

Task History

Initiating Search

June 17, 2025, 6:32 PM

Search: Synthesis of Zinc phthalocyanines within Zeolites

Search Tasks

Task	Result Type	View
Returned Reference Results (1)	References	View Results
Exported: Viewed Reference Detail	■ References	View Detail

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

CAS SciFinder® Page 2

View in CAS SciFinder

Synthesis of Zinc phthalocyanines within Zeolites

By: Glass, Ariyanna; Rana, Ganesh; Bakker, Martin G.; Bindu, M. M.

0 Substances • 0 Reactions • 0 Citations

Efficient oxidation catalysts are critical for advancing technologies such as fuel cells and carbon dioxide reduction Transition metal phthalocyanines, such as zinc phthalocyanine (ZnPC) and zinc perfluorophthalocyanine (ZnF₁₆PC), show promise due to their catalytic potential, despite challenges from aggregation-induced activity loss. This research focuses on synthesizing ZnPC and ZnF₁₆PC within zeolite Na-X (FAU) to leverage the zeolite's confined environment to prevent aggregation and enhance the catalytic performance. Exptl. methodologies encompass ion exchange and melt synthesis techniques to synthesize ZnPC and ZnF₁₆PC within the zeolite matrix. Initial results demonstrate successful synthesis of ZnPC and ZnF₁₆PC in/on zeolite CBV780, based on characterization by diffuse reflec tance UV-Vis spectroscopy. To confirm that the phthalocyanines are made within the zeolite rather than on the outside of the zeolite, extensive washing using Soxhlet extraction is used to remove all phthalocyanines formed on the exterior of the zeolite. There are four fluorines in each phthalonitrile mol., and four phthalonitriles make a phthalocyanine, hence there are 16 fluorine atoms in a phthalocyanine; "hexadecyl fluorophthalocyanine" would be correct, but is a mouthfull; hence perfluorophthalocyanine.

Conference

Source

Pages: SERMACS-867 Conference; Meeting Abstract View all Sources in CAS Scifinder **Database Information**

AN: 2025:1147262

CAplus

Company/Organization

Chemistry and Biochemistry The University of Alabama System

Tuscaloosa, Alabama 30263 United States

Publisher
Unknown
Language

English

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.