Making Software Work Sustainable for the Academic Research Group: A
Comparative Case Study

Will Sutherland
University of Washington

willtsk@uw.edu

Abstract

Studies of research software development have
focused on how to promote or encourage the adoption
of software engineering practices, but we do not have a
good empirical understanding of strategies that
researchers have already begun to take in order to
integrate those practices into research work in
sustainable ways. We conduct a comparative case study
of two research groups in different fields, and
characterize two approaches that they have taken to get
research software engineering work done: practice
integration and differentiating expertise. From these
findings we argue that examining outcomes of change
in research software development practice is critical
for understanding sustainability and the ramifications
of such changes for scientific work.

Keywords: research software engineering, scientific
software, adoption, sustainability

1. Introduction

The problem of research software development is
often framed, implicitly or explicitly, as a problem of
adoption: how to get researchers to take up software
engineering practices or best practices for software
development. This has included codifying software
engineering practices for easier adoption by researchers
(Wilson et al., 2006; Arvanitou et al., 2021), assessing
the kinds of work involved in such practices (Trainer et
al., 2015), better understanding incentives and
recognition structures for software work in the sciences
(Howison and Herbsleb, 2011; Katz et al., 2020),
identifying cultural barriers to interactions between
researchers and software engineers (Segal, 2005), or
characterizing researchers’ development patterns
independent of software engineering practices (Hannay
et al., 2009). Given the recent growth of research
software development roles in the sciences (Berente et
al., 2019; Sims, 2022; Baxter et al., 2012), as well as

Andrew Neang
University of Washington

neanga@uw.edu

Charlotte P. Lee
University of Washington

cplee@uw.edu

greater uptake of software engineering practices by
researchers, it is now possible for us to begin asking
empirically how groups and collaborations are getting
the “extra work” (Trainer et al., 2015) entailed in
software engineering practices done. In other words,
we can begin to move from asking how to promote
these practices to examining how they are being taken
up and used. Given the barriers, complex incentives,
and alternative goals (e.g. Kelly, 2015) that exist in
research labs and collaborations, how do these groups
change their practice or reorganize in order to get
research software engineering work done?

This question about changing software practices is
straightforward, but requires departing from a model of
adoption in a couple ways. Firstly, considering
adoption focuses our attention on how engineering
practices might be taken up into research work, but it
does not further our understanding of how research
work itself will change with the adoption of those
practices. The implicit understanding is often that
research work will be expedited: it will be qualitatively
unchanged, but there will be faster or more correct
results (Wilson et al., 2006). In this model software is a
substrate, which supports scientific work, but does not
touch the core of what constitutes scientific work.
Some herald much deeper changes around software
work and data-centric science (Djorgovsky, 2005;
Brescia et al., 2017). More generally, prior work has
characterized the tools and instruments of science as
more deeply constitutive of the work of science itself
than this substrate model might suggest (Hine, 2006;
Paine and Lee, 2015). Looking at how research
software engineering work does get done will require
an examination of how the practice and organization of
scientific work change around it.

Secondly, adoption can sometimes be taken as a
generic process, in which different groups go through a
similar process of taking up a codified set of practices.
But different research groups and fields have different
histories with software development work and are

likely to be going through different kinds of change
around it. Efforts to understand the scientific context of
research software development have focused on
establishing essential or common characteristics across
scientific work, such as that researchers often cannot
express their requirements for software up front
(Heaton and Carver, 2015), that they have a hard time
establishing testing oracles (Kanewala and Bieman,
2014), or that research cultures favor research outputs
over software contributions (Du et al., 2021). While
there is some recognition that the sciences present a
“varied software landscape” (Carver et al., 2022),
codified sets of engineering practices are often
understood as being for science writ large, and we still
have a poor conceptual handle on the variety across
fields, disciplines, or research areas in terms of how
they approach software work.

In this paper we present a comparative case study
of two research communities, one in the field of
oceanography and the other in the field of radio
cosmology, which have both recently undergone
significant change in their work in order to improve the
way they develop and use software. Through a
qualitative analysis of interviews and observations we
develop points of contrast between the two
communities, and focus on change in practice and
organization. Specifically we ask: How do two different
research groups change their work in order to get
software engineering work done? We characterize two
processes, differentiating expertise and practice
integration, which can help us understand the different
approaches that these two communities took, and we
connect these approaches with established practices
and organizational environments in the two cases.
Understanding the variety of changes the different
research groups are undergoing around research
software development work is useful in a practical way
for planning and navigating these changes, but can also
help us understand sustainability and long-term
outcomes of these changes.

2. Background

Software has become increasingly essential to research
in many fields (Carver et al., 2022), and is at the center
of significant changes that are going on in scientific
work, including larger reform movements around
reproducibility and openness (Hong et al., 2022;
Stodden et al., 2016). In recent years considerable
effort has been dedicated to improving the
reproducibility, sustainability, and correctness of
software tools (Crouch et a., 2014; Mesh et al., 2014).
These movements are usually approached as processes

of adoption, where the goal is to encourage or facilitate
the adoption of software engineering practices in the
sciences, or better understand the barriers to this
process. This has included codifying sets of best
practices (Wilson et al., 2006; Arvanitou et al., 2021),
examining cultural barriers to recognizing and
rewarding software work in the sciences (Du et al.,
2021), and characterizing cultural differences with
software engineers (Segal, 2005).

Much of the research on adoption of best practices
concerns science as a singular entity. This is in part
because the research is motivated by an effort to
understand what it is about scientific work that makes
it difficult to adopt more structured or stringent
software engineering practices (Heaton and Carver,
2015). In some cases, they point to characteristics of
research work or process, such as the fact that
researchers often cannot express their requirements up
front, or that it is difficult to establish testing oracles
(Kanewala and Bieman, 2014). In other cases studies
point to aspects of scientific institutions or cultures,
such as incentive structures which favor research
outputs over software contributions (Du et al., 2021).
These latter observations identify culture as a
historically situated phenomenon, which can be
intentionally changed (Katz et al., 2018), but it
nevertheless looks for cultural or institutional attitudes
which span all or most scientific fields. Both
understandings of scientific process and scientific
culture are looking for science as a monolithic
phenomenon. While discipline might be a starting point
for understanding variety in research software
development, the situations of research software
development will likely be shaped by a host of other
factors. For instance, Howison and Herbsleb (2011)
characterize the different relationships that researchers
have towards software development work, including
development as incidental to research work, for
academic credit, or as a supporting service towards
scientific work. Kelly et al., (2010) look at “technical”
and “scientific” contexts as well as goals.

While some studies have looked at “successful”
adoptions of software engineering practices in research
groups (e.g. Trainer et al., 2015; Neang et al., 2023),
the focus on adoption has thus far pointed our attention
to places where software engineering practices have
not yet been taken up in research work. Examining
cases where such practices are being or have been
taken up already can allow us to observe the outcomes
or ramifications the adoption of these practices might
have for scientific work.

Another recent stream of research on scientific
software has looked at the emerging roles of research

software engineers. There are different
characterizations of people working in this space.
Baxter et al. (2012) describe a continuum from
researcher-developers, who do significant software
development in aid of their research goals, and
research software engineers, who are knowledgeable
about scientific problems but are focused on producing
software. Berente et al. (2019) present a broader
category of “cyberinfrastructure personnel”, which
captures a variety of roles involved in and
complementary with scientific research work. Issues of
hiring and retention of software-focused professionals
in academia, as well as the professionalization and
recognition of that work (Mundt et al., 2023), have
been central topics in this discussion.

Studies of research software engineering and those
on the adoption of software engineering practices in the
sciences present somewhat different, although closely
connected, visions for how software work can get done
in research labs and communities. The problem of
adoption focuses on a model where researchers
themselves take on the extra work of more robust or
engineering-like development practice, while studies of
research software engineering focus on the possibility
of coordinating software-focused work with
research-focused work in one way or another. This
difference is partially captured by Baxter et al.’s (2012)
distinction between researcher-developers and research
software engineers. These visions are of course not
exclusive, and they are likely to be mutually
interdependent. Nevertheless, it is valuable to examine
how research labs in different contexts chart different
courses through these different approaches.

3. Methods and Research Sites

Our study takes a comparative case-based
approach, which is intended to provide an interpretive,
naturalistic, and holistic account of software
development work in two sites (Walsham, 1995). Our
comparative approach is aimed at rendering clear,
conceptual distinctions between historically situated
entities, rather than identifying essences or
commonalities across cases by accounting for variation
(Ragin and Zaret, 1983). We develop the cases based
on long term ethnographic engagement and analysis
through qualitative coding of interview data (Table 1).
Field notes were used to generate protocols, provide
context for interview discussions, and to develop
anecdotes for explication. Interviews were
semi-structured and lasted between 45 minutes and 2
hours, and were recorded and transcribed using a
transcription service. The interviews covered similar

topics in both sites, focusing on our interlocutors’ own
experience with software development, how their
practice had changed in recent years, the origin and
development trajectory of particular software packages
they were involved with, their opinions on software
engineering practices, where they had learned those
practices, and their interactions with other lab and
community members around software artifacts. All
names reported here are pseudonyms, including
laboratory names.

Coding followed a theory-generative approach
based on Charmaz’s (2014) grounded theory.
Specifically it involved an initial coding process, which
was guided by our initial interest in comparing and
contrasting engagement with software work between
the two cases. This was based on the authors’ prior
observations and the recognition that the two groups
differed in terms of the way that they accomplished
software work, including the presence of
software-engineering oriented members of the lab.
However, the authors did not have a clear view of how
to conceptualize this difference at the outset. This first
coding process was therefore focused on difference in
software practice across the two sites, but was also
focused on producing codes liberally, without limiting
codes to specific concepts or models. The authors also
decided to code across the two sites, such that codes
were developed with instances in both cases. The first
two authors each coded documents from both cases,
developing a single set of codes (using each other’s
codes where appropriate) using the qualitative coding
software Atlas.ti. This resulted in 202 codes, which
comprised both nascent analytical categories and in
vivo categories. All three authors then consolidated this
set through discussion, and by returning to instances of
the codes. The authors considered various
conceptualizations in this process, including comparing
emphasis in different specific practices across the two
sites (one focused more on unit testing or user
feedback versus code review or code formatting, and
so on), as well as comparing differences in the legacy
codebases of the two groups. Overall the authors
reframed the codes and the study in a couple ways:
they 1) focused on codes describing change in
practices or organizing, 2) focused the codes on
processes or dynamics rather than on objects involved
in those dynamics, and 3) focused on points of contrast
between the two sites. The authors then performed
focused coding around the new codes, which resulted
in further refining the analysis to the two concepts we
describe in the findings, differentiating expertise and
practice integration.

3.1 Site Description

This study undertook ethnographic engagements with
two field sites. The first of these is the Oceans
Community, a biological oceanographic laboratory
consisting of about 18 people, including Ph.D.
students, postdocs, research scientists, a research
professor, and the lab head. The group’s work revolves
around better understanding ocean microbe populations
by collecting data at sea as well as growing cultures in
a wet lab environment. Much of their software
development work was done in Python or R, and
involved building pipelines of sequential data analysis
processes. The second author has been involved with
the Oceans Group for 9 years, beginning in 2015. His
involvement has included sitting in on lab meetings,
multiple specific development meetings, interviews
with lab members and collaborators.

The second field site, the Radio Group, works in a
subfield of cosmology. Their work focuses on
developing extensive signal and data processing
systems to detect a signal emitted by neutral hydrogen
during early periods in the development of the
universe, which could tell us more about the universe’s
large-scale development. The lab consists of about 6
people, including Ph.D. students, one research
scientist, and the lab head, a professor. Most of their
software was written in Python, but they had at least
one large pipeline that was written in IDL, which the
group had used extensively in the past. The first author
has been involved with the Radio Group for 5 years,
beginning in 2019, and his engagement was similar in
nature to the second authors’ involving observations in
lab meetings and development meetings, as well as
interviews with lab members and collaborators.

Software work in both groups ranged from
one-time and frequently reused scripts to larger open
source projects, ranging from 25,000 — 120,000 lines in
the Radio Group and 18,000 — 105,000 lines in the
Oceans Group. Some of these projects were entirely
developed within the lab while others were
collaboratively developed with other labs. The most
active projects had weekly contributions from 4-5
people, while some legacy projects were only updated
every few months.

Both groups had, within the last 10 years, made
significant efforts to improve the way they build and
maintain software. Both had begun to implement
practices that were new to them, including unit testing,
continuous integration, and semantic versioning
(among others) in the Radio Group and version control,
documentation, refactoring, and requirements

specification (among others) in the Oceans Group.
Here we will describe these as “software engineering
practices” for consistency with the literature (e.g.
Heaton and Carver, 2015), although members of the
two groups often simply referred to them specifically,
or called them “best practices”, “good practice”, or
“this good stuff” among other phrasings. While the
goal of this study is not to quantify improvement that
resulted from particular best practices, our argument is
certainly based on the assumption that these changes in
practice did make the groups’ software work more
sustainable. Our estimation of this was based on
participant reports: interviewees explicitly stated that
certain practices made the work more manageable or
allowed them to continue maintaining the software, or
they referred to earlier practices as regrettable or
painfully difficult. It is also based on the demonstrable
longevity of the software projects, a number of which
have been actively developed for 8-10 years and have
been used in producing numerous publications.

In both sites the “field”, as constructed through the
authors’ ethnographic engagement (Karasti and
Blomberg, 2018), was not limited to the singular lab,
but also includes their larger multi-lab collaborations,
who were often direct collaborators on their software
projects and research work. We refer to the groups that
are most central in our observations as the Oceans
Group and Radio Group, while referring to the larger
collaborations as the Oceans Community and the Radio
Community. The last author negotiated entree for both
field sites, has been instrumental in maintaining access,
did some participant-observation in the Oceans Group,
and contributed to analysis.

Category No. . No.
Interviews |Interlocutors

Radio Group 15 13

Oceans Group 22 16

Undergraduate

Ph.D. Student

Research Consultant/ |3
Data manager

Research Scientist / 12 9
Postdoc

Professor 9 7
Total 37 29

Table 1: Interviews by field site and position.

4. Findings

We describe two major dynamics, differentiating
expertise and practice integration, by which the Radio
Group and Oceans Group were able to implement
software engineering practices in their software work.
Differentiating expertise was a process of
specialization, by which members of the lab began to
work with people doing more software-oriented work,
either in the lab or outside of it, in order to get
pipelines or software packages built. Practice
integration was a process by which researchers took up
software engineering work on top of, or as part of, their
day-to-day research work. These dynamics are distinct,
but closely connected, and both were present to some
degree in both sites. For instance, researchers in the
Oceans Community were picking up programming and
software engineering practices, but around more
difficult development work they would get help from
software-oriented members of the lab or collaboration.
However, using these two concepts we can develop
contrast between the two cases. The Radio Group
engaged in practice integration, taking up software
engineering practices into or on top of their research
programming work, but did not engage in
differentiating expertise to the degree that the Oceans
Group did. Members of the Radio Group and the Radio
Community were researchers who took up software
engineering practices for certain development efforts
and as overhead on their day-to-day research
programming work. Members of the Oceans Group
also engaged in practice integration, but they also
dedicated significant effort to hiring or bringing on
members of the lab who specialized in software
development work. We describe each of these
processes in turn, and use them to develop these two
cases as distinct engagements with software
engineering practice, with distinct outcomes and
ramifications for research work in the two
communities.

4.1. Practice Integration

Practice integration was a process by which
researchers took up software development work and
software engineering work on top of, or as part of, their
day-to-day research tasks. Particularly in the Radio
Group, this meant that researchers took on a
considerable amount of work in software
development-oriented meetings and performing tasks
like writing unit tests, reviewing others’ code, or

writing tutorials for their software. However, taking on
these practices collectively also created tensions
around the disciplining, adherence to, and promotion of
software engineering practices. Researchers in the
Oceans Group also integrated software engineering
practices into their work in this way, but their
experience differed somewhat both because of
differences in established practice and because a great
deal of software work was taken on by others who had
backgrounds in and were focused on, producing
software, as described in the section on differentiating
expertise. We will first discuss some of the
collaborative tensions that arose for the Radio Group
and then the differences visible in the Oceans Group’s
engagement.

Members of the Radio Group often discussed
software engineering practices as a matter of discipline.
People talked about trying to “do better” with specific
practices, and while they often had a sense that they
should be doing these things, they had to balance them
against time or effort available. The Radio
Community’s research involved building shared
analysis pipelines, which required contributions from a
number of different labs and which would affect
everyone’s results. For this reason they had developed
a strong sense of obligation to use certain development
practices on certain, shared analysis software. But as
Cliff, a professor in the Radio Community, describes,
this was strategically done for particular software:

“So a lot of our other analysis codes are pretty
heavily tested. And we hold ourselves to pretty
high- even if they're not tested, we hold ourselves
to a pretty high development standard, with the
branch-pull-merge architecture and you know, that
sort of software development protocol, but that's-
that takes a lot of people in the loop, which is why
we do it. But if you're just trying to get plots
moving quickly ... and we try to hold ourselves to
that high of a standard for the first- especially for
stuff running as part of the instrument on site.
Either that or around the critical path to a paper”
(Cliff, Professor).

Contributions to software on the “critical path” would
require researchers to write tests and tutorials and other
such practices, but there were also exploratory kinds of
work done in computational notebooks or scripts which
were not held to the same “high development
standard”. Some software packages in the community
had templates for contributions (pull requests) which
had checkboxes where the contributor needed to
indicate that they had written tests and tutorials for
their code. This helped enforce practices that

individuals saw as important but laborious. In this
sense members of the community understood software
engineering practices as an onerous obligation, and
they strategized or triaged places where they were
needed across the community’s different software tools
in order to mitigate the burden.

Particularly because many of the Radio
Community’s software projects were collectively
developed, encouraging or promoting software
engineering practices was a collective effort, and could
be a source of tension for that reason. Some members
of the community were seen as proactive proponents of
software engineering practices in the community, or
were exemplars, who learned and implemented them in
ways that others could copy. This was a kind of
championing of software practice, which garnered
respect from other members of the collaboration, but it
could also become a point of collaborative or
interpersonal tension where promoting best practices
became a criticism of existing practice. Cliff also
described the informal way that this criticism might
happen:

“I mean, we sort of have like a kind of community
marriage, you know. You take turns being the bad
guy. Whoever, whoever happens to be most sort of,
most recently burned by the particular problem
pointed out so- so sometimes it's test coverage,
sometimes it's tutorials, sometimes it's, you know,
community stuff”” (Cliff, Professor)

Being the “bad guy” in Cliff’s description captures
how people could feel defensive against these kinds of
criticisms of their work, but it also captures the fact
that championing was not always a desirable activity,
because sometimes it meant assuming the position of
critic. Mila, a member of the Radio Group who was
referenced by a number of people as a common source
of best practice and development expertise, expressed
some relief in an interview because she no longer was
the only person taking on this role: “I felt like I was
sometimes the one fighting that fight. And now it's like,
I don't even have to push that hard because other
people jump in...” (Mila, Research Scientist). The
emergence of these roles and the collective navigation
of the tensions that emerged around it was a novel
organizational dynamic for the Radio Community, and
one which they had to figure out in order to
successfully take on the extra work of software
engineering practices.

The two groups’ processes of practice integration
looked somewhat different because the two groups had
different established practices around programming
work in general. In the Radio Group, programming

work had been a core part of day-to-day research work
for a long time, such that older members of the group
had done significant amounts of software development
work when they were Ph.D. students or postdocs
(although often without the more recently adopted
engineering practices). Programming and pipeline
development were expected and well understood kinds
of work in the field, both in terms of planning student
projects and timelines and in terms of mentoring and
training. Researchers in the Oceans Group had a
number of different technical skill sets, spanning wet
lab work and the operation of instruments at sea, as
well as data analysis, which, some years before our
involvement with the site, had been done with tools
like Matlab, Excel, or R. With the introduction of new
kinds of instrumentation into the field (particularly
metagenomic sequencing, but also instruments for
measuring chemical composition and others) the scale
and complexity of data required a large jump in the
amount of software development work required, and
particularly the development of extensive analysis
pipelines. Kaci, a Postdoc in the Oceans Community,
described how this was changing expectations for the
field at large:

“But I would say like most of the postdocs in my
field, don't have the coding skills that I do. And 1
think that sucks for them, because they're forced to
learn it now, because data sets are just getting
bigger and bigger, and you can't do them in Excel
anymore, essentially. [...] But it’s crazy how most
PhD students these days know how to code. It's
motivating for me to be like, wow, you've gotta
keep up in some ways. [laughs] When I started, we
didn't have these instruments that create this kind
of data that we would need these kinds of skills for.
So there's— when I first started there was no
motivation for me to learn these skills” (Kaci,
Postdoc)

For students in the Oceans Group as well as in
collaborating labs, R and Python had become
increasingly popular (and expected) environments for
doing data analysis amongst younger members of the
community, and many described picking up
programming either through tutorials online, through
classes at the university, or from other lab members.
This process was somewhat different than the adoption
of software engineering practices, as it involved
learning the materialities and the in-and-outs of
bespoke software as a kind of tool; learning how
different software packages could be put together and
borrowed, how to assess the robustness of other
software tools, learning how much time development

tasks would take and what the potential pitfalls were.
Kaci describes how she and her advisor worked
through this process:

“I think she thinks it's a little more plug-and-play
than it is? And maybe for people who are more,
like, experienced with putting together different
pipelines, or different parts, different tools into a
pipeline, it is more plug-and-play, but for me it's
really not. It takes me a long time just grapple with
what is it doing. [...] I mean, I think that, I don't
know how [Advisor] feels, but I suspect that she
has been surprised at how slowly that we've been
able to get from an instrument to a story. I think
she expected that to be faster?” (Kaci, Postdoc)

Of the labs in the Oceans Community, the Oceans
Group was particularly proactive about picking up
software development as an analysis technique, as well
as software engineering practices. However, there was
significant variety in the Oceans Group in terms of
familiarity with programming and software
development work. Some Ph.D. students did quite a lot
of it, while others’ were focused on other skill sets and
had to pick it up as a kind of overhead work.

4.2. Differentiating Expertise

Differentiating expertise was a process by which work
within a research became more specialized, such that
some members of the lab developed significant
expertise in software-related work, including software
engineering practices, while others had expertise
primarily in particular research topics and other kinds
of technical skill sets (operating instruments and wet
lab work). Members of the lab were able to build
analysis pipelines and accomplish data
processing-intensive science by coordinating these
different expertises as complementary contributions.
The Radio Group had some degree of differentiating
expertise in the processes of championing, described
above, where some members became particular
proponents of software engineering practice, but
members all developed expertise in both software
engineering practices as well as their research topics.
The Oceans Group, however, was proactive and quite
savvy about differentiating expertise, hiring or bringing
on people (as students) who had significant experience
with software development or whose primary object of
work was building software, and making roles for them
within the lab.

This differentiation within the Oceans Group was
of course not discrete but took on some variety.
Columbo, who entered the lab as a lab technician

moved from wet lab work to doing “script jobs” and
building shared infrastructure:

“So I started working in my sort of spare time in
the lab on these little side projects where I’d write
some Perl scripts in case it was something [Gina]
wanted, and eventually that became more and
more my job. [...] And I probably was a lab tech
for two years? I think? I mean full lab tech, that’s
all I'm doing. Um, or maybe a year, and a half
until I started to slowly, I didn t even realize what 1
was doing, but, you know, by taking on these little
scripting jobs, and Gina kind of pushing me, to
keep doing that because that s what I found
interesting, and she had a need for it. Um, slowly,
over time, I think, probably within three years, 1
kind of fully transitioned into really starting to do
what I do now” (Columbo, Research Consultant)

As has been observed in studies of research software
engineering (Berente et al., 2019), there were not
initially well-defined roles for software-oriented work,
and people who did that work often had somewhat
circuitous or serendipitous routes into their roles, like
Columbo’s. Valentino had a long career as a software
developer before joining the lab as a Ph.D. student.
Given his background he became a source of software
engineering expertise in the lab, but his own work was
at least partially oriented towards research outputs.
Some younger Ph.D. students similarly became quite
proficient in software development and engineering
techniques and began to help other students with their
software work. Another lab had a data manager role
that also involved helping researchers with using Git
and Github, and the Oceans Group also had briefer
incubator-like interactions with computer scientists at
their university. In this way the Oceans Group, as well
as other labs in the Oceans Community, became a place
of differentiated skill sets, and a place where people
with different backgrounds entered and left to pursue
quite different future careers. This dynamic was
captured roughly by Valentino, who described himself
as a “carpet dweller”, because he spent most of his
time in the carpeted offices of the lab rather than the
wet lab, the “shiny side” of the lab. This two-sided
distinction captures a difference in the day-to-day work
of the lab, but it belies the complexity of career
trajectories present there, with some people pursuing
biology but picking up software development
experience in aid of that goal, others who had some
background in biology but who were primarily
interested in software-oriented work, and those with
experience in software development who were
pursuing biological research.

Part of what was involved in this change for the
Oceans Group was figuring out how to connect and
coordinate the work of people with different expertises.
Franz, a research professor in the Oceans Group who
was developing a novel analysis pipeline for a
particular instrument, attempted a series of
arrangements with different people before finding a
sustainable way to get more robust software work
done. He initially worked with a group of computer
scientists on campus, who designed a database system
for him based on a consultation. Franz found the
system to be overcomplicated and unusable, however,
and so enrolled one of the students involved to help
him rework the pipeline:

“So I work side by side with [Ph.D. student],
which was great. Yeah we were sitting next to each
other for a week, and I see— I learn so much, from
some things to do, things not to do, so he helped
me a lot, correct some habits that I had with, I'd
tend to do too much in one function, and he told
me no, you've got to cut different functions, instead
one big function you do several, 2, 3 small
functions.” (Franz, Research Assistant Professor)

For Franz this way of working was more effective in
coordinating what he was trying to do in developing
the pipeline with the expertise he needed to better

design it. He contrasted this with his first interaction:

“So after that we decide to do a side-by-side,
working really together instead of saying ‘Hey,
here you go, can you do this for me?’ We are
gonna do one meeting to explain what I want and
2 months later we're gonna see each other with the
final product” (Franz, Research Assistant
Professor)

This “side-by-side” work helped by extending Franz’s
pipeline, but it also enabled him to learn and later
maintain the code (a kind of practice integration).
While Franz found this arrangement useful, the Ph.D.
student was certainly not in a place to provide
long-term support for the software. Ultimately, Franz
was able to get a significant amount of Columbo’s time
dedicated to working on his instrument pipeline. As a
permanent member of the lab, Columbo was in a
position to provide both advice about development
practice, but also to handle more difficult parts of the
development (such as parallelizing certain processes)
and to help implement software engineering practices,
such as code refactoring, some tests, and better
documentation. Figuring out how to make these kinds
of collaborative efforts work, between people focused
on software work and people focused on research

work, was non-trivial and was a central part of making
the differentiation of expertise in the lab work.

Differentiating expertise also complicated lab
members’ career paths. This was most apparent for
those more focused on software work, who were
occupying new roles and trying to pursue
software-oriented career paths in academia, as
described above. However, research-oriented members
of the lab also found themselves needing to navigate
career paths that were increasingly dependent on
technical pipeline development. Bernice, a Ph.D.
student, described how another Ph.D. student had
become a “crutch” for getting her scripting or software
work done, and that she felt the need to pick up the
skills herself for the sake of her career:

“I know what the steps are but not in practice. So,
it does... [Ryder] can be a little bit of a crutch for
me. Because I can just be like ‘[Ryder] can you do
this and run the code that you have already and
then do it.” And he's nice enough that a lot of times
he'll do it for me. But I'm really trying to be more
aware of what he's actually doing and try to do
some things on my own. But it would take me
hours, days to reconstruct the things that [Ryder]
can already do pretty quick. Yeah, I mean, the only
thing that's scary is like [Gina] is always like, ‘at
some point you're gonna be alone. And you're not
gonna have a [Ryder], so, you need to be
self-sufficient.” So, she's like a big ... Totally fair
and I get it. But, it's also hard 'cause there's
always a deadline” (Bernice, Ph.D. student).

For Bernice, there is a balancing act between relying
on those with software-oriented expertise, and learning
such development skills herself so that when she
moves on to another position she will not be hobbled
by the potential absence of such support. This was in
addition to developing technical skill sets that members
of the lab developed in doing wet lab work and
operating instruments at sea. In this way the longer
trajectory of researchers’ career paths, the skills they
would need to learn but also potentially the skillsets
they would bring on when building their own labs in
the future, were changing around the new
complementarity of expertises.

5. Discussion and Conclusion

Practice integration and differentiating expertise
represent two approaches to getting software work
done in research groups and collaborations. These
concepts can be useful as sensitizing concepts (Blumer,
1986) for understanding variety in the approaches that

research groups take to improving their software
development practice. As noted above, the two
processes were distinct but interrelated, and it is likely
that a research group would leverage some of both in
trying to improve the way they build software. They
are also broad categories in themselves. For instance,
differentiating expertise might involve bringing
software developers into laboratories, working with
external research software engineering groups, or
collaborating with researchers in a software subfield
(Howison and Herbsleb, 2011).

Our findings point to the importance of
approaching the sciences as a plurality, where software
work is situated in particular contexts with
organizational and disciplinary dimensions (among
many others). Studies of methodology tailoring
(Campanelli and Parreiras, 2015), for instance, have
attempted to account for aspects of context (such as
culture, needs, and strategy), but more work is needed
to account for the variety of arrangements for software
work that can be accomplished in the sciences. Most
practically, such research could inform heads of labs or
software projects in making decisions about what
arrangements (short term RSE engagements, longer
term RSE staff, further carpentry-style training) to
pursue given available funding, timelines, state of
legacy software, and established practice. Such studies
could also help research software engineering groups
better understand the conditions for a successful
engagement with different kinds of research groups.

Our findings also begin to characterize the
different kinds of challenges that might come up for
research groups in pursuing these different approaches
to getting software work done. In the differentiation of
expertise this includes the overhead of learning to
manage, and promote the career of, non-research
oriented software developers working in the lab, as
well as streamlining processes for handing off or
delegating work between research-oriented members of
a group and more software-oriented members (or with
members of a research software engineering group). In
practice integration it included the interpersonal
tensions that can arise in negotiating collective
expectations about what software engineering practices
are expected and when.

We have also attempted to highlight outcomes of
the transitions that these two groups have undergone
around software development work. For instance, the
Oceans Group became a place with a greater internal
heterogeneity of roles and professional trajectories,
particularly in terms of members’ different orientations
towards producing scientific results or producing
research software (Baxter et al., 2012). The Radio

Group (and Community) developed a new sense of
collective rigor around software tools, and established
processes for when and where to expect or enforce new
requirements on software work. These are important
examples of how research groups have made research
software development work sustainable. Moreover,
these changes are not just the addition of a few
practices to their daily work, but rather software is
being enrolled in processes of reorganizing
collaborations, change in understanding of vocation
(Jackson and Barbrow, 2013), and the cultivation of an
installed base (Hanseth, 2010) of instrumentation and
computing resources. Given this broader entanglement,
it would be valuable to approach change in research
software development practice as a process of more
holistic sociotechnical reconfiguration (Mazmanian et
al., 2014), or otherwise a more constitutive change in
scientific work and organizations.

Acknowledgements

This article is based on work supported by National
Science Foundation grants (#1954620 and #1302272).

References

Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A., &
Carver, J. C. (2021). Software engineering practices for
scientific software development: A systematic mapping
study. Journal of Systems and Software, 172, 110848.

Chue Hong, N. P,, Katz, D. S., Barker, M., Lamprecht, A.-L.,
Martinez, ... RDA FAIR4RS WG. (2022). FAIR
Principles for Research Software (FAIR4RS Principles)
(1.0). Zenodo. https://doi.org/10.15497/RDA00068

Barley, S. R., & Bechky, B. A. (1994). In the backrooms of
science: The work of technicians in science labs. Work
and occupations, 21(1), 85-126.

Baxter, R., Hong, N. C., Gorissen, D., Hetherington, J., &
Todorov, 1. (2012, September). The research software
engineer. In Digital Research 2012, Oxford, United
Kingdom.

Berente, N., Ahalt, S., Bottum, J., Brunson, D.,
Cutcher-Gershenfeld, J., ... & Winter, S. (2019). The
professionalization of cyberinfrastructure personnel? In
Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines
(learning) (pp. 1-6).

Blumer, H. (1986). What’s wrong with social theory? In
Symbolic interactionism: Perspective and method. Univ
of California Press.

Brescia, M., Cavuoti, S., Amaro, V., Riccio, G., Angora, G.,
Velluccei, C., & Longo, G. (2017, October). Data Deluge
in Astrophysics: Photometric Redshifts as a Template
Use Case. In International Conference on Data
Analytics and Management in Data Intensive Domains
(pp. 61-72). Cham: Springer International Publishing.

https://doi.org/10.15497/RDA00068

Campanelli, A. S., & Parreiras, F. S. (2015). Agile methods
tailoring—A systematic literature review. Journal of
Systems and Software, 110, 85-100.

Carver, J. C., Weber, N., Ram, K., Gesing, S., & Katz, D. S.
(2022). A survey of the state of the practice for research
software in the United States. PeerJ Computer Science,
8, €963.

Charmaz, K. (2014). Constructing grounded theory: A
practical guide through qualitative analysis. Sage.

Crouch, S., Hong, N. C., Hettrick, S., Jackson, M., Pawlik,
A., Sufi, S, ... & Parsons, M. (2014). The Software
Sustainability Institute: changing research software
attitudes and practices. Computing in Science &
Engineering, 15(6), 74-80.

Djorgovski, S. G. (2005, July). Virtual astronomy,
information technology, and the new scientific
methodology. In Seventh International Workshop on
Computer Architecture for Machine Perception
(CAMP'05) (pp. 125-132). IEEE.

Du, C., Cohoon, J., Priem, J., Piwowar, H., Meyer, C., &
Howison, J. (2021, October). CiteAs: better software
through sociotechnical change for better software
citation. In Companion Publication of the 2021
Conference on Computer Supported Cooperative Work
and Social Computing (pp. 218-221).

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P.,
Pfahl, D., & Wilson, G. (2009, May). How do scientists
develop and use scientific software? In 2009 ICSE
workshop on software engineering for computational

science and engineering, Vancouver, BC, Canada. I[EEE.

Hanseth, O. (2010). From systems and tools to networks and
infrastructures-from design to cultivation: Towards a
design theory of information infrastructures. In
Holmstrom, J., Wiberg, M., and Lund, A (Eds.)
Industrial informatics design, use and innovation:
Perspectives and services (pp. 122-156). IGI Global.

Heaton, D., & Carver, J. C. (2015). Claims about the use of
software engineering practices in science: A systematic
literature review. Information and Software Technology,
67,207-219.

Hine, C. (2006). Databases as scientific instruments and their
role in the ordering of scientific work. Social Studies of
Science, 36 (2), 269-298.

Howison, J., & Herbsleb, J. D. (2011, March). Scientific
software production: incentives and collaboration. In
Proceedings of the ACM 2011 conference on Computer
supported cooperative work (pp. 513-522).

Jackson, S. J., & Barbrow, S. (2013, April). Infrastructure
and vocation: field, calling and computation in ecology.
In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems (pp. 2873-2882).

Kanewala, U., & Bieman, J. M. (2014). Testing scientific
software: A systematic literature review. Information
and software technology, 56(10), 1219-1232.

Katz, D. S., Mclnnes, L. C., Bernholdt, D. E., Mayes, A. C.,
Hong, N. P. C., ... & Wilkins-Diehr, N. (2018).
Community organizations: Changing the culture in
which research software is developed and sustained.
Computing in Science & Engineering, 21(2), 8-24.

Katz, D. S., Hong, N. P. C., Clark, T., Muench, A., Stall, S.,
... & Yeston, J. (2020). Recognizing the value of
software: a software citation guide. F1000Research, 9.

Karasti, H., & Blomberg, J. (2018). Studying infrastructuring
ethnographically. Computer Supported Cooperative
Work (CSCW), 27, 233-265.

Kelly, D., Thorsteinson, S., & Hook, D. (2010). Scientific
software testing: Analysis with four dimensions. /EEE
software, 28(3), 84-90.

Kelly, D. (2015). Scientific software development viewed as
knowledge acquisition: Towards understanding the
development of risk-averse scientific software. Journal
of Systems and Software, 109, 50-61.

Mazmanian, M., Cohn, M., & Dourish, P. (2014). Dynamic
reconfiguration in planetary exploration. Mis Quarterly,
38(3), 831-848.

Mesh, E. S., Burns, G., & Hawker, J. S. (2014). Leveraging
expertise to support scientific software process
improvement decisions. Computing in Science &
Engineering, 16(3), 28-34.

Mundt, M. R., Beattie, K., Bisila, J., Ferenbaugh, C. R.,
Godoy, W. F., ... & Teves, J. B. (2023). For the public
good: Connecting, retaining, and recognizing current
and future RSEs at US national research laboratories
and agencies. Computing in Science & Engineering,
24(6), 6-13.

Neang, A. B., Sutherland, W., Ribes, D., & Lee, C. P. (2023).
Organizing Oceanographic Infrastructure: The Work of
Making a Software Pipeline Repurposable. Proceedings
of the ACM on Human-Computer Interaction,
7(CSCW1), 1-18.

Paine, D., & Lee, C. P. (2014). Producing data, producing
software: Developing a radio astronomy research
infrastructure. In 2014 IEEE 10th International
Conference on e-Science, 1, 231-238. IEEE.

Ragin, C., & Zaret, D. (1983). Theory and method in
comparative research: Two strategies. Social forces,
61(3), 731-754.

Sims, B. H. (2022). Research software engineering:
Professionalization, roles, and identity. Los Alamos
National Lab.(LANL), Los Alamos, NM (United States),
Tech. Rep.

Segal, J. (2005). When software engineers met research
scientists: A case study. Empirical Software
Engineering, 10, 517-536.

Stodden, V., McNutt, M., Bailey, D. H., Deelman, E., Gil, Y.,
... & Taufer, M. (2016). Enhancing reproducibility for
computational methods. Science, 354(6317), 1240-1241.

Trainer, E. H., Chaihirunkarn, C., Kalyanasundaram, A., &
Herbsleb, J. D. (2015, February). From personal tool to
community resource: What's the extra work and who
will do it? In Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social
Computing (pp. 417-430).

Walsham, G. (1995). Interpretive case studies in IS research:
nature and method. European Journal of information
systems, 4(2), 74-81.

Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P.,
Davis, M., ... & Wilson, P. (2014). Best practices for
scientific computing. PLoS biology, 12(1), ¢100174.

