖ
↗ 1

2
j then

S ′ S ↖ {j}

return S

With this in mind, we propose Algorithm 1 assuming
we either know the sparsity level t or the covariance
spectrum {ϖj}

d
j=1 (equivalently ! by assumption).

Below, we state the general-purpose support recovery
guarantee for Algorithm 1.

Theorem 14. Under Assumptions 2 and 5, suppose
S ∈ [kω], i.e., ωω is only supported in the top k

ω in-
dices of the covariance spectrum. Denote by {ϖ̃j}

d↗kε

j=1
the diagonal entries of the matrix !↗[kε], i.e., ! with
the first kω rows and columns left out. Algorithm 1
recovers the support of the true regressor with prob-
ability at least 1≃ ctde

↗n2ω

if either (1) t is known
and the additional conditions ϖj ⇓

ϑq·n1→2ω

t2 and

ϖj ⇓
(ϑ̃1r0(!→[kε]))

2

t2·(n1+2ω)·ϑϑ
hold for all j ↔ S, q ↔ S

c
∝ [kω],

ω > k
ω, or (2) ! is known.

The first case of Theorem 14 utilizes Lemma 7 to
ensure the lower bound of support components of ω̂ is
larger than the upper bound of non-support compo-
nents of ω̂. The two additional conditions in the first
case of Theorem 14 are necessary to avoid scenarios
wherein the support components of ωω decay very
quickly with n (recall that ε

ω
j := ajϖ

↗ 1
2

j , so a larger
ϖj implies faster decay). Roughly, the first condition
states that support eigenvalues should not be much
larger than non-support eigenvalues in the top k

ω

indices, and the second condition states that the top
k
ω eigenvalues should not be much larger than the

squared sum of the “tail” eigenvalues. We analyze
these conditions for specific covariance ensembles in
Appendix F. On the other hand, the second case of
Theorem 14 does not require any additional assump-
tions, as we show |ε̂j | is lower bounded by ϖ

↗ 1
2

j if
j ↔ S but decays at a faster rate if j /↔ S.

We provide the proof of Theorem 14 in Appendix F.
We include extensions to cases wherein ωω is sup-
ported outside the top k

ω indices of the covariance
spectrum for spiked and polynomial decay models —

Algorithm 2 Least-squares on recovered support
Require: X, ŷ, {x⇐

i, y
⇐
i}

m
i=1

ω̂ ′ X→ (
XX→)↗1

ŷ
S ′ from Algorithm 1
ω̂post ′ argminω↘Rd

∑m
i=1

(
x⇐→
i ω ≃ y

⇐
i

)2

s.t. εj = 0 ∋j ↔ S
c

return ω̂post

surprisingly including isotropic covariance, despite
isotropy not being conducive to generalization even
in classification tasks (Muthukumar et al., 2021).

4.2 Least-squares on recovered support

In this section, we leverage few-shot regression data
{(x⇐

i, y
⇐
i)}

m
i=1 to recover the magnitude of the t-sparse

signal ωω. Since the support of ωω has already been
recovered, we employ a straightforward least-squares
estimation technique considering only the t compo-
nents of each regression datum which lie in the sup-
port. Algorithm 2 describes this method in detail.

We recall that the few-shot regression dataset is al-
lowed to be noisy, i.e., for some φ

2
⇐ 0, we may

have y
⇐ = x⇐→

i ωω + ε where ε → N (0,φ2I). There-
fore, provided that m ↗ t, Algorithm 2 enjoys the
standard least-squares guarantee of O( tϱ

2

m ) regres-
sion risk, or zero regression error with only t noiseless
samples. Either of these imply the desired regression
consistency, i.e., task shift is achieved.

In Figure 2, we demonstrate the performance of our
postprocessing procedure, combining Algorithm 1
and Algorithm 2. Notably, our task shift estima-
tor ω̂post generalizes even for covariance ensembles
wherein minimum ω2-norm interpolation fails, i.e.,
the regression MNI is statistically inconsistent with
respect to regression labels. In fact, Appendix I
demonstrates that this success persists even when
the classification MNI is inconsistent for classification
tasks — including the case of isotropic covariance.

A remaining question is whether we can recover the
magnitudes of the support of ω̂ without any few-
shot regression data. Lemma 7 implies that if the
e!ective signal strength ↓!

1
2 ωω

↓
2
2 is known, then a

simple scaling procedure is su"cient. Specifically, for
all j ↔ S we may set ε̂post,j = ε̂j


ϖ
2 ↓!

1
2 ωω↓22, and

ε̂post,j = 0 otherwise. Lemma 7 then directly implies
that ω̂post ↙ ωω as n, d ↙ ↘ as long as bj ↙ 1 for
all j ↔ S. But while this approach is specialized to
Gaussian covariates and noiseless classification data,
Algorithm 2 is more robust to modeling assumptions,



(a) Support recovery (b) Few-shot least squares (c) Regression risk

(i) Task shift for spiked covariance when regression generalizes. We set p = 1.5, q = 0.5, and r = 0.25 so
that q < 1→ r. In this regime, both our task shift estimator ω̂post and the regression MNI ω̃ generalize.

(a) Support recovery (b) Few-shot least squares (c) Regression risk

(ii) Task shift for spiked covariance when regression does not generalize. We set p = 1.5, q = 0.5, and
r = 0.55 so that q > 1→ r. In this regime, our task shift estimator ω̂post generalizes, but the regression MNI ω̃ does
not. Note that kω = 0 here, so ωω is necessarily supported outside the “spike”.

Figure 2: Postprocessing achieves task shift even when minimum ω2-norm interpolation fails for

both classification and regression. The left column demonstrates the survival of t-sparse signal support
components in the classification MNI ω̂ while non-support components decay quickly. The middle column
shows the O

(
t
m

)
regression error of least-squares with reduction to t dimensions using m regression samples

under standard Gaussian noise. Finally, the right column displays the regression risk of the classification
MNI, regression MNI, and our postprocessed predictor. The signal ωω is 2-sparse with a1 = 1 and a2 = ≃0.5
(see Assumption 5). The middle column fixes n = 2500. We plot the mean and standard deviation over 10
draws of the training dataset X. See Appendix I for additional simulations.

and we believe it can handle even unknown label noise
and sub-Gaussian covariates by building on Cao et al.
(2021); Wang et al. (2023).

5 DISCUSSION

Our results paint a pessimistic picture for zero-shot
task shift (perhaps as expected), but an optimistic
one for the few-shot case. Our key insight is that the
attenuation of the classification MNI is surprisingly
structured, which suggests one can get more “mileage”
out of the MNI than previously known, including for
few-shot task shift to regression. A principal open
question is whether there exist alternative formula-
tions (e.g., shifting from multiclass classification to
regression) more conducive to zero-shot task shift.
More close-ended questions include providing a suc-

cessful few-shot procedure in the absence of any spar-
sity or data covariance assumption and studying task
shift for minimum ωp-norm estimators where p ⇑= 2.

While we use task shift in large language models
(LLMs) only as a motivating example for our theo-
retical investigation, our work could inform future
analyses of of LLMs and in-context learning. In par-
ticular, our survival and contamination analysis may
be extended to the neural tangent kernel regime via
recent frameworks for kernel interpolation, e.g., Malli-
nar et al. (2022); Tsigler and Bartlett (2023); Kaushik
et al. (2024). Furthermore, recent work has charac-
terized linear attention as high-dimensional linear
regression under a specific data embedding (Lu et al.,
2024), which could be analyzed in our framework to
explain few-shot task shift in linear Transformers.
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1. For all models and algorithms presented, check
if you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]

We describe our mathematical setting, assump-
tions, and models in Section 2. Our algo-
rithm is detailed in Section 4 along with sample
complexity analyses. Our code is available at
https://github.com/tmlabonte/taskshift.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes/No/Not Appli-
cable]

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable]

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]

We present our proofs in the Appendix and detail
our assumptions in Section 2.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental results
(either in the supplemental material or as a
URL). [Yes/No/Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure
or statistics and error bars (e.g., with re-
spect to the random seed after running ex-
periments multiple times). [Yes/No/Not
Applicable]

(d) A description of the computing infrastruc-
ture used. (e.g., type of GPUs, internal
cluster, or cloud provider). [Yes/No/Not
Applicable]

We include the training details, statistics, and
computing infrastructure in Section 4 and Ap-
pendix I. Our code is available at https://
github.com/tmlabonte/taskshift.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check
if you include:

(a) Citations of the creator if your work uses
existing assets. [Yes/No/Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Yes/No/Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable]
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(d) Information about consent from data
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A Expanded related work

We organize related work under four verticals.

Task shift vis-a-vis transfer learning. Our problem formulation di!ers from the popular transfer
learning paradigm, which utilizes a pretrained representation on downstream tasks, e.g., via finetuning or
knowledge transfer. Numerous works have analyzed the generalization of transfer learning, including for
high-dimensional linear regression (Dar and Baraniuk, 2022) and general function classes (Tripuraneni et al.,
2020). In the transfer learning literature, improved sample complexity guarantees are often provided as
compared to learning each of the tasks from scratch; our few-shot results in Section 4 also have this flavor at
a high level. In our task shift setting, the ground-truth signal does not change between the tasks — only the
nature of the task in terms of its metric, i.e., test loss function, changes. Task shift is particularly compelling
when the aim is to shift to a fundamentally harder task, as in this work where we transfer a classification
estimator to a regression task. Conversely, recent work formulating regression as a multi-class classification
problem showed that despite discretization, the classification loss can aid in feature learning (Stewart et al.,
2023). Earlier, multi-label classification problems (i.e., prediction of a vector-valued discrete output) were
modeled as binary classification utilizing a sparsity assumption on the labels (Hsu et al., 2009).

Task shift vis-a-vis distribution shift. Though ultimately very di!erent, task shift shares some
similarities with distribution shift, wherein the training distribution p and test distribution q over the feature
space X and label space Y di!er. Task shift is not directly related to the common settings of covariate
shift, wherein p(x) ⇑= q(x) but p(y | x) = q(y | x), or label shift, wherein p(y) ⇑= q(y) but p(x | y) = q(x | y).
In particular, recent results leveraging benign overfitting and random matrix theory to analyze covariate
shift (Tripuraneni et al., 2021; Mallinar et al., 2024; LeJeune et al., 2024) are generally inapplicable in our
setting. Task shift is more closely related to concept drift, where p(x) = q(x) but p(y | x) ⇑= q(y | x), though
concept drift is typically studied in the context of temporal changes (Moreno-Torres et al., 2012). Task shift
also has similarities to generalized settings including the “generalized target shift” of Zhang et al. (2013),
in which p(y) ⇑= q(y) and p(x | y) changes with constraints, and the “generalized label shift” of Tachet et al.
(2020), in which p(y) ⇑= q(y) and p(g(x) | y) = q(g(x) | y) for some representation g. While these works
assume that X and Y remain constant during the distribution shift, in task shift we study di!erent or even
disjoint label spaces Ytrain and Ytest. Similar models have been proposed, such as Disjoint Label Space
Transfer Learning (Chang et al., 2019), wherein Ytrain and Ytest are completely disjoint but share a common
representation, and Open Set Label Shift (Garg et al., 2022), wherein p(y) ⇑= q(y) and new classes may arrive
during test-time as long as p(x | y) is constant for existing classes, Yet, our task shift formulation goes one
step further in that the objective function also changes.

One-bit compressive sensing. Our problem formulation for zero-shot estimation is deeply connected to
the one-bit compressive sensing problem (Boufounos and Baraniuk, 2008). In this setting, the data matrix X
is designed, the ground-truth signal ωω

↔ Rd is unknown but t-sparse, and the objective is signal recovery from
n ⇓ d quantized measurements of the form ŷi = sign

(
x→
i ω

ω
)
. The most prominent di!erence between our

frameworks is that the focus in one-bit compressive sensing is designing the optimal estimation procedure with
knowledge of the measurement process. This procedure involves either solving a convex program to maximize
the average margin on training data subject to a ω1-norm constraint (Plan and Vershynin, 2012; Awasthi
et al., 2016; Chinot et al., 2022) or combinatorial optimization routines (Gopi et al., 2013). In contrast, we
have no control over the design of the estimator and assume de facto the ω2-inductive bias, which due to the
implicit bias of gradient descent is one of the most commonly observed in machine learning (Soudry et al.,
2018; Ji and Telgarsky, 2019). Accordingly, while one-bit compressive sensing tends to consider isotropic or
near-isotropic ensembles, we consider a gamut of anisotropic ensembles which can be more favorable to the
ω2-inductive bias5. Moreover, one-bit compressive sensing allows the design of biases which leak information
about not only the signal direction but also its magnitude. For example, one can design known biases ϑ ↔ Rn

and modify the measurements to ŷi = sign
(
x→
i ω

ω + ↽i

)
(Knudson et al., 2016; Dirksen and Mendelson, 2021).

5 While, surprisingly, our few-shot guarantees hold even for the isotropic ensemble, the sample complexity is
suboptimal compared to one-bit compressive sensing, requiring n = d

1
p for some p > 1.



We have no such flexibility in our framework — any error terms that may arise would be of the form of
unknown regression or classification label noise, and would therefore worsen our zero-shot lower bounds.
Nevertheless, our results in Theorem 8 show that even under the weaker ω2-inductive bias, positive results in
the flavor of one-bit compressive sensing are possible: specifically, we can estimate the signal correctly only if
its total magnitude is known and given to be ↓!

1
2 ωω

↓
2
2 = 2

ϖ .

The ω2-inductive bias and benign overfitting. The minimum ω2-norm interpolator has been shown, for
certain “e!ectively high dimensional” data covariances, to overfit noise in a benign manner, meaning that
the extra error arising from such interpolation can decay to zero as n, d ↙ ↘ (Bartlett et al., 2020; Tsigler
and Bartlett, 2023). Despite the possible absence of noise in our setting, we find e!ective dimension useful —
indeed, we propose an interpretation of the di!erence between regression and classification labels as e!ective
noise. The classical shortcoming with minimum ω2-norm solutions is not overfitting noise, but instead their
propensity to attenuate signal (Chen et al., 2001); even for 1-sparse ωω = e1 and d ↗ n we would have
ε̂1 ↙ 0 for isotropic data covariance (Hastie et al., 2022). Statistically speaking, minimum ω2-norm solutions
su!er from a constant bias and therefore inconsistent regression error even when trained on regression labels.
Despite this, Muthukumar et al. (2021); Cao et al. (2021); Wang and Thrampoulidis (2022) showed that
for su"ciently anisotropic ensembles, one can achieve classification consistency on classification labels when
regression would not be consistent on regression labels. The key insight, developed primarily for 1-sparse signal
and spiked covariance models, was that the relative magnitude of the true feature ε̂1 (quantified through
a metric called survival) is preserved with respect to the total magnitude of the “false” features {ε̂j}

d
j=2

(quantified through a metric called contamination).

We substantially develop this insight to show that the relative feature magnitudes can be used to estimate
the support of a sparse signal even when neither classification nor regression generalizes — including isotropic
covariance, the worst-case data model for minimum ω2-norm solutions — which in turn enables few-shot
regression consistency. Our support recovery procedure is also generally applicable; it only requires a diagonal
covariance and either the sparsity level t or or the covariance spectrum {ϖj}

d
j=1 to be known.

B Key lemma: general survival and contamination bounds

In this section, we provide the proof of Lemma 7: our extension of survival and contamination bounds to
t-sparse signal ωω and general covariance matrices !. In contrast to the 1-sparse ωω result of Muthukumar
et al. (2021), we consider a more general t-sparse ωω setting. To overcome this technical obstacle, we utilize
the leave-k-out technique of Wang et al. (2023) to complete the proof. For bounds on the survival term SUsϑ ,
where sς is the ω

th element in S for ω ↔ [t], we show the result when ω = 1 without loss of generality. Before
we begin the proof of Lemma 7, we define the following notation for Qsϑ and Q̃sϑ :

Qsϑ := z→s1A
↗1
↗s1:sϑ ŷ (2)

Q̃sϑ := z→s1A
↗1
↗s1:sϑzs1 , (3)

where we denote shorthand notation A := XX→ and the leave-ω-out matrices corresponding to A↗s1:sϑ :=∑d
j=1,j ⇒=s1,··· ,sϑ ϖjzjz→j . We also need the following auxiliary lemmas which are generalized from lemmas

in Wang et al. (2023). Note that lemmas in Wang et al. (2023) only apply to leave-top k-out matrices, while
we generalize them into leave-discrete t-out matrices. Proofs of these lemmas can be found in Appendix G.
Lemma 15 (Generalization of Lemma 15 in Wang et al. (2023)). Under Assumptions 2 and 5, for large
enough n, we have

Qst ⇒ sign (as1)


2⇀s1

ς
Tr

(
A↗1

↗s1:st

)
+ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

,

Qst ⇐ sign (as1)


2⇀s1

ς
Tr

(
A↗1

↗s1:st

)
≃ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

,

where ⇀sϑ :=
ϑsϑ

φε2
sϑ∑

j↓S ϑjφε2
j

=
a2
sϑ∑

j↓S a2
j

for ω ↔ [t], with probability at least 1≃ 2e↗n2ω

.



Lemma 16 (Generalization of Lemma 16 in Wang et al. (2023)). We have that Qs1 is tight up to an additive
factor in Qst as


1≃ sign (as1)

c4t

c3n
1
2↗ε ≃ 1


Qst ⇒ Qs1 ⇒


1 + sign (as1)

c4t

c3n
1
2↗ε ≃ 1


Qst

with probability at least 1≃ cte
↗n2ω

.

Lemma 17 (Generalization of Lemma 21 in Wang et al. (2023)). Define y̌sϑ := y̌sϑ→1 ≃
ϑsϑ

z↑
sϑ

A→1
→s1:sϑ

y̌sϑ→1

1+ϑsϑ
z↑
sϑ

A→1
→s1:sϑ

zsϑ

zsϑ

and y̌s0 = ŷ for ω ↔ [t]. Then,

ϖsϑz

→
sϑA

↗1
↗s1:sϑ y̌sϑ→1

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ

 ⇒ c

with probability at least 1≃ ct
2
e
↗n2ω

.

Now we can prove Lemma 7.

Proof. (Lemma 7) We start with the survival upper and lower bound. By the survival definition in Definition 6,
we can write SUs1 as

SUs1 =
ϖs1

as1

z→s1A
↗1ŷ

=
ϖs1

as1

z→s1

(
A↗1

↗s1:s1 ≃
ϖs1A

↗1
↗s1:s1zs1z

→
s1A

↗1
↗s1:s1

1 + ϖs1z
→
s1A

↗1
↗s1:s1zs1


ŷ

=
ϖs1

as1

z→s1A
↗1
↗s1:s1 ŷ

1 + ϖs1z
→
s1A

↗1
↗s1:s1zs1

=
ϖs1

as1

Qs1

1 + ϖs1Q̃s1

=
ϖs1

|as1 |

sign (as1)Qs1

1 + ϖs1Q̃s1

, (4)

where we apply the Sherman-Morrison-Woodbury identity in the second equality. Next, recall that Q̃sϑ :=
z→s1A

↗1
↗s1:sϑzs1 in Equation (3), and by the Hanson-Wright inequality (Lemma 32), we have

Q̃s1 ⇒ Tr
(
A↗1

↗s1:s1

)
+ c1

A↗1
↗s1:s1


2
· n

1
2+ε

⇒ Tr
(
A↗1

↗(s1:st)⇑[kε]

)
+ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

,

where the second inequality follows because A↗s1:s1 △ A↗(s1:st)⇑[kε] and therefore A↗1
↗s1:s1 ▽ A↗1

↗(s1:st)⇑[kε].
On the other hand,

Q̃s1 ⇐ Tr
(
A↗1

↗s1:s1

)
≃ c1

A↗1
↗s1:s1


2
· n

1
2+ε

⇐

(
1≃

c

n

)kε+t↗1
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

,

where the second inequality follows from the trace lower bound in Lemma 36. Next, we need to derive the
bounds for sign (as1)Qs1 term in Equation (4). Note that we need to adjust the bounds of Qs1 in Lemma 16
according to the sign of as1 . Considering the sign of as1 , from Lemma 16, we can have


1≃

c4t

c3n
1
2↗ε ≃ 1


sign (as1)Qst ⇒ sign (as1)Qs1 ⇒


1 +

c4t

c3n
1
2↗ε ≃ 1


sign (as1)Qst .



From Lemma 15, we can further bound the sign (as1)Qst term as

sign (as1)Qst ⇒


2⇀s1

ς
Tr

(
A↗1

↗s1:st

)
+ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

,

sign (as1)Qst ⇐


2⇀s1

ς
Tr

(
A↗1

↗s1:st

)
≃ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

.

As a result, we can apply the bounds of Q̃s1 and the bounds of sign (as1)Qs1 above to get the upper and
lower bound of SUs1 from Equation (4). We then obtain the SUs1 upper bound as

(4) ⇒


ϖs1

|as1 |



1 + c4t

c3n
1
2
→ω↗1


2↼s1
ϖ Tr

(
A↗1

↗s1:st

)
+ 2c1

A↗1
↗s1:st


2
· n

1
2+ε



1 + ϖs1

((
1≃ c

n

)kε+t↗1
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)

=

√
2

ς↓!
1
2 ωω↓22






1 + c4t

c3n
1
2
→ω↗1


ϖs1

(
Tr

(
A↗1

↗s1:st

)
+ c2

A↗1
↗s1:st


2
· n

1
2+ε

)

1 + ϖs1

((
1≃ c

n

)kε+t↗1
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)



 , (5)

and the lower bound of SUs1 as

(4) ⇐


ϖs1

|as1 |



1≃ c4t

c3n
1
2
→ω↗1


2↼s1
ϖ Tr

(
A↗1

↗s1:st

)
≃ 2c1

A↗1
↗s1:st


2
· n

1
2+ε



1 + ϖs1

(
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
+ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)

=

√
2

ς↓!
1
2 ωω↓22






1≃ c4t

c3n
1
2
→ω↗1


ϖs1

(
Tr

(
A↗1

↗s1:st

)
≃ c2

A↗1
↗s1:st


2
· n

1
2+ε

)

1 + ϖs1

(
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
+ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)



 . (6)

In the equalities, we use 1
|as1 |


2↼s1
ϖ = 1

|as1 |


2a2

s1

ϖ
∑

j↓S a2
j
=


2

ϖ⇓!
1
2 ωε⇓2

2

. Next, we need to upper bound

Tr
(
A↗1

↗s1:st

)
and

A↗1
↗s1:st


2

and lower bound Tr
(
A↗1

↗s1:st

)
terms; we achieve this by relating A↗s1:st to

A↗(s1:st)⇑[kε]. Lemma 36 provides that

Tr
(
A↗1

↗(s1:st)⇑[kε]

)
⇐ Tr

(
A↗1

↗s1:st

)
⇐

(
1≃

c

n

)kε

Tr
(
A↗1

↗(s1:st)⇑[kε]

)
,

and we also have A↗1
↗s1:st ▽ A↗1

↗(s1:st)⇑[kε]. As a result, Equation (5) and Equation (6) now become

SUs1 ⇒

√
2

ς↓!
1
2 ωω↓22






1 + c4t

c3n
1
2
→ω↗1


ϖs1

(
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
+ c2

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)

1 + ϖs1

((
1≃ c

n

)kε+t↗1
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)



 , (7)

SUs1 ⇐

√
2

ς↓!
1
2 ωω↓22






1≃ c4t

c3n
1
2
→ω↗1


ϖs1

((
1≃ c

n

)kε

Tr
(
A↗1

↗(s1:st)⇑[kε]

)
≃ c2

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)

1 + ϖs1

(
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
+ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)



 .

(8)

Next, Lemma 35 shows that all eigenvalues of A↗1
↗(s1:st)⇑[kε] are identical up to a constant such that

1

cn
⇒

A↗1
↗[kε]⇑(s1:st)


2

Tr
(
A↗1

↗[kε]⇑(s1:st)

) ⇒
c

n
.



By dividing Tr
(
A↗1

↗[kε]⇑(s1:st)

)
in the numerator and denominator of Equation (7), we can have the upper

bound of SUs1 as

SUs1 ⇒

√
2

ς↓!
1
2 ωω↓22






1 + c4t

c3n
1
2
→ω↗1


ϖs1

(
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
+ c2

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)

1 + ϖs1

((
1≃ c

n

)kε+t↗1
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)





=

√
2

ς↓!
1
2 ωω↓22






1 + c4t

c3n
1
2
→ω↗1


ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)(
1 +

c2
∥∥∥A→1

→(s1:st)↔[kε]

∥∥∥
2
·n

1
2
+ω

Tr
(
A→1

→(s1:st)↔[kε]

)



1 + ϖs1 Tr
(
A↗1

↗(s1:st)⇑[kε]

)(
(
1≃ c

n

)kε+t↗1
≃

c1
∥∥∥A→1

→(s1:st)↔[kε]

∥∥∥
2
·n

1
2
+ω

Tr
(
A→1

→(s1:st)↔[kε]

)







⇒

√
2

ς↓!
1
2 ωω↓22






1 + c4t

c3n
1
2
→ω↗1


ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)(
1 + c3

n
1
2
→ω

)

1 + ϖs1 Tr
(
A↗1

↗(s1:st)⇑[kε]

)((
1≃ c

n

)kε+t↗1
≃

c4

n
1
2
→ω

)





⇒

√
2

ς↓!
1
2 ωω↓22





(
1 + c5t

n
1
2
→ω

)
ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)

1 +
(
1≃ c6

n
1
2
→ω

)
ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)



 , (9)

where we apply the bounds in Lemma 35 in the second inequality, and in the last inequality we introduce
some new constants since t ⇓ n

1
2↗ε and ϱ ↔ (0, 1

4 ). We repeat the same derivation for the lower bound of
SUs1 . From Equation (8), we have

SUs1 ⇐

√
2

ς↓!
1
2 ωω↓22






1≃ c4t

c3n
1
2
→ω↗1


ϖs1

((
1≃ c

n

)kε

Tr
(
A↗1

↗(s1:st)⇑[kε]

)
≃ c2

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)

1 + ϖs1

(
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
+ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)





=

√
2

ς↓!
1
2 ωω↓22






1≃ c4t

c3n
1
2
→ω↗1


ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)(
(
1≃ c

n

)kε

≃
c2

∥∥∥A→1
→(s1:st)↔[kε]

∥∥∥
2
·n

1
2
+ω

Tr
(
A→1

→(s1:st)↔[kε]

)



1 + ϖs1 Tr
(
A↗1

↗(s1:st)⇑[kε]

)(
1 +

c1
∥∥∥A→1

→(s1:st)↔[kε]

∥∥∥
2
·n

1
2
+ω

Tr
(
A→1

→(s1:st)↔[kε]

)







⇐

√
2

ς↓!
1
2 ωω↓22






1≃ c4t

c3n
1
2
→ω↗1


ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)((
1≃ c

n

)kε

≃
c3

n
1
2
→ω

)

1 + ϖs1 Tr
(
A↗1

↗(s1:st)⇑[kε]

)(
1 + c4

n
1
2
→ω

)





⇐

√
2

ς↓!
1
2 ωω↓22





(
1≃ c5t

n
1
2
→ω

)
ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)

1 +
(
1 + c6

n
1
2
→ω

)
ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)



 . (10)

Finally, Lemma 35 also implies the bounds of Tr
(
A↗1

↗(s1:st)⇑[kε]

)
such that

Tr
(
A↗1

↗(s1:st)⇑[kε]

)
=

n∑

i=1

1

µi

(
A↗(s1:st)⇑[kε]

) ⇒
cn

ϖ̃1r0

(
!↗(s1:st)⇑[kε]

) ,

Tr
(
A↗1

↗(s1:st)⇑[kε]

)
⇐

n

cϖ̃1r0

(
!↗(s1:st)⇑[kε]

) ,

where we denote {ϖ̃j}
d↗|(s1:st)⇑[kε]|
j=1 the diagonal entries of the leave-t and k

ω-out covariance operator

!↗(s1:st)⇑[kε]. By substituting the bounds of Tr
(
A↗1

↗(s1:st)⇑[kε]

)
into Equation (9) and Equation (10),



the survival proof is done. Next, we show the convergence of SUs1 . From Equation (9), since t ⇓ n
1
2↗ε and

ϱ ↔ (0, 1
4 ), for n, d ↙ ↘, we have

lim
n,d↑↓

SUs1 ⇒ lim
n,d↑↓

√
2

ς↓!
1
2 ωω↓22





(
1 + c5t

n
1
2
→ω

)
ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)

1 +
(
1≃ c6

n
1
2
→ω

)
ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)





=

√
2

ς↓!
1
2 ωω↓22

ϖs1 Tr
(
A↗1

↗(s1:st)⇑[kε]

)

1 + ϖs1 Tr
(
A↗1

↗(s1:st)⇑[kε]

) .

Similarly, for the lower bound of SUs1 , from Equation (10), we have

lim
n,d↑↓

SUs1 ⇐ lim
n,d↑↓

√
2

ς↓!
1
2 ωω↓22





(
1≃ c5t

n
1
2
→ω

)
ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)

1 +
(
1 + c6

n
1
2
→ω

)
ϖs1 Tr

(
A↗1

↗(s1:st)⇑[kε]

)





=

√
2

ς↓!
1
2 ωω↓22

ϖs1 Tr
(
A↗1

↗(s1:st)⇑[kε]

)

1 + ϖs1 Tr
(
A↗1

↗(s1:st)⇑[kε]

) .

Therefore, we can conclude the convergence of SUs1 by its matching upper and lower bounds.

Next, we prove the contamination upper bound, and the proof follows the proof idea of Lemma 5 in Wang
et al. (2023) closely. We start with the classification MNI with the indices not supported in ωω. For j ↔ S

c,
we have

ε̂j =
√

ϖjz
→
j A

↗1ŷ

=
√

ϖjz
→
j

(
A↗1

↗s1:s1 ≃
ϖs1A

↗1
↗s1:s1zs1z

→
s1A

↗1
↗s1:s1

1 + ϖs1z
→
s1A

↗1
↗s1:s1zs1


ŷ

=
√

ϖjz
→
j A

↗1
↗s1:s1

(
ŷ ≃

ϖs1z
→
s1A

↗1
↗s1:s1 ŷ

1 + ϖs1z
→
s1A

↗1
↗s1:s1zs1

zs1



  ︸
=:y̌s1

=
√

ϖjz
→
j A

↗1
↗s1:s1 y̌s1

=
√

ϖjz
→
j A

↗1
↗s1:st y̌st , (11)

where we apply the Sherman-Morrison-Woodbury identity recursively and also denote y̌sϑ := y̌sϑ→1 ≃

ϑsϑ
z↑
sϑ

A→1
→s1:sϑ

y̌sϑ→1

1+ϑsϑ
z↑
sϑ

A→1
→s1:sϑ

zsϑ

zsϑ and y̌s0 = ŷ for ω ↔ [t]. Next, we take the square of ε̂j and according to the CN

definition in Definition 6, we have ε̂
2
j = ϖj y̌→

stA
↗1
↗s1:stzjz

→
j A

↗1
↗s1:st y̌st and therefore

CN2 =
∑

j↘Sc

ϖj ε̂
2
j

=
∑

j↘Sc

ϖ
2
j y̌

→
stA

↗1
↗s1:stzjz

→
j A

↗1
↗s1:st y̌st

= y̌→
st A

↗1
↗s1:st




∑

j↘Sc

ϖ
2
jzjz

→
j



A↗1
↗s1:st

  ︸
:=C̃

y̌st .

Next, we apply the triangle inequality such that


(x≃ y)→ M (x≃ y) ⇒
⇔

x→Mx +
√

y→My t times to



decompose y̌st and get

CN =

y̌→
stC̃y̌st ⇒


ŷ→C̃ŷ +

t∑

ς=1

√√√√
(

ϖsϑz
→
sϑA

↗1
↗s1:sϑ y̌sϑ→1

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ

2

z→sϑC̃zsϑ . (12)

Since S = {s1, · · · , st}, ŷ and all zsϑ are independent to C̃, we can apply the Hanson-Wright inequality in
Lemma 32 to obtain

ŷ→C̃ŷ ⇒ Tr
(
C̃
)

1 +
1

c


ln (n) and

z→sϑC̃zsϑ ⇒ Tr
(
C̃
)

1 +
1

c


ln (n) ,

with probability at least 1≃ 1
n . Substitute these inequalities into Equation (12), we get

CN ⇒

(
1 +

t∑

ς=1


ϖsϑz

→
sϑA

↗1
↗s1:sϑ y̌sϑ→1

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ



√

Tr
(
C̃
)

1 +
1

c


ln (n)

⇒ (1 + tc2)

√

Tr
(
C̃
)

1 +
1

c


ln (n),

where we apply Lemma 17 in the last inequality. It remains to upper bound Tr
(
C̃
)

to complete the proof of
the upper bound of CN. Then we can use Lemma 11 in Bartlett et al. (2020) to show

Tr
(
C̃
)
= Tr



A↗1
↗s1:st




∑

j↘Sc

ϖ
2
jzjz

→
j



A↗1
↗s1:st





=
∑

j↘Sc

ϖ
2
jz

→
j A

↗2
↗s1:stzj

=
∑

j≃kε,j↘Sc

ϖ
2
jz

→
j A

↗2
↗s1:stzj +

∑

j>kε,j↘Sc

ϖ
2
jz

→
j A

↗2
↗s1:stzj

⇒ c




k
ω

n
+ n

∑d
j=kε+1,j↘Sc ϖ

2
j

(∑d
j=kε+1,j↘Sc ϖj

)2



 .

The proof of the upper bound is completed.

C Zero-shot task shift in the case of sparse signal

In this section, we provide proofs from Section 3.1 concerning our sparse signal model. In Section C.1,
we leverage Lemma 7 to prove the convergence of the regression risk of the classification MNI for general
covariances. The results of Section C.1 are left in terms of the inverse leave-t-out Gram matrix; in the
following sections, we provide more precise derivations for specific covariance ensembles. In Section C.2, we
provide closed-form expressions for the limiting regression risk of the classification MNI under the spiked
covariance model. Finally, in Section C.3, we provide corresponding expressions for the more delicate case of
the polynomial decay covariance model.

C.1 Characterization of zero-shot task shift for general covariance

In this section, we provide the proof of Theorem 8.



Proof. (Theorem 8)

The excess risk expression of Equation (1) in terms of {SUj}j↘S and CN gives us

L(ω̂) =
∑

j↘S
a
2
j (SUj ≃ 1)2 + CN2

.

We now characterize the limiting regression risk limn,d↑↓ L(ω̂). Since the covariance matrix is benign and
satisfies limn,d↑↓

t2·kε·ln(n)
n = limn,d↑↓

t2·n·ln(n)
R0(!→S̄)

= 0, we can apply Lemma 7. We then have

lim
n,d↑↓

CN2
⇒ lim

n,d↑↓
t
2

(
k
ω

n
+

n

R0

(
!↗S̄

)

ln (n) = 0.

Since CN2
⇐ 0 by definition, we have limn,d↑↓ CN2 = 0. Hence, we have limn,d↑↓ L(ω̂) =∑

j↘S a
2
j (SUj ≃ 1)2. Then, Lemma 7 tells us that

lim
n,d↑↓

SUj =

√
2

ς↓!
1
2 ωω↓22

·

ϖj Tr
(
A↗1

↗S̄

)

1 + ϖj Tr
(
A↗1

↗S̄

) .

Denoting bj := limn,d↑↓ ϖj Tr
(
A↗1

↗S̄

)
as shorthand and putting it all together, we have

lim
n,d↑↓

L(ω̂) = lim
n,d↑↓

∑

j↘S
a
2
j (SUj ≃ 1)2 =

∑

j↘S
a
2
j


lim

n,d↑↓
SUj ≃ 1

2

=
∑

j↘S
a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

.

This completes the proof of the theorem.

C.2 Closed-form expressions for spiked covariance

In this section, we provide the proof of Corollary 9.

Proof. (Corollary 9)

First of all, we show that the following limit holds

lim
n,d↑↓

t
2
· k

ω
· ln (n)

n
= lim

n,d↑↓

t
2
· n · ln (n)

R0

(
!↗S̄

) = 0.

This ensures that the assumption in Theorem 8 is satisfied. By the definition of spiked covariance (Definition 3),
we observe that k

ω = s = n
r for q < 1≃ r and k

ω = 0 for q > 1≃ r. This implies limn,d↑↓
kε·ln(n)

n = 0. On
the other hand, we also have R0

(
!↗S̄

)
= d≃ |S̄| = np

c which leads to limn,d↑↓
n·ln(n)

R0(!→S̄)
= 0. Additionally,

the corollary assumption guarantees that t ⇓ min{


n
kε·ln(n)


np→1

ln(n)}. Combining these results, we conclude

that limn,d↑↓
t2·kε·ln(n)

n = limn,d↑↓
t2·n·ln(n)
R0(!→S̄)

= 0, and therefore, Theorem 8 holds.

Next, recall that bj := limn,d↑↓ ϖj Tr
(
A↗1

↗S̄

)
, according to Theorem 8, when n, d ↙ ↘, the limiting

regression risk is equal to

lim
n,d↑↓

L(ω̂) =
∑

j↘S
a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

=
∑

j≃kε,j↘S
a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

+
∑

j>kε,j↘S
a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

, (13)



where we separate the summation into two sections. Therefore, it su"ces to characterize bj
1+bj

for two sections:
j ⇒ k

ω and j > k
ω. In both sections, we have

bj

1 + bj
=

1
1
bj

+ 1
= lim

n,d↑↓

1
1

ϑj Tr
(
A→1

→S̄

)


+ 1

. (14)

Next, since r0

(
!↗S̄

)
⇐ bn, we can bound Tr

(
A↗1

↗S̄

)
according to Lemma 10 in Bartlett et al. (2020) such

that

Tr
(
A↗1

↗S̄

)
=

n∑

i=1

1

µi

(
A↗S̄

) ⇒
n

µn

(
A↗S̄

) ⇒
cn

ϖ̃1r0

(
!↗S̄

) =
cn

∑d
j=kε+1,j↘Sc ϖj

Tr
(
A↗1

↗S̄

)
=

n∑

i=1

1

µi

(
A↗S̄

) ⇐
n

µ1

(
A↗S̄

) ⇐
n

cϖ̃1r0

(
!↗S̄

) =
n

c
∑d

j=kε+1,j↘Sc ϖj

.

Recall that, in the above, we denoted {ϖ̃j}
d↗|S̄|
j=1 the eigenvalues of the leave-t and k

ω-out covariance matrix
!↗S̄ . Therefore, we can upper and lower bound Equation (14) as below:

lim
n,d↑↓

1
c
∑d

k=kε+1,k↓Sc ϑk

ϑjn


+ 1

⇒
bj

1 + bj
⇒ lim

n,d↑↓

1∑d
k=kε+1,k↓Sc ϑk

cϑjn


+ 1

. (15)

As a result, it su"ces to characterize the limit of
∑d

k=kε+1,k↓Sc ϑk

ϑjn
as n, d ↙ ↘. We discuss our evaluation of

the spiked covariance ensemble in two cases.

• Spiked covariance with q < 1≃ r (Definition 3):

Recall that, for this choice of parameters, the regression MNI would generalize (Muthukumar et al.,
2021). Define k̄ := |S̄| as shorthand. From Definition 3, we have k

ω = s. Therefore, for j ↔ S ∝ [kω],

lim
n,d↑↓

∑d
k=kε+1,k↘Sc ϖk

ϖjn
= lim

n,d↑↓

(
d≃ k̄

) (1↗a)d
d↗s

ad
s · n

= lim
n,d↑↓

(
n
p
≃ k̄

) (1↗n→q)np

(np↗nr)

n(p↗q↗r+1)

= lim
n,d↑↓

(
n
p
≃ k̄

) (1↗n→q)
(1↗nr→p)

n(p↗q↗r+1)

= 0,

where the last equality followed because 1≃ q≃ r > 0. As a result, from Equation (15), we have bj
1+bj

= 1

for j ↔ S ∝ [kω]. On the other hand, for j ↔ S ∝ {k
ω + 1, . . . , d}, we have

lim
n,d↑↓

∑d
k=kε+1,k↘Sc ϖk

ϖjn
= lim

n,d↑↓

(
d≃ k̄

) (1↗a)d
d↗s

(1↗a)d
d↗s · n

= lim
n,d↑↓

(
n
p
≃ k̄

)

n
= ↘.

Therefore, from Equation (15), we have bj
1+bj

= 0 for this case. Substituting these values back into Equa-
tion (13) completes the proof of the corollary for this case.

• Spiked covariance with q > 1≃ r (Definition 3):

Recall that, for this choice of parameters, the regression MNI would not generalize (Muthukumar et al.,



2021). In this case, we have k
ω = 0. Define the number of support indices that are contained within the

spike as t1 := |S ∝ [s]|, and note that 0 ⇒ t1 ⇒ min{s, t}. Therefore, for j ↔ S ∝ [s], we have

lim
n,d↑↓

∑d
k=1,k↘Sc ϖk

ϖjn
= lim

n,d↑↓

(s≃ t1)
ad
s + (d≃ s≃ (t≃ t1))

(1↗a)d
d↗s

ad
s · n

= lim
n,d↑↓

(nr
≃ t1)n(p↗q↗r) + (np

≃ n
r
≃ (t≃ t1))

(1↗n→q)np

(np↗nr)

n(p↗q↗r+1)

= ↘,

where the last equality follows because 1 ≃ q ≃ r < 0. As a result, from Equation (15), bj
1+bj

= 0 for
j ↔ S ∝ [s]. Similarly, for j ↔ S ∝ {s+ 1, . . . , d}, we have

lim
n,d↑↓

∑d
k=kε+1,k↘Sc ϖk

ϖjn
⇐ lim

n,d↑↓

∑d
k=kε+1,k↘Sc ϖk

ϖ1n
= ↘,

where the last equality follows from the preceding calculation. Substituting these values back into Equa-
tion (13) completes the proof for this case.

C.3 Closed-form expressions for polynomial decay covariance

Next, we provide corresponding expressions for the limiting regression risk for the more delicate case of the
polynomial decay covariance ensemble. It is worth noting that, unlike the spiked covariance case—where
regression consistency can be achieved when the true signal is confined to the top k

ω components and the
signal magnitude is fixed at ↓!

1
2 ωω

↓
2
2 = 2

ϖ (Corollary 9)—the polynomial decay covariance case requires
stricter conditions. Specifically, the true signal must be restricted to the top k̃1 components, which depend
on both the polynomial decay parameters and the sample size n.

Corollary 18. Under Assumptions 2 and 5 with t ⇓ min

{
n

kε·ln(n) ,


R0(!→S̄)
n·ln(n)

}
and polynomial decay

covariance (Definition 4),

• For u ↔ [0, 1), v = 0, and p · (1≃ u) > 1, we have

lim
n,d↑↓

L(ω̂) =
∑

j↘S
a
2
j .

In this case, we have L(ω̂) > 0, and regression consistency is not possible unless we have zero signal, i.e.
ωω = 0.

• For u ↔ (0, 1), v = 0, and p · (1≃ u) < 1, we have

lim
n,d↑↓

L(ω̂) ⇒
∑

j≃k̃1,j↘S

a
2
j

(√
2

ς↓!
1
2 ωω↓22

≃ 1

2

+ C

∑

k̃1<j<k̃2,j↘S

a
2
j +

∑

k̃2≃j,j↘S

a
2
j ,

lim
n,d↑↓

L(ω̂) ⇐
∑

j≃k̃1,j↘S

a
2
j

(√
2

ς↓!
1
2 ωω↓22

≃ 1

2

+ C

∑

k̃1<j<k̃2,j↘S

a
2
j +

∑

k̃2≃j,j↘S

a
2
j ,

we define k̃1 := max

k ⇐ 0 : k = o

(
n

1→p·(1→u)
u

)
and k̃2 := min


k ⇐ 0 : k = ⇁

(
n

1→p·(1→u)
u

)
, and

C := max
k̃1<j<k̃2,j↘S

(√
2

ς↓!
1
2 ωω↓22

cj ≃ 1

2

, C := min
k̃1<j<k̃2,j↘S

(√
2

ς↓!
1
2 ωω↓22

cj ≃ 1

2

.



Recalling bj := limn,d↑↓ ϖj Tr
(
A↗1

↗S̄

)
, we define cj := bj

1+bj
, and {cj}k̃1<j<k̃2,j↘S is a non-increasing

sequence in (0, 1). This implies regression consistency if and only if the signal magnitude is fixed at
↓!

1
2 ωω

↓
2
2 = 2

ϖ and aj = 0 for all j > k̃1, j ↔ S. Note that benign overfitting of the regression MNI is
attained for this choice of parameters (Bartlett et al., 2020).

Proof. As in the proof of Corollary 9, we first need to show limn,d↑↓
t2·kε·ln(n)

n = limn,d↑↓
t2·n·ln(n)
R0(!→S̄)

= 0,

and therefore, Theorem 8 holds. Then, we can write the limit of the risk in Equation (13) as

lim
n,d↑↓

L(ω̂) =
∑

j↘S
a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

=
∑

j≃k̃1,j↘S

a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

+
∑

k̃1<j<k̃2,j↘S

a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

+
∑

k̃2≃j,j↘S

a
2
j

(√
2

ς↓!
1
2 ωω↓22

bj

1 + bj
≃ 1

2

, (16)

where we separate the summation into three sections. Next, we can bound the value of bj
1+bj

for each section
by Equation (15) as

lim
n,d↑↓

1
c
∑d

k=kε+1,k↓Sc ϑk

ϑjn


+ 1

⇒
bj

1 + bj
⇒ lim

n,d↑↓

1∑d
k=kε+1,k↓Sc ϑk

cϑjn


+ 1

. (17)

Hence, for each j, it su"ces to characterize the limit of
∑d

k=kε+1,k↓Sc ϑk

ϑjn
as n, d ↙ ↘ in order to characterize

the value of bj
1+bj

. The proof follows the idea of Theorem 31 in Bartlett et al. (2020) closely.

• Polynomial decay covariance with u ↔ [0, 1), v = 0, p · (1≃ u) > 1 (Definition 4):

Firstly, we show that this choice of parameters satisfies the assumption in Theorem 8 such that
limn,d↑↓

t2·kε·ln(n)
n = limn,d↑↓

t2·n·ln(n)
R0(!→S̄)

= 0. From Definition 4, we have ϖj = 1
ju and we can show

∑d
j=1 ϖj ̸ d

1↗u = n
p·(1↗u) by showing

d∑

j=1

ϖj = 1 +
d∑

j=2

1

ju
⇒ 1 +

∫ d

1

1

xu
dx = 1 +

x
1↗u

1≃ u


d

1
= 1 +

d
1↗u

≃ 1

1≃ u
(18a)

d∑

j=1

ϖj =
d∑

j=1

1

ju
⇐

d∑

j=1

1

du
= d

1↗u
. (18b)

Therefore, we can derive r0(!) =
∑d

j=1 ϑj

ϑ1
=

∑d
j=1 ϖj ⇐ d

1↗u = n
p·(1↗u)

> n, so k
ω = 0. Next, we need

to verify limn,d↑↓
t2·n·ln(n)
R0(!→S) = 0, and we have

1

R0(!↗S)
=

∑d
j=1,j↘Sc ϖ

2
j

(∑d
j=1,j↘Sc ϖj

)2 =

∑d
j=1,j↘Sc

1
j2u(∑d

j=1,j↘Sc
1
ju

)2 ⇒

(
1 +

∫ d
1

1
x2u dx

)

(∑d
j=1,j↘Sc

1
du

)2 =

(
1 +

∫ d
1

1
x2u dx

)

(d≃ t)2 · d↗2u
.



The integral
∫ d
1

1
x2u dx varies for di!erent values of u, and we have

∫ d

1

1

x2u
dx =






x1→2u

1↗2u


d

1
= d1→2u↗1

1↗2u , for u ↔ [0, 0.5),

ln (x)

d

1
= ln(d), for u = 0.5,

x1→2u

1↗2u


d

1
= 1↗d1→2u

2u↗1 , for u ↔ (0.5, 1).

Therefore, we can upper bound n ln(n)
R0(!→S) as

n ln(n)

R0(!↗S)
=






n ln(n)
(
1+ d1→2u→1

1→2u

)

(d↗t)2·d→2u ⇒
c1n ln(n)

d = c1n ln(n)
np , for u ↔ [0, 0.5),

n ln(n)(1+ln(d))
(d↗t)2·d→1 ⇒

c2n ln(n) ln(d)
d = c2n·p ln2(n)

np , for u = 0.5,

n ln(n)
(
1+ 1→d1→2u

2u→1

)

(d↗t)2·d→2u ⇒
c3n ln(n)
d2→2u = c3n ln(n)

np(2→2u) , for u ↔ (0.5, 1).

Note that since p · (1≃ u) > 1, the limit of all three cases goes to zero by L’Hôpital’s Rule, and
we have limn,d↑↓

n ln(n)
R0(!→S) = 0 for u ↔ [0, 1). Combining these results with the corollary assumption

t ⇓ min

{
n

kε·ln(n) ,


R0(!→S̄)
n·ln(n)

}
, we have limn,d↑↓

t2·kε·ln(n)
n = limn,d↑↓

t2·n·ln(n)
R0(!→S̄)

= 0 and Theorem 8

holds. Next, we characterize the limit
∑d

k=1,k↓Sc ϑk

ϑjn
as n, d ↙ ↘ to evaluate bj

1+bj
. For j ↔ [d], since

p · (1≃ u) > 1, we have

lim
n,d↑↓

∑d
k=1,k↘Sc ϖk

ϖjn
⇐ lim

n,d↑↓

d
(1↗u)

cϖ1n
= lim

n,d↑↓

n
p(1↗u)

cn
= ↘.

By substituting the value of limn,d↑↓

∑d
k=1,k↓Sc ϑk

ϑjn
into Equation (17), we get bj

1+bj
= 0 for j ↔ [d].

Finally, we substitute bj
1+bj

= 0 into Equation (16) and complete the proof for this case.

• Polynomial decay covariance with u ↔ (0, 1), v = 0, p · (1≃ u) < 1 (Definition 4):

Recall that, for this choice of parameters, we attain benign overfitting in regression (Bartlett et al., 2020,
Theorem 31). This result implies that limn,d↑↓

kε

n = limn,d↑↓
n

R0(!→S̄)
= 0. However, to ensure that

Theorem 8 holds, we require a stronger condition limn,d↑↓
t2·kε·ln(n)

n = limn,d↑↓
t2·n·ln(n)
R0(!→S̄)

= 0. We first

check the rate of kω. For any k ↔ [d≃ 2] and ϖj = j
↗u, we have

F (d)≃ F (k + 1) =

∫ d

k+1
x
↗u

dx ⇒

d∑

j=k+1

ϖj ⇒

∫ d

k
x
↗u

dx = F (d)≃ F (k),

where F (x) = x1→u

1↗u . Therefore, we have
∑d

j=k+1 ϖj = O(d1↗u). Next, we can calculate the rate

of the e!ective rank rk =
∑d

j=k+1 ϑj

ϑk+1
= O(ku · d

1↗u). According to the definition of k
ω such that

k
ω := min{k ⇐ 0 : rk(!) ⇐ bn}, we have k

ω = O(n
1
u · d

u→1
u ) = O(n

1→p·(1→u)
u ), where 1↗p·(1↗u)

u < 1

since p > 1 and p · (1≃ u) < 1. This result implies limn,d↑↓
kε·ln(n)

n = 0. Next, we show that
limn,d↑↓

n·ln(n)
R0(!→S̄)

= 0. Similar to the rate of
∑d

j=k+1 ϖj , we have the rate of
∑d

j=k+1 ϖ
2
j as

d∑

j=k+1

ϖ
2
j =






O(d1↗2u), for u ↔ (0, 0.5),

O
(
ln

(
d
k

))
, for u = 0.5,

O(k1↗2u), for u ↔ (0.1, 1).



Therefore, recalling that
∑d

j=k+1 ϖj = O(d1↗u), we can calculate R0

(
!↗S̄

)
as

R0

(
!↗S̄

)
=

(∑d
j=kε+1,j↘Sc ϖj

)2

∑d
j=kε+1,j↘Sc ϖ

2
j

=






O(d) = O(np), for u ↔ (0, 0.5),

O


d

ln( d
kε )


= O

(
np

ln(n)

)
, for u = 0.5,

O

(
d
2↗2u

· k
ω2u→1

)
= O

(
n
2↗ 1→p(1→u)

u

)
, for u ↔ (0.5, 1).

As a result, we can conclude that

n ln(n)

R0(!↗S)
=






O

(
ln(n)
np→1

)
, for u ↔ [0, 0.5),

O

(
ln2(n)
np→1

)
, for u = 0.5,

O


ln(n)

n1→ 1→p(1→u)
u


, for u ↔ (0.5, 1).

Since 1↗p(1↗u)
u < 1, the limit of all three cases goes to zero by L’Hôpital’s Rule, and we have

limn,d↑↓
n ln(n)

R0(!→S) = 0 for u ↔ (0, 1). Combining these results with the corollary assumption

t ⇓ min

{
n

kε·ln(n) ,


R0(!→S̄)
n·ln(n)

}
, we have limn,d↑↓

t2·kε·ln(n)
n = limn,d↑↓

t2·n·ln(n)
R0(!→S̄)

= 0 and Theo-

rem 8 holds. Next, from Equation (16), we will present our calculation in three sections: j ⇒ k̃1,
k̃1 < j < k̃2 and k̃2 ⇒ j, where we recall k̃1 := max


k ⇐ 0 : k = o

(
n

1→p·(1→u)
u

)
and k̃2 :=

min

k ⇐ 0 : k = ⇁

(
n

1→p·(1→u)
u

)
. We first consider the case j ⇒ k̃1, and we have

lim
n,d↑↓

∑d
k=kε+1,k↘Sc ϖk

ϖjn
⇒ lim

n,d↑↓

∑d
j=1 ϖj

ϖk̃1
n

⇒ lim
n,d↑↓

cd
1↗u

ϖk̃1
n

= lim
n,d↑↓

cn
p·(1↗u)

ϖk̃1
n

= lim
n,d↑↓

c · k̃
u
1

n1↗p·(1↗u)
= 0,

where we apply Equation (18a) in the second inequality. Therefore, by Equation (17), we have bj
1+bj

= 1

for j ⇒ k̃1. Next, for k̃1 < j < k̃2, we have

lim
n,d↑↓

∑d
k=kε+1,k↘Sc ϖk

ϖjn
⇒ lim

n,d↑↓

∑d
j=1 ϖj

ϖk̃2↗1n
⇒ lim

n,d↑↓

cd
1↗u

ϖk̃2↗1n
= lim

n,d↑↓

c ·

(
k̃2 ≃ 1

)u

n1↗p·(1↗u)
< ↘,

lim
n,d↑↓

∑d
k=kε+1,k↘Sc ϖk

ϖjn
⇐ lim

n,d↑↓

d
1↗u

cϖk̃1+1n
= lim

n,d↑↓

(
k̃1 + 1

)u

cn1↗p·(1↗u)
> 0,

by applying
∑d

k=kε+1,k↘Sc ϖk ̸ d
1↗u and the definition of k̃1 and k̃2. As a result, according to Equa-

tion (17), we can derive 0 <
bj

1+bj
< 1 for k̃1 < j < k̃2. Finally, for k̃2 ⇒ j, we have

lim
n,d↑↓

∑d
k=kε+1,k↘Sc ϖk

ϖjn
⇐ lim

n,d↑↓

d
1↗u

cϖk̃2
n
= lim

n,d↑↓

k̃
u
2

cn1↗p·(1↗u)
= ↘.

Therefore, according to Equation (17), we have bj
1+bj

= 0 for k̃2 ⇒ j. Substituting the value of bj
1+bj

into Equation (16) for all three cases completes the proof.



D Zero-shot task shift in the case of random signal

In this section, we provide proofs from Section 3.2 concerning our random signal model. In Section D.1 we
detail the decomposition of the regression risk of the classification MNI into regression bias and task shift
error. In Section D.2, we provide the main proofs of the upper and lower bounds on task shift error in our
random signal model. In Section D.3, we bound the deviation of the classification and regression labels.
Then, in Section D.4, we adapt the benign overfitting analysis of Bartlett et al. (2020) to our dependent
noise setting. Finally, in Section D.5, we prove a fundamental tradeo! between the statistical consistency of
regression bias and task shift error.

D.1 Task shift error decomposition

In this section, we provide the proof of Lemma 10.

Proof. (Lemma 10)

Recall that the MNI on regression labels and the MNI on classification labels are defined as

ω̃ := argmin {↓ω↓2 : Xω = ỹ} ,

ω̂ := argmin {↓ω↓2 : sign (Xω) = ŷ} ,

respectively, and they have closed forms

ω̃ = X→ (
XX→)↗1

ỹ,

ω̂ = X→ (
XX→)↗1

ŷ.

Now, we have

L(ω̂) = Ex

(
x→ω̂ ≃ x→ωω

)2

= Ex

((
x→ω̃ ≃ x→ωω

)
+
(
x→ω̂ ≃ x→ω̃

))2

= L(ω̃) + Ex

(
x→ω̂ ≃ x→ω̃

)2
+ 2Ex

[(
x→ω̃ ≃ x→ωω

)(
x→ω̂ ≃ x→ω̃

)]
.

We will show that the third term is precisely zero. Write

E :=
(
X→ (

XX→)↗1
X≃ I

)
!X→ (

XX→)↗1
.

Substituting ỹ := Xωω and the closed-form expressions for the minimum-norm interpolators,

Ex

[(
x→ω̃ ≃ x→ωω

)(
x→ω̂ ≃ x→ω̃

)]

= Ex

[(
x→X→ (

XX→)↗1
Xωω

≃ x→ωω
)(

x→X→ (
XX→)↗1

ŷ ≃ x→X→ (
XX→)↗1

ỹ
)]

= Ex

[(
x→

(
X→ (

XX→)↗1
X≃ I

)
ωω

)(
x→X→ (

XX→)↗1
(ŷ ≃ ỹ)

)]

= ωω→E(ŷ ≃ ỹ).

Recall that ŷ ≃ ỹ := DXωω where D := diag (d1, . . . , dn) and di :=
sign(x↑ωε)↗x↑ωε

x↑ωε . Note EDX is nilpotent:
we have XE = 0, so (EDX)2 = 0, and hence all eigenvalues of EDX are zero. Therefore,

ωω→E(ŷ ≃ ỹ) = ωω→EDXωω = 0,

which completes the proof.



D.2 Upper and lower bounds on task shift error

In this section, we provide the proof of Theorem 12. First, let us define

C :=
(
XX→)↗1

X!X→ (
XX→)↗1

.

Recall also that ŷ ≃ ỹ := DXωω where D := diag (d1, . . . , dn) and di :=
sign(x↑ωε)↗x↑ωε

x↑ωε .

We now introduce several lemmas. The first lemma upper bounds the deviation of the classification and
regression labels. The proof is in Appendix D.3.
Lemma 19. For any ! and ωω, there exists a constant c > 1 such that

↓ŷ ≃ ỹ↓22 ⇒ cn↓!
1
2 ωω

↓
2
2

with probability at least 1≃ e
↗n

c .

The remaining lemmas bound traces involving C and X in high probability. The first of these is a restatement
of the main technical result of Bartlett et al. (2020).
Lemma 20. For any ! and ωω, there exist constants c, c1 ⇐ 1 such that the following hold. If kω <

n
c1

, we
have

1

c


k
ω

n
+

n

Rkε(!)


⇒ Tr(C) ⇒ c


k
ω

n
+

n

Rkε(!)



with probability at least 1≃ 17e↗
n
c . On the other hand, if kω ⇐

n
c1

, we have

Tr(C) ⇐
1

c

with probability at least 1≃ 10e↗
n
c .

The final lemma characterizes the key additional term arising in our dependent noise model. The proof is in
Appendix D.4.
Lemma 21. For any ! and ωω, there exist constants c, c1 ⇐ 1 such that the following hold. If kω <

n
c1

, we
have

1

c




kε∑

j=1

ϖj +
n

Rkε(!)

d∑

j=kε+1

ϖj



 ⇒ Tr(CXX→) ⇒ c




kε∑

j=1

ϖj +
n

Rkε(!)

d∑

j=kε+1

ϖj





with probability at least 1≃ 14e↗
n
c . On the other hand, if kω ⇐

n
c1

, we have

Tr(CXX→) ⇐
1

c

with probability at least 1≃ 10e↗
n
c .

We are now ready to prove Theorem 12.

Proof. (Theorem 12)

We begin with the upper bound. Substituting the closed-form expressions for the minimum-norm interpolators,

Ex

(
x→ω̂ ≃ x→ω̃

)2
= Ex

(
x→X→ (

XX→)↗1
ŷ ≃ x→X→ (

XX→)↗1
ỹ
)2

= Ex

(
x→X→ (

XX→)↗1
(ŷ ≃ ỹ)

)2

= (ŷ ≃ ỹ)→C(ŷ ≃ ỹ). (19)



By definition of operator norm and trace,

(ŷ ≃ ỹ)→C(ŷ ≃ ỹ) ⇒ ↓C↓ ↓ŷ ≃ ỹ↓22 ⇒ Tr(C) ↓ŷ ≃ ỹ↓22 .

Since k
ω
<

n
c1

, by Lemma 20, there exists a constant c2 ⇐ 1 such that

Tr(C) ⇒ c2


k
ω

n
+

n

Rω
k(!)


(20)

with probability at least 1≃ 17e↗
n
c2 . Moreover, by Lemma 19, there exists a constant c3 ⇐ 1 such that

↓ŷ ≃ ỹ↓22 ⇒ c3n↓!
1
2 ωω

↓
2
2 (21)

with probability at least 1≃ e
↗ n

c3 . Combining Equations 20 and 21 with a union bound completes the upper
bound.

Now we will prove the lower bound. Starting from Equation (19) and using the assumption that D = ϑI,

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
= Eωε(ŷ ≃ ỹ)→C(ŷ ≃ ỹ)

= Eωεωω→X→DCDXωω

= ϑEωεωω→X→CXωω
.

By assumption, Eωεωωωω→
⇐ φ

2I. Using the cyclic and linear properties of trace,

ϑEωεωω→X→CXωω = ϑTr(X→CXEωεωωωω→) ⇐ ϑφ
2 Tr(X→CX). (22)

If kω <
n
c1

, then by Lemma 21 there exists a constant c4 ⇐ 1 such that

Tr(X→CX) ⇐
1

c4




kε∑

j=1

ϖj +
n

Rkε(!)

d∑

j=kε+1

ϖj



 (23)

with probability at least 1≃ 14e↗
n
c4 . On the other hand, if kω >

n
c1

, then by Lemma 21,

Tr(X→CX) ⇐
1

c4
(24)

with probability at least 1 ≃ 10e↗
n
c4 . Substituting Equations 23 and 24 into Equation (22) and choosing

c = max(c2c3, c4) completes the proof.

D.3 Deviation of classification and regression labels

In this section, we provide the proof of Lemma 19.

Proof. (Lemma 19)

First, note that

↓ŷ ≃ ỹ↓22 = ↓ŷ↓22 + ↓ỹ↓22 ≃ 2
n∑

j=1

ỹiŷi

= n+ ↓ỹ↓22 ≃ 2 ↓ỹ↓1 .

Write ψ
2 := ↓!

1
2 ωω

↓
2
2 so that ỹi → N (0,ψ2) for all 1 ⇒ i ⇒ n. In particular,

EX ↓ŷ ≃ ỹ↓22 = n+ nψ
2
≃


8

ς
nψ. (25)



For γ > 1, define the sub-Gaussian and sub-exponential norms of a random variable X by

↓X↓↽2
:= inf

{
t > 0 : EX exp(X2

/t
2) < γ

}
and

↓X↓↽1
:= inf

{
t > 0 : EX exp(|X|/t) < γ

}
,

respectively.

By definition, ỹi is sub-Gaussian for any i with ↓ỹi↓↽2
= ▷ψ where ▷ > 0. Moreover, because ỹi is symmetric,

ŷi is Bernoulli and therefore sub-Gaussian with ↓ŷi↓↽2
= ▷. Combining terms, ŷi ≃ ỹi is sub-Gaussian with

↓ŷi ≃ ỹi↓↽2
= ▷ + ▷ψ, and (ŷi ≃ ỹi)

2 is sub-exponential with
(ŷi ≃ ỹi)

2

↽1

⇒ (▷ + ▷ψ)2.

By Bernstein’s inequality, there exists a constant c1 > 0 such that for any t ⇐ 0,

PX

(
↓ŷ ≃ ỹ↓22 ≃ EX ↓ŷ ≃ ỹ↓22 ⇐ t

)
⇒ exp


≃c1 min


t
2

n(▷ + ▷ψ)4
,

t

(▷ + ▷ψ)2


.

Hence,

↓ŷ ≃ ỹ↓22 ⇒ EX ↓ŷ ≃ ỹ↓22 +


n

c1
max


n

c1
,
⇔
n


(▷ + ▷ψ)2 (26)

with probability at least 1 ≃ e
↗n. Defining c2 := max(c↗1

1 , c
↗1/2
1 ) and using (a + b)2 ⇒ 2(a2 + b

2) for any
a, b ↔ R, we have


n

c1
max


n

c1
,
⇔
n


(▷ + ▷ψ

2) ⇒ c2n(▷ + ▷ψ)2

⇒ 2c2n▷
2(1 + ψ

2). (27)

Substituting Equations 25 and 27 into Equation (26) and dropping the negative term, we have

↓ŷ ≃ ỹ↓22 ⇒ n+ nψ
2 + 2c2n▷

2(1 + ψ
2)

⇒ c2(1 + 2▷2)(1 + ψ
2)n.

Treating ψ
2 as a constant, there exists a constant c3 ⇐ 1 such that 1 + ψ

2
⇒ c3ψ

2. Hence,

↓ŷ ≃ ỹ↓22 ⇒ c2c3(1 + 2▷2)nψ2
.

Choosing c = c2c3 completes the proof.

D.4 Benign overfitting analysis in our dependent noise model

In this section, we provide the proof of Lemma 21. First, we write a convenient representation of the data
matrix X. Let Z ↔ Rn↔d have i.i.d. standard Gaussian elements, then X

d
= Z!

1
2 . The matrix Z is known as

the whitened data matrix. We write zj ↔ Rn to denote the j
th column of Z.

Using this notation, write

A := Z!Z→ =
d∑

j=1

ϖjzjz
→
j ,

and similarly,

Z!2Z→ =
d∑

j=1

ϖ
2
jzjz

→
j .

Note that XX→ d
= A. Finally, let A↗k :=

∑
j ⇒=k ϖjzjz→j denote the leave-one-out Gram matrix for some

1 ⇒ k ⇒ d.

We will use the following lemma in the proof. It is a short consequence of the Sherman-Woodbury-Morrison
identity applied to a matrix-vector product.



Lemma 22. Suppose A and zj are defined as above for some 1 ⇒ j ⇒ d. Then,

A↗1zj =
A↗1

↗jzj

1 + ϖjz→j A
↗1
↗jzj

.

Proof. By the Sherman-Woodbury-Morrison identity,

A↗1 = A↗1
↗j ≃

ϖjA
↗1
↗jzjz

→
j A

↗1
↗j

1 + ϖjz→j A
↗1
↗jzj

.

Multiplying by zj on the right we obtain

A↗1zj = A↗1
↗jzj ≃

ϖjA
↗1
↗jzjz

→
j A

↗1
↗jzj

1 + ϖjz→j A
↗1
↗jzj

=
A↗1

↗jzj(1 + ϖjz→j A
↗1
↗jzj)≃ ϖjA

↗1
↗jzjz

→
j A

↗1
↗jzj

1 + ϖjz→j A
↗1
↗jzj

=
A↗1

↗jzj

1 + ϖjz→j A
↗1
↗jzj

,

as desired.

Now, we begin the main proof of this section.

Proof. (Lemma 21)

Substituting the whitened data matrix,

Tr
(
X→CX

)
= Tr

(
X!X→ (

XX→)↗1
)

d
= Tr

(
A↗1Z!2Z→)

=
d∑

j=1

ϖ
2
jz

→
j A

↗1zj . (28)

It is instructive to compare this term with Lemma 8 of Bartlett et al. (2020). In contrast to their formulation,
we have one fewer A↗1 in the center of the expression due to our dependent noise model. The remainder of
the proof utilizes a leave-one-out technique similarly to Bartlett et al. (2020), except the j

th summand carries
an additional nϖj . Applying Lemma 22,

d∑

j=1

ϖ
2
jz

→
j A

↗1zj =
kε∑

j=1

ϖ
2
jz

→
j A

↗1
↗jzj

1 + ϖjz→j A
↗1
↗jzj

+
d∑

j=kε+1

ϖ
2
jz

→
j A

↗1zj .

Clearly, the first term is at most
∑kε

j=1 ϖj . For the second term, we have

d∑

j=kε+1

ϖ
2
jz

→
j A

↗1zj ⇒

∑d
j=kε+1 ϖ

2
j ↓zj↓

2
2

µn(A)
.

By Lemma 10 of Bartlett et al. (2020), since k
ω
<

n
c1

, there exists a constant c2 ⇐ 1 such that µn(A) ⇐
ϑkε+1rkε (!)

c2
with probability at least 1≃ 2e↗

n
c2 . Moreover, by Lemma 12 of Bartlett et al. (2020), there exists

a constant c3 ⇐ 1 such that
d∑

j=kε+1

ϖ
2
j ↓zj↓

2
2 ⇒ c3n

d∑

j=kε+1

ϖ
2
j



with probability at least 1≃ 2e↗
n
c3 . By a union bound,

Tr
(
X→CX

)
⇒

kε∑

j=1

ϖj +
c2c3n

∑d
j=kε+1 ϖ

2
j

ϖkε+1rkε(!)

⇒ c2c3




kε∑

j=1

ϖj +
n

Rkε(!)

d∑

j=kε+1

ϖj





with probability at least 1≃ 4e↗
n

c2c3 , which completes the upper bound.

We now prove the lower bound. Beginning from Equation (28) and applying Lemma 22,

d∑

j=1

ϖ
2
jz

→
j A

↗1zj =
d∑

j=1

ϖ
2
jz

→
j A

↗1
↗jzj

1 + ϖjz→j A
↗1
↗jzj

.

By Lemma 14 of Bartlett et al. (2020), for any k <
n
c1

, there exists a constant c4 ⇐ 1 such that for any
1 ⇒ j ⇒ d,

1 + ϖjz
→
j A

↗1
↗jzj ⇒ c4ϖjz

→
j A

↗1
↗jzj


nϖj + ϖk+1rk(!) + nϖk+1

nϖj



with probability at least 1≃ 5e↗
n
c4 . By Lemma 15 of Bartlett et al. (2020),

d∑

j=1

ϖ
2
jz

→
j A

↗1
↗jzj

1 + ϖjz→j A
↗1
↗jzj

⇐

d∑

j=1

ϖ
2
jz

→
j A

↗1
↗jzj

c4ϖjz→j A
↗1
↗jzj


nϖj

nϖj + ϖk+1rk(!) + nϖk+1



=
1

c4

d∑

j=1

nϖ
2
j

nϖj + ϖk+1rk(!) + nϖk+1

with probability at least 1≃ 10e↗
n
c4 . By the mediant inequality, there exist constants b, c5 ⇐ 1 such that

1

c4

d∑

j=1

nϖ
2
j

ϖk+1rk(!) + nϖk+1 + nϖj
⇐

1

bc5

d∑

j=1

min

(
ϖj ,

bnϖ
2
j

ϖk+1rk(!)
,

ϖ
2
j

ϖk+1


.

If rk(!) < bn, the second term in the minimum is larger than the third term. In this case,

1

bc5

d∑

j=1

min

(
ϖj

bnϖ
2
j

ϖk+1rk(!)
,

ϖ
2
j

ϖk+1


⇐

1

bc5

d∑

j=1

min

(
ϖj ,

ϖ
2
j

ϖk+1



=
1

bc5




k∑

j=1

ϖj +
d∑

j=k+1

ϖ
2
j

ϖk+1



 . (29)

On the other hand, if rk(!) ⇐ bn, the second term in the minimum is smaller than the third term. In this
case,

1

bc5

d∑

j=1

min

(
ϖj ,

bnϖ
2
j

ϖk+1rk(!)
,

ϖ
2
j

ϖk+1


⇐

1

bc5

d∑

j=1

min

(
ϖj ,

bnϖ
2
j

ϖk+1rk(!)



=
1

bc5
min

1≃ς≃k




ς∑

j=1

ϖj +
bn

∑d
j=ς+1 ϖ

2
j

ϖk+1rk(!)



 .



Recall that k
ω := min{k ⇐ 0 : rk(!) ⇐ bn}. By Lemma 17 of Bartlett et al. (2020), there exists a constant

c6 ⇐ 1 such that

1

bc5
min

1≃ς≃k




ς∑

j=1

ϖj +
bn

∑d
j=ς+1 ϖ

2
j

ϖk+1rk(!)



 =
1

c4




kε∑

j=1

ϖj +
n
∑d

j=kε+1 ϖ
2
j

ϖk+1rk(!)



 .

Therefore, if kω <
n
c1

,

Tr(X→CX) ⇐
1

c6




kε∑

j=1

ϖj +
n

Rkε(!)

d∑

j=kε+1

ϖj



 .

On the other hand, if kω >
n
c1

, then rk(!) < bn for all k ⇒
n
c1

. Equation (29) then implies

Tr(X→CX) ⇐
1

bc5




n
c1∑

j=1

ϖj +
d∑

j= n
c1

+1

ϖ
2
j

ϖ n
c1

+1



 ⇐
1

bc5
.

Choosing c = max(c2c3, c4, bc5) and taking a union bound over the upper and lower bounds completes the
proof.

D.5 Tradeo! between regression bias and task shift error

In this section, we provide the proof of Theorem 13.

Proof. (Theorem 13)

Note that for the given signal model we have Eωεε
ω2
j = ε̄

2
j and ε̄

2
j ⇐ 1 for all 1 ⇒ j ⇒ d. Hence, the assumption

of the Theorem 12 lower bound is satisfied with φ
2 = 1.

We first prove the case where ↼ = 0. In this case, there is some finite n after which r0(!) ⇐ bn for a constant
b > 1. By the lower bound of Lemma 11, there exists a constant c1 ⇐ 1 such that

EωεL(ω̃) ⇐
1

c1

d∑

j=1

ϖj ε̄
2
j

1 + nϑj∑d
j=1 ϑj

2

with probability at least 1≃ c1e
↗ n

c1 . Since r0(!) ⇐ bn, for any 1 ⇒ j ⇒ d we have

nϖj∑d
j=1 ϖj

⇒
nϖ1∑d
j=1 ϖj

⇒
1

b
.

Therefore,

EωεL(ω̃) ⇐
1

c1

d∑

j=1

ϖj ε̄
2
j(

1 + 1
b

)2 =
↓!

1
2 ω̄↓22

c1

(
1 + 1

b

)2 .

In the limit as n ↙ ↘, the term c1e
↗ n

c1 is zero. Hence,

lim
n,d↑↓

EωεL(ω̃) ⇐
↓!

1
2 ω̄↓22

c1

(
1 + 1

b

)2

almost surely.

We now prove the case where 0 < ↼ < n. By assumption, ↓! 1
2 ω̄↓22 is constant for all n and ε̄

2
j ⇐ 1 for

all 1 ⇒ j ⇒ d. Hence, there exists a constant c2 ⇐ 1 such that either (i) limn,d↑↓
∑⇀

j=1 ϖj ⇐
1
c2

or (ii)
limn,d↑↓

∑d
j=⇀+1 ϖj ⇐

1
c2

. (In other words, we cannot have both terms go to zero).



In case (i), by the lower bound of Theorem 12, there exist constants c3, c4 ⇐ 1 such that if kω <
n
c3

, then

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
⇐

ϑ
2

c4




kε∑

j=1

ϖj +
n

Rkε(!)

d∑

j=kε+1

ϖj



 ⇐
ϑ
2

c4

kε∑

j=1

ϖj

with probability at least 1≃ 14e↗
n
c4 , In the limit as n ↙ ↘, the term 14e↗

n
c4 is zero, and any ↼ < n satisfies

the condition ↼ <
n
c3

. Using the assumption of case (i),

lim
n,d↑↓

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
⇐ lim

n,d↑↓

ϑ
2

c4

⇀∑

j=1

ϖj ⇐
ϑ
2

c2c4

almost surely.

In case (ii), since case (i) is not satisfied, we have ϖ1ε̄
2
1, . . . ,ϖ⇀ε̄

2
⇀ ↙ 0. But by assumption, ε̄2j ⇐ 1 for all

1 ⇒ j ⇒ ↼, so then ϖ1, . . . ,ϖ⇀ ↙ 0. This implies ! ↙ 0, a contradiction with positive-definiteness.

Finally, we prove the case where ↼ > n. By the lower bound of Theorem 12, we have

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
⇐

ϑ
2

c4

with probability at least 1≃ 10e↗
n
c4 . In the limit as n ↙ ↘, the term 10e↗

n
c4 is zero. Hence,

lim
n,d↑↓

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
⇐

ϑ
2

c4

almost surely. Choosing c = max
(
c1

(
1 + 1

b

)2
, c2c4

)
completes the proof.

E Zero-shot task shift in the case of dense signal

We conclude the random signal section with a model which does not require the ansatz D ≈ ϑI introduced in
Section 3.2. In this section, we first introduce the settings and characterize the task shift of the dense signal
model in Section E.1. In Section E.2, we prove that dense signal implies poor bias, and we reduce the task
shift error to a benign overfitting term via high-dimensional probability arguments. In Section E.3, we show
concentration of task shift error terms via an adaptation of standard sub-Gaussian random matrix analysis.

E.1 Dense random signal model without simplifying ansatz

We study a “dense” signal, i.e., one which has similar magnitude in all dimensions. Specifically, we let
ε
ω
j → N

(
0, 1

dϑj

)
for all j ↔ [d] so that ↓!

1
2 ωω

↓
2
2 = 1. Writing X

d
= Z!1/2 where Z ↔ Rn↔d has independent

standard Gaussian entries, we can see that

ỹ = Xωω d
=

(
Z!1/2

)
1
⇔
d
!↗1/2z


=

1
⇔
d
Zz,

where z ↔ Rd is a standard Gaussian vector with independent entries. Therefore, this setting of ωω is
equivalent in distribution to scaled Gaussian random signal under isotropic covariance, clearly a “dense”
problem instance.

In this regime, we show that while the limiting bias is nonzero, the limiting task shift error is zero as long as
the covariance matrix has large e!ective rank compared to n. Note that this condition is necessary, but not
su"cient, for ! to exhibit benign overfitting.
Theorem 23. For any ! there exists a constant c ⇐ 1 such that the following holds. Suppose ωω is such that

ε
ω
j → N

(
0, 1

dϑj

)
for all j ↔ [d]. Then we have limn,d↑↓ EωεL(ω̃) ⇐ 1

c but limn,d↑↓ Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
⇒



c limn,d↑↓

(
kε

n + n
Rkε (!)

)
almost surely. In particular, if limn,d↑↓

kε

n = limn,d↑↓
n

Rkε (!) = 0, then

limn,d↑↓ Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
= 0 almost surely.

The proof of Theorem 23 is in the following Appendix E.2.

E.2 Analysis of bias and task shift error via benign overfitting

In this section, we provide the proof of Theorem 23, which lower bounds the bias and upper bounds the task
shift error of a “dense” random signal.

Proof. (Theorem 23)

We begin by characterizing the bias term EωεL(ω̃). Since the Gaussian distribution is symmetric, we may
write ε

ω
j = rj ε̄j where each rj is an independent Rademacher random variable and ε̄j is drawn according to a

Gaussian distribution. Applying the lower bound of Lemma 11, for a constant c1 ⇐ 1 we have

EωεL(ω̃) ⇐
1

c1

d∑

j=1

ϖjEε̄2j(
1 + nϑj∑d

k=1 ϑk

)2

with probability at least 1 ≃ c1e
↗ n

c1 6. As previously mentioned, setting ε
ω
j → N

(
0, 1

dϑj

)
for all 1 ⇒ j ⇒ d

under general covariance is equivalent in distribution to setting ε
ω
j → N

(
0, 1

d

)
for all 1 ⇒ j ⇒ d under isotropic

covariance. In this case, Eε̄2j = 1
d and ϖ1 = · · · = ϖd = 1. Therefore, we have

EωεL(ω̃) ⇐
1

dc1

d∑

j=1

1
(
1 + nϑj∑d

k=1 ϑk

)2

=
1

dc1

d∑

j=1

1
(
1 + n

d

)2

=
1

c1

1
(
1 + n

d

)2 .

In the limit as n ↙ ↘, the term c1e
↗ n

c1 is zero. Hence,

lim
n,d↑↓

EωεL(ω̃) ⇐
1

c1

almost surely.

For the task shift error Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
, we begin with a lemma.

Lemma 24. Let u1, . . . ,un, ε ↔ Rd be independent standard Gaussian random vectors. We have for any
1 ⇒ i, k ⇒ n,

Eε

[
sign

(
u→
i ε

)
u→
k ε

]
=


2

ς

u→
i uk

↓ui↓2

.

The proof is in Appendix E.3. Now, have by Equation (19) that

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
= Eωε

[
(ŷ ≃ ỹ)→C(ŷ ≃ ỹ)

]

= Eωε

[
ỹ→Cỹ

]
≃ Eωε

[
ỹ→Cŷ

]
≃ Eωε

[
ŷ→Cỹ

]
+ Eωε

[
ŷ→Cŷ

]
.

6 The statement of Lemma 11 is for deterministic ω̄, but the same result holds for ω̄ with random coordinates
independent of each other and r by taking the expectation over ω̄.



By the cyclic property of trace,

Eωε

[
ỹ→Cỹ

]
= Tr

(
CEωε

[
ỹỹ→])

= Tr
(
CEωε

[
Xωωωω→X→])

= Tr


C


1

d
uu→


,

where u → N (0, I). Next,
Eωε

[
ỹ→Cŷ

]
= Tr

(
CEωε

[
ŷỹ→]) =: Tr (CF) ,

where we define

Fik := Eωε

[
sign

(
x→
i ω

ω
)
x→
k ω

ω
]

=

{
1⇔
d
Eε

[u→
i ε

] i = k

1⇔
d
Eε

[
sign

(
u→
i ε

)
u→
k ε

]
i ⇑= k

=







2
ϖd ↓ui↓2 i = k
2
ϖd

u↑
i uk

⇓ui⇓2
i ⇑= k

by Lemma 24. Similarly,
Eωε

[
ŷ→Cŷ

]
= Tr

(
CEωε

[
ŷŷ→]) =: Tr (CG) ,

where we define

Gik := Eωε

[
sign

(
x→
i ω

ω
)
sign

(
x→
k ω

ω
)]

=

{
1 i = k

Eε

[
sign

(
u→
i ε

)
sign

(
u→
k ε

)]
i ⇑= k

=

{
1 i = k

2
ϖ sin↗1

(
u↑

i uk

⇓ui⇓2⇓uk⇓2

)
i ⇑= k

by Grothendieck’s identity (Lemma 3.6.6 in Vershynin (2018)). Putting everything together, we have

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
= Tr (CS)

where

Sik =






1
d ↓ui↓

2
2 ≃ 2


2
ϖd ↓ui↓2 + 1 i = k

1
du

→
i uk ≃


2
ϖd

u↑
i uk

⇓uk⇓2
≃


2
ϖd

u↑
i uk

⇓uk⇓2
+ 2

ϖ sin↗1
(

u↑
i uk

⇓ui⇓2⇓uk⇓2

)
i ⇑= k.

By concentration of a standard Gaussian random vector and a union bound, for all 1 ⇒ i ⇒ n we have

d≃

⇔

d ⇒ ↓ui↓
2
2 ⇒ d+

⇔

d,

d≃

⇔

d ⇒ ↓ui↓2 ⇒


d+

⇔

d

with probability at least 1≃ 2ne↗d. By Bernstein’s inequality and a union bound, the above holds simultane-
ously with

|u→
i uk| ⇒


d+

⇔

d

for all 1 ⇒ i ⇑= k ⇒ n, with probability at least 1≃ 2n3
e
↗d. Therefore, since 2

ϖ | sin
↗1(x)| ⇒ |x| for ≃1 ⇒ x ⇒ 1,

there exists a constant c2 > 1 such that
sin

↗1


u→
i uk

↓ui↓2 ↓uk↓2

 ⇒


u→
i uk

↓ui↓2 ↓uk↓2

 ⇒
c2
⇔
d



over the same randomness as above. Thus, there exists a constant c3 > 1 such that for all 1 ⇒ i, k ⇒ n,

1

c3
⇒ Sii ⇒ c3 (30)

|Sik| ⇒
c3
⇔
d

i ⇑= k (31)

with probability at least 1 ≃ c3n
3
e
↗d. These high-probability bounds will be used to prove the following

lemma, detailed in Appendix E.3.

Lemma 25. There exists a constant c > 0 such that µ1(S) ⇒ c with probability at least 1≃ cn
3
e
n↗d.

By Lemma 25, since C is positive semi-definite, there exists a constant c4 > 0 such that

Tr(CS) ⇒ Tr(C)µ1(S) ⇒ c4 Tr(C)

with probability at least 1≃ c4n
3
e
n↗d. By Lemma 20, there exists a constant c5 ⇐ 1 such that

Tr(C) ⇒ c5


k
ω

n
+

n

Rkε(!)



with probability at least 1 ≃ 17e↗
n
c5 . In the limit as n, d ↙ ↘, the terms c4n

3
e
n↗d and 17e↗

n
c5 are zero.

Therefore, by a union bound,

lim
n,d↑↓

Eωε,x

(
x→ω̂ ≃ x→ω̃

)2
⇒ c4c5 lim

n,d↑↓


k
ω

n
+

n

Rkε(!)



almost surely. Choosing c = max(c1, c4c5) completes the proof.

E.3 Concentration of task shift error terms

In this section, we provide the proofs of the technical Lemmas 24 and 25 used in the proof of Theorem 23.

Proof. (Lemma 24)

Note that u→
i ε → N (0, ↓ui↓

2
2) and u→

k ε → N (0, ↓uk↓
2
2). Their correlation coe"cient is

◁ik =
u→
i uk

↓ui↓2 ↓uk↓2

. (32)

Let Z1 → N (0, 1) and Z2 → N (0, 1) be Gaussian variables independent of each other and ui,uk. We may
write

u→
i ε

d
= ↓ui↓2 Z1

u→
k ε

d
= ◁ik ↓uk↓2 Z1 +


1≃ ◁2ik ↓uk↓2 Z2.

Since Z1 and Z2 are independent and centered,

Eε

[
sign

(
u→
i ε

)
u→
k ε

]
= EZ1 [sign (Z1) ◁ik ↓uk↓2 Z1] + EZ1,Z2


sign (Z1)


1≃ ◁2ik ↓uk↓2 Z2



= EZ1 [sign (Z1) ◁ik ↓uk↓2 Z1]

= ◁ik ↓uk↓2 EZ1 [sign (Z1)Z1] .

Since Z1 is standard Gaussian, we have

EZ1 [sign (Z1)Z1] = EZ1 |Z1| =


2

ς
.



Using the value of ◁ik derived in Equation (32),

Eε

[
sign

(
u→
i ε

)
u→
k ε

]
=


2

ς

u→
i uk

↓ui↓2

.

Proof. (Lemma 25)

We will adapt the proof of Theorem 5.39 of Vershynin (2012). By the approximate isometry lemma (Lemma
5.36 in Vershynin (2012)), if for some c > 0 we have


1

n
S→S≃ I

 ⇒ max(c, c2)

then µ1(S) ⇒ c as desired. Let N be a 1
4 -net of the unit sphere S

n↗1 with respect to the Euclidean metric,
and by Lemma 5.2 of Vershynin (2012) put |N | ⇒ 9n. Then, by Lemma 5.4 of Vershynin (2012),


1

n
S→S≃ I

 ⇒ 2max
x↘N



〈
1

n
S→S≃ I


x,x

〉 = 2max
x↘N


1

n
↓Sx↓22 ≃ 1

 .

Now consider a fixed vector x ↔ S
n↗1. We have

↓Sx↓22 =
n∑

i=1

∀Si,x∃
2

=
n∑

i=1

(
n∑

k=1

Sikxk

2

⇒

n∑

i=1

(
n∑

k=1

|Sik||xk|

2

.

By the concentration results in Equations 30 and 31, there exists a constant c1 > 0 such that

|Sik| ⇒ c1

|Sik| ⇒
c1
⇔
d

i ⇑= k

with probability at least 1≃ c1n
3
e
↗d. In particular,

↓Sx↓22 ⇒

n∑

i=1



c1|xi|+
∑

i ⇒=k

c1
⇔
d
|xk|




2

with probability at least 1≃ c1n
3
e
↗d. Using (a+ b)2 ⇒ 2(a2 + b

2) for a, b ↔ R and the fact that x ↔ S
n↗1,

↓Sx↓22 ⇒ 2c21




n∑

i=1

x
2
i +

1

d

(
n∑

i=1

|xi|

2




⇒ 2c21

(
1 +

n

d

)

with probability at least 1≃ c1n
3
e
↗d. Therefore

1

n
↓Sx↓22 ⇒ 2c21


1

n
+

1

d


,



so for c3 > max(1, 4c21 ≃ 1), we have 
1

n
↓Sx↓22 ≃ 1

 ⇒ c3

with probability at least 1≃ c1n
3
e
↗d.

Taking a union bound over N , there exists a constant c4 ⇐ 1 such that

P

max
x↘N


1

n
↓Sx↓22 ≃ 1

 ⇐ c


⇒ 9n · c1n

3
e
↗d

⇒ c4n
3
e
n↗d

.

Therefore, for c = max(c23, c
2
4), we have µ1(S) ⇒ c with probability at least 1≃ cn

3
e
n↗d.

F Support recovery: analysis beyond survival and contamination

In this section, we provide all of the proofs of our support recovery results from Section 4 under the diagonal
covariance assumption. In Section F.1, we introduce our key lemma of this section, then use it to prove
Theorem 14, which characterizes the magnitudes of individual parameters arising from minimum-norm
interpolation. In Section F.2, we provide proofs for the support recovery of spiked and polynomial decay !
when ωω is supported entirely in the top k

ω indices of the spectrum of !. Finally, in Section F.3, we show
that support recovery works even when ωω is supported outside these top k

ω indices — thereby handling
cases wherein k

ω = 0, such as isotropic covariance — under some additional conditions.

We remark that repeated application of the Sherman-Morrison-Woodbury identity induces a linear dependence
on the sparsity parameter t in Lemma 26. This necessitates t ⇓ n

1
2 when the support lies entirely within

the top k
ω indices of the covariance spectrum (Section F.2) and t ⇓ n

1
4 otherwise (Section F.3). It is

conceivable that these bounds could be improved with a finer analysis. A relevant work is Wu and Sahai
(2023), who study a multiclass classification setting where ŷ is a one-hot encoded vector and develop an
improved Hanson-Wright inequality utilizing the sparsity in ŷ in the multiclass settings. Unfortunately, we
cannot directly apply their bound: even though our ωω is sparse, our ŷi have Rademacher distribution and
are generally not sparse.

F.1 Characterization of classification MNI parameters

Before we prove Theorem 14, we prove the following lemma which lower bounds support indices of ω̂ and
upper bounds non-support indices of ω̂.

Lemma 26. Define S̄ := S ↖ [kω] and denote by {ϖ̃j}
d↗|S̄|
j=1 the diagonal entries of the matrix !↗S̄ . Under

Assumptions 2 and 5, for large enough n, we have

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)

 for j ↔ S,

ε̂j
 ⇒ t


c3

ϖjn
1↗2ε

for j ↔ [kω] ∝ S
c
,

ε̂j
 ⇒ t

√√√√
c4n

1+2εϖj(
ϖ̃1r0

(
!↗S̄

))2 for k
ω
< j ⇒ d, j ↔ S

c
,

where ⇀j :=
ϑjφ

ε2
j∑

k↓S ϑkφε2
k

=
a2
j∑

k↓S a2
k

for j ↔ S, with probability at least 1≃ ctde
↗n2ω

.

Proof. We start with the lower bound for the support
ε̂j

 for j ↔ S; this term is related to the survival term



SUj . According to Lemma 7, for any j ↔ S, we have

ε̂j
 = SUj ·

εωj
 = SUj ·

|aj |√
ϖj

⇐

√
2

ς↓!
1
2 ωω↓22

·

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)

 ·
|aj |√
ϖj

=

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)

 .

(33)

Next, we derive the upper bound of
ε̂j

 for j ↔ S
c. This term is related to CN, but note that CN is

the summation of all non-support dimensions. Here, we only need bounds for individual ε̂j for j ↔ S
c.

Since the covariance operator satisfies rkε (!) ⇐ bn, we have two cases such that for j ↔ [kω] ∝ S
c and

k
ω
< j ⇒ d, j ↔ S

c where they may have di!erent covariance eigenvalue magnitude range. Based on the ε̂j

definition in Equation (11), we follow the proof steps in Lemma 7 and get

ε̂j
 =


√
ϖjz

→
j A

↗1
↗s1:st y̌st



=
1√
ϖj

ϖjz
→
j A

↗1
↗s1:st y̌st



=
1√
ϖj

√√√√y̌→
st A

↗1
↗s1:st

(
ϖ
2
jzjz

→
j

)
A↗1

↗s1:st  ︸
:=C̃j

y̌st

⇒
1√
ϖj





ŷ→C̃j ŷ +

t∑

ς=1

√√√√
(

ϖsϑz
→
sϑA

↗1
↗s1:sϑ y̌sϑ→1

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ

2

z→sϑC̃jzsϑ



 , (34)

where we apply the definition of y̌st such that y̌sϑ := y̌sϑ→1 ≃
ϑsϑ

z↑
sϑ

A→1
→s1:sϑ

y̌sϑ→1

1+ϑsϑ
z↑
sϑ

A→1
→s1:sϑ

zsϑ

zsϑ and y̌s0 = ŷ for ω ↔ [t].

For the inequality, we apply the triangle inequality such that


(x≃ y)→ M (x≃ y) ⇒
⇔

x→Mx+
√

y→My

a total of t times. Next, we discuss the upper bounds for j ↔ [kω] ∝ S
c and k

ω
< j ⇒ d, j ↔ S

c respectively.
For j ↔ [kω] ∝ S

c, by the Sherman-Morrison-Woodbury identity, we have ŷ→C̃j ŷ as

ŷ→C̃jŷ = ŷ→A↗1
↗s1:st

(
ϖ
2
jzjz

→
j

)
A↗1

↗s1:st ŷ =
ϖ
2
j ŷ

→A↗1
↗(s1:st)⇑(j)zjz

→
j A

↗1
↗(s1:st)⇑(j)ŷ

(
1 + ϖjz→j A

↗1
↗(s1:st)⇑(j)zj

)2 ⇒

(
z→j A

↗1
↗(s1:st)⇑(j)ŷ

)2

(
z→j A

↗1
↗(s1:st)⇑(j)zj

)2 .

Next, for j ↔ [kω]∝S
c, by the Hanson-Wright inequality (Lemma 32), we have the upper bound for


ŷ→C̃j ŷ

as


ŷ→C̃j ŷ ⇒

√√√√√√
c21

A↗1
↗(s1:st)⇑(j)


2

2
· n1+2ε

(
Tr

(
A↗1

↗(s1:st)⇑(j)

)
≃ c1

A↗1
↗(s1:st)⇑(j)


2
· n

1
2+ε

)2

⇒

√√√√√√
c21

A↗1
↗(s1:st)⇑[kε]


2

2
· n1+2ε

(
Tr

(
A↗1

↗(s1:st)⇑(j)

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)2 , (35)

where in the second inequality, we use the fact that A↗1
↗(s1:st)⇑[kε] △ A↗1

↗(s1:st)⇑(j) for all j ↔ [kω]. Next, we



use Lemma 36 to get the lower bound for the trace term in the denominator, and get

(35) ⇒

√√√√√√
c21

A↗1
↗(s1:st)⇑[kε]


2

2
· n1+2ε

((
1≃ c

n

)kε↗1
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

)2

=

√√√√√√

1
(
(
1≃ c

n

)kε↗1 Tr
(
A→1

→(s1:st)↔[kε]

)

c1
∥∥∥A→1

→(s1:st)↔[kε]

∥∥∥
2
·n

1
2
+ω

≃ 1

2 (36)

Finally, we apply Lemma 35 to show that eigenvalues in A↗1
↗(s1:st)⇑[kε] are identical up to a constant.

(36) ⇒

√√√√√
1

(
1≃ c

n

)kε↗1 n
1
2
→ω

c2
≃ 1

2 ⇒


c3

n1↗2ε
,

Since zsϑ is independent to C̃j for j ↔ [kω] ∝ S
c and ω ↔ [kω], following the same procedure, we can show

z→sϑC̃jzsϑ is upper bounded in the same rate. As a result, from Equation (34) we have

ε̂j
 ⇒

1√
ϖj

(
1 +

t∑

ς=1


ϖsϑz

→
sϑA

↗1
↗s1:sϑ y̌sϑ→1

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ




c3

n1↗2ε

⇒
1√
ϖj

(1 + tc)


c3

n1↗2ε
,

where we apply Lemma 17 in the last inequality. Next, starting from Equation (34) again, we show the upper
bound of

ε̂j
 for k

ω
< j ⇒ d, j ↔ S

c. By the Sherman-Morrison-Woodbury identity, we have ŷ→C̃j ŷ as

ŷ→C̃j ŷ =


ŷ→A↗1

↗s1:st

(
ϖ2
jzjz

→
j

)
A↗1

↗s1:st ŷ

=

√√√√√
ϖ2
j ŷ

→A↗1
↗(s1:st)⇑(j)zjz

→
j A

↗1
↗(s1:st)⇑(j)ŷ

(
1 + ϖjz→j A

↗1
↗(s1:st)⇑(j)zj

)2

⇒


ϖ2
j ŷ

→A↗1
↗(s1:st)⇑(j)zjz

→
j A

↗1
↗(s1:st)⇑(j)ŷ. (37)

Next, we apply the Hanson-Wright inequality (Lemma 32) to obtain

(37) ⇒


ϖ2
j

(
2c1

A↗1
↗(s1:st)⇑(j)


2
· n

1
2+ε

)2

⇒


ϖ2
j

(
2c1

A↗1
↗(s1:st)⇑(j)⇑[kε]


2
· n

1
2+ε

)2

=

√√√√
ϖ2
j

(
2c1 · n

1
2+ε

µn

(
A↗(s1:st)⇑(j)⇑[kε]

)
2

, (38)

where in the second inequality, we use the property that A↗1
↗(s1:st)⇑(j) ▽ A↗1

↗(s1:st)⇑(j)⇑[kε] for k
ω
< j ⇒

d, j ↔ S
c. Finally, we apply Lemma 34 to show that !↗(s1:st)⇑(j)⇑[kε] satisfies r0

(
!↗(s1:st)⇑(j)⇑[kε]

)
⇐ bn.

Therefore, by Lemma 10 in Bartlett et al. (2020), we have

µn

(
A↗(s1:st)⇑(j)⇑[kε]

)
⇐

1

c




∑

k=kε+1,k↘Sc,k ⇒=j

ϖk



 .



Applying the inequality to Equation (38), we get

(38) ⇒

√√√√√√ϖ2
j




c2 · n

1+2ε

(∑
k=kε+1,k↘Sc,k ⇒=j ϖk

)2



. (39)

Next, we want to upper bound 1∑
k=kε+1,k↓Sc,k ↗=j ϑk

by c∑
k=kε+1,k↓Sc ϑk

, and we have

1∑
k=kε+1,k↘Sc,k ⇒=j ϖk

=

(
1∑

k=kε+1,k↘Sc ϖk

( ∑
k=kε+1,k↘Sc ϖk∑

k=kε+1,k↘Sc,k ⇒=j ϖk



=

(
1∑

k=kε+1,k↘Sc ϖk

(
1 +

ϖj∑
k=kε+1,k↘Sc,k ⇒=j ϖk


(40)

According to the e!ective rank of !, for k
ω
< j ⇒ d, j ↔ S

c, we have
∑

k=kε+1,k↘Sc ϖk ⇐ bϖkε+1n ⇐ bϖjn.
By deducting ϖj on both side, we get

∑

k=kε+1,k↘Sc,k ⇒=j

ϖk ⇐ bϖjn≃ ϖj .

Therefore, we can write

(40) ⇒

(
1∑

k=kε+1,k↘Sc ϖk


1 +

ϖj

bϖjn≃ ϖj


=

(
1∑

k=kε+1,k↘Sc ϖk


1 +

1

bn≃ 1


.

Substituting this inequality into Equation (39), we finish the upper bound for

ŷ→C̃j ŷ. Follow this procedure,

we can show

z→sϑC̃jzsϑ is upper bounded by the same term. As a result, we have for k

ω
< j ⇒ d, j ↔ S

c,

ε̂j
 ⇒

1√
ϖj

(
1 +

t∑

ς=1


ϖsϑz

→
sϑA

↗1
↗s1:sϑ y̌sϑ→1

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ



√√√√ϖ2
j

c2n
1+2ε

(∑
k=kε+1,k↘Sc ϖk

)2

⇒ (1 + tc)

√√√√
c2n

1+2ε

(∑
k=kε+1,k↘Sc ϖk

)2 ,

where we apply Lemma 17 in the last inequality. This completes the proof of the lemma.

Equipped with Lemma 26, we can now prove Theorem 14. While it restricts to the case where ωω is supported
only in the top k

ω indices of the covariance spectrum, we handle support recovery outside the top k
ω indices

in Section F.3.

Proof. (Theorem 14)
We show that as long as one of the following conditions hold, the support recovery is guaranteed: (1) t is
known and

ϖj ⇓
ϖq · n

1↗2ε

t2
and ϖj ⇓

(
ϖ̃1r0

(
!↗[kε]

))2

t2 · (n1+2ε) · ϖς

hold for all j ↔ S, q ↔ S
c
∝ [kω], ω > k

ω or (2) ! is known. To start with, we first show the support recovery
under condition (1). By assumption that ωω is supported only in the top k

ω indices of the covariance spectrum,



we have j ↔ [kω] for j ↔ S. According to Lemma 26, we have the lower bound of ε̂ as

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)

 =

√
2⇀j

ϖjς

1
c1ϑ̃1r0(!→S̄)

ϑjn
+ c1c2

⇐

√
2⇀j

ϖjς

1
c1ϑ̃1r0(!→S̄)
ϑ̃1r0(!→S̄)

+ c1c2

=
c3√
ϖj

, (41)

where we apply ϖ̃1r0

(
!↗S̄

)
=

∑d
k=kε+1,k↘Sc ϖk ⇒ ϖkεn ⇒ ϖjn for j ↔ [kω] by the definition of kω. As a result,

support is lower bounded in the rate of 1⇔
ϑj

. Next, for non-support indices j ↔ S
c
∝ [kω], by Lemma 26, we

have the upper bound by
ε̂j

 ⇒ t


c

ϖjn
1↗2ε

. (42)

Therefore, for j ↔ S
c
∝ [kω], non-support is upper bounded in the rate of 1⇔

ϑj
·

(
t⇔

n1→2ω

)
. Lastly, for

non-support indices j > k
ω, by Lemma 26, we have the upper bound by

ε̂j
 ⇒ t

√√√√
cn1+2εϖj(

ϖ̃1r0

(
!↗S̄

))2 . (43)

Therefore, for j > k
ω, non-support is upper bounded in the rate of 1⇔

ϑj
·


t2n1+2ωϑ2

j

(ϑ̃1r0(!→S̄))
2 . As a result, we

need the following conditions to guarantee the lower bound of the support indices is larger than the upper
bound of the non-support indices:

1√
ϖj

↗
t

⇔
ϖk · n1↗2ε

¬
ϖk · n

1↗2ε

t2
↗ ϖj

1√
ϖj

↗ t

√√√√
n1+2εϖς(

ϖ̃1r0

(
!↗S̄

))2 ¬

(
ϖ̃1r0

(
!↗S̄

))2

t2 · (n1+2ε) · ϖς
↗ ϖj

for all j ↔ S and k ↔ S
C
∝ [kω] and ω > k

ω. In this way, since we also know t, we can achieve support recovery
by choosing the largest t indices of ω̂.

On the other hand, for condition (2), if we have access to all the eigenvalues {ϖj}
d
j=1 of !, we can determine

whether ε̂j is a support by checking if
ε̂j

 = c⇔
ϑj

for some constant c > 0 according to the support lower

bound in Equation (41). For non-support rate, we can further upper bound Equation (43) by t


c

ϑjn1→2ω since

t

√√√√
cn1+2εϖj(

ϖ̃1r0

(
!↗S̄

))2 ⇒ t

√
cn1+2εϖj

(bϖjn)
2 =

c1t√
ϖjn

1↗2ε
, (44)

where we apply ϖ̃1r0

(
!↗S̄

)
=

∑d
k=kε+1,k↘Sc ϖk ⇐ bϖjn for j > k

ω. As a result, according to the non-support

upper bound in Equation (42) and Equation (44), ε̂j can be classified as non-support if
ε̂j

 = o


t⇔

ϑj ·n1→2ω


,

which decays at a rate proportional to t⇔
n1→2ω

. This completes the proof of the theorem.

F.2 Spiked and polynomial decay covariance: support inside the top k
ω

indices

In this section, we characterize di!erent covariance matrices wherein ωω is supported only in the top k
ω indices

of the covariance spectrum and we demonstrate the support identification guarantee (Theorem 14) is satisfied.



Corollary 27 demonstrates the characterization in spiked covariance defined in Definition 3, and Corollary 28
and Corollary 29 show the characterization in polynomial decay covariance defined in Definition 4. Note that
we do not allow the case k

ω = 0 (e.g., spiked covariance with q > 1≃ r) in this section. The analysis closely
follows Lemmas 32 and 34 of Muthukumar et al. (2021).

Corollary 27. Under Assumptions 2 and 5 with t ⇓ n
1
2↗ε and spiked covariance matrix (Definition 3), we

assume support are all in the top k
ω indices of the covariance spectrum. By substituting spiked parameters in

Definition 3, for q < (1≃ r), we have

ε̂j







↗ n
→p+q+r

2 for j ↔ S

⇓ n
→p+q+r

2 for j ↔ [kω] ∝ S
c

⇓ n
→2p+2

2 for k
ω
< j ⇒ d

.

Therefore, if p > 2≃ q ≃ r, we can pick a threshold between bounds to distinguish support and non-support
such as T = n

→p+q+r
2 .

Proof. Recall the spiked covariance in Definition 3 such that

ϖj :=

{
ad
s j ↔ [s]
(1↗a)d
d↗s otherwise.

First, we need to make sure the conditions in Theorem 14 scenario (1) are satisfied such that

ϖj ⇓
ϖq · n

1↗2ε

t2
,

ϖj ⇓

(
ϖ̃1r0

(
!↗[kε]

))2

t2 · (n1+2ε) · ϖς
,

for all j ↔ S, q ↔ S
c
∝ [kω], and ω > k

ω. For the first condition, we show it holds because

ϖq · n
1↗2ε

t2
=

ad
s · n

1↗2ε

t2
↗

ad

s
= ϖj ,

since ϖj = ϖq for j ↔ S, q ↔ S
c
∝ [kω], and t ⇓ n

1
2↗ε. For the second condition, we can show the right-hand

side as

(
ϖ̃1r0

(
!↗[kε]

))2

t2 · (n1+2ε) · ϖς
=

(
(d≃ s) · (1↗a)d

(d↗s)

)2

t2 · (n1+2ε) · (1↗a)d
(d↗s)

=
(1≃ a) d · (d≃ s) · n1↗2ε

t2 · n2
>

1

c
n
2p↗2

for all j ↔ S, q ↔ S
c
∝ [kω], and ω > k

ω. On the left-hand side, we have

ϖj =
ad

s
= n

p↗q↗r
.

Since the corollary assumes p > 2≃ q ≃ r, the second condition holds. Next, we show the precise threshold



value by using Lemma 26. We have the lower bound for support indices for j ↔ S as

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)



=


2⇀j

ς


s

ad





ad
s


n

c1(d↗|S̄|) (1→a)d
(d→s)



1 + ad
s


c2n

(d↗|S̄|) (1→a)d
(d→s)







=


2⇀j

ς
n

→p+q+r
2

n
p↗q↗r

(
n

c1(np↗|S̄|) (1→n→q)np

(np→nr)



1 + np↗q↗r

(
c2n

(np↗|S̄|) (1→n→q)np

(np→nr)



⇐


2⇀j

ς
n

→p+q+r
2 ·

1
c3

· n
(1↗r)↗q

1 + c4n
(1↗r)↗q

,

where we substitute ϖj =
ad
s = n

p↗q↗r and ϖ̃1r0

(
!↗S̄

)
=

(
d≃ |S̄|

) (1↗a)d
d↗s . When q < (1≃ r), the n

(1↗r)↗q

term dominates in the fraction part. Hence, we have

ε̂j
 ⇐


2⇀j

ς
n

→p+q+r
2 · c10

(
1 + cn

q↗(1↗r)
)↗1

.

For non-support upper bound, we need to consider indices in j ↔ [kω] ∝ S
c and indices in j > k

ω. According
to Lemma 26, for j ↔ [kω] ∝ S

c, we have ϖj =
ad
s = n

p↗q↗r and we get
ε̂j

 ⇒ t


c

ϖjn
1↗2ε

⇒ c1tn
→p+q+r→1+2ω

2 < c1n
→p+q+r

2 ,

since t ⇓ n
1
2↗ε. On the other hand, for j > k

ω, according to Lemma 26, we substitute ϖj = (1↗a)d
d↗s =

(1↗n→q)·np

np↗nr and ϖ̃1r0

(
!↗S̄

)
=

(
d≃ |S̄|

) (1↗a)d
d↗s and we have

ε̂j
 ⇒ t

√√√√√
c

ϖj

n1+2εϖ2
j(

ϖ̃1r0

(
!↗S̄

))2

= t

√√√√√√
c (d≃ s)

(1≃ a) d




n1+2ε

(
(1↗a)d
d↗s

)2

((
d≃ |S̄|

) (1↗a)d
d↗s

)2





= t

√√√√ c (np ≃ nr)

(1≃ n↗q) · np

(
n1+2ε

(
np ≃ |S̄|

)2



⇒ c1tn
→2p+1+2ω

2

< c1n
→2p+2

2 ,

since t ⇓ n
1
2↗ε. As a result, since we assume p > 2≃ q ≃ r, we have support lower bound larger than the

non-support upper bound, and the support identification is guaranteed.

Corollary 28. Under Assumptions 2 and 5 with t ⇓ n
1
2↗ε and polynomial decay covariance in Definition 4

with u = 1, v = 2, we assume support are all in the top k
ω indices of the covariance spectrum. By substituting



ϖj =
1

j·ln2(j+1) , we have

ε̂j







↗
1⇔
ϑj

for j ↔ S

⇓
t⇔

ϑj ·n1→2ω
for j ↔ [kω] ∝ S

c

⇓
t⇔

ϑj ·n1→2ω
for k

ω
< j ⇒ d

.

If we get access to all {ϖj}
d
j=1, we can therefore distinguish support and non-support by examining each ε̂j

has order ⇁


1⇔
ϑj


or decay in a rate of o


t⇔

ϑj ·n1→2ω


.

Proof. Since the conditions in the first scenario in Theorem 14 are not satisfied, we need to assume ! is
known. Next, we show the rate of supports and non-supports based on Lemma 26. We have

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)

 , for j ↔ S,

ε̂j
 ⇒ t


c

ϖjn
1↗2ε

, for j ↔ [kω] ∝ S
c
,

ε̂j
 ⇒ t

√√√√
n1+2εϖj(

ϖ̃1r0

(
!↗S̄

))2 , for k
ω
< j ⇒ d, j ↔ S

c
.

For polynomial decay covariance, we have ϖj =
1

j·ln2(j+1) for j ↔ [d], and also
∑↓

j=1 ϖj =
∑↓

j=1
1

j·ln2(j+1) =

O (1). Therefore, for j ↔ S, we have

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)

 =

√
2⇀j

ϖjς

1
c1ϑ̃1r0(!→S̄)

ϑjn
+ c1c2

⇐

√
2⇀j

ϖjς

1
c1ϑ̃1r0(!→S̄)
ϑ̃1r0(!→S̄)

+ c1c2

=
c3√
ϖj

where we apply ϖ̃1r0

(
!↗S̄

)
=

∑d
j=kε+1 ϖj ⇒ ϖkεn ⇒ ϖjn for j ↔ [kω] by the definition of kω. For non-support,

j ↔ [kω] ∝ S
c, we have

ε̂j
 ⇒ t


c

ϖjn
1↗2ε

.

For j > k
ω
, j ↔ S

c, we have

ε̂j
 ⇒ t

√√√√√
c

ϖj

n1+2εϖ2
j(

ϖ̃1r0(!↗S̄)
)2 ⇒ t

√
c

ϖj

n1+2εϖ2
j

(bϖjn)
2 = t


c1

ϖjn
1↗2ε

,

where we apply ϖ̃1r0

(
!↗S̄

)
=

∑d
j=kε+1 ϖj ⇐ bϖjn for j > k

ω.

Corollary 29. Under Assumptions 2 and 5 with t ⇓ n
1
2↗ε and polynomial decay covariance matrix

(Definition 4) with u ↔ (0, 1), v = 0, we assume support are all in the top k
ω indices of the covariance

spectrum. By substituting d = n
p and ϖj =

1
ju , for p · (1≃ u) < 1, we have

ε̂j







↗
1⇔
ϑj

for j ↔ S

⇓
t⇔

ϑj ·n1→2ω
for j ↔ [kω] ∝ S

c

⇓
t⇔

ϑj ·n1→2ω
for k

ω
< j ⇒ d

.



If we get access to all {ϖj}
d
j=1, we can therefore distinguish support and non-support by examining whether

each ε̂j has order ⇁


1⇔
ϑj


or decays in a rate of o


t⇔

ϑj ·n1→2ω


.

Proof. Since the conditions in the first scenario in Theorem 14 are not satisfied, we need to assume ! is
known. Next, we show the rate of supports and non-supports based on Lemma 26. We have

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)

 , for j ↔ S,

ε̂j
 ⇒ t


c

ϖjn
1↗2ε

, for j ↔ [kω] ∝ S
c
,

ε̂j
 ⇒ t

√√√√√
c

ϖj

n1+2εϖ2
j(

ϖ̃1r0

(
!↗S̄

))2 , for k
ω
< j ⇒ d, j ↔ S

c
.

For polynomial decay covariance, we have ϖj =
1
ju for j ↔ [d]. We have the lower bound for support indices

for j ↔ S as

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)



=
1√
ϖj


2⇀j

ς




1
ju

(
n

c1
∑

k>kε,k↓Sc
1

ku

)

1 + 1
ju

(
c2n∑

k>kε,k↓Sc
1

ku

)





=
1√
ϖj


2⇀j

ς




1

c1
∑

k>kε,k↓Sc
1

ku

1
ju n

+ c1c2





⇐
1√
ϖj


2⇀j

ς




1

c1
∑

k>kε,k↓Sc
1

ku∑
k>kε,k↓Sc

1
ku

+ c1c2





=
c3√
ϖj

,

where we substitute ϖj = 1
ju and ϖ̃1r0

(
!↗S̄

)
=

∑
j>kε,j↘Sc

1
ju , and by the definition of k

ω, we apply
1
jun ⇐

∑
k>kε,k↘Sc

1
ku for j ↔ [kω] in the last inequality. For non-support, j ↔ [kω] ∝ S

c, we have

ε̂j
 ⇒ t


c

ϖjn
1↗2ε

.

For j > k
ω
, j ↔ S

c, we have

ε̂j
 ⇒ t

√√√√√
c

ϖj

n1+2εϖ2
j(

ϖ̃1r0(!↗S̄)
)2 ⇒ t

√
c

ϖj

n1+2εϖ2
j

(bϖjn)
2 = t


c1

ϖjn
1↗2ε

,

where we apply ϖ̃1r0

(
!↗S̄

)
=

∑d
k=kε+1,k↘Sc ϖk ⇐ bϖjn for j > k

ω.



F.3 Spiked and polynomial decay covariance: support outside the top k
ω

indices

In this section, we show corresponding results to Corollary 27 and Corollary 29 in the case where ωω is
supported outside the top k

ω indices of the covariance spectrum. Note that this is necessary to handle
scenarios where k

ω = 0, including spiked covariance with q > 1 ≃ r (Corollary 30) and polynomial decay
covariance with u ↔ [0, 1), v = 0 and p · (1≃ u) > 1 (Corollary 31). We will see that the results in this section
require t ⇓ n

1
4↗ε and stronger conditions in p than those in Section F.2.

Corollary 30. Under Assumptions 2 and 5 with t ⇓ n
1
4↗ε and spiked covariance matrix (Definition 3), for

q < (1≃ r), if we have max{1.5≃ q ≃ r, 1} < p < 2.5≃ q ≃ r, we can recover support outside of the top k
ω

indices of the covariance spectrum such that

ε̂j







↗ n
→p+q+r

2 for j ↔ [kω] ∝ S

↗ n
→2p+2

2 for j > k
ω
, j ↔ S

⇓ n
→p+q+r→0.5

2 for j ↔ [kω] ∝ S
c

⇓ n
→2p+1.5

2 for k
ω
< j ⇒ d, j ↔ S

c

.

Therefore, we can pick a threshold between bounds to distinguish support and non-support such as T =
min{n

→p+q+r
2 , n

→2p+2
2 }. On the other hand, for q > (1≃ r) and max{≃0.5 + q + r, 1} < p < 0.5 + q + r, we

have

ε̂j







↗ n
→p+(1→r)→q+1

2 for j ↔ [s] ∝ S

↗ n
→2p+2

2 for j > s, j ↔ S

⇓ n
→p+(1→r)→q+0.5

2 for j ↔ [s] ∝ S
c

⇓ n
→2p+1.5

2 for s < j ⇒ d, j ↔ S
c

.

Therefore, we can pick a threshold between bounds to distinguish support and non-support such as T =

min{n
→p+(1→r)→q+1

2 , n
→2p+2

2 }.

Proof. In the first part, for q < (1 ≃ r), we already showed the support lower bound for j ↔ [kω] and
non-support upper bound for j ↔ [kω] ∝ S

c and k
ω
< j ⇒ d, j ↔ S

c in Corollary 27. Note that we apply a
di!erent upper bound of t for non-support upper bound and get di!erent rates. We still need to show the
support lower bound for j > k

ω
, j ↔ S. Hence, for j > k

ω
, j ↔ S, according to Lemma 26, by substituting

ϖj =
(1↗a)d
d↗s =

(1↗n→q)np

np↗nr and ϖ̃1r0

(
!↗S̄

)
=

(
d≃ |S̄|

) (1↗a)d
d↗s , we have

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj


n

c1ϑ̃1r0(!→S̄)



1 + ϖj


c2n

ϑ̃1r0(!→S̄)



=


2⇀j

ς

√
d≃ s

(1≃ a) d





(1↗a)d
d↗s


n

c1(d↗|S̄|) (1→a)d
(d→s)



1 + (1↗a)d
d↗s


c2n

(d↗|S̄|) (1→a)d
(d→s)







=


2⇀j

ς


np ≃ nr

(1≃ n↗q)np





n
c1(np↗|S̄|)

1 +


c2n

(np↗|S̄|)







⇐


2⇀j

ς
c3n

2→2p
2 .

As a result, to recover support outside of top k
ω indices of the covariance spectrum, we need that the lower

bound of the support is larger than the upper bound of non-support. Hence, we need the following conditions

n
→2p+2

2 ↗ n
→p+q+r→0.5

2 ¬ 2.5≃ q ≃ r > p,

n
→p+q+r

2 ↗ n
→2p+1.5

2 ¬ p > 1.5≃ q ≃ r.



The proof of the first part is done.

For the second part, we have the support lower bound from Corollary 27 as

ε̂j
 ⇐


2⇀j

ς
n

→p+q+r
2 ·

1
c8

· n
(1↗r)↗q

1 + c9n
(1↗r)↗q

.

Since q > (1≃ r), the numerator part decays to zero as

ε̂j
 ⇐


2⇀j

ς
cn

→p+(1→r)→q+1
2 .

Moreover, we have r0 (!) > bn and k
ω = 0, therefore; for all j ↔ S

c, according to Lemma 26, we have the
same non-support upper bound as

ε̂j
 ⇒ t

√√√√√
c

ϖj

n1+2εϖ2
j(

ϖ̃1r0

(
!↗S̄

))2 .

Next, we substitute di!erent values of ϖj for j ↔ [s] and j > s. We also assume there are t1 support in the
top s indices of the covariance spectrum, where t1 ⇒ min{s, t}. For j ↔ [s] ∝ S

c, we have

ε̂j
 ⇒ t

√√√√√
c

ϖj

n1+2εϖ2
j(

ϖ̃1r0

(
!↗S̄

))2

= t

√√√√√√c
s

ad




n1+2ε

(
ad
s

)2
(
(s≃ t1)

ad
s + (d≃ s≃ (t≃ t1))

(1↗a)d
d↗s

)2





= t

√√√√√√cn↗p+q+r




n1+2ε (np↗q↗r)2

(
(nr ≃ t1)np↗q↗r + (np ≃ nr ≃ (t≃ t1))

(1↗n→q)np

np↗nr

)2





⇒ t

√√√√c1n
↗p+q+r

(
n1+2ε (np↗q↗r)2

n2p



= c2tn
→p+(1→r)→q+2ω

2

< c2tn
→p+(1→r)→q+0.5

2 ,

where we substitute t ⇓ n
1
4↗ε. For j > s, j ↔ S

c, we have the same upper bound as q < (1 ≃ r) case in
Corollary 27 such that

ε̂j
 ⇒ c1tn

→2p+1+2ω
2 < c1n

→2p+1.5
2 ,

where we apply t ⇓ n
1
4↗ε. To recover support outside of top k

ω indices of the covariance spectrum, we need
that the lower bound of the support be larger than the upper bound of non-support. Hence, we need the
following conditions

n
→2p+2

2 ↗ n
→p+(1→r)→q+0.5

2 ¬ 0.5 + q + r > p,

n
→p+(1→r)→q+1

2 ↗ n
→2p+1.5

2 ¬ p > ≃0.5 + q + r.

The proof is done.



Corollary 31. Under Assumptions 2 and 5 with t ⇓ n
1
4↗ε and polynomial decay covariance in Definition 4

with u ↔ [0, 1) and v = 0, for p · (1≃ u) > 1, by substituting ϖj = j
↗u, we have

ε̂j


{
↗ n · d

u→2
2 for j ↔ S

⇓ n
1.5
2 · d

2u→2
2 for j ↔ S

c
.

Therefore, if p · (1≃ u) > max{1, p≃ 1
2}, we can pick T = n · d

u→2
2 as threshold to distinguish support and

non-support. Note that when u = 0, ! degenerates to isotropic covariance.

Proof. First, we already showed that polynomial decay covariance (Definition 4) with u ↔ [0, 1), v = 0 and
p · (1≃ u) > 1 implies k

ω = 0 in Corollary 18. Next, we show the lower bound for support indices j ↔ S and
upper bound for non-support indices j ↔ S

c. Based on Lemma 26, we have

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj

(
n

c1ϑ̃1r0(!→S)

)

1 + ϖj

(
c2n

ϑ̃1r0(!→S)

) , for j ↔ S

ε̂j
 ⇒ t

√√√√√
c

ϖj

n1+2εϖ2
j(

ϖ̃1r0 (!↗S)
)2 , for j ↔ S

c
,

where !↗S has k
ω = 0 still by Lemma 34. Therefore, for j ↔ S, we have

ε̂j
 ⇐

√
2⇀j

ϖjς

ϖj

(
n

c1ϑ̃1r0(!→S)

)

1 + ϖj

(
c2n

ϑ̃1r0(!→S)

) =

√
2⇀j

ϖjς

ϖjn

c1ϖ̃1r0 (!↗S) + c1c2ϖjn
=


2⇀j

ς

√
ϖjn

c1
∑d

k=1,k↘Sc ϖk + c1c2ϖjn
.

Since
∑d

k=1,k↘Sc ϖk ⇒
∑d

k=1 ϖk and ϖjn ⇒
∑d

k=1 ϖk, we can upper bound the denominator by
∑d

k=1 ϖk and
get


2⇀j

ς

√
ϖjn

c1
∑d

k=1,k↘Sc ϖk + c1c2ϖjn
⇐


2⇀j

ς

√
ϖjn

c3
∑d

k=1 ϖk

⇐


2⇀j

ς

⇔
ϖdn

c3d
1↗u

= c4n · d
u→2
2 ,

where we apply equation (18a) in the last inequality. For non-support, j ↔ S
c, we have

ε̂j
 ⇒ t

√√√√√
c

ϖj

n1+2εϖ2
j(

ϖ̃1r0(!↗S)
)2 = t

√√√√c
n1+2εϖj(∑d

k=1,k↘Sc ϖk

)2 ⇒ t

√

c
n1+2εϖ1

((d≃ t)ϖd)
2 = t

√
c · n1+2εd2u

(d≃ t)2
< c1n

1.5
2 d

u↗1
,

where we apply ϖ1 ⇐ ϖj for all j ↔ [d] and
∑d

k=1,k↘Sc ϖk ⇐ (d≃ t)ϖd. In the last inequality, we apply
t ⇓ n

1
4↗ε. As a result, we need

n · d
u→2
2 ↗ n

1.5
2 d

u↗1
¬ n

1
2 ↗ d

u
¬ n

1
2 ↗ n

p·u
¬

1

2
> p · u

to ensure the lower bound for support indices j ↔ S is larger than the upper bound for non-support indices
j ↔ S

c. Ultimately, we can combine the condition p · (1≃ u) > 1 and 1
2 > p ·u into p · (1≃ u) > max{1, p≃ 1

2}.
The proof is done.

G Survival and contamination auxiliary lemmas

In this section, we provide proofs of Lemmas 15, 16, and 17 from Appendix B. While these are essentially
extensions of results of Wang et al. (2023), they are not entirely straightforward due to our analysis of
t-sparsity. For example, in Lemma 15, Wang et al. (2023) analyze E

[
sign (z) z→

]
=


2
ϖI where z is an



independent standard Gaussian vector representing the regression labels. On the other hand, given a support
set S, we must analyze the more complicated term E

[
sign

(∑
j↘S ajzj

)
z→s1

]
; this leads to an interesting

quantification of the relative contribution of each index of ωω, which we denote by ⇀.

Proof. (Lemma 15)
According to the definition of Qst in Equation (2), we have

Qst = z→s1A
↗1
↗s1:st ŷ = z→s1A

↗1
↗s1:st sign




∑

j↘S
ajzj





Since zs1 and sign
(∑

j↘S ajzj
)

are independent to A↗1
↗s1:st , by applying the parallelogram rule and the

Hanson-Wright inequality in Lemma 32, we get

Qst ⇒ E
[
z→s1A

↗1
↗s1:st ŷ

]
+ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

,

Qst ⇐ E
[
z→s1A

↗1
↗s1:st ŷ

]
≃ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

,

with probability at least 1≃ 2e↗n2ω

. Next, we calculate the value of E
[
z→s1A

↗1
↗s1:st ŷ

]
.

E
[
z→s1A

↗1
↗s1:st ŷ

]
= Tr

(
A↗1

↗s1:stE
[
ŷz→s1

])

= Tr



A↗1
↗s1:stE



sign




∑

j↘S
ajzj,1



 zs1,1



 · I





= E



sign




∑

j↘S
ajzj,1



 zs1,1



Tr
(
A↗1

↗s1:st

)
.

We now derive the value of E
[
sign

(∑
j↘S ajzj,1

)
zs1,1

]
. We denote p := zs1,1 → N (0, 1) and q :=

∑
j↘S,j ⇒=s1

ajzj,1 → N (0,φ2
q) where φ

2
q :=

∑
j↘S,j ⇒=s1

a
2
j . We then have

E



sign




∑

j↘S
ajzj,1



 zs1,1



 = E



sign



as1zs1,1 +
∑

j↘S,j ⇒=s1

ajzj,1



 zs1,1





= Ep [Eq [sign (as1p + q)] · p]
= Ep [(1≃ !q (≃as1p)≃ !q (≃as1p)) · p]
= 2Ep [!q (as1p) · p] ,



where !q is the cdf of q and we use the property that 1≃ !q (≃as1p) = !q (as1p). Then, we have

Ep [!q (as1p) · p] = Ep
[
Eq

[
1q≃as1p|p

]
· p

]

= Ep,q
[
1q≃as1p · p

]

= sign (as1)

∫ +↓

↗↓

1
2ςφ2

q

e

→q2

2ϖ2
q

(∫ +↓

q
|as1 |

1
⇔
2ς

pe
→p2

2 dp


dq

= sign (as1)

∫ +↓

↗↓

1
2ςφ2

q

e

→q2

2ϖ2
q

(
1

⇔
2ς

e

→q2

2a2
s1


dq

=
sign (as1)

⇔
2ς

∫ +↓

↗↓

1
2ςφ2

q

e

→(∑j↓S a2
j)q2

2ϖ2
qa2

s1 dq

=
as1

2ς
(∑

j↘S a2j

)

= sign (as1)


⇀s1

2ς
,

where the second equality uses the law of total expectation, and we substitute ⇀sϑ :=
ϑsϑ

φε2
sϑ∑

j↓S ϑjφε2
j

=
a2
sϑ∑

j↓S a2
j

in the last equality. The proof is done by substituting the expectation values in the Hanson-Wright
inequalities.

Proof. (Lemma 16)
Recall the definition of Qsϑ in Equation (2) such that Qsϑ := z→s1A

↗1
↗s1:sϑ ŷ for 1 ⇒ ω ⇒ t. Therefore, we can

write Qs1 as

Qs1 = z→s1A
↗1
↗s1:s1 ŷ

= z→s1
(
A↗s1:s2 + ϖs2zs2z

→
s2

)↗1
ŷ

= z→s1

(
A↗1

↗s1:s2 ≃
ϖs2A

↗1
↗s1:s2zs2z

→
s2A

↗1
↗s1:s2

1 + ϖs2z
→
s2A

↗1
↗s1:s2zs2


ŷ

= z→s1

(
A↗1

↗s1:st ≃

t∑

ς=2

ϖsϑA
↗1
↗s1:sϑzsϑz

→
sϑA

↗1
↗s1:sϑ

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ


ŷ

= Qst ≃

t∑

ς=2

ϖsϑz
→
s1A

↗1
↗s1:sϑzsϑz

→
sϑA

↗1
↗s1:sϑ ŷ

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ

= Qst

(
1≃

t∑

ς=2

ϖsϑz
→
s1A

↗1
↗s1:sϑzsϑz

→
sϑA

↗1
↗s1:sϑ ŷ

Qst

(
1 + ϖsϑz

→
sϑA

↗1
↗s1:sϑzsϑ

)


= Qst

(
1≃ sign (as1)

t∑

ς=2

ϖsϑz
→
s1A

↗1
↗s1:sϑzsϑz

→
sϑA

↗1
↗s1:sϑ ŷ

|Qst |
(
1 + ϖsϑz

→
sϑA

↗1
↗s1:sϑzsϑ

)


where we apply the Sherman-Morrison-Woodbury identity recursively over ω = 2, . . . , t. In the last equality,
we use that fact that the sign of Qst is controlled by as1 for large enough n from Lemma 15. According to



the sign of Qst , we have the upper and lower bound of Qs1 by

Qs1 ⇒ Qst

(
1 + sign (as1)



t∑

ς=2

ϖsϑz
→
s1A

↗1
↗s1:sϑzsϑz

→
sϑA

↗1
↗s1:sϑ ŷ

|Qst |
(
1 + ϖsϑz

→
sϑA

↗1
↗s1:sϑzsϑ

)




Qs1 ⇐ Qst

(
1≃ sign (as1)



t∑

ς=2

ϖsϑz
→
s1A

↗1
↗s1:sϑzsϑz

→
sϑA

↗1
↗s1:sϑ ŷ

|Qst |
(
1 + ϖsϑz

→
sϑA

↗1
↗s1:sϑzsϑ

)



.

Hence, it remains the upper bound the absolute value term above. We then have


t∑

ς=2

ϖsϑz
→
s1A

↗1
↗s1:sϑzsϑz

→
sϑA

↗1
↗s1:sϑ ŷ

|Qst |
(
1 + ϖsϑz

→
sϑA

↗1
↗s1:sϑzsϑ

)
 ⇒

t∑

ς=2

ϖsϑ |z
→
s1A

↗1
↗s1:sϑzsϑ ||z

→
sϑA

↗1
↗s1:sϑ ŷ|

|Qst |
(
1 + ϖsϑz

→
sϑA

↗1
↗s1:sϑzsϑ

)

⇒

t∑

ς=2

|z→s1A
↗1
↗s1:sϑzsϑ ||z

→
sϑA

↗1
↗s1:sϑ ŷ|

|Qst |
(
z→sϑA

↗1
↗s1:sϑzsϑ

)

=
t∑

ς=2

|z→s1A
↗1
↗s1:sϑzsϑ |

|Qst |  ︸
:=T1

|z→sϑA
↗1
↗s1:sϑ ŷ|

z→sϑA
↗1
↗s1:sϑzsϑ  ︸
:=T2

,

where in the second inequality we deduct 1 in the denominator. Next, we aim to upper bound T1 and T2

respectively. According to the bounds of Qst in Lemma 15, we can have the bounds of |Qst | as


2⇀s1

ς
Tr

(
A↗1

↗s1:st

)
≃ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

⇒ |Qst | ⇒


2⇀s1

ς
Tr

(
A↗1

↗s1:st

)
+ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

. (45)

For T1, we can apply Hanson-Wright inequality (Lemma 32) in the numerator and apply the lower bound of
|Qst | in Equation (45) in the denominator, and we get

T1 ⇒
2c1

A↗1
↗s1:sϑ


2
· n

1
2+ε


2↼s1
ϖ Tr

(
A↗1

↗s1:st

)
≃ 2c1

A↗1
↗s1:st


2
· n

1
2+ε

⇒

2c1
A↗1

↗(s1:st)⇑[kε]


2
· n

1
2+ε


2↼s1
ϖ Tr

(
A↗1

↗s1:st

)
≃ 2c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

⇒

2c1
A↗1

↗(s1:st)⇑[kε]


2
· n

1
2+ε


2↼s1
ϖ

(
1≃ c

n

)kε

Tr
(
A↗1

↗(s1:st)⇑[kε]

)
≃ 2c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

=
1


2↼s1
ϖ

(
1≃ c

n

)kε Tr
(
A→1

→(s1:st)↔[kε]

)

2c1
∥∥∥A→1

→(s1:st)↔[kε]

∥∥∥
2
n

1
2
+ω

≃ 1

, (46)

where the second inequality follows by A↗1
↗s1:sϑ ▽ A↗1

↗s1:st ▽ A↗1
↗(s1:st)⇑[kε] for all ω ⇒ t, and the third inequality

follows by the trace lower bound in Lemma 36. Next, Lemma 35 ensures eigenvalues of A↗1
↗(s1:st)⇑[kε] are

identical up to a constant such that

Tr
(
A↗1

↗(s1:st)⇑[kε]

)

A↗1
↗(s1:st)⇑[kε]


2

⇐
n

c
. (47)

Substitute Equation (47) into Equation (46), we get

T1 ⇒
1

2↼s1
ϖ

(
1≃ c

n

)kε
n

1
2
→ω

c2
≃ 1

=
1

c3n
1
2↗ε ≃ 1

.



For T2, we use the sub-multiplicative matrix norm and get

T2 ⇒
↓zsϑ↓2 ↓ŷ↓2

A↗1
↗s1:sϑ


2

z→sϑA
↗1
↗s1:sϑzsϑ

⇒
↓zsϑ↓2 ↓ŷ↓2

A↗1
↗s1:sϑ


2

Tr
(
A↗1

↗s1:sϑ

)
≃ c1

A↗1
↗s1:sϑ


2
· n

1
2+ε

⇒
↓zsϑ↓2 ↓ŷ↓2

A↗1
↗s1:sϑ


2(

1≃ c
n

)kε+t↗ς
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗s1:sϑ


2
· n

1
2+ε

⇒

↓zsϑ↓2 ↓ŷ↓2

A↗1
↗(s1:st)⇑[kε]


2(

1≃ c
n

)kε+t↗l
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

, (48)

where the second inequality follows the Hanson-Wright inequality in Lemma 32. In the third inequality, we
use the trace lower bound in Lemma 36. The last inequality follows by A↗1

↗(s1:st)⇑[kε] △ A↗1
↗s1:sϑ for ω ⇒ t.

Next, we apply the tightness of eigenvalues of A↗1
↗(s1:st)⇑[kε] in Equation (47) again and get

T2 ⇒
↓zsϑ↓2 ↓ŷ↓2(

1≃ c
n

)kε+t↗ς n
c ≃ c1n

1
2+ε

⇒
cn

(
1≃ c

n

)kε+t↗ς n
c ≃ c1n

1
2+ε

⇒ c4,

where the last inequality follows Lemma 33 such that ↓zsϑ↓2 ⇒ c
⇔
n. Put together the upper bound of T1

and T2, the proof is complete.

Proof. (Lemma 17)

We show that

ϑsϑ

z↑
sϑ

A→1
→s1:sϑ

y̌sϑ→1

1+ϑsϑ
z↑
sϑ

A→1
→s1:sϑ

zsϑ

 ⇒ c for 1 ⇒ ω ⇒ t by induction. Recall the definition of y̌ as y̌sϑ :=

y̌sϑ→1 ≃
ϑsϑ

z↑
sϑ

A→1
→s1:sϑ

y̌sϑ→1

1+ϑsϑ
z↑
sϑ

A→1
→s1:sϑ

zsϑ

zsϑ and y̌s0 = ŷ for 1 ⇒ ω ⇒ t. For the base case ω = 1, we have

ϖs1z
→
s1A

↗1
↗s1:s1 ŷ



1 + ϖs1z
→
s1A

↗1
↗s1:s1zs1

⇒

z→s1A
↗1
↗s1:s1 ŷ



z→s1A
↗1
↗s1:s1zs1

(49)

⇒
↓zs1↓2

A↗1
↗s1:s1


2
↓ŷ↓2

Tr
(
A↗1

↗s1:s1

)
≃ c1

A↗1
↗s1:s1


2
· n

1
2+ε

⇒

↓zs1↓2

A↗1
↗(s1:st)⇑[kε]


2
↓ŷ↓2

Tr
(
A↗1

↗s1:s1

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

, (50)

where in the second inequality, we use the sub-multiplicative of matrix norm in the numerator and Hanson-
Wright inequality (Lemma 32) in the denominator. In the last inequality, we use the fact that A↗1

↗(s1:st)⇑[kε] △

A↗1
↗s1:s1 . Next, we apply Lemma 36 and get Tr

(
A↗1

↗s1:s1

)
⇐

(
1≃ c

n

)kε+t↗1
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
. Therefore,

(50) ⇒
↓zs1↓2

A↗1
↗(s1:st)⇑[kε]


2
↓ŷ↓2

(
1≃ c

n

)kε+t↗1
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

=
↓zs1↓2 ↓ŷ↓2

(
1≃ c

n

)kε+t↗1 Tr
(
A→1

→(s1:st)↔[kε]

)

∥∥∥A→1
→(s1:st)↔[kε]

∥∥∥
2

≃ c1n
1
2+ε

⇒
cn

(
1≃ c

n

)kε+t↗1 n
c ≃ c1n

1
2+ε

⇒ c,



where in the second inequality we apply Lemma 33 to get ↓zs1↓2 ⇒ c
⇔
n and we apply Lemma 35 to show

eigenvalues of A↗1
↗(s1:st)⇑[kε] are identical up to a constant. The base case ω = 1 is proved. Next, we assume

ϑsj z
↑
sj

A→1
→s1:sj

y̌sj→1

1+ϑsj z
↑
sj

A→1
→s1:sj

zsj

 ⇒ c is true for 1 ⇒ j ⇒ ω≃ 1, and we show for j = ω the statement holds. We have the

j = ω case

ϖsϑz

→
sϑA

↗1
↗s1:sϑ y̌sϑ→1

1 + ϖsϑz
→
sϑA

↗1
↗s1:sϑzsϑ

 ⇒
z→sϑA

↗1
↗s1:sϑ y̌sϑ→1



z→sϑA
↗1
↗s1:sϑzsϑ

=

z
→
sϑA

↗1
↗s1:sϑ


ŷ ≃

∑l↗1
j=1

ϑsj z
↑
sj

A→1
→s1:sj

y̌sj→1

1+ϑsj z
↑
sj

A→1
→s1:sj

zsj

zsj



z→sϑA
↗1
↗s1:sϑzsϑ

⇒

z→sϑA
↗1
↗s1:sϑ ŷ



z→sϑA
↗1
↗s1:sϑzsϑ

+
l↗1∑

j=1


ϑsj z

↑
sj

A→1
→s1:sj

y̌sj→1

1+ϑsj z
↑
sj

A→1
→s1:sj

zsj

z→sϑA
↗1
↗s1:sϑzsj



z→sϑA
↗1
↗s1:sϑzsϑ

⇒

z→sϑA
↗1
↗s1:sϑ ŷ



z→sϑA
↗1
↗s1:sϑzsϑ

+
l↗1∑

j=1

c
z→sϑA

↗1
↗s1:sϑzsj



z→sϑA
↗1
↗s1:sϑzsϑ

,

where we upper bound the term by taking absolute value individually, and in the last inequality we apply
the induction assumption for 1 ⇒ j ⇒ ω≃ 1. For the first term, we can achieve a constant upper bound by
following the exact procedure in the base case ω = 1. For the second term, we can use the Hanson-Wright
inequality (Lemma 32) and show

z→sϑA
↗1
↗s1:sϑzsj



z→sϑA
↗1
↗s1:sϑzsϑ

⇒
c1

A↗1
↗s1:sϑ


2
· n

1
2+ε

Tr
(
A↗1

↗s1:sϑ

)
≃ c1

A↗1
↗s1:sϑ


2
· n

1
2+ε

⇒

c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

Tr
(
A↗1

↗s1:sϑ

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

⇒

c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

(
1≃ c

n

)kε+t↗ς
Tr

(
A↗1

↗(s1:st)⇑[kε]

)
≃ c1

A↗1
↗(s1:st)⇑[kε]


2
· n

1
2+ε

=
1

(
1≃ c

n

)kε+t↗ς Tr
(
A→1

→(s1:st)↔[kε]

)

c1
∥∥∥A→1

→(s1:st)↔[kε]

∥∥∥
2
·n

1
2
+ω

≃ 1

⇒
1

(
1≃ c

n

)kε+t↗ς n
1
2
→ω

c ≃ 1

⇒
c

n
1
2↗ε

,

where we use the fact that A↗1
↗(s1:st)⇑[kε] △ A↗1

↗s1:sϑ for ω ⇒ t in the second inequality and we use Lemma 36
to get the trace lower bound in the third inequality. Finally, we again apply Lemma 35 to show eigenvalues
in A↗1

↗(s1:st)⇑[kε] are identical up to a constant. Putting together the bounds for the first term and the second
term, we complete the induction proof for j = ω≃ 1 case. The proof is done.

H Background lemmas

In this section, we provide statements and/or proofs of some miscellaneous lemmas.



The first lemma is the Hanson-Wright inequality, which demonstrates the quadratic term z→Mz of sub-
Gaussian random vector z concentrates around its expectation.

Lemma 32. (Hanson-Wright Inequalities, Rudelson and Vershynin (2013)) Let z be a random vector with
i.i.d. sub-Gaussian entries zi such that E [zi] = 0 and ↓zi↓↽2

⇒ 1. There exists a universal constant c > 0
such that for any positive semi-definite matrix M and for every t ⇐ 0, we have

P
[z→Mz≃ E

[
z→Mz

] > t
]
⇒ 2 exp

{
≃cmin

{
t
2

↓M↓
2
F

,
t

↓M↓2

}}
.

Note that ↓M↓
2
F ⇒ n ↓M↓

2
2 and we substitute t = c1 ↓M↓2 · n

1
2+ε where c

2
1 = 1

c and ϱ ↔ (0, 1
4 ) to get

z→Mz≃ E
[
z→Mz

] ⇒ c1 ↓M↓2 · n
1
2+ε

,

with probability at least 1 ≃ 2e↗n2ω

. Again, note that ↓M↓2 ⇒ Tr (M) and ↓M↓
2
F = Tr

(
M2

)
⇒ (Tr (M))2,

and we substitute t = 1
c · Tr (M) · (lnn) to get

z→Mz ⇒ E
[
z→Mz

]
+

1

c
Tr (M) · (lnn) ⇒


1 +

1

c


· Tr (M) · (lnn) ,

with probability at least 1≃ 1
n . Note that the probabilities are over z only and M is positive semi-definite and

is independent to z.

The next lemma restates a bound on the squared norm of a Gaussian random vector.

Lemma 33. Let z → N (µ, In) and for 0 ↔ (0, 1) and c > 1, we have

n

c
= n (1≃ 0) ⇒ ↓z↓22 ⇒ n (1 + 0) = cn,

with probability at least 1≃ 2e↗n⇁2 .

The following lemma guarantees that if ! exhibits a heavy tail such that rkε (!) ⇐ bn, it retains a heavy tail
even after removing t ⇓ n

1
2 components from the tail.

Lemma 34. For any data covariance matrix ! satisfying k
ω
⇒

n
c such that rkε (!) ⇐ bn, for any set of

indices S such that S = {j | k
ω
< j ⇒ d} and |S| = t ⇓ n

1
2 ⇓ d, we have rkε (!↗s1:st) ⇐ bn≃ t ⇐ b2n.

Proof. By the definition of e!ective ranks, ! satisfies

rkε (!) =

∑d
j=kε+1 ϖj

ϖkε+1
⇐ bn.

By removing t components whose index is larger than k
ω, and denote j

↖ = min{j | kω < j ⇒ k
ω+1+t, j ↔ S

c
},

we have

rkε (!↗s1:st) =

∑d
j=kε+1,j↘Sc ϖj

ϖj↘
⇐

∑d
j=kε+1,j↘Sc ϖj

ϖkε+1
=

∑d
j=kε+1 ϖj

ϖkε+1
≃

∑
j↘S ϖj

ϖkε+1
⇐ bn≃ t,

where the first inequality follows ϖk↖+1 ⇐ ϖj↘ and the last inequality follows the lemma assumption on S and
ϖk↖+1 ⇐ ϖj for all j ↔ S. As a result, since t ⇓ n

1
2 , the proof is complete.

Next, we apply Lemma 34 to demonstrate that the eigenvalues of the tail of !, after removing t ⇓ n
1
2

components, remain identical up to a constant factor.



Lemma 35. For any data covariance matrix ! satisfying k
ω
⇒

n
c such that rkε (!) ⇐ bn, for any set of indices

S such that S = {j | k
ω
< j ⇒ d} and |S| = t ⇓ n

1
2↗ε

⇓ d, we have r0

(
!↗[kε]⇑(s1:st)

)
= rkε (!↗s1:st) ⇐ bn.

Therefore, we have

1

cn
⇒

A↗1
↗[kε]⇑(s1:st)


2

Tr
(
A↗1

↗[kε]⇑(s1:st)

) ⇒
c

n
,

for c ⇐ 1 with probability at least 1≃ 2e↗
n≃
c .

Proof. According to Lemma 34, we have rkε (!↗s1:st) =
∑d

j=kε+1,j↓Sc ϑj

ϑj↘
⇐ bn, where we denote j

↖ = min{j |

k
ω
< j ⇒ k

ω + 1 + t, j ↔ S
c
}. Furthermore, by re-indexing eigenvalues, we denote {ϖ̃j}

d↗kε↗t
j=1 the eigenvalues

of the leave-kω and t-out covariance matrix !↗(s1:st)⇑[kε], and we have r0

(
!↗(s1:st)⇑[kε]

)
=

∑d→kε→t
j=1 ϑ̃j

ϑ̃1
=

rkε (!↗s1:st) ⇐ bn. Based on Lemma 10 in Bartlett et al. (2020), for !↗(s1:st)⇑[kε], we have

1

c
ϖ̃1r0

(
!↗(s1:st)⇑[kε]

)
⇒ µn

(
A↗(s1:st)⇑[kε]

)
⇒ µ1

(
A↗(s1:st)⇑[kε]

)
⇒ cϖ̃1r0

(
!↗(s1:st)⇑[kε]

)
,

with probability at least 1≃ 2e↗
n
c . Therefore, we have the bounds for

A↗1
↗[kε]⇑(s1:st)


2

as
A↗1

↗[kε]⇑(s1:st)


2
=

1

µn

(
A↗[kε]⇑(s1:st)

) ⇒
c

ϖ̃1r0

(
!↗(s1:st)⇑[kε]

)

A↗1
↗[kε]⇑(s1:st)


2
=

1

µn

(
A↗[kε]⇑(s1:st)

) ⇐
1

µ1

(
A↗[kε]⇑(s1:st)

) ⇐
1

cϖ̃1r0

(
!↗(s1:st)⇑[kε]

) .

Similarly, for Tr
(
A↗1

↗[kε]⇑(s1:st)

)
, we have

Tr
(
A↗1

↗[kε]⇑(s1:st)

)
=

n∑

i=1

1

µi

(
A↗[kε]⇑(s1:st)

) ⇒
n

µn

(
A↗[kε]⇑(s1:st)

) ⇒
cn

ϖ̃1r0

(
!↗(s1:st)⇑[kε]

)

Tr
(
A↗1

↗[kε]⇑(s1:st)

)
=

n∑

i=1

1

µi

(
A↗[kε]⇑(s1:st)

) ⇐
n

µ1

(
A↗[kε]⇑(s1:st)

) ⇐
n

cϖ̃1r0

(
!↗(s1:st)⇑[kε]

) .

By substituting these bounds into
∥∥∥A→1

→[kε]↔(s1:st)

∥∥∥
2

Tr
(
A→1

→[kε]↔(s1:st)

) , the proof is done.

The following lemma extends Lemma 25 from Wang et al. (2023) to show the trace bounds when removing
distinct components in !, whereas the original result only provided the lower bound for removing the top k

components.
Lemma 36 (From Lemma 25 in Wang et al. (2023)). For any data covariance matrix ! satisfying k

ω
⇒

n
c

such that rkε (!) ⇐ bn, for any set of indices S such that S = {j | k
ω
< j ⇒ d} and |S| = t ⇓ n

1
2 ⇓ d, for

any 0 ⇒ ω1 ⇒ ω2 ⇒ t and 0 ⇒ k1 ⇒ k2 ⇒ k
ω and su"ciently large n, we have

Tr


A↗1

↗(s1:sϑ2)⇑[k2]


⇐ Tr


A↗1

↗(s1:sϑ1)⇑[k1]


⇐

(
1≃

c

n

)k2↗k1+ς2↗ς1
Tr


A↗1

↗(s1:sϑ2)⇑[k2]


,

with a probability at least 1≃ 2 (k2 ≃ k1 + ω2 ≃ ω1) e↗
n
c .

Proof. For the first inequality, it directly holds since A↗(s1:sϑ1)⇑[k1]
△ A↗(s1:sϑ2)⇑[k2]

implies A↗1
↗(s1:sϑ2)⇑[k2]

△

A↗1
↗(s1:sϑ1)⇑[k1]

. Next, according to Lemma 25 in Wang et al. (2023), by removing the top component in !,
we have

Tr


A↗1

↗(s1:sϑ1)⇑[k1]


⇐

(
1≃

c

n

)k2↗k1

Tr


A↗1

↗(s1:sϑ1)⇑[k2]


.



Next, following the proof steps in Lemma 25 in Wang et al. (2023), by the Sherman-Morrison-Woodbury
identity, we have

Tr


A↗1

↗(s1:sϑ1)⇑[k2]


= Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]


≃

ϖsϑ1+1 Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]
zsϑ1+1z

→
sϑ1+1

A↗1
↗(s1:sϑ1+1)⇑[k2]



1 + ϖsϑ1+1z
→
sϑ1+1

A↗1
↗(s1:sϑ1+1)⇑[k2]

zsϑ1+1

= Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]


≃

ϖsϑ1+1z
→
sϑ1+1

A↗2
↗(s1:sϑ1+1)⇑[k2]

zsϑ1+1

1 + ϖsϑ1+1z
→
sϑ1+1

A↗1
↗(s1:sϑ1+1)⇑[k2]

zsϑ1+1

⇐ Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]


≃

A
↗1
↗(s1:sϑ1+1)⇑[k2]


2

·

ϖsϑ1+1z
→
sϑ1+1

A↗1
↗(s1:sϑ1+1)⇑[k2]

zsϑ1+1

1 + ϖsϑ1+1z
→
sϑ1+1

A↗1
↗(s1:sϑ1+1)⇑[k2]

zsϑ1+1

⇐ Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]


≃

A
↗1
↗(s1:sϑ1+1)⇑[k2]


2

, (51)

where in the first inequality, we use the property that x→M2x ⇒ ↓M↓2 · x
→Mx. Next, we have

A
↗1
↗(s1:sϑ1+1)⇑[k2]


2

Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]

 ⇒

A
↗1
↗(s1:sϑ1+1)⇑[kε]


2

Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]

 ⇒

A
↗1
↗(s1:sϑ1+1)⇑[kε]


2

(
1≃ c

n

)kε↗k2 Tr


A↗1

↗(s1:sϑ1+1)⇑[kε]

 ⇒
c

(
1≃ c

n

)kε↗k2
n

,

where in the first inequality, we apply the property that A↗1
↗(s1:sϑ1+1)⇑[k2]

▽ A↗1
↗(s1:sϑ1+1)⇑[kε]

, in the second

inequality, we use Lemma 25 in Wang et al. (2023), and in the last inequality, we apply Lemma 35. As a

result, from Equation (51), by dividing Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]


on both sides, we have

Tr


A↗1

↗(s1:sϑ1)⇑[k2]



Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]

 ⇐ 1≃

A
↗1
↗(s1:sϑ1+1)⇑[k2]


2

Tr


A↗1

↗(s1:sϑ1+1)⇑[k2]

 ⇐ 1≃
c

(
1≃ c

n

)kε↗k2
n

⇐ 1≃
c1

n
,

By applying the steps ω2 ≃ ω1 times, the proof is complete.

I Additional simulations

In this section, we present additional simulations of our few-shot postprocessing algorithm. In general, we find
that our postprocessing algorithm can recover t-sparse signal in cases where the classification and regression
tasks fail — even including the worst-case scenario of isotropic covariance.

Our simulations were run on an Nvidia A5000 GPU with 24GB VRAM, but this level of compute is not
necessary. Our code is available at https://github.com/tmlabonte/taskshift.

https://github.com/tmlabonte/taskshift


(a) Support recovery (b) Few-shot postprocessing (c) Risk curves

Figure 3: Task shift for spiked covariance with q < 1 ≃ r and signal outside the spike. We set
p = 1.5, q = 0.5, and r = 0.25 so that q < 1≃ r. Moreover, we add an additional signal component which lies
outside the covariance spike for any n ⇒ 2500. Our task shift algorithm correctly recovers the support and
generalizes well; note that the decay of the component outside the spike (index 8) is faster than those in the
spike (indices 1-2), but still slower than those outside the support (indices 3-7 and 9-10). The true signal ωω

is 3-sparse with a1 = 1, a2 = ≃0.5, and a8 = ≃0.15 (see Assumption 5). Our postprocessing algorithm uses
top-t support recovery and least-squares on noisy m-shot regression data. We plot the mean and standard
deviation over 10 draws of the training dataset X.

(a) Support recovery (b) Few-shot postprocessing (c) Risk curves

Figure 4: Task shift for polynomial covariance with u = 0.25, v = 0. Our task shift estimator
generalizes for polynomial covariance models. The true signal ωω is 2-sparse with a1 = 0.2 and a2 = ≃0.1 (see
Assumption 5), and we set d = n

1.5. Note that this parameterization satisfies the conditions of Corollary 31.
Our postprocessing algorithm uses top-t support recovery and least-squares on noisy m-shot regression data.
We plot the mean and standard deviation over 10 draws of the training dataset X.

(a) Support recovery (b) Few-shot postprocessing (c) Risk curves

Figure 5: Task shift for isotropic covariance ! = 50I. Our task shift estimator generalizes even in
worst-case scenarios for minimum ω2-norm interpolation such as isotropic covariance. The true signal ωω is
2-sparse with a1 = 1 and a2 = ≃0.5 (see Assumption 5), and we set d = n

1.5. Our postprocessing algorithm
uses top-t support recovery and least-squares on noisy m-shot regression data. We plot the mean and standard
deviation over 10 draws of the training dataset X.



(a) Support recovery
(b) Least-squares with dimension re-
duction (c) Regression risk

(i) Task shift for spiked covariance when classification and regression generalize. We set p = 1.5, q = 0.3,
and r = 0.5 so that 0 < q < 1→ r. In this regime, the classification MNI ω̂ generalizes on the original classification
problem and the regression MNI ω̃ generalizes on the original regression problems.

(a) Support recovery
(b) Least-squares with dimension re-
duction (c) Regression risk

(ii) Task shift for spiked covariance when classification generalizes but regression does not. We set
p = 1.5, q = 0.6, and r = 0.5 so that 1→ r < q < (1→ r)+(p→1)/2. In this regime, the classification MNI ω̂ generalizes
on the original classification problem, but the regression MNI ω̃ does not generalize on the original regression problems.

(d) Support recovery
(e) Least-squares with dimension re-
duction (f) Regression risk

(iii) Task shift for spiked covariance when neither classification nor regression generalize. We set p = 1.5,
q = 0.9, and r = 0.5 so that (1→ r) + (p→ 1)/2 < q < p→ r. In this regime, the classification MNI ω̂ does not on the
original classification problem, and the regression MNI ω̃ does not generalize on the original regression problems.

Figure 6: Postprocessing achieves task shift in the three regimes of Muthukumar et al. (2021).

The left column demonstrates the survival of t-sparse signal support components in the classification MNI
ω̂ while non-support components decay quickly. The middle column shows the O( t

m ) regression error of
least-squares with reduction to t dimensions using m regression samples under standard Gaussian noise.
Finally, the right column displays the regression risk of the classification MNI, regression MNI, and our
postprocessed predictor. The signal ωω is 2-sparse with a1 = 0.2 and a2 = ≃0.1 (see Assumption 5). The
middle column fixes n = 2500. We plot the mean and standard deviation over 10 draws of the training
dataset X.
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