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Abstract

Mixed linear regression is a well-studied problem
in parametric statistics and machine learning.
Given a set of samples, tuples of covariates and
labels, the task of mixed linear regression is to
find a small list of linear relationships that best fit
the samples. Usually it is assumed that the label
is generated stochastically by randomly selecting
one of two or more linear functions, applying this
chosen function to the covariates, and potentially
introducing noise to the result. In that situation,
the objective is to estimate the ground-truth
linear functions up to some parameter error. The
popular expectation maximization (EM) and
alternating minimization (AM) algorithms have
been previously analyzed for this.

In this paper, we consider the more general
problem of agnostic learning of mixed linear
regression from samples, without such generative
models. In particular, we show that the AM
and EM algorithms, under standard conditions
of separability and good initialization, lead to
agnostic learning in mixed linear regression by
converging to the population loss minimizers, for
suitably defined loss functions. In some sense,
this shows the strength of AM and EM algorithms
that converges to “optimal solutions” even in the
absence of realizable generative models.

1. Introduction

Suppose we obtain samples from a data distribution D on
R e, {z;,y;} ~D,z; €RYy; €Ri=1,....,n. We con-
sider the problem of learning a list of k R? — R linear func-
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tions y = 9?:5,6‘]- €R?,j=1,...,k, that best fits the samples.

This problem is well-studies as the mixed linear regression,
when there are ground-truth §;,5 =1,...,k, that generate the
samples. For example, the setting where

2~ N(0,14),0 ~Unif{01,....00 i |0 ~ N (2T 60,02), (1)

for ¢ = 1,...,n has been analyzed thoroughly. Bounds on
sample complexity are provided in terms of d,o? and error
in estimating parameters 6;- . =1,...,k ((Chaganty & Liang,
2013; Faria & Soromenho, 2010; Stddleretal., 2010;
Li & Liang, 2018; Kwon & Caramanis, 2018; Viele & Tong,
2002; Yietal., 2014; 2016; Balakrishnanetal.,, 2017;
Klusowski et al., 2019)).

In this paper, we consider an agnostic and general learning
theoretic setup to study the mixed linear regression problem
first studied in (Pal et al., 2022). In particular, we do not
assume a generative model on the samples. Instead we
focus on finding the optimal set of lines that minimize a
certain loss.

Suppose, we denote a loss function £: R¥** — R evaluated
on a sample as £(61,0,...,0k;z,y). The population loss is

ﬁ(el 7927' . 7976) = ]E(zy)NDﬂ(el 7927" '797€ ;xvy)a
and the population loss minimizers

(07 ,...,05) =argmin L(0y,02,...,0%).

Learning in this setting makes sense if we are allowed to
predict a list (of size k) of labels for an input, as pointed
outin (Pal et al., 2022). We may set some goodness criteria,
such as an weighted average of prediction error over all
elements in the list. In (Paletal., 2022), it was called a
‘good’ prediction if at least one of the labels in the list
is good, in particular, the following loss function was
proposed, that we will call min-loss:

émin (91 ,92,...,6‘;€;x,y) = ml]?] { (y_ <‘r793>)2} (2)

jel

The intuition behind min-loss is simple. Each sample
is assigned to a best-fit line, which define a partition of
the samples. This is analogous to the popular k-means
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clustering objective. In addition to the min-loss function,
we will also consider the following soft-min loss function:

k
ésoftmin (91 7927"'79k;$7y) = Zp917~79k (‘T7y;9j) [y_ <‘T79j>]2
i—1
(3)

o= Bu—(2.0;))?

S e=Bly=(@.60)

where pgl,..,ek(iﬂay;ej):

with 5 > 0 as the inverse temperature parameter. Note that,
at S — oo, this loss function correspond to the min-loss
defined above. On the other hand, at 5 =0, this is simply an
average of the squared errors, if a label is uniformly chosen
from the list. Depending on how the prediction would occur,
the loss function, and therefore the best-fit lines 67, ..., 0}
will change.

As is the usual case in machine learning, a learner has
access to the distribution D only through the samples
{zi,yi},i=1,...,n. Therefore instead of the population loss,
one may attempt to minimize the empirical loss:
1 n
L(Gl,...ﬁk)z522(91,92,...,9;@;@,%).

i=1

Usual learning theoretic generalization bounds on excess
risk should hold provided the loss function satisfies some
properties!. However, there are certain caveats in solving
the empirical loss minimization problem. For example,
even the presumably simple case of squared error (Eq.(2)),
the minimization problem is NP-hard, by reduction to the
subset sum problem (Yi et al., 2014).

An intuitive and generic iterative method that is widely-
applicable for problems with latent variables (in our case,
which line is best fit for a sample) is the alternating
minimization (AM) algorithm. At a very high level, starting
from some initial estimate of the parameters, the AM
algorithm first tries to find a partition of samples according
to the current estimate, and then finds the best fit lines
within each part. Again under the generative model of (1),
AM can approach the original parameters assuming suitable
initialization (Yi et al., 2014).

Another popular method of solving mixed regression prob-
lems (or in general mixture models) is the well-known ex-
pectation maximization (EM) algorithm. EM is an iterative
algorithm that, starting from an initial estimate of parame-
ters, iteratively update the estimates based on data, by taking
an expectation-step and maximization-step repeatedly. For
example, it was shown in (Balakrishnan et al., 2017) that, un-
der the assumption of the generative model that was defined

'Some discussions on generalization with soft-min loss can be
found in Section 5.

in Eq. (1), one can give guarantees on recovering the ground-
truth parameters 6 ,...,0; assuming a suitable initialization.

In this paper, we show that the AM and the EM algorithms
are in fact more powerful in the sense that even in the ab-
sence of a generative model, they lead to agnostic learning
of parameters. It turns out, under standard assumptions
on data-samples and D, these iterative methods can output
the minimizers of the population loss 67, ... , 0 with
appropriately defined loss functions. In particular, starting
from reasonable initial points, the estimates of the AM
algorithm approach 67 ,...,07 under the min-loss (Eq. 2), and
the estimates of the EM algorithm approach the minimizers
of the population loss under the soft-min loss (Eq. 3).

Instead of the standard AM (or EM), a version that has
been referred to as gradient EM (and gradient AM) is also
popular and has been analyzed in (Balakrishnan et al., 2017,
Zhu et al., 2017; Wang et al., 2020; Pal et al., 2022) to name
afew. Here, in lieu of the maximization step involved in EM
(minimization for AM), a gradient step with appropriately
chosen step size is taken. This version is amenable to
analysis and is strictly worse than the actual EM (or AM)
in their generative setting. In this paper as well, we analyze
the gradient EM algorithm, and the analogous gradient AM
algorithm.

Recently (Paletal., 2022) proposed a gradient AM algo-
rithm for the agnostic mixed linear regression problem.
However, they require a strong assumption on initialization
of {0;}, within a radius of O(—) of the corresponding
{03} _,. As we can see, in high dimension, the initialization
condition is prohibitive. The dimension dependence ini-
tialization in (Pal et al., 2022) comes from a discretization
(e-net) argument, which was crucially used to remove
inter-iteration dependence of the gradient AM algorithm.

In this paper, we show that a dimension independent
initialization is sufficient for gradient AM. In particular, we
showed that the initialization needed for {6;}%_, is ©(1),
which is a significant improvement over the past work
(Pal et al., 2022). Instead of an e-net argument, we use fresh
samples every round. Moreover, we thoroughly analyze the
behavior of restricted covariates on a (problem defined) set,
in the agnostic setup, which turns out to be non-trivial. In
particular, we observe that the restricted covariates are sub
Gaussian with a shifted mean and variance, and we need to
control the minimum singular value of the covariance matrix
of such restricted covariates (which dictates the convergence
rate). We leverage some properties of restricted distribu-
tions (Tallis, 1961), and were able to analyze such covariates
rigorously, obtain bounds and show convergence of AM.

In this paper we also propose and analyze the soft variant
of gradient AM, namely gradient EM. As discussed above,
the associated loss function is the soft-min loss. We show
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that gradient EM also requires dimension independent O(1)
initialization, and also converges in an exponential rate.

While the performance of both the gradient AM and
gradient EM algorithms are similar, AM minimizes a
min-loss whereas EM minimizes the optimal soft-min loss
(maximum likelihood loss in the generative setup). As
shown in the subsequent sections, AM requires a separation
condition (appropriately defined in Theorem 2.1) whereas
EM does not. On the other hand, EM requires the initial-
ization parameter to satisfy certain condition, albeit mild
(exact condition in Theorem 3.1).

1.1. Setup and Geometric Parameters

Recall that the parameters 67, ...,6; are the minimizers of
the population loss function, and we consider both min-loss
(bmin(-)) as well as soft-min 10ss ({sofemin(-)) as defined in
the previous section. We define

S; ={(weRLYER): (y—(:0;) < (y—(2.07))%,

foralll € [k]\ j} as the possible set of observations where
9;-‘ is a better (linear) predictor (in 5 norm) compared to

1;...,0;. Furthermore, in order to avoid degeneracy, we
assume, for any j € [k]

fl’)r(x:(:c,y) €57) > Tmin,

for some 7, > 0. We are interested in the probability
measure corresponding to the random vector x only, and we
integrate (average-out) with respect to  to achieve this. We
emphasize that, in the realizable setup, the distribution of y
is governed by that of x (and possibly some noise indepen-
dent of x), and in that setting our definition of S;‘ and 7Tmin
becomes analogous to that of (Yi et al., 2014; 2016)>.

Since we are interested in recovering 67,7 = 1,...,k, a few
geometric quantities naturally arises in our setup. We define
the misspecification parameter A as a smallest non-negative
number satisfying

lyi—(z:,07)| <A forall (z;,y;) €S; andj€k].
Moreover, we also define the separation parameter A as the
largest non-negative number satisfying

min |y; — (2,07 )| > A forall (z;,y;) €S-
le[k\j
Let us comment on these geometric quantities. Note that
in the case of a realizable setup, the parameter A = 0 in
the noiseless case or proportional to the noise in the noisy
case. In words, A captures the level of misspecification

In (Yietal., 2014; 2016), the authors denote {S; };?:1 as set
of indices, but that can be thought of as an analogue to a subset of
R4 as shown above.

from the linear model. On the other hand, the parameter A
denotes the separation or margin in the problem. In classical
mixture of linear regression framework, with realizable
structure, similar assumptions are present in terms of the
(generative) parameters. Moreover, with the realizable
setup, our assumption can be shown to be exactly same as
the usual separation assumption.

1.2. Summary of Contributions

Let us now describe the main results of the paper. To
simplify exposition, we state the results here informally and
the rigorous statements may be found in Sections 3 and 2.

Our main contribution is analysis of the gradient AM and
gradient EM algorithms. The gradient AM algorithm works
in the following way. At iteration ¢, based on the current

parameter estimates {9§t) }.’7?:1, the gradient AM algorithm

constructs estimates of {S¥}*_,, namely {SJ(-t) k_,. The
next iteration is then obtained by taking a gradient (with ~
as step size) over the quadratic loss over all such data points

(i (2,y:) €SS} forall j e [k].

On the other hand, in the ¢-th iteration, the gradi-

ent EM algorithm uses the current estimate of {6 ?:1,

namely {9§t) } ;?:1 to compute the soff-min probabilities

Dp® o (xi,yi;t?;t)) forall j € [k] and i € [n]. Then, using
1 Vg B

these probabilities, the algorithm takes a gradient of the soft-

min loss function with step size y to obtain the next iteration.

We begin by assuming the covariates x; N (0,14). Note
that this assumption serves as a natural starting point of ana-
lyzing several EM and AM algorithms ((Balakrishnan et al.,
2017; Yietal.,, 2014; 2016; Netrapallietal., 2015;
Ghosh & Kannan, 2020)). Furthermore, as stated ear-
lier, we emphasize that in order to obtain convergence, we
need to understand the behavior of restricted covariates in
the agnostic setting. We require Gaussians, because the
behavior of restricted Gaussians are well studied in statistics
(Tallis, 1961) and we use several such classical results.

We first consider the min-loss and employ the gradient
AM algorithm, similar to (Paletal., 2022). In particular,
we show that the iterates returned by the gradient AM

algorithm after T iterations, {9§T> }h_ ) satisfy
T) 0) o«
1657 =051 <" 116" 5 1 +o.

with high probability (where p < 1) provided n is large
enough and HGJ(-O) — 05[] < cinil|07]]. Here cin is the
initialization parameter and ¢ is the error floor that stems
from the agnostic setting and the gradient AM update (see
(Balakrishnanetal., 2017) where, even with generative
setup, an error floor is shown to be unavoidable). Here
0 depends on the step size of the gradient AM algorithm
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as well as the several geometric properties of the problem
like misspecification and separation. However, the result
of (Pal etal., 2022) in this regard requires an initialization
of {6;}%_, within a radius of (’)(ﬁ) of the corresponding

{63 }£_, which we improve on.

In this paper, we show that it suffices for the initial param-
eters to be within a (constant) ©(1) radius for convergence,
provided the geometric parameter A — ) is large enough.
The O(1) initialization matches the standard (non agnostic,
generative) initialization for mixed linear regression (see
(Yietal.,2014;2016)). In order to analyze the gradient AM
algorithm we need to characterize the behavior of covariates
{@i}7, restricted to sets { S5 }¥_, . In particular we need to
control the norm of such restricted Gaussians as well as con-
trol the minimum singular value of a random matrix whose
rows are made of such random variables. Specifically, we
require (i) a lower bound on the minimum singular value of
%211 c Sxi:ciT, where the set .S is problem dependent, (ii) an
upper bound on ||x;|| where z; € S and (iii) a concentration
on (x;,u) where u is some vector and x; € S.

In order to obtain the above, we leverage the properties
of restricted Gaussians ((Tallis, 1961; Ghosh et al., 2019))
on a (generic) set with Gaussian volume bounded away
from zero and show that the resulting distribution of the
covariates is sub Gaussian with non-zero mean and constant
parameter. We obtain upper bounds on the shift and the sub
Gaussian parameter. We would like to emphasize that in
the realizable setup of mixed linear regressions, as shown
in (Yietal., 2014; 2016) such a characterization may be
obtained with lesser complication. However, in the agnostic
setup, it turns out to be quite non-trivial.

Moreover, in gradient AM, the setup is complex since the
sets are formed by the current iterates of the algorithm (and
hence random), unlike {SJ* 2?:1, which are fixed. In order
to handle this, we employ re-sampling in each iteration to
remove the inter-iteration dependency. We would like to
emphasize that sample splitting is a standard technique in
the analysis of AM type algorithms and several papers (e.g.
(Yietal., 2014; 2016; Ghosh & Kannan, 2020) for mixed
linear regression, (Netrapalli et al., 2015) for phase retrieval
and (Ghoshetal., 2020) for distributed optimization)
employ such a technique. While this is not desirable, this is
a way to remove the inter iteration dependence that comes
through data points. Finer techniques like leave-one-out
analysis (LOO) is also used ((Chenetal., 2019)) but for
simpler problems (like phase retrieval) since the LOO
updates are quite non-trivial. This problem exaggerates
further in the agnostic setup. Hence, as a first step, in this
paper we assume a simpler sample split based framework
and keep finer techniques like LOO as future direction.

We would also like to take this opportunity to correct an
error in (Pal et al., 2022, Theorem 4.2). In particular, that

theorem should hold only for Gaussian covariates, not for
general bounded covariates as stated. It was incorrectly
assumed in that paper that the lower bound on the singular
value mentioned above holds for general covariates.

We then move on to analyze the soft-min loss and analyze the
gradient EM algorithm. Here, we show similar contraction
guarantees in the parameter space as in gradient EM. There
are several technical difficulties that arise in the analysis
of the gradient EM algorithm for agnostic mixed linear
regressions— (i) First, we show that if (x;,y;) €S ¥, then the
soft-min probability pg; . ex (x4, i; 9;) >1—r7, where n
is small. (ii) Moreover, using the initialization condition,

and the properties of the soft-max function ((Gao & Pavel,
2017)) we argue that Do oo (4, yi; 9§t)) is close to
1 Yy

Dos,....07 (:zrl-,yi;t?;), where {t?lg-t)}tT:1 are the updated of the
gradient EM algorithm.

Our results for agnostic gradient AM and EM consist
some extra challenge over the existing results in literature
((Balakrishnan et al., 2017; Waldspurger, 2018)). Usually,
the population operator with Gaussian covariates are
analyzed (mainly in EM, see (Balakrishnan et al., 2017)),
and then a finite sample guarantee is obtained using concen-
tration arguments. However, in our setup, with the soft-min
probabilities and the min function, it is not immediately
clear how to analyze the population operator. Second, in
the gradient EM algorithm, we do not split the samples
over iterations, and necessarily handle the inter-iteration
dependency of covariates.

Furthermore, to understand the soft-min and min loss better,
in Section 5, we obtain generalization guarantees that
involve computing the Rademacher complexity of such
function classes. Agreeing with intuition, the complexity of
soft-min and min loss class is at most k times the complexity
of the learning problem of simple linear regression with
quadratic loss.

1.3. Related works

As discussed earlier, most works on the mixture of linear
regressions are in the realizable setting, and aim to do
parameter estimation. Algorithms like EM and AM are
most popularly used to achieve this task. For instance,
in (Balakrishnanetal., 2017), it was proved that a suit-
able initialized EM algorithm is able to find the correct
parameters of the mixed linear regressions. Although
(Balakrishnan et al., 2017) obtains the convergence results
within an ¢ ball, it is then extended to an appropriately
defined cone by (Klusowskietal., 2019). On the AM
side, (Yietal., 2014) introduced the AM algorithm for the
mixture of 2 regressions, where the initialization is done by
the spectral methods. Then, (Yietal., 2016) extends that
to a mixture of k linear regressions. Perhaps surprisingly,
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for the case of 2 lines, (Kwon & Caramanis, 2018) shows
that any random initialization suffices for EM algorithm to
converge. In the above mentioned works, the covariates are
assumed to be standard Gaussians, which was relaxed in
(Li & Liang, 2018), allowing Gaussian covariates to have
different covariances. Here, near optimal sample as well
as computational complexities were achieved albeit not via
EM or AM type algorithm.

In another line of work, the convergence rates of AM
or its close variants are investigated. In particular,
in (Ghosh & Kannan, 2020; Shen & Sanghavi, 2019),
it is shown that AM (or its variants) converge at a
double-exponential (super-linear) rate.  Recent work,
(Chandrasekher et al., 2021) shows similar results for larger
class of problems.

We emphasize that apart from mixture of linear regressions,
EM or AM type algorithms are used to address other
problems as well. Classically parameter estimation in the
mixture of Gaussians is done by EM mixture of Gaussians
(see (Balakrishnanetal., 2017; Daskalakis & Kamath,
2014) and the references therein). The seminal paper
by (Balakrishnanetal., 2017) addresses the problem of
Gaussian mean estimation as well as linear regression with
missing covariates. Moreover, AM type algorithms are used
in phase retrieval ((Netrapallietal., 2015; Waldspurger,
2018)), parameter estimation in max-affine regression
((Ghosh et al., 2019)), clustering in distributed optimization
((Ghosh et al., 2020)).

In all of the above mentioned works, the covariates are given
to the learner. However, there is another line of research that
focuses on analyzing AM type algorithms when the learner
has the freedom to design the covariates ((Yinetal., 2019;
Krishnamurthy et al., 2019; Mazumdar & Pal, 2020; 2022;
Pal et al., 2021)).

However, none of these works is directly comparable to our
setting. All these works assume a realizable model where
the parameters come with the problem setup. However,
ours is an agnostic setup, and here there are no optimal
parameters associated with the setup, rather solutions of
(naturally emerging) loss functions.

Our work is a direct follow up of (Paletal., 2022), who
introduced the agnostic learning framework for mixed
linear regression, and also used the AM algorithm in lieu
of empirical risk minimization. Also, (Pal et al., 2022) only
considered the min-loss, and neither the soft-min loss nor
the EM algorithm, whereas we consider both EM and AM.
Moreover, the AM guarantees we obtain are sharper than
that of (Pal et al., 2022).

1.4. Organization

We start with the soft-min loss function and the gradient
EM algorithm in Section 3. In Section 3.2, we obtain the
theoretical results of gradient EM. We then move to min loss
function in Section 2, where we analyze the gradient AM
algorithm, with theoretical guarantees given in Section 2.2.
We present a rough overview of the proof techniques in
Section 4. Finally, in Section 5, we provide some gener-
alization guarantees using Rademacher complexity. We
conclude in Section 6 with a few open problems and future
direction. We collection all the proofs (both EM and AM)
in Appendix B and A.

1.5. Notation

Throughout this paper, we use ||.|| to denote the £3 norm of
a d dimensional vector unless otherwise specified. Also for
a positive integer r, we use [r] to denote the set {1,...,7}.
We use C,C4,Cy,...,c,c1,co... to denote positive universal
constants, the value of which may differ from instance to
instance.

2. Agnostic
Mixed Linear Regression-Min-Loss

In this section, we analyze the min-loss function and analyze
gradient AM algorithm. First, recall the definition of £, ()
from Eq. 2. Similar to the section above, we are given a
set of n data-points {z;,y; }"_,, where z; € R% and y; € R
drawn from an unknown distribution D. We want to obtain

(07,....05) =argminE , ) ~plmin(01,....0k:2,Y).

With the given n datapoints, we aim to learn these &k hyper-
planes via the AM algorithm (Algorithm 1), which tries to
minimize the empirical optimization version instead.

2.1. Gradient AM Algorithm

In this section we use the gradient AM algorithm for
minimizing L(#1,...,0;). The details of our algorithm is
given in Algorithm 1.

First note that here, we split the n samples {x;, y; }"_;
into 27" disjoint samples where we run Algorithm 1 for T’
iterations. We would like to remind that sample splitting
is a standard in AM type algorithms ((Yietal., 2014;
2016; Ghosh & Kannan, 2020; Netrapallietal., 2015;
Ghosh et al., 2020)). While this is not desirable, this is a
way to remove the inter iteration dependence that comes
through data points.

Hence, at each iteration of gradient AM we are given
n' =n /2T samples. Each iteration consists of 2 stages (see
Algorithm 1). In the first stage of the ¢-th iteration, we use n’
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Algorithm 1 Gradient AM for Mixture of Linear Regres-
sions

1: Input: {x;,y;}™ ,, Step size y

2: Initialization: Initial iterate {950) L

3: Splitall samples into 27" disjoint datasets {:Cl(-t) ,y§ g ?;1

withn'=n/2T forallt=0,1,....T—1
4: fort=0,1,....T—1do
Partition:
6:  Forall j € [k], use n' samples to construct index sets
{IV}E_ such that V' € [k]\ /,

10 ={is (" = @0 <~ (1”050}

J

4

7. Gradient Step:
8:  Use fresh set of n’ samples to run gradient update

i . .
R D SR HUL TS A R
i€[n’]
9:  where Fi(9§t)) =y — (z{ ’9§,t)>)2
10: end for
11: Output: {9§-T)}§:1

samples to construct the index sets 7(-t) in the following way

t . t t t t t t

L7 ={iel): " @070 < @ 0707
V5" € [k]\ j. Here, we collect the data points for which
the current estimate of 67, namely 93@ is a better (linear)
estimator than {955)} where j/ # j. Notw that {I;t)};?:l
partitions [n’].

At the second stage of gradient AM, we use another set
of fresh n’ data points to run the gradient update on the
set {I J(-t)}?zl with step size ~ to obtain the next iterate

{9;”1)}?:1. The details is given in Algorithm 1.

2.2. Theoretical Guarantees

In this section, we obtain theoretical guarantees for Algo-
rithm 1. Similar to the previous section, we assume |y;| <b
for all i € [n]. In the following, we consider one iteration
of Algorithm 1, and show a contraction in parameter space.
Let the current parameter estimates are {9]‘}?:1 and the
corresponding to the index {I;}%_,. Moreover, let the next
iterates are { Q;r }2?:1. Unpacking, the nextiterate is given by

2y
icl;
for all j € [k]. We now present our main results of this

section.

Theorem 2.1 (Gradient AM). Suppose x; e (0,1;) and
thatn' > C %. Furthermore,

116 =651 < cinil| 67

for all j € [k] where ¢ is a small positive constant
(initialization parameter). Moreover, let the separation
parameter satisfy

A>A+C1[Cini \/log(l/wmin)né%{HG; [[++/14+1og(1/mmin)]-
J

Then, running one iteration of Gradient AM with step size -y,
yields {G;F}?:l satisfying

||9j =071 <pl|0;—0% ||+, with probability exceeding

1—Chexp(—Cont. n') —crexp(—P.n’) — #,(d)’ where

p=(1—cyn3,.), and the error floor

£ < Cy\/dlogdlog(1/Tmin) +C1y(k—1)P,
x |diogdlog(1/Timin) 6 ||+ Cby/dogdiog (1 mi) |

1 [A—)\]Q).

Cini2MaX e[k ||937H2 2

and P, <4exp (—

The proof of Theorem 2.1 is deferred to Appendix A. We
make a few remarks here.

Remark 2.2 (Contraction factor p). We observe thatif p <1,
the above result implies a contraction in parameter space
with a slack of €, which we call the error-floor. Note that by
choosing v < W, where ¢ is a small constant, we
can always make p < i

Remark 2.3 (Error floor €). Observe that the error floor €
depends linearly on the step size -y, similar to any standard
stochastic optimization problem. The error floor also decays
linearly with the misspecification parameter A, which may
be thought as an agnostic bias. In previous works (Yi et al.,
2016;2014), even in the realizable setting, either the authors
assume A = 0 or very small. In a related field of online
learning (multi armed bandits and reinforcement learning in
linear framework), this model misspecification also impacts
the regret in a linear fashion as seen by (Jinetal., 2020,
Theorem 5). Even in these realizable setting, is it unknown
how to tackle large \.

Remark 2.4 (Re-sampling). Note that the gradient AM algo-
rithm of ours requires re-sampling fresh data points in every
iteration. Similar to the analysis of the gradient EM, here
also we need to control the lower spectrum of a random ma-
trix consisting Gaussians restricted to a set. From the struc-
ture of gradient AM, this set here is given by .S J(t) ={(zi,yi):

1 €1 J(-t)}. Note that without re-sampling of data points,
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analyzing the behavior of Gaussians on the sets {S ;t)}llj?:l
turns out to be quite non-trivial since {.5 J(-t) }¥_, depends on
{ 93@ };?:1 which depends on all the data point {x;,y; }1 ;.
Remark 2.5 (Probability of error P.). One major part in
showing the convergence guarantee is to show that provided
good initialization, the probability of a datapoint lying in
an incorrect index set is at most P,. With a closer look, it
turns out that if the problem is separated enough (A large)
and the initialization is suitable (¢j,; is small), P, decays
exponentially fast. Hence, in such a setup, the second term
in € is quite small.

Remark 2.6 (Sample complexity). Note that we re-
quire the number of samples satisfying the following:
n > C %, where the dependence on k comes

through Tyin rfe]{hd from definition, we have i, < 1/k).
Note that information theoretically, we only require Q(kd)
samples, since there are kd unknown parameters to learn.
Hence, our sample complexity is optimal in d. However, it
is sub-optimal in k£ compared to the standard (non-agnostic)
AM guarantees ((Yiet al., 2014; 2016)). The sub-optimality
comes from the proof techniques we use for the agnostic set-
ting. In particular, we use spectral properties of a restricted
Gaussian vectors on a set with (Gaussian) volume at least
Tmin. As shown in (Ghoshetal., 2019), this gives rise to
a dependence of 1/73 . in sample complexity. Moreover,
in (Ghoshetal., 2019), it is argued (albeit in a different
problem), that when spectral properties of such restricted
Gaussians are employed,a 1/73 . dependency is in general
unavoidable.

3. EM algorithm for Soft-Min Loss

In this section we analyze the soft-min loss function and
propose gradient EM algorithm to address this. Recall the
definition of £sofmin(.) from Eq. 3. Moreover, recall that we
are given a set of n data-points {z;,y;}"_,, where ; € R?
and y; € R drawn from an unknown distribution D. Our
goal here is to obtain

(9;,,92) = argminE(m,y)N'Désoflmin(91 779kaxay)

We aim to learn these k hyperplanes through the given
data. The EM algorithm (Algorithm 2) tries to minimize the
empirical version of the problem.

3.1. Gradient EM Algorithm

We propose EM based algorithm for minimizing the em-
pirical loss function L(#1,..,0;). In particular we propose
a variant of EM, popularly known as gradient EM for
this. The steps are given in Algorithm 2. Each iteration of
gradient EM consists of two steps. First, in the compute
probability step, based on the current estimates of { 0% k

i=1
namely {9(’5)}2?:1, Algorithm 2 computes the soft-min

Algorithm 2 Gradient EM for Mixture of Linear Regres-
sions

1: Input: {x;,y;}™ ,, Step size y

2: Initialization: Initial iterate {950) L

3: fort=0,1,...,T—1do

4:  Compute Probabilities:

5

Compute pyt) o (Ii,yi;9§t)) for all j € [k] and
1 b
i€n]
6:  Gradient Step: (forall j € [k])

i pe J

0 =0T pyn g0 (it )VE(OD),
i=1

where F; (9§.t)) =(y;— <xi,9§-t)))2
end for
: Output: {9§T> R

Y % 3

k
j=1

probabilities computed using the current iterates {G(t)
whichiis py (25,y::6") forall j € [k] and i € [n]. In
the subsequent step, using these probabilities, the algorithm
takes a gradient step with step size . In particular, for
the j-th iterate 9§-t), gradient EM weights the standard
quadratic loss computed on the ¢-th data point, given by

(yi — (x4, 93@)))2 and takes the gradient to obtain the next

iterate {9§-t+1) } ;?:1. We truncate Algorithm 2 after T steps.

We split the n samples {x;, y;}7, into 27" disjoint sam-
ples where we run Algorithm 2 for 7' iterations. Again
sample splitting is a standard in EM type algorithms
((Balakrishnanet al., 2017, Kwon & Caramanis, 2018)).
Hence, at each iteration of gradient EM we are given
n' =n/2T samples. Each iteration consists of 2 stages (see
Algorithm 2). The first n’ samples are used to compute the
probabilities, and the next set of samples are used to take
the gradient step.

3.2. Theoretical Guarantees

We now look at the convergence guarantees of Algorithm 2.
In particular, here we consider one iterate of the gradient
EM algorithm with current estimate (61, ..., 6;). Also,
assume that the next iterate with these current estimates is
givenby (07 ....,0;"). Unrolling the iterate, we have

2y il
9j=9j—7§ Por,...00 (Ti,yi30;) (w0, —yixi). (5)
im1

for all j € [k]. Furthermore, we assume |y;| < b for all
i € [n/] for a non-negative b. With this, we are now ready to
present the main result of this section.

Theorem 3.1 (Gradient EM). Suppose that z; ESYs (0,14)
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and thatn' > C%. Moreover,

116 = 6711 < cinil| 67

Sor all j € [k], where cini is a small positive constant (ini-

tialization parameter) satisfying Cini < cg ——2e——
vV IOg(l/ﬂ'mm)He H

Then running one iteration of gradient EM algorithm with
step size y yields {9;‘} ;?:1 satisfying

165 0511 < pl10; =05 | +e,

with probability at least 1 — Cy exp(—cimi, n') —
Cyexp(—cad)—n'/poly(d) —n’(kexp(—W), where

£ <Cy\/dlogdlog(1/Tmin)
+C1yn' (b++/dlogdlog(1/Tmin))* (cini+1)) 167 ],

= (1= 2ye(1 = m)7dy,), 0’ = e~ (AmON=CXD) gng

__—C9A? _ (A—c)? .
n= (1 i t(k—le” ), with C,C1,..,c,c1,.. as

1+ (k—1)e—(A—C)?
universal positive constants.

We defer the proof of the theorem in Appendix B. The
remarks we made after the AM algorithm continues to hold
here as well.

Remark 3.2 (Error floor ). Observe that the error floor
depends linearly on the step size . The error floor also
decays linearly with the misspecification parameter A and
an exponentially decaying term dependent on the gap.

Discussion and Comparison between gradient EM
and AM: Note that both the algorithms require initial-
ization and provides exponential convergence with error
floor. However, gradient AM minimizes an intuitive
min-loss while gradient EM minimizes optimal (maximum
likelihood in the generative setup) soft-min loss. More-
over, the gradient AM algorithm requires the separation
A = QA + VIogk(1 + cini)) (exact condition in Theo-
rem 2.1), whereas we do not have any such requirement for
gradient EM. On the flip side, the convergence of gradient
EM requires a condition on the initialization parameter cin;
that depends on misspecification A, whereas for gradient
AM algorithm, no such restriction is imposed.

4. Proof Sketches

In this section, we present a rough sketch of the proof of
Theorems 2.1 and 3.1.

4.1. Gradient AM (Theorem 2.1)

For gradient AM algorithm, based on the current iterates
{0,}%_, . we first construct the index sets {/;}¥_, using n/
fresh samples, where I; consists of all such 1ndrces such that

6; is a better predictor compared to the other parameters.
Srmllarly, one can construct {I¥}*_, based on {07}*_,.

Unrolhng gradient AM update (Eq. 4), using another set of
n' samples we have

* .2y
16 —07[|= 61— —WZ(%%?% —yizi) .

el

Similar to the gradient EM setup, it turns out that we need
to lower bound iy ( # D ic I z;xT). Note that since
we use n’ fresh samples to construct I;, the set can be
considered fixed with respect to the samples used in the
gradient step and we can leverage Lemma B.2. We use
Omin (57 Yoier, Tit? ) > Omin(57 Zzehm* z;z!). Thanks
to the suitable initialization and Lemma A.1, we show that
| N IF| is big enough, yielding a singular value lower
bound of ~ 73, . The control of other terms are done
similar to the gradient EM setup, and upon combining, we
get the final theorem.

4.2. Gradient EM (Theorem 3.1)

Recall that we consider one iteration of Algorithm 2
with current and next iterates as {6; }7 , and {9+}
respectively. Recall the update given by Eq. 5. Wrthout loss
of generality, we focus on j =1 and use shorthand p(6;) to
denote py, ... o, (zi,y:;01). With this we have

.....

. . 2
16 —07[| =161~ 67 — sz(el) (zix] 01 —yix:) ||
i=1

We now break the sum to indices ¢ : (z;,y;) € S7 and
otherwise. When we look at indices such that (x;,y;) € ST,
after a few algebraic manipulation it turns out we need
to lower bound s[5 Y. (ws,5) €S z;zl].  Since
Pr(z; : (zi,yi) € ST) > Tmin by definition, leveraging
properties of restricted Gaussians (Lemma B.2), we obtain
Umin[# Zi:(m“yi)esf (1- W)szf] > (1- 77)7Tr3nin- Fur-
thermore, leveraging the fact that if (z;,y;) € S7, we have
p(67) > 1 — 1 (Lemma B.1), and using the norm upper
bound on restricted Gaussians (Lemma B.3) we control such
indices. Finally, combining all the terms and using the geo-
metric parameters succinctly, we obtain the desired result.

5. Generalization Guarantees

In this section, we obtain generalization guarantees for
the soft-min loss functions. Note that similar generaliza-
tion guarantee for the min loss function has appeared in
(Pal et al., 2022).

We learn a mixture of functions from X — Y for X C R¢
fitting data distribution D over (X,))). A learner has access
to samples {z;,y;}1,. There is a base class H : X — ).
Here, we work with the setup of list decoding where the
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learner outputs a list while testing. In (Pal et al., 2022) the
list decodable function class has been defined. We rewrite
here for completeness.

Definition 5.1. Let H be the base function class H. We
construct a vector valueq k-l_ist-decodable function class,
namely H;, such that any h € Hy, is defined as

h=(ha (), ("))

such that h; € H; for all j € [k]. Thus h’s map X — Y* and
form the new function class Hy,.

To ease notation, we omit the k in H when clear from
context.

In our setting, the base function class is linear, i.e., for all
JE[k]

Hj=H={(0,):Y0cRs.t|0]|, <R},
and the base loss function £:)) x J) — R is given by

U(hj(x),y))=(y—(2,0;))*.

In what follows, we obtain generalization guarantees for
bounded covariates and response, i.e., |y| <1and ||z| <1.
Claim 5.2. For bounded regression problem, the loss
function £(h;(x),y)) is Lipschitz with parameter 2(1 + R)
with respect to the first argument.

The proof is deferred to Appendix C. We are interested in
the soft loss function, which is a function of the k-base loss
functions:

L(h(x),y )zﬁ(:v y;01,...,0k)
—Zpel, L0 (@0 [y — (2.0;)]
—Zpt% Z,Y5 0; )é(h ('r)vy)a
where
e—(y—<w 0;))°
D6y,...0, (T,y305) =

(x,00))2

Ze 1e

We have n datapoints {x;,y;}" ; drawn from D and we
want to understand how well this soft-min loss generalizes.
In order to do that, a standard metric one studies in statistical
learning theory is (emprirical) Rademacher Complexity
((Mohri et al., 2018)). In our setup, the loss class is defined
by

z,y;0;)¢(h

7y ’_> Zpel, -0

i(@)y) {0110 <R} }-

Let us define this class as ®. The Rademacher complexity
of the loss class is given by

=Eo |: Zgzzpel z,Y; 9 é(h (x)vy)‘]
{9 H<9 H<R} [

where o is a set of Rademacher RV’s {o;}7_;. We have the

following result:

Lemma 5.3. The Rademacher complexity of ® satisfies

. . 4kR(1+R)

R(P) <4k(1+R)R(H) < i .

We observe that the (empirical) Rademacher complexity
of the soft-min loss class does not blow-up provided the
complexity of the base class H is controlled. Moreover,
since the base class is a linear hypothesis class (with
bounded /> norm), the Rademacher complexity scales as
O(1/+/n), resulting in the above bound. The proof is
deferred in Appendix C. In a nutshell, we consider a bigger
class of all possible convex combination of the base losses,
and connect @ to that bigger function class.

6. Conclusion and Open Problems

In this work, we have studied the agnostic setup for mixed
linear regression, and show that EM and AM algorithms are
strong enough to provide provable guarantees even in this
setup. However we believe such algorithms may be used
in a broader context of agnostic learning. We conclude the
paper with a few interesting problems. Beyond mixture of
linear regressions, can this agnostic setup be used for other
problems such as mixture of classifiers, mixture of experts,
to name a few? What is the role of Gaussian covariates in
such an agnostic setting? Can we relax this to some extent?
In (Ghosh et al., 2019) it is explained how restricted Gaus-
sian analysis can be extended to sub-Gaussians satisfying a
small ball condition for the particular problem of max-affine
regression. Another interesting direction is to analyze the
AM based algorithms without resampling in the agnostic
setup, leveraging techniques like Leave One Out (LOO) as
an example. We keep these as our future endevors.
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A. Proof of Theorem 2.1

Without loss of generality, let us focus on 6. We have

* * ’y
167 =051 =1161—67 == > _VE (0]
i€l

=[[(6:—67)— L > (VF(61) - VE(61) — - Y VE (67

i€l i€l
FY * ’Y *
<I(O1=07) = > (VE(0) = VEO)) [+ _VEO)].
icly i€l
T1 T2

Let us first consider 7. Substituting the gradients, we obtain

2y *
1__2@ YO =D =1T== >z )01 —65).

i€l i:(wi,yi)esl

We require a lower bound on

)> 1 T
Umm ;T Umln TL/ TiT; )

1611 i:(x4,y:) ES1NST

Similar to the EM framework, in order to bound the above, we need to look at the behavior of the covariates (which are
standard Gaussian) over the restricted set given by S; N S7. Note that since we are resampling at each step, and using
fresh set of samples to construct S; and another fresh set of samples to run the Gradient AM algorithm, we can directly use
Lemma B.2 here. Moreover, we use the fact that |i : (x;,y;) € S1NST| > Cli: (z4,y:) € S7| > C'Tminn With probability at
least 1 — Cexp(—mminn) Where we use the initialization Lemma A.1. Thus, we have

1 T
3
Umin(ﬁ Z €XT; T )>C7T
i:(zi,y;) €51

with probability at least 1 —Cexp(—Con?

S in1') — Csexp(—mminn’) provided n’ > O%. As aresult,

min

Ty < (1 =y 161 =071,

mm)'

with probability at least 1 —Cyexp(—Con?

mm )'

Let us now consider the term 75. We have

i *
n=1 Y VEREI

i:(xi,yi) €S1

IN
3|2

Y IVE@)I

i:(xi,yi) €S1

k
> IVEODI+IY. X IVEEDI

i:(xs,y:)ES1NST J=2i:(zi,y:)€S1NS}

SR

When {i: (x;,y;) €57}, we have

IVE(07) ]| =2lyi — (@s,67) ]| ]
<2\ ||zi]| < CAy/dlogdlog(1/Tmin)

12
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with probability at least 1 —n'/poly(d), where in the first inequality, we have used the misspecification assumption, and in
the second inequality, we use Lemma B.3. Let us now compute an upper bound on ||V F; (07 )||, which we use to bound the
second part. We have

N2 ACHI EA R B3 EA
< Chdlogdlog(1/mmin)||07]| + Cby/dlogdlog(1/ Tmin)

with probability at least 1 —1/poly(d).

With this, we have

k
T < %|11ﬂI{|C/\\/dlogdlog(1/7rmin)+%ZmﬂIj| (cldlogdlog(1/wmm)|9;||
j=2

+Cby/dlogdlog(1 /wmin)>

<yOX/dlogdlog(1/Tmim) +C1y(k—1)P. [dlogdlog( 1/ Tanin) 1607 |+ Cb/dlogdlog (1 /wmin)} ,

with probability at least 1 —exp(—cP.n)— #,(d) — #&) , where P, is defined in Lemma A.1. In this case, we use | I; NI | <
n/ (trivially holds) as well as the standard binomial concentration on |/; N I | with mean at most n’ P, with probability at

least 1 —exp(—cP.n'). Moreover we take the union bound. Here, we use Lemma B.3 along with the fact that |y;| <b.

Combining 7% and 75, we have

167 =07 (| < (1—cymhi) 01— 05 ||+ Cy A/ dlogdlog (1 / Tnin )
+C1y(k—1) P, |dlogdlog(1/mmin)||07]| + Cb+/dlogdlog(1/ Tmin) |,

/

with probability at least 1 — Crexp(—Ca ') —exp(—cPen’) — ooty -

A.1. Good Initialization

We stick to analyzing #;". In the following lemma, we only consider . In general, the same argument holds for {03, ...,0x }.
Lemma A.1. We have

P€=P<Fi(91)>Fi(92)|i€If)

“te 1 A-)\1?
<ol —
=T Cinpmaxje (g 1072 [ 2

Let us consider the event
Fy(61) > Fi(62),
which is equivalent to
|yi = (@i,01)] > |yi — (wi,02)]
Let us look at the left hand side of the above inequality. We have

|yi — (2:,07) + (2i,01 —07)]
<|yi—(zi,07) |+ [{zi,01 —07)]
<A+ (@i, —07)]

where we have used the fact that if 7 € I7, the first term is at most \.

13
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Similarly, for the right hand side, we have

yi — (:,05) — (2i,02—05)]
> |yi—(xi,05)| — [{xi,02—03)]
> A—[(zi,02—03)]

where we use the fact that if ¢ € I7, the first term is lower bounded by A.

Combining these, we have

A=) A=)
<P (Itmn-01)12 252 )+ (asta- o501 232

Let us look at the first term. Lemma B.2 shows that if ¢ € I} (accordingly (z;,y;) € ST), the distribution of z; — i, is
subGaussian with (squared) parameter at most C'(1 + log(1/mmin)), Where i, is the mean of x; (under the restriction
(x4,y:) € S7). With this we have

A=) . L A—A
P(Itesu-001 252 ) < (1o nra =00+l lor =051 2 252

<B (It 1n01 0012 252 eV o1 i) 1651

where we use the initialization condition ||6; — 67| < cinil|07 ||, and from Lemma B.2, we have || i ||2 < Clog(1/mmin)-

Now, provided A — > C(ciniv/10g(1/mmin) |07 ||) + C1 /1 +10g(1/Tmin ), using sub-Gaussian concentration, we obtain

A\ L (A
0 —05 > "< Tealerzl T2 | )
]P’(l(:vzﬁl nz— )—2exp( cim2 10712 L 2 )

ni

A—)\ 1 TA—)\]?
]P) ’iae _9* Z §2 - 9
<'<“’ 20312 ) eXp( e 1552 |2 >

p(mwl)m(ez)uefi‘)§4exp(— 1 [A;AD

Cini2MaX (k] HQ;HQ

and hence

which proves the lemma.

B. Proof of Theorem 3.1

Let us look at the iterate of gradient EM after one step and without loss of generality, we focus on recovering 6. We have

. . 2
|\9f—91||:H91—91—W2;p91,... o (€3,yi3601) (i 01 —yii ) |
1=
Let us use the shorthand p(6) to denote pg, ..., (wi,yi;61) and p(07) to denote py: g+ (2i,y:;07 ) respectively. We have

*
k

2 2
HQT—QT”:H&—QI—H—Y Z p(@l)(xixfﬁl—yixi)——’/y Z p(el)(iniT%—ini)H

i:(xq,y:) EST i:(wi,yi)EST
. 2y T 2y T
<101 —01—— > p(0y)(wiad] O —yizi) —— > p(00) (wial 01 —yiwi) |
i:(xi,yi)EST i:(i,y:)EST
T
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First we argue from the separability and the closeness condition that, if (x;,y;) € ST, the probability p(6, ) is bounded away
from 0. Lemma B.1 shows that conditioned on (z;,y;) € S;‘, we have pg, g, (;,y:;0;) >1—n, where

1—e—C22? +(k— 1)6—(A—C>\)2
= 1+ (h—1)e-(A—CA? :

with probability at least 1 —C'sexp (— (& c?%) . With this, let us look at 7% . We have
ini 1

« 2 2y
N L > p(91)(IiIiT91—Wi)H+W|| > p(O) (ww! —yias)||.
i:(wi,yi) EST i:(xi,yi)EST

T1 1 T12

We continue to upper bound 77 :

2
T <|[6h—07— F’,Y o p(0n) (wial b1 —yiwi) |

i:(w,yi) EST

2 2
<lor=6;-=1 > p(O) (wal G—aial6) |+ Y p(0) (el 6 —yiai)|

i:(mi,yi)eS;‘ i:(wi,yi)esf

2y oy 2 .
<I|r-2 S el |O-0D1+2 S 0l s ]

i:(xs,y:) EST i:(x,yi) E€ST

2
<=2 % powet | @00+ Coo  Topdon ).

i:(wi,y:) EST

>\2

= ) — n'/poly(d), where we use the misspecification condition,
ini 1

with probability at least 1 — Csn’ exp ( -

ly; — (24,07)| < X forall (x;,y;) € ST, along with the fact that the number of such indices is trivially upper bounded by the
total number of observations, n. Moreover, we also use Lemma B.3 to bound ||z;||.

Note that since (z;,7;) € Si, we have p(6;) > 1 — 1. We need to look at Umin(#Zi:(miyyi)esfp(el)(Ei(E?), where
p(61) >1—n. We use the fact that

1 1
Omin W Z p(el)IﬂhT ngin W Z (1_77)55155?

i:(wi,yi) EST i:(x,yi) EST

Note that we need to analyze the behavior of the data restricted on the set S7. In particular we are interested in the second
moment estimation of such restricted Gaussian random variable. We show that, conditioned on S}, the distribution of
x; changes to a sub-Gaussian with a shifted mean. Lemma B.2 characterizes the behavior as well as the second moment
estimation for such variables.

We invoke the Lemma B.2 and use the standard binomial concentration to obtain |i: (z;,y;) € S7| > CTminn with probability
atleast 1 —exp(—cmminn). With this, we obtain

1
Omin W Z (1_77):61:6? Zc(l_n)ﬂ-rgnin
i:(wi,yi) EST
with probability at least 1 — Cyexp(—Comly; n'), provided n/ > ¢ 408U/ Tmin)

min .
min

Using this, we obtain

T11 < (1=2ve(1=n) 735101 — 07 |+ CyAy/dlogdlog(1/ mmin ).
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Agnostic Mixed Linear Regression with EM and AM

with high probability. Let us now look at T12. We have

2y T
ii(xi,yi)€ST

2y
<= N pO) |zl 01 —yiwi]

i:(xi,y:)EST

@) 2y’
S > w0
HEINTI

2yn

< S (il +lalll62 ) sl
i:(xi,yi)EST

(@) 29n’ . .

IS (b Tomd R ) 16107 -+ 165 1) AoB 0B (1 o)
i:(wq,y:) ST

<2917 (b+C/dlogdlog(1/Tmin))* (cini+1)) 165

with probability at least 1 —n’/poly(d) — Csn’exp ( -4 ’\72> (using union bound). Here (7) follows from the fact

Cini2 HHTHQ

that p(07) <7’ where ' = e~ (A=ON*=C2)%) (gince (1,y,) ¢ ST, which follows from Lemma B.1), (i) follows from the
fact that |y;| < b for all . Moreover, since {S¥}9_, partitions R?, (;,y;) ¢ S7 implies that (x;,y;) € S where £ € [k]\ {1},
and we can invoke Lemma B.3.

Collecting all the terms: We now collect the terms and combine them to obtain
163 =67 (| <T11+Tho

< (1= 27e(1—n)) 203 | + Oy TOBTOR( )
+29n (b+C/dlogdlog(1/mmin))? (cini+1)) |05

with probability at least 1 — Crexp(—cim; n’) — Caexp(—cad) —n'/poly(d) —n'Csexp (‘ c{l}%) .
ini 1
Let p=(1—2vc(1—n)73,,) and we choose 7 such that p < 1. We obtain
165 =071 <pllO1 =07 +e,

where

£ <Cy\y/dlogdlog(1/Tmin) +27v1 (b+C+/dlogdlog(1/Tumin))* (cini+1)) 1051,
with probability at least 1 — Crexp(—cim; n’) — Caexp(—cad) —n'/poly(d) —n’'Csexp (— #) .

B.1. Proofs of Auxiliary Lemmas:

Lemma B.1. Forany (z;,y;) € Sj, we have po, ..o, (xi,y:;0;) >1—n, where

1—e=CaN 4 (k— 1)67(A’0A)2
= 1+ (k—1)e—(A=CA? '

Moreover, for (zi,y;) ¢ S} we have

Dor,....00 (Ti,yi305) < e~ (A=CAP=C2%)
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Proof. Consider any (x;,y;) € S7 and use the definition of py, .. g, (x:,y:;0;). We obtain

e~ Wi—(z:,0;))*

SR el (@ 0))?

Note that
lyi = (@:,05) = lyi — (z4,05) +(wi,05 —6;)|
<lyi—(@4,07)|+ [{x:,07 —0;)]
Furthermore, using reverse triangle inequality, we also have
lyi = (@,0;)| = |y = (6,07) [ — (2,05 —0;)]
Since we are re-sampling at every step, and from the initialization condition, we handle the random variable (z; 05 —0 ).

Using Lemma B.2 shows that if (x;,y;) € S7, the distribution of ; — 11, is subGaussian with (squared) parameter at most
C(1+1og(1/mmin)), where p, is the mean of x; (under the restriction (z;,y;) € S7). With this we have

P(|<xi,el—er>| zcx) SP(|<xi—uT,el—er>|+||ur||||91—9r| zcx)

sp(m—uﬁol—em > OA—uiC \/1og<1/wmm>|or||)

where we use the initialization condition || — 67| < cini||07 ||, and from Lemma B.2, we have || 1. || < Clog(1/Tmin)-
A

V1og(1/mmin) 107117

(les01-0p1200) <2emp(~Cr— D).
Ciniz [|07 ||

Now, provided ¢jn; < Co using sub-Gaussian concentration, we obtain

Using the assumption, i,.e., the separability and the misspecification condition, we obtain

e—CaX?
D101 (TisYi305) > ———5 iy Py p
1yeensB P T RIS S R O,
e—CaX?
>
- e_(yi_<Ii70j>)2+(k—1)e_(A_C>\)2

e—C2A2
2 3
1+ (k—1)e (A=0%

1 1—8702)‘2—1-(/@—1)6’@70)‘)2
T 14 (k—1)e—(A—CN? '

Let us look at the condition (x;,y;) ¢ S;. Since {S7 }5_, partitions RY, (x;,y;) € S}, for j’ € [k]. With this,

e—(A=CN)?

C0:) <
Db,....0k (x“y“ ‘7)_ e—(yi—(mﬂj/})z+Z€¢j/e*(yi*<1iﬁe>)2

e—(A=CN)?

_e—((A—c,\)z—cg,@)
e C2A24 (0 '

The above events occur with probability at least 1 —Csexp <— Ch %) .
ini 1
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Lemma B.2. Suppose x ~ N(0,1;) and a fixed set S such that P(x € S) > v. Let T denote the restriction of z onto S.

Moreover, suppose we have n draws from a standard Gaussian and m of them falls in S. Provided n > %

I~ 7V C
Umin(EzTiTi >Z§V7
1=

d, we have

with probability at least 1 —2exp(—civin).

Proof. Consider a random vector 7 drawn from such restricted Gaussian distribution, and let . and X, be the first and
second moment respectively. Using (Ghosh et al., 2019, Equation 38 (a-c)), we have

|- ]1? < Clog(1/v),

Cv*I;<%,,
Moreover (Yietal., 2016, Lemma 15 (a)) shows that 7 is subGaussian with 15 norm at most ¢ < C(1 + log(1/mmin)-

Coupled with the definition of 15 norm, (Vershynin, 2018), we obtain that the centered random variable 7 — 1 admits a ¥,
norm squared of at most C (1+10g(1/mmin ).

With m draws of such random variables, from (Ghosh et al., 2019, Equation 39), we have

RN, 5 of d d
Gmin<E;TiTi>ZCV —¢ (EJr E+5 ;

with probability at least 1 —2exp(—cymmin{§,62})

If there are n samples from the unrestricted Gaussian distribution, the number of samples, m that fall in S is given by
m> %un with high proibability. This can be seen directly from the binomial tail bounds. We have

P(m< %) <exp(—cvn)

Combining the above, with v > ¢ where c is a constant as well as n > Wd, we have

1o C
Omin <E;Tz7—;—r> 257/27

with probability at least 1 —2exp(—cy;mmin{4,62}). Substituting § = C'v? yields the result. O

Lemma B.3. Suppose (z;,y;) € S for some j € [k]. We have

[|2i ]| < C(v/dlogdlog(1/Tmin) + V/10g(1/Tmin)) < C1 v/ dlogdlog(1/mmin ),

with probability at least 1 —1/poly(d), where the degree of the polynomial depends on the constant C.

Proof. Note that Lemma B.2 shows that under (z;,y;) € S J* for some j € [k], the centered random variable 7; — p, is
sub-Gaussian with )5 norm squared of at most C'(1 4+ 1log(1/mmin)). Note that since, 7; — p, is centered, the 5 norm is
(orderwise) same as the sub-Gaussian parameter.

We now use the standard norm concentration for sub-Gaussian random variables (Jinetal., 2019). We have, for a
sub-Gaussian random vector with parameter at most C'(1+1log(1/mmin)), we have

]P’(HX—EXH zt\/E\/(1+log(1/7rmin)) <2exp(—ert?).
Using this with ¢ = C'y/logd along with the fact that || ||* < Clog(1/7min ), We obtain the lemma. O
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C. Proof of Generalization

C.1. Proof of Claim 5.2

In order to see this, suppose hg-l) € H; and h;z) € H;, and so we have h;l)(gc) = <x,6‘§.1)> and h§-2) () = <x,9§.2)> with
HQ;D | <R aswell as H9‘§-2) | < R. With this, we have

(0P (2),) — (0P () )| = <:vi,9§-2)—95-1)>[2y—<x,9§-2)+9§-1)>]’

<In" @)= @)1 21yl + 116" 1+ 1651)]
<2(1+ R)|hf) (2) =h{? ()],

which proves the claim.

C.2. Proof of Lemma 5.3

Proof. Note that the soft-min loss is a convex combination of the base losses, and the probabilities are computed by
D61,...0% (z,y; 9]‘). Instead, if we consider the loss class with all possible convex combinations of the base losses, the
corresponding loss class will be a superset of the current loss class. From the definition of Rademacher complexity, if
Fy C F; for any two sets Fy and Fy, we have R, (F1)< R, (F»). We define the following loss class

k
{ x,y |—>Zo¢] );0; eR?, 16| <R,a; >0Vj€] ],Zaj_1}7
j=1

and hence from the definition of Rademacher complexity, we have 9t(®) < 93(®). Continuing we have

n k
R(P)=E, sup lzaiZajf(hj(:v),y)}
=1 j=1

| (0550101 < Roag >0y 508 ey =117 =

zmj }

=E, sup
{9 0 1<R, aJ>O}J 1:2 105=11

< zk:IE,, - Zalaj H

[0,:110; ||<R aj>o laj|<1| T

Jj=1
k B 1 n

<» E, sup a;l|=) ol h»x,y’
ot _ejcuej||SR.,ajzo,|aj\51| 4 n; (ho(z).)
k B 1 n

<N 'E, sup - Uz[(h'(x)vy)‘
; 0,465 1< Ry >0, | <1 "; !
k B 1 n

<Y Ey| sup |[=) oil(h;j(x),y) H
; 6,410, <R ”; !

=kR(LoH)

<4k(1+R)R(H)
4kR(1+R)

< _ 7

S/

where in the third line, we have used the sub-additivity property of the supremum function as well as the triangle inequality.
We also used the above claim regarding the Lipschitz constant of the loss function £(.,.) and invoked the contraction result
for Rademacher averages by (Bartlett & Mendelson, 2002). Finally, for linear hypothesis class, we use (Mohri et al., 2018)
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to obtain the final result. Hence, we obtain

R(P) <

)

. 4kR(14R)
NG

which proves the result.
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