Downloaded 06/16/25 to 98.227.190.22 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Fully Dynamic Algorithms for Graph Spanners via Low-Diameter Router

Decomposition
Julia Chuzhoy* Merav Parterf
Toyota Technological Institute at Chicago Weizmann Institute of Science
USA Israel
Abstract

A t-spanner of an undirected n-vertex graph G is a sparse subgraph H of G that preserves all pairwise
distances between its vertices to within multiplicative factor ¢, also called the stretch. Spanners play an
important role in the design of efficient algorithms for distance-based graph optimization problems, as they
allow one to sparsify the graph, while approximately preserving all distances. It is well known that any n-vertex
graph admits a (2k — 1)-spanner with O(n'*'/¥) edges, and that this stretch-size tradeoff is optimal assuming
the Erdds Girth Conjecture. In this paper we investigate the problem of efficiently maintaining spanners in the
fully dynamic setting with an adaptive adversary. Despite a long and intensive line of research, this problem
is still poorly understood: for example, no algorithm achieving a sublogarithmic stretch, with a sublinear in
n update time, and a strongly subquadratic in n bound on the size of the spanner is currently known in this
setting. One of our main results is a deterministic (and therefore, adaptive-adversary) algorithm, that, for
any 512 < k < (logn)*/* and 1/k < § < 1/400, maintains a spanner H of a fully dynamic graph with stretch
poly(k) - 20/%") and size |E(H)| < O(n' /P, with worst-case update time n°®) and recourse n®1/%).

Our algorithm relies on a new technical tool that we develop, and that we believe to be of independent
interest, called low-diameter router decomposition. Specifically, we design a deterministic algorithm that
maintains a decomposition of a fully dynamic graph into edge-disjoint clusters with bounded vertex
overlap, where each cluster C' is guaranteed to be a bounded-diameter router, meaning that any reasonable
multicommodity demand over the vertices of C' can be routed along short paths and with low congestion
inside C. A similar graph decomposition notion was introduced by [Haeupler et al., STOC 2022] and recently
strengthened by [Haeupler et al., FOCS 2024]; the latter result was already used to obtain fast algorithms
for multicommodity flows [Haeupler et al., STOC 2024] and dynamic distance oracles [Haeupler et al., FOCS
2024]. However, in contrast to these and other prior works, the decomposition that our algorithm maintains is
guaranteed to be proper, in the sense that the routing paths between the pairs of vertices of each cluster C' are
contained inside C' (rather than in the entire graph G). Additionally, our algorithm maintains, for each cluster
C of the decomposition, a subgraph C’ C C of a prescribed density, that also has strong routing properties.

We show additional applications of our low-diameter router decomposition, by obtaining new deterministic
dynamic algorithms for fault-tolerant spanners and low-congestion spanners. Several of these applications
crucially rely on the fact that our router decomposition is proper.

1 Introduction

A spanner of a graph G is a sparse subgraph of GG, that approximately preserves all pairwise distances between
its vertices. The notion of spanners naturally falls within the broader class of graph-theoretic objects called
graph sparsifiers. A sparsifier of a given graph G is a sparse subgraph of G, that approximately preserves some
central properties of GG, such as, for example, cut values, flows, or, in this case, distances. A natural and powerful
paradigm for designing fast algorithms for graph optimization problems is to first compute a sparsifier H of the
input graph G, that preserves properties of G relevant to the problem, and then solve the problem on the much
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sparser graph H. It is then not surprising that various types of sparsifiers increasingly play a central role in the
design of fast algorithms for various combinatorial optimization problems, in static, dynamic, and other settings.
Since their introduction by Peleg and Schaffer [PS89], spanners have been studied extensively in various settings
(see, e.g. [PU8T, EP01, EZ04, Bas06, BS07, Bas08, DGPV08, BKS12, GK18, DFKL21]), and have been used in a
wide range of applications: from distance oracles [TZ01], shortest path computation [BK06] and routing schemes
[PU89] to spectral sparsification [KP12].

Formally, given an n-vertex graph G with non-negative edge lengths, a k-spanner for G is a subgraph H C G,
such that, for every pair u,v of vertices of G, disty(u,v) < k - distg(u,v). In addition to the stretch parameter
k, a central measure of the quality of the spanner H is its size |[E(H)|. It is well known that any n-vertex graph
admits a (2k — 1)-spanner with O(n't'/*) edges, and this tradeoff is tight under the Erdos Girth Conjecture
[Erd64]. In their influential paper, Baswana and Sen [BS07] presented a randomized algorithm for computing a
(2k — 1)-spanner of a static n-vertex and m-edge graph G, that contains O(k - n'*t1/*) edges, in expected time of
O(km). Roditty, Thorup and Zwick [RTZ05] derandomized this construction, while achieving similar parameters.

In this paper we focus on the problem of efficiently maintaining a spanner of a fully dynamic graph G, that
is, a graph undergoing an online sequence of edge insertions and deletions. As usual in the area of dynamic
algorithms, we distinguish between the oblivious-adversary and the adaptive-adversary settings. In the case of
oblivious adversary, it is assumed that the sequence of updates to the input graph G is fixed in advance, and
may not depend on the algorithm’s behavior and random choices. In contrast, in the adaptive-adversary setting,
each update to the graph may depend on the algorithm’s past behavior and inner state arbitrarily. It is often the
case that the oblivious adversary assumption considerably limits the applicability of a dynamic algorithm. As an
example, one common use of such algorithms is in speeding up algorithms for static problems, which typically
requires that the dynamic algorithm can withstand an adaptive adversary. A large number of breakthrough
result in recent years, that obtained fast algorithms for central graph optimization problems in the static setting,
crucially rely on dynamic algorithms that can withstand an adaptive adversary. With this motivation in mind,
we focus in this paper on the adaptive-adversary setting. We note that deterministic algorithms are always
guaranteed to work against an adaptive adversary, and as such they are especially desirable. For brevity, we will
refer to algorithms that can withstand oblivious or adaptive adversaries as oblivious-update or adaptive-update
algorithms, respectively.

Dynamic Spanners Dynamic algorithms for graph spanners have been studied extensively, since the pioneering
work of Ausiello et al. [ADFT07]. This line of research can be partitioned into three main eras.

Era 1: Optimal Spanners with Low Amortized Update Time. Earlier work studied the problem of
maintaining spanners of fully dynamic graphs with near-optimal tradeoff between the stretch and the size of the
spanner, with the focus on optimizing the amortized update time, that is, the average amount of time that the
algorithm spends in order to process each update to the input graph G. Ausiello, Fraciosa and Italiano [ADF107]
provided deterministic dynamic algorithms for spanners with stretch 3 and 5, with amortized update time
proportional to the maximum vertex degree in the graph. Elkin [Elk07] presented a randomized oblivious-update
algorithm for maintaining (2k — 1)-spanners for arbitrary values of k, with amortized update time O(mn~1/*),
where m is the number of edges in the initial graph; note that, for sufficiently dense graphs, this amortized update
time may be superlinear in n. This line of work culminated with the result of Baswana, Khurana, and Sarkar
[BKS12], that achieved expected amortized update time min { O(k? log?n), ZO(k)} against an oblivious adversary.
Forster and Goranci [FG19] later improved the size and update time by factor k. The main drawbacks of these
algorithms are that (i) their worst-case update time may be as high as Q(n); and (ii) except for the work of
[ADF*07], all results cited above work in the oblivious-adversary setting only.

Era 2: Low Worst-Case Update Time against an Oblivious Adversary. Bodwin and Krinninger [BK16]
designed the first algorithms for maintaining spanners of dynamic graphs with worst-case update time that is
sublinear in n, for the special case of stretch values 3 and 5. Specifically, they design randomized oblivious-update
algorithms that maintain 3-spanners with O(n3/ 2) edges and worst-case update time O(n?’/ %), and 5-spanners with
O(n*/3) edges and worst-case update time O(n%/9). Later, Bernstein, Forster and Henzinger [BFH19] significantly
narrowed the gap between amortized and worst-case update time guarantees by “deamortizing” the result of
Baswana et al. [BKS12]. Their algorithms are based on a general technique for randomized data structures, that
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converts amortized update time guarantees to worst-case ones. This approach yields a randomized oblivious-
update algorithm for dynamic k-spanners with & = O(1), with worst-case expected update time 20(k) 1og3 n,
nearly matching the amortized update time bound of [BKS12].

A key limitation of the algorithm of [BFH19], as well as all of the above-mentioned previous dynamic algorithms
for stretch values k > 5, is that they are randomized, and more crucially, they only work against an oblivious
adversary. As mentioned above, this significantly limits the applicability of such algorithms, and addressing this
drawback became the next major goal in this area.

Era 3: The Quest for Adaptive-Update Algorithms. Bernstein et al. [BvdBG122] provided the first
dynamic algorithms for maintaining spanners that can withstand an adaptive adversary for stretch values k > 5.
Their algorithm is randomized, and with high probability maintains a spanner with stretch O(polylogn) and
size 5(n), with O(polylogn) amortized update time. Their algorithm can also be adapted to obtain worst-case
update time at most n°1), at the cost of increasing the stretch bound to n°"). Their approach relies on expander
decomposition, and as such is unlikely to lead to the construction of spanners with sublogarithme stretch, as was
also noted in [BSS22]. Lastly, the recent work of [CKL 122, vdBCK™23] provided a deterministic algorithm for
maintaining an n°)-spanner of a fully dynamic graph, whose size is n' (1) and worst-case update time bound
is at least as high as n°) times the maximum vertex degree in the graph. Their algorithm has several other
important properties, such as, for example, it has a low recourse, and it maintains a low-congestion embedding of
G into the sparsifier, which we discuss below. This algorithm, in turn, serves as one of the main subroutines used
in their breakthrough almost-linear time algorithm for min-cost flow, and it was also used in a recent work of
[KMPG24] for obtaining low-congestion vertex sparsifiers and algorithms for dynamic All-Pairs Shortest Paths.
We provide a summary of known results for fully-dynamic spanners in Table 1. To summarize, to the best of our
knowledge, the following fundamental question still remains open:

QUESTION 1.1. Is there an adaptive-update algorithm for maintaining a spanner of an n-vertex dynamic
graph with any stretch value k < o(logn), whose size is at most n?>~¢ for any constant €, and worst-case
(or even amortized) update time is o(n)?

Dynamic Spanners with Small Recourse. An additional desired property of dynamic algorithms that
maintain spanners (as well as other types of sparsifiers) is to ensure that the resulting spanner changes slowly, as
the input graph G undergoes updates. The reason is that, as mentioned already, a commonly used paradigm is to
apply algorithms for various distance-based problems to the spanner rather than the original graph, in order to
obtain faster running time guarantees. If, however, following an update to the input graph G, the resulting spanner
H may undergo a large number of changes, then it is unlikely that such an algorithm may provide low worst-case
update time guarantees. This naturally leads to the notion of a recourse: the largest number of edge insertions and
deletions that the spanner H may undergo after each update to the input graph G. This measure naturally plays
an important role in dynamic algorithms, see e.g. [CHK16, BC18, AOSS19, CZ19]. Bhattacharya, Saranurak and
Sukprasert [BSS22] presented a deterministic (and therefore, adaptive-update) algorithm for maintaining (2k —1)
spanners with near-optimal size, O(log n) amortized recourse and poly(n) worst-case update time. The algorithm
of [CKL*22, vdBCK*23] mentioned above also has recourse at most n°1).

Our first main result answers Question 1.1 in the affirmative, by providing an algorithm for maintaining dynamic
spanners that also has a low recourse:

THEOREM 1.1. (DYNAMIC DETERMINISTIC SPANNERS, INFORMAL) There is a deterministic algorithm,
whose input is an n-vertexr simple undirected graph G with integral poly-bounded edge lengths, a stretch
parameter 512 < k < (logn)'*°, and an additional parameter 1/k < § < 1/400. Graph G initially has
no edges, and it undergoes an online sequence of edge insertions and deletions. The algorithm maintains
a spanmer H of G with stretch kO . 200/5°) gnd |E(H)| < O(n**+OW/®) . The worst-case update time
of the algorithm is n°©®) | and its recourse is n®/*)  The algorithm can also be extended to maintain
fault-tolerant spanners, connectivity certificates, and low-congestion spanners.
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Stretch Spanner Size Update Time [W/A] Deterministic? Citation
(2k — 1) O (k- n!*1/F) O(m -n~=1/F) [A] Oblivious [E1k07]

2k —1 n ogn) min og n),2 ivious BKS12

k O (kn'*+1/k] O(k*log?n),20(0} [A]  Obl S

(2k — 1) O (n***logn)  O(klog®n) [A] Oblivious [FG19]
(2k — 1) O (k- nt*1/k) 20(F) . log®n [W]  Oblivious [BFH19]
poly logn O(n) poly logn [A] Adaptive [BvdBGT22]
ne) O (ntte) ne [W]  Adaptive [BvdBG*22]
not) O (ntte) no) [W]  Deterministic [vdBCK 23]
poly(k) - 2¢/%° O (n!*tOU/k)) n©() [W] Deterministic (this paper)

Table 1: Summary of known algorithms for fully dynamic spanners. Amortized update time is marked by [A]
and worst-case update time by [W]. In the penultimate column we mark wherther the algorithm is deterministic,
and, if it is randomized, whether it works against adaptive or oblivious adversary. Our result holds for any
512 < k < (logn)*/*9 and 1/k < § < 1/400.

At the heart of our approach is a new algorithmic tool that we believe is of independent interest, that we call a
low-diameter router decomposition, or just a router decomposition for brevity. Given an n-vertex graph G and a
parameter k, a router decomposition of G consists of a collection C of edge-disjoint router subgraphs of G, that
we call clusters, each of which has a small diameter, such that > . |[V(C)| < n!T91/® holds, and the vast
majority of the edges of G lie in some cluster of C. The notion of routers was introduced in a very recent work
of [HHT24, HHL"24], as an object that is closely related to length-constrained expanders of [HRG22, HHG22].
Routers are also closely related to well-connected graphs introduced in [Chu23]; we discuss this connection in
more detail in Section 2.4. Intuitively, a graph G is a router, if any “reasonable” multicommodity demand can be
routed in G via short paths (the length is typically sublogarithmic in n), and with low congestion. One example
of a reasonable demand is where the total demand on every vertex is bounded by its degree.

Before we continue, we need to define the notion of demands and their routing. A demand D in a graph G consists
of a collection II of pairs of vertices of G, and, for every pair (a,b) € II, a demand value D(a,b) > 0. For a vertex
v € V(G), the demand on v is the sum of demands D(u,v) over all pairs (u,v) € II containing v. We say that the
demand D is unit, if the demand on every vertex v is bounded by its degree, and we say that it is A-bounded,
for some value A > 0, if the demand on every vertex v is at most A. Lastly, we say that demand D is h-length
if, for every pair (a,b) € II of vertices, distg(u,v) < h. The routing of a demand D is a flow f, where, for every
pair (a,b) € II, D(a,b) flow units are sent from a to b. The congestion of the routing is the maximum amount
of flow through any edge of G. We say that the flow is over paths of length at most d, if every flow-path P with
f(P) > 0 has length at most d. We say that an algorithm for a static problem has almost linear running time,
if its running time is m!'*°() where m is the number of edges in the input graph, and we say that its running
time is near linear, if it is bounded by O(m); throughout, O is used to hide polylogn factors. We now provide
an overview of recent work on expander decompositions, routers and related graph notions.

Expanders, Routers and Graph Decompositions. Expanders are a fundamental notion in both graph theory
and algorithms. Thanks to a number of powerful algorithmic techniques that were developed for expanders over
the years, they now play a central role in the design of efficient algorithms for a wide variety of graph problems,
in static, dynamic, and other settings. One of the central properties that make the expanders useful in many
applications is that, as shown in the seminal work of Leighton and Rao [LR99], they have strong routing properties,
in the sense that any unit demand can be routed across an expander with polylogarithmic congestion, via paths of
polylogarithmic length. An almost-linear time algorithm for computing such routing was shown in [GKS17, GL18].

Another central tool in this area is expander decomposition, that decomposes the input graph G into vertex-disjoint
subgraphs called clusters, such that each cluster is a strong enough expander, and only a small number of edges
of G connect vertices that lie in different clusters. Expander decompositions are often used in order to reduce
a given optimization problem in general graphs to that on expanders, which, due to the many useful properties
of expanders, is often more tractable. Some examples of algorithmic results relying on expander decomposition
include graph sketching and sparsification [ACK*16, JS18, CGP*20], dynamic algorithms for minimum spanning
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forest [NS17, WN17], and recent breakthrough almost-linear time algorithms for Min-Cost Flow in directed graphs
[CKL*22, vdBCK™23], to name just a few.

In their seminal work, Spielman and Teng [ST04] provided the first almost-linear time algorithm that computes
a decomposition of a graph into clusters, with somewhat weaker guarantees than the expander decomposition:
their decomposition only guarantees that every cluster is contained inside some expander. In other words, if we
are given, for every cluster C' in the decomposition C, a unit demand D¢, then all these demands can be routed in
G simultaneously via short paths and with low congestion, but the routing of the demand D¢ for a cluster C' may
not be confined to C, and may use edges and vertices that lie outside of C. While their decomposition algorithm
found many applications, the use of this weakened notion of expander decomposition makes some of the resulting
algorithms quite complex. Moreover, in some applications, this weakened notion of expander decomposition is not
sufficient. The work of Saranurak and Wang [SW19] overcomes this shortcoming, by providing a near-linear time
randomized algorithm for computing a proper (or strong) expander decomposition. This so-called “user-friendly”
decomposition led to simplifying the analysis of existing algorithms, e.g., [ST04, KLOS14, CKP*17, JS18], and to
new applications that crucially require the stronger guarantee of the proper decomposition, that include algorithms
for dynamic minimum spanning forest [NSWN17, Wull7, NSW17] and short-cycle decomposition [CGP*20].
Deterministic almost-linear time algorithms for computing proper expander decompositions were later developed
by [GLN*19, CGL*20, Chu23].

While expanders provide a valuable and powerful tool for the design of algorithms, they have some shortcomings.
One such central shortcoming is that the diameter of an n-vertex expander may be as large as logarithmic in
n, and moreover, given a unit demand D, one can only guarantee its routing with low congestion via paths of
polylogarithmic length, even if all pairs of vertices with non-negative demand are very close to each other. One
implication of this shortcoming is that, when relying on expanders for distance-based problems, such as, for
example, dynamic All-Pairs Shortest Paths (APSP), distance oracles, and graph spanners, it seems inevitable
that one has to settle for super-logarithmic approximation guarantees. To address this challenge, and in order to
generalize the successful paradigm of using expanders in distance-based problems to shorter distances, Ghaffari,
Haeupler and Récke [HRG22] introduced the notion length-constrained (LC) expanders. We provide here a routing
characterization of length-constrained expanders, that was shown by [HHT24] to be equivalent, up to constant
factors, to the original definition of [HRG22]. Under this definition, a graph G is an (h, s)-length ¢-expander, if
any h-length unit demand D can routed in G via paths of length O(h - s), with congestion at most 6(1/(,0) A
somewhat similar notion of well-connected graphs was introduced in [Chu23], with the same motivation. They
also designed a number of algorithmic tools for well-connected graphs, that may be thought of as analogues of
similar tools for expanders, and that were recently used in [CZ23] to obtain the first adaptive-update algorithm
for dynamic APSP with sublogaritmic approximation and amortized update time n°Y). We provide a formal
definition of well-connected graphs and discuss their relationship with LC-expanders in Section 2.4.

Due to the success of the expander decompositions as a powerful tool in algorithm design, it is natural to ask
whether one can also decompose a given graph into LC-expanders. Ghaffari, Haeupler and Réicke [HRG22]
introduced the notion of LC-expander decomposition, that, in turn, relies on the notion of a mowving cut. Given a
graph G with lengths £(e) > 0 on its edges e € E(G) and integers h and s, an (hs)-length moving cut L assigns
an integral length increase value L(e) € {1,...,(hs)} to each edge e € F(G). A graph that is obtained from G
by setting the length of every edge e to £(e) + L(e) is denoted by G — L. The size of the (hs)-length moving cut
Lis|L| =% >cer(c) L(e). An (h, s)-length p-expander decomposition is simply an (hs)-length moving cut L,
such that graph G — L is an (h, s)-length ¢-expander.

The work of [HRG22] provided a proof that there exists an (h, s)-length y-expander decomposition of any n-vertex
m-edge graph, for s = O(logn), such that the resulting (hs)-length moving cut has size O(pm). Additionally,
they provide an algorithm for computing a weaker notion of an (h, s)-length ¢-expander decomposition.

A very recent work by Haeupler, Hershkowitz and Tan [HHT24] provided an algorithm that, given an n-vertex m-
edge graph G, with parameters 0 < € < 1, h and ¢, computes an (h, s)-length p-expander decomposition of G for
s = exp(poly(1/e)), where the size of the resulting moving cut is at most n¢-m- ¢, in time O(m-nP°Y(©) . poly(h)).
Their algorithm was recently extended to the dynamic setting by [HLS24]. A key notion underlying these results is
that of routers. As mentioned already, a graph G is a router if any unit demand can be routed in G via short paths
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with low congestion. Equivalently, a router can be thought of as an (h, s)-length p-expander, whose diameter
is bounded by h. In order certify that a graph H is an (hs)-length @-expander, [HHT24] use a variation of the
notion of neighborhood covers. In this variation, a neighborhood cover is a collection {Ci,...,C,} of clusterings,
where, for all 1 < i < r, clustering C; is a collection of subgraphs of H called clusters, of radius at most h each.
Additionally, every pair of clusters in C; must be at distance at least hs from each other. Lastly, it is required
that every vertex of H belongs to a relatively small number of clusters in |J,; C;, and, for every vertex v of G, its
h-neighborhood B (v, h) must be contained in some cluster in | J, C;. As shown in [HHT24], in order to certify
that a graph H is an (h, s)-length p-expander, it is sufficient to compute, for every cluster C' € (J, C;, a router
graph R¢o with V(Re) = V(C), together with an embedding of all such resulting routers R¢ into G via short
paths, that cause low congestion. Their algorithm then computes a moving cut L for graph G, and certifies that
the resulting graph G’ = G — L is an (h, s)-length ¢-expander by computing the neighborhood cover {Cy,...,C;}
of G', and then embedding, for every cluster C' € (J,; C;, the corresponding router R¢ into G’. Therefore, the
algorithms of [HHT24, HLS24] can also be thought of as computing and dynamically maintaining a weaker notion
of router decomposition of the input graph G, similar to the weaker notion of expander decomposition of [ST04].
Specifically, every cluster C' in the neighborhood cover is provided with a certificate router graph R¢, with
V(C) = V(R¢), and an embedding of R¢ into G via short paths. However, this embedding may use edges
and vertices that lie outside of C'. Our main technical result is an algorithm for maintaining a proper router
decomposition of a dynamic graph:

THEOREM 1.2. (DYNAMIC ROUTER DECOMPOSITION, INFORMAL) There is a deterministic algorithm,
whose input is an n-vertex undirected graph G, a stretch parameter 512 < k < (logn)1/49, and two
additional parameters 1/k < 6 < 1/400, and A > n29/k . Graph G initially has no edges, and undergoes an
online sequence of edge insertions and deletions. The algorithm maintains a collection C of edge-disjoint
subgraphs (clusters) of G, and, for every cluster C' € C, a subgraph C' C C with |V (C")| = |V (C)|, such
that the following hold at all times: (i) for every cluster C € C, any unit demand D¢ for C can be routed
inside C' wvia paths of length at most d < poly(k) - 2001/ with congestion at most n = nCA/k); (ii)
YoceeV(O)] < n HOQ/R) (i) for every cluster C' € C, any A-restricted demand on V(C) can be routed
in C' via paths of length at most d, with congestion at most n; (iv) S occ |E(C)| < A - n!TOA/K): and
(v) the total number of edges e € E(G) that do not lie in any cluster of C is at most A - n'TOW/F)  The
worst-case update time of the algorithm is n©®).

In a sense, our decomposition result can be thought of as strengthening the results of [HHT24, HLS24] to a
proper router decomposition, in the same manner as the result of [SW19] strengthened the fast algorithm of
[ST04] for weak expander decomposition to obtain a proper expander decomposition. While this may appear as
a technicality, just as with expander decompositions, a proper router decomposition provides a cleaner structure
that is easier to use in applications. In fact some of the applications of our router decomposition described below
crucially rely on the fact that the decomposition is proper. Additionally, for every cluster C' in the decomposition,
we maintain a sparsified subgraph C’ C C of a prescribed density that remains a sufficiently strong router.
These subgraphs are useful for computing various sparsifiers of G. We note that, unlike the decompositions of
[HHT24, HLS24], our decomposition does not provide an LC-expander decomposition of G. Specifically, if we
denote by E9°! the set of edges that do not lie in any cluster, then our decomposition does not guarantee that
G\ E%! is a length-constrained expander. This is due to the fact that the clusters in our decomposition do not
necessarily define a neighborhood cover in G\ Ed¢..

We obtain the result of Theorem 1.1 from Theorem 1.2 as follows: we use the parameter A = n©(/%); the spanner
H is obtained by taking the union of the subgraphs C’ for all C € C, together with all edges of G that do not lie
in the clusters of C. We show that H can be maintained with worst-case update time n°(®) and recourse n®1/%),
Our results also extend to low-congestion and fault-tolerant spanners, that we discuss next.

Low-Congestion and Fault-Tolerant Spanners. The following general recipe, pioneered by [BvdBG'22], can
be used in order to compute spanners via expander decomposition and routing. Initially, the spanner H contains
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n vertices and no edges. Next, we compute an expander decomposition C of G, and, for every cluster C' € C, we
compute a sparse subgraph C’ C C that is an expander. For every cluster C' € C of the decomposition, we then
add the edges of C’ to H, and we consider the edges of C as “settled”. The algorithm then continues recursively
with edges that are not settled yet: namely, edges whose endpoints lie in different clusters of C. It is easy to verify
that the resulting spanner H has polylogarithmic stretch and that it is sparse. The recent breakthrough almost-
linear algorithm of [CKL*22, vdBCK*23] for Min Cost Flow exploits the fact that the spanner H obtained via
this approach has additional useful properties. Specifically, they show that one can embed all edges of G into H,
such that all the embedding paths are short, and cause low vertex-congestion. This is in contrast to the standard
notion of spanners, that only guarantees that, for each edge (u,v) of G, there is a short w-v path in H, though
the resulting paths may cause arbitrarily high congestion.

In this work, we formalize this notion by introducing low-congestion spanners, and show an algorithm that
dynamically maintains such a spanner, by exploiting our result for router decomposition. Formally, let G
be a graph, and let H be a subgraph of G. We say that H is a (d,n)-low congestion spanner for G, if
there is an embedding of the edges of G into H, such that all embedding paths have length at most d, and
cause edge-congestion at most 7. We use our router decomposition to show that for any stretch parameter
512 < k < (logn)'/*? and degree threshold A, any n-vertex graph G admits a (d, n)-low congestion spanner with

6(A -p!TO0/R)) edges for d = poly(k) and n = O (no(l/k) . A“%"(G)), where Apax(G) is the maximum vertex
degree in G. In fact we show that the graph H that is maintained by the algorithm from Theorem 1.1, and which,

in turn, relies on the router decomposition from Theorem 1.2, has this property. We believe that low-congestion
spanner is an interesting object that may find other applications in the future.

Fault-Tolerant Spanners. An additional useful property satisfied by expander-based spanners is their resilience
to edge faults. As many applications of spanners arise in the context of distributed networks, which are inherently
prone to failures of edges and vertices, it is especially desirable to obtain robust spanners, that maintain their
functionality in the presence of such faults. Fault-tolerant (FT) spanners are specifically designed to provide such
guarantees: given a graph G and parameters f and ¢, a subgraph H C G is an f-FT t-spanner if, for every collection
F C E(G) of at most t failed edges, H\ F is a t-spanner for G\ F. FT-spanners were first introduced in the context
of geometric graphs by Levcopoulos et al. [LNS98], and were later considered for general graphs by Chechik et
al. [CLPR10]. Recently, Parter [Par22] presented a near-linear time randomized algorithm for constructing an
f-FT (2k — 1)-spanner with O(f1~1/% . n1+1/k) edges, which is also resilient to up to f vertex faults. Bodwin,
Dinitz, Robelle [BDR22] provided an existential result for f-FT (2k — 1)-spanners: for odd values of k, they
obtain spanners of size O(k2f1/2=1/(k)p1+1/k L fn), and for even k, the size is O(k?f1/2n'*1/* 4 kfn). These
bounds almost match the (f1/2_1/(2k) . n1+1/k) size lower bound that is based on the Erdos Girth Conjecture
[BDPW18].

Notice that, if we use the notion of f-FT spanners, that can only tolerate at most f edge failures, the spanner
size must be at least fn, even when allowing a large stretch, since it is possible that all of the edge faults are
incident to a single vertex. It is possible, however, that one can obtain sparse spanners that can withstand a
significantly higher number of edge faults, as long as these faults are distributed evenly in the graph, and are not
concentrated around a small number of vertices. With this motivation in mind, a very recent work of Bodwin,
Haeupler and Parter [BHP24| introduced a stronger notion of fault-tolerant spanners, called Faulty-Degree (FD)
spanners. Specifically, suppose we are given an n-vertex graph G, and parameters ¢t and f. An f-FD t-spanner
for G is a graph H C G, with the following property: if F' is any subset of edges of GG, such that every vertex
of G is incident to at most f edges of F, then H \ F is a t-spanner for G \ F. Notice that, for f = 1, the set
F of edges can be any matching, whose size may be as high as linear in n. Bodwin et al. [BHP24] provided
two approaches for computing sparse f-FD spanners. The first approach uses the LC-expander decomposition,
and obtains f-FD spanners with stretch k) and size O(fn”l/’“) via an algorithm with a high polynomial
running time. Combining this approach with the recent time-efficient algorithm for LC-expander decomposition
and routing of [HHT24, HLS24] yields an algorithm with running time O(m-n®/%)) albeit with a slightly higher
stretch 20(poly (k)).NT heir second approach, based on a greedy algorithm, provides an f-FD spanner with stretch
(2k — 1) and size O (f1=1/k . pl+1/k . LOK)) "which is nearly optimal for fixed values of k under the Erdds Girth
Conjecture. The main drawback of the latter approach is the large polynomial running time of their algorithm.
In their paper, [BHP24] noted that improving the kO®) stretch bound obtained via the LC-expanders is closely
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related to the question of the resilience of LC-expanders to bounded degree faults, which was left open therein
(see Theorem 1.14 in [BHP24]). In this work, we build on our results for router decomposition to obtain f-FD
spanners with stretch poly(k), that contain O(fn'+*/*) edges. This allows us to address the open problem of
[BHP24], only on router graphs (which can viewed as LC-expanders with small diameter), and improve the stretch
bound from k9% to poly(k). The running time of our algorithm is pitO0/k)+o(1) which outperforms the (at least
quadratic) runtime of the greedy-based approach of [BHP24]. Moreover, our algorithm maintains such a spanner
for a fully dynamic graph G with low recourse and low worst-case update time that are independent on the
number of faults f. Our construction of f-FD spanners crucially relies on the fact that our router decomposition
is proper.

Connectivity Certificates. Finally, a graph structure closely related to FT-spanners is the f-edge connectivity
certificates, introduced by [NI92]. For an integer f > 1, we say that a graph G is f-edge connected, if, for any
subset F of f — 1 edges of G, graph G \ F is connected. An f-edge connectivity certificate for G is a subgraph
H C G, that has the following property: H is f-edge connected if and only if G is. Connectivity certificates
play a key role in fast algorithms for minimum cuts; see, e.g. [Mat93, CKT93, KM97, GK13, DHNS19, FNY*20,
LNP*21, GHN'23]. Nagamochi and Ibaraki [NI92] presented a linear-time static algorithm for computing f-edge
connectivity certificates of n-vertex graphs G, with O(fn) edges. In the dynamic setting, Thorup and Karger
[TKO0O] presented a deterministic algorithm for maintaining an f-edge connectivity certificate of a dynamic n-
vertex graph, of size O(fn), with O(f2) amortized update time. Combining the latter with the deterministic
algorithm of [CGL*20] for dynamic minimum spanning forest yields O(f? - n°M)) worst-case update time. The
dependency of the update time on f can be avoided using randomness: the recent work of Assadi and Shah
[AS23] implies a randomized algorithm for maintaining an f-connectivity certificate with O(f - nlogn) edges in
a fully dynamic n-vertex graph, with O(poly logn) worst-case update time. To the best of our knowledge, there
is no deterministic dynamic algorithm for maintaining sparse f-connectivity certificate with worst-case update
time bound that is independent of f. We show that our algorithm for maintaining a router decomposition can
also be used to maintain an f-connectivity certificate with f-n!to(1) edges (and therefore of almost optimal size)
for a fully dynamic graph, with worst-case update time and recourse bounded by n°). In fact, we maintain an
even stronger version of an f-connectivity certificate recently introduced in [BHP24], called f-FD connectivity
certificate, that can withstand the failure of any edge subset F', as long as every vertex of G is incident to at most
f edges of F.

1.1 Our Results and Techniques Our main technical result is an algorithm that maintains a low-diameter
router decomposition of a fully dynamic graph with low worst-case update time. Before we state the result,
we need to define the notions of demands and routers; formal definitions can be found in Sections 2.2 and 2.3.
Consider a graph G = (V, E). A weighting of the vertices of G is an assignment w(v) > 0 of a non-negative weight
to every vertex v € V. We also denote such a weighting by an n-dimensional vector w € R". We sometimes use
two special vertex weightings: in the first weighting, denoted by deg;, the weight of every vertex v € V is its
degree in G. In the second weighting, we are given some value A > 0, and the weight of every vertex is set to be
A; we denote such a weighting by A. A demand D in G consists of a collection II of pairs of vertices, and, for
every pair (a,b) € I, a value D(a,b) > 0, that we refer to as the demand between a and b. For a vertex weighting

w, we say that a demand D = (H7 {D(a, b)}(a)b) en) is w-restricted, if, for every vertex v € V, the total demand

between all pairs in II that contain v is at most w(v). A routing of the demand D is a flow f, in which, for every
pair (a,b) € II, D(a,b) flow units are sent from a to b. The congestion of the routing is the maximum amount of
flow through any edge of G. We say that the routing is via flow-paths of length at most d, if every flow-path with
non-zero flow value contains at most d edges.

A central notion that we use in our paper is that of a router, that was first defined in [HHT24] as an object that
is closely related to length-constrained expanders. Given a graph G with vertex weighting w, and parameters 7
and d, we say that G is a (w, d, n)-router!, if every w-restricted demand D can be routed with congestion at most

Tin Section 2.3 we provide a slightly more general definition of routers, that includes a set S of supported vertices, where the
router is only required to route demands defined over the vertices of S. But all our results hold for the case where S = V(G), so the

definition above is sufficient in order to state our results.
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1 in G, via paths of length at most d.

Our main technical result, summarized in the following theorem, is an algorithm that maintains a router
decomposition of a fully dynamic graph, with small worst-case update time. The algorithm also maintains a
subgraph H of G of a prescribed density that has additional useful properties. In particular, as we show later,
graph H is a (low-congestion and fault-tolerant) spanner of G.

THEOREM 1.3. There is an algorithm, whose input is a graph G with n vertices that initially has no edges,
which undergoes an online sequence of at most n? edge deletions and insertions, such that G remains a simple
graph throughout the update sequence. Additionally, the algorithm is given parameters 512 < k < (log n)1/49,
% <i< ﬁ such that % is an integer, and A > n?%/% The algorithm maintains the following:

e a collection C of edge-disjoint subgraphs of G called clusters with ... |V(C)| < ptHOQ/E) such that every

cluster C € C is a (degc,d,n)-router for d = k* - 2001/8%) gnd n = nPWk) - Moreover, if we denote by
E¥ = E(G)\ (Ucec E(C)), then, at all times, |E| < ntTOW/R) - A holds;

o for every cluster C € C, a subgraph C' C C with V(C') = V(C), that is a (A,d,n)-router, with
Seee [E(C)] < n OB A and

e a graph H C G with |E(H)| < n*+tO0/*) . A that contains all edges of B U (Ucec E(C)).

The worst-case update time of the algorithm is n®©®

deletions that graph H undergoes after each update to G is at most n

per operation, and the total number of edge insertions and
O(1/k)

We note that, if we set A = n?0/* then it is guaranteed that |E(H)| < n'+t©(1/k) holds, and moreover, it is easy
to verify that H is a d-spanner for G. In Section 9 we show that, in addition to being a d-spanner, H has many
other useful properties; for example, it is also a low-congestion spanner. Moreover, given a fault parameter f, by
setting the bound A appropriately, we can guarantee that H is an f-FD spanner. Lastly, graph H can also be
used as an f-connectivity certificate for G. Interestingly, the worst-case update time to maintain these structures
is independent of the parameter f.

We now provide an overview of the techniques that we employ in the proof of Theorem 1.3. Using a standard
deamortization technique (see [NSWN17, JS22], and Section 2.6), it is sufficient to provide an algorithm with
guarantees similar to those in Theorem 1.3 in the online-batch dynamic model. In this model, the initial graph
G may contain an arbitrary number of edges, and it undergoes k batches mq,...,m; of updates, where, for all
1 < i < k, the ith batch m; of updates is a collection of edge insertions and deletions for graph G. In order
to obtain the desired worst-case update time and recourse bound from Theorem 1.3, it is enough to design an
algorithm in the online-batch model, whose initialization time is m!*©(®); the time required to process each batch
m; is bounded by |m;] - nP®): and the total number of edge insertions and deletions that graph H undergoes
following each batch m; of updates is bounded by |m;| - nP/k) - We develop several technical tools in order to

solve this problem, that we describe next.

First tool: nice router Wé\’ A and its pruning. Our first tool is an explicit construction of a nice well-
structured router graph, and an algorithm for its pruning. Suppose we are given parameters N, A and k. The
corresponding graph W,iv A (that, for simplicity, we will denote by W},), consists of N* vertices, that are partitioned
into a set V¢ of N¥~1 center vertices, and a set V¥ of remaining vertices, called leaf vertices. The set of edges of
Wi is partitioned into k subsets E,..., E, where, for 1 < ¢ < k, we refer to the edges of E; as level-i edges. For
all 1 <4 <k, the subgraph of W}, induced by the edges of E; can be thought of as consisting of a union of N*~1
disjoint star graphs (called level-i stars), each of which has N — 1 leaves, after we replace every edge of every star
by a collection of A parallel edges (that we refer to as a bundle; we also refer to the corresponding star edge as a
superedge). The center vertices of all stars must lie in V¢, and their leaves must lie in V.

The construction of the graph W} is inductive. In order to obtain the graph Wi, we start with a star S that
has N — 1 leaves. We then replace every edge of S with A parallel edges, obtaining the graph Wj. The center
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of the star S becomes the unique center vertex of Wi. The edges of Wy are level-1 edges. Assume now that, for
an integer 1 < ¢ < k, we have defined the graph W;_;. In order to obtain a graph W;, we start by constructing
N disjoint copies of Ci,...,Cy of the graph W;_1; we refer to these copies as level-(i — 1) clusters. The set of
the center vertices of W; is the union of the sets of center vertices of the graphs C1,...,Cy, and the remaining
vertices of W, are leaf vertices. We connect the clusters C, ..., Cy to each other by level-i edges, as follows. We
construct N¥~1 disjoint stars Sy, ..., Syx-1 (level-i stars), so that each star S; has N — 1 leaves; each vertex of
S; lies in a distinct cluster of {C1,...,Cn}; and the center of the star S, is a center vertex of W}. For each such
star S;, we then replace each of its edges with A parallel edges, which are referred to as level-i edges.

Next, we define the notion of a properly pruned subgraph of Wj. Suppose we are given a subgraph W C Wy,
and k collections Uq, ..., Uy of vertices of W, with Uy C Ug_1 C --- C U;. We say that W is a properly pruned
subgraph of Wy, with respect to the sets Uy, ..., Uy of its vertices, if V(W) = Uy, and the graph obeys the following
additional rules. First, for each level 1 < i < k, for each level-i superedge (u,v), where v is a leaf vertex, if v
remains in set U;, then at least A/2 parallel edges (u,v) must remain in W. Second, for each level 1 < ¢ < k, and
each level-i star S, if the center vertex v of S remains in U;, then a large fraction of the leaves of S must remain
in U;. Lastly, for all 1 < i < k, for every level-i cluster C, if any vertex of C remains in U, then a significant
fraction of vertices of C' must lie in U;11. We prove that, if W is a properly pruned subgraph of W, then it is a
strong router: namely, any A-restricted demand can be routed in W via paths of length O(k?), with congestion
kO®) | The routing algorithm uses the star structure of the graph Wj, in a natural manner.

Finally, we provide an algorithm for pruning the graph Wj in the online-batch dynamic model. The algorithm
is given k batches m, ..., m; of edge deletions from Wp, and maintains a properly pruned decremental subgraph
W of W}, throughout the update sequence. The algorithm ensures that the processing time of each batch m; is
bounded by O(|m;| - k®)), and the number of edges and vertices deleted from W after each batch m; is small
compared to |m;|. The pruning algorithm is quite straightforward: whenever any of the above rules are not obeyed,
we perform vertex deletions in order to ensure that the current graph W is compliant with the rules.

We note that [HHT24] used the kth power graph of a constant-degree expander as an analogue of a nice router
graph. They also provide a pruning algorithm for such routers (see Lemma 5.29 of [HHT24]). To the best of our
understanding, their algorithm relies on the expander pruning algorithm of [SW19], by maintaining the kth power
graph of the resulting pruned expander. Our algorithm uses a completely different strategy, where we construct
the initial router explicitly, define rules for properly pruned subgraphs that guarantee that the resulting graph
remains a strong enough router, and design our pruning algorithm to enforce these rules in a rather straightforward
manner. One advantage of our construction is that it is easy to maintain a sparsified subgraph W’ of Wév A of
any prescribed density A’ < A that remains a strong router, even as the graph undergoes edge deletions and
pruning: for every superedge (u,v), we simply include in W' arbitrary A’ parallel copies of (u,v). This, in turn,
allows us to maintain the sparsified routers C’ C C for the clusters C in the router decomposition C that our
algorithm maintains. We believe that this construction and the pruning algorithm are of independent interest.

Second tool: embedding a nice router. Our second tool is an algorithm that can be used in order to embed a
nice router W}, into a given graph. Specifically, suppose we are given a graph C, and parameters k and d = k1),
such that, for some vertex v € V(C), the number of vertices of C' that lie within distance d from v is significantly
larger than |V(C)['*~/*. Assume further that |E(C)| ~ [V(C)|- A -n®1/F). Our algorithm either successfully
embeds a graph W,iv A into C via short paths that cause small congestion, where N* is quite close to [V (C)[; or
computes a subset E’ of O(nA) edges, so that C'\ E’ becomes scattered: that is, for every vertex u € V(C), the
ball of radius d around v in C'\ E’ contains fewer than |V (C)|*~1/* vertices. More specifically, our algorithm uses
an additional parameter J to control the tradeoff between the lengths of the embedding paths and the running
time. In the first case, the algorithm computes a relatively small collection F of edges of W,iv ’A, and an embedding
P of W,ﬁV’A \ F' into C via paths of length poly(k) - 20(1/56), with congestion at most n°(/%). The running time of

1+0(6)

the algorithm is m If the algorithm terminates with an embedding of WkN A \ F into C, then we can employ

our pruning algorithm, in order to compute a large enough properly pruned subgraph W of Wé\’ A that does not
contain any edges of F, together with its embedding P’ via paths whose length and congestion are bounded as
before. Moreover, we can compute a large enough subgraph C' C C that contains all embedding paths in P’, such
that every vertex of C participates in a large number of such paths. As we show later, this is sufficient in order
to prove that C is a (degg, d, 7j)-router.
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The algorithm for computing the embedding of W,iv A \ F (or a subset E’ of edges whose removal makes
C' scattered), employs the algorithmic techniques that were developed in [Chu23] for well-connected graphs.
Specifically, we start by selecting a large subset T' of vertices of C' that are close to each other, and then use
an algorithm from [Chu23] in order to attempt to embed a well-connected graph, whose vertex set is a large
subset of T, into C', via short paths that cause a low congestion. If the algorithm fails to do so, then it computes
a small collection E” of edges, so that, in C'\ E”, many pairs of vertices of T become far from each other. In the
latter case, we either compute a new large subset T of vertices of C' that remain close to each other and restart
the same algorithm; or correctly establish that the graph becomes scattered and terminate the algorithm. Using
simple accounting, we show that the number of such iterations in the algorithm is not too large. If we successfully
embed a large well-connected graph R into C, we employ the algorithm of [Chu23] for APSP in well-connected
graphs, together with the standard Even-Shiloach trees, in an attempt to embed the edges of Wév A into C one
by one. If we fail to embed a large fraction of the edges of W,iv ’A, then we again obtain a small subset E” of
edges, such that, in C'\ E”, many pairs of vertices that were originally close to each other, become far from each
other. All such sets E” of edges removed from C over the course of the algorithm are added to a set E’, and,
since the number of iterations in the algorithm is relatively small, we can ensure that |E’| remains sufficiently
small as well.

Third tool: router witness. Suppose we are given a graph W, that is a properly pruned subgraph of a graph
Wév A Assume further that we are given some graph C, and an embedding of W into C via paths of length
d* that cause congestion at most n*. Assume further that all vertex degrees in C' are at most « - A, and every
vertex v € V(C) lies on at least A/S of the embedding paths. We prove that, in such a case, C' must be a
(dege, d, i)-router, for d = d* - poly(k), and 7 = a- 8- d* - * - K°%), Therefore, we can view the graph W and its
embedding P into C' with the above properties as a witness that C is a (degs,d,7j)-router. In our construction
of the router decomposition, we employ this type of witnesses to ensure that all clusters in the decomposition
remain strong routers.

Assume now that we are given a target parameter A* < A, a cluster C, and a router witness (W, P) as described
above. Assume further that our goal is to compute a sparsified router C' C C for C, so that |E(C")| < A*-|[V(C)],
and C’ is a (A*, d, i )-router, where d remains the same as before, and 7’ is only slightly higher than 7. We show
that such a cluster C’ can be constructed as follows. We let A’ < A* be a parameter that is sufficiently close to
A*. First, for every superedge (a,b) of W, we select a subset E’(a,b) of A’ parallel edges (a,b), and we let Q' C P
be the set of all embedding paths of all edges in sets E’(a,b), for all superedges (a,b) of W. Next, we construct
a collection Q" C P of paths as follows: every vertex v € V(C) selects a subset of A’ paths of P that contain v,
and adds them to Q”; but we require that every leaf vertex of W serves as an endpoint of at most v - A’ such
paths, for v = n®1/%)_ We then let C’ C C be the graph that contains all edges and vertices participating in the
paths of Q' U Q”. We prove that such a graph ¢’ must be a (A*,d, ij')-router, by using the routing properties of
properly pruned subgraphs of W,ﬁV’A in a straightforward manner. We also show that |E(C")| < |[V(C")| - A*.

Fourth tool: decremental low-diameter clustering. Our last tool is a simple algorithm for decremental
low-diameter clustering. Suppose we are given a graph G and a parameter k£ < logn. We say that a subgraph
C C G is a settled cluster, if either [V(C)| < n'/*, or there is a vertex v € V(C), such that the ball of radius
poly (k) around v contains at least |V (C)|'~1/* vertices. If a subgraph C' C G is not a settled cluster, then we
call it unsettled.

In the decremental low-diameter clustering problem, the goal is to maintain a decomposition C of G into edge-
disjoint clusters under edge deletions, so that each cluster in C is settled, and ) . |V(C)| < ni+O0/k) holds
(for conciseness, we refer to the latter property as a low overlap). We note that the settled clusters in the
decomposition that we maintain are not guaranteed to have a low diameter; each such cluster either has relatively
few vertices, or it has a single vertex with a sufficiently large neighborhood.

Specifically, the algorithm is required to first compute an initial decomposition C of G into settled clusters with
low overlap. The set C of clusters is then partitioned by the adversary into a set C! of inactive and a set C* of
active clusters. At the beginning, all clusters are active. Once a cluster becomes inactive, it may not undergo
any further updates. Then the algorithm proceeds in iterations. In every iteration, the adversary may (i) move
some clusters from C# to C’; and (ii) delete some edges and vertices from clusters C' € C4, after which each such
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cluster must become unsettled. After that the algorithm is required to “fix” the clusters in C* via cluster-splitting
updates: given a cluster C' € C and a subgraph €’ C C', add C” to C and to the set C* of active clusters, delete all
edges of C' from C, and delete any resulting isolated vertices from C. The algorithm must perform such cluster
splitting operations, until all clusters in C* become settled. We provide a simple algorithm for the decremental
low-diameter clustering problem that is based on the standard ball-growing technique.

Combining all tools together. We are now ready to describe the initialization algorithm for Theorem 1.3.
Assume first that all vertex degrees in the input graph G are close to A - n®1/%) for some A > A*. We use
the algorithm for the low-diameter clustering problem, to compute an initial collectlon C of edge-disjoint clusters
with low overlap, so that all clusters in C are settled. We set C! = (), C* = C, and then iterate, as long as
CA # (. In every iteration, we consider every cluster C' € C* one by one. For each such cluster C, we attempt
to embed a graph W,iv oA \ F into C, where F is a relatively small set of fake edges, and N¢ is chosen so that

T'LZSSLL < NE <|V(C)|, via short paths that cause low congestiton. If we fail to do so, then we obtain a relatively
small set EC of edges, such that graph C'\ E¢ is scattered. We delete the edges of E¢ from C' (and add them to
the set £9¢! of deleted edges that we maintain), and notify the algorithm for the low-diameter clustering problem
regardlng these edge deletions; we show that C' now becomes unsettled. If, however, we manage to embed a graph
Wév ol \ F into C as above, then we move C to the set C! of inactive clusters. Using the prumng algorithm, we
then compute a large subgraph Cc C, together with a router witness for C, so that C is (degc, d 7)-router. We

also construct a subgraph ¢’ C C, with |E(C")] < A* - |V(C)], such that ¢’ is a (A", d, 7j)-router. We then add
C to the router decomposition that we are constructing.

Once the algorithm terminates, C* = ) holds, and so all clusters are inactive. For each such inactive cluster C,
we have constructed a large enough router C C C. If the number of edges lying outside of the routers that we
have constructed so far is too high, then we repeat the algorithm with these remaining edges. However, since our
algorithm ensures that a large enough fraction of edges of each cluster C' is included in the corresponding router
C, we can show that the number of times that we need to restart the algorithm is relatively small.

Our algorithm for processing each batch m; of updates to graph G proceeds as follows. Assume first that all
updates in m; are edge deletions. Then we simply use the pruning algorithm for the nice routers that we described
above, inside each cluster C' of the decomposition, in order to maintain the corresponding router witness.

Lastly, so far we have assumed that all vertex degrees in the graph G are close to each other, and that the update
batches m; only contain edge deletions. In order to handle a general graph G, we partition its edges among at
most k subgraphs Gy, G, ..., where, for each j, |[E(G;)| < A* - n'*9/% and all vertex degrees in G; are at least
A* .nU=2/k_ For each such subgraph G, we further perform splitting of its high-degree vertices, to ensure that
all vertex degrees become close to A* - nU=2)/% and the number of vertices in the resulting graph G; remains
at most 2n. For all j > 2, we initialize the above algorithm on graph G;-. In fact, the initialization proceeds
from higher to lower indices j, and edges that are left over from the initialization algorithm for graph G;- (that
is, edges that do not lie in any of the routers), become the edges of graph G;_1. The set E4°l of edges is then set
to contain all edges of E(G1) U E(G2). Consider now a batch m; of updates. We compute the smallest integer 7,
so that A* - n'TU=2/F > ||, For indices j' > j, for each edge e of G;, that is deleted in m;, we delete e from
ey %, and update the router decomposition of G’, g7 following these edge deletions; this may result in an additional
collection E;: of edges to be deleted from G/, where |E;/| is roughly bounded by the number of edges of G/
that are deleted by m;. Next, we construct a set E* of edges, that contains (i) all edge insertions from 7;; (ii) all
edges lying in graphs G1,...,G;; and (iii) all sets E; of edges that were deleted from graphs G/ for j° > j while
the batch m; was processed. We let the new graph G; contain all edges of E*, and we initialize the algorithm
for computing the router decomposition on the corresponding vertex-split graph G; from scratch. As before, all
leftover edges that are not included in the resulting router decomposition are added to the graph G;_;, and we
recursively initialize the algorithm for computing the router decomposition on the corresponding graph G’;_;, and
SO on.

J—=b

Organization. We start with Preliminaries in Section 2. We formally define router decompositions, and state
our main technical result: namely, an algorithm that maintains a router decomposition of a graph that undergoes
a small number of batches of updates, in Section 3. We also show that the proof of Theorem 1.3 follow from this
main technical result. Then in sections Sections 47 we develop our main technical tools for maintaining a router
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decomposition. The first tool is a simple construction of a nice router, and an algorithm for its pruning, that are
presented in Section 4. The second tool is an algorithm for embedding a nice router into a given graph, and is
presented in Section 5. The third tool is a router witness, that is presented in Section 6. Finally, the last tool is
a decremental algorithm for low-diameter decomposition, that appears in Section 7. In Section 8, we combine all
these tools to complete the proof of the main technical theorem. Lastly, in Section 9, we provide an algorithm
for maintaining (low congestion, fault tolerant) spanners for bounded-degree faults in a fully dynamic graph, and
connectivity certificates. We defer some of the proofs to the full version of the paper.

2 Preliminaries

All logarithms in this paper are to the base of 2. Throughout the paper, we use the O(-) notation to hide
multiplicative factors that are polynomial in logm and logn, where m and n are the number of edges and
vertices, respectively, in the initial input graph. All graphs in this paper are undirected. By default, we allow
parallel edges but we do not allow self loops. Graphs in which parallel edges are not allowed are explicitly referred
to as simple graphs.

We follow standard graph-theoretic notation. Given a graph G = (V, E) and two disjoint subsets A, B of its
vertices, we denote by Eg(A, B) the set of all edges with one endpoint in A and another in B, and by Eg(A) the
set of all edges with both endpoints in A. We also denote by dz(A) the set of all edges with exactly one endpoint
in A. For a vertex v € V(G), we denote by dg(v) the set of all edges incident to v in G, and by degq(v) the
degree of v in G. We also denote by deg, the n-dimensional vector of all vertex degrees in G. We may omit the
subscript G when clear from context. Given a subset S C V of vertices of G, we denote by G[S] the subgraph of
G induced by S.

If G is a graph, and P is a collection of paths in GG, we say that the paths in P cause congestion 1, if every edge
e € E(Q) participates in at most n paths in P, and some edge participates in exactly 5 such paths.

Assume now that we are given a graph G with capacities ¢(e) > 0 on edges e € E(G). A flow in G is an assignment
of non-negative flow values f(P) to paths P in G. If P is a path whose corresponding flow value f(P) is non-zero,
then we say that P is a flow-path. A flow f is typically defined by providing a list of flow-paths P together with
their corresponding flow value f(P). For an edge e € E(G), the flow f(e) through e is the total sum of flow values

f(P) over all paths P containing e. We say that flow f causes congestion n if max.cp () {J:((:)) } = 7. Notice that

it is possible that n < 1. If f(e) < ¢(e) holds for every edge e € E(G), we may sometimes say that f is a valid
flow, or that it respects edge capacities. When the edge capacities c(e) are not explicitly given, we assume that
they are unit.

Distances and Balls. Suppose we are given a graph G with lengths ¢(e) > 0 on its edges e € E(G). For a path
P in G, we denote its length by £c(P) =} cp(p) (e). For a pair of vertices u, v € V/(G), we denote by diste(u, v)
the distance between u and v in G: the smallest length ¢(P) of any path P connecting u to v in G. For a pair S, T
of subsets of vertices of G, we define the distance between S and T' to be distg(S,T) = minge g er {distg(s, )}
For a vertex v € V(G), and a subset S C V(G) of vertices, we also define the distance between v and S as
distg(v, ) = miny,eg {distg(v,u)}. The diameter of the graph G, denoted by diam(G), is the maximum distance
between any pair of vertices in G.

Consider now some vertex v € V(G), and a distance parameter D > 0. The ball of radius D around v is defined
as: Bg(v,D) = {u € V(GQ) | distg(u,v) < D}. Similarly, for a subset S C V(G) of vertices, we let the ball of
radius D around S be Bg(S, D) = {u € V(G) | distg(u, S) < D}. We will sometimes omit the subscript G when
clear from context.

Embeddings of Graphs. Let G, X be two graphs with |V(X)| < |[V(G)|. An embedding of X into G consists of
a mapping ¢ : V(X) — V(G), such that the vertices of X are mapped to distinct vertices of GG, and a collection
P = {P(e) | ec E(X)} of paths in graph G, such that, for every edge e = (z,y) € E(X), path P(e) connects
g(x) to g(y). The congestion of the embedding is the maximum, over all edges ¢’ € E(G), of the number of paths
in P containing e’. Given an embedding of X into G as above, we will often identify vertices v € V(X) with
the corresponding vertices g(v) € V(G) to which they are mapped, and so the embedding will only be specified
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by the collection P of embedding paths. Whenever we say that we are given an embedding of a graph X into a
graph G, this implicitly means that |V(X)| < |[V(G)|.

2.1 Vertex Weighting, Conductance and Expanders Given an n-vertex graph G = (V| E), a vertex
weighting w : V — Z>( is an assignment of non-negative weight w(v) to every vertex v € V(G). We denote by
w the corresponding n-dimensional vector of all vertex weights. We may sometimes consider two special vertex
weightings: weighting deg.;, where the weight of every vertex v is degy(v); and a weighting A, where A > 0 is
an real number, and A is an n-dimensional vector with all entries equal to A, so the weight of every vertex is A.

Consider now a graph G = (V, E) with a vertex weighting w. For a subset S C V of vertices, the weight of S is
w(S) = cgw(v). When w = deg;, we may denote w(S) by Volg(S), and refer to it as the volume of S in G.
If S,V \ S # 0, we sometimes refer to (S,V \ S) as a cut. Given a cut (S,V \ S) with w(S),w(V \ §) > 0, the
conductance of the cut with respect to vertex weighting w is:

|66 ()]
min{w(S),w(V \ S)}

Caw(S) =

For simplicity, if |6¢(S)| = 0, we define ®¢ (S) = 0, and otherwise, if [0(S)| > 0 and min {w(S),w(V \ S)} =0,
then we set &g 5(S) = oo.

The conductance of a graph G with respect to vertex weighting w is denoted by ®(G,w), and it is defined to be
the minimum conductance ®¢ (S) of any cut (S, V' \ 5).

If no vertex-weighting is explicitly given for a graph G = (V, E), we use the default weighting w = deg,. In such
a case, the conductance of a cut (S,V '\ S) is defined with respect to the standard volume Volg(+) notion defined
above.

DEFINITION 2.1. (p-EXPANDER) Let G = (V, E) be a graph, let W be a weighting of its vertices, and let ¢ > 0 be
a parameter. We say that G is a g-expander with respect to w, if ®(G,w) > ¢. If G is p-expander with respect
to vertex weighting w = degq, then we may simply say that G is a p-expander.

2.2 Demands and their Routing

DEFINITION 2.2. (W-RESTRICTED DEMAND) Let G = (V, E) be a graph, and let W be a weighting of its vertices.
A demand in G consists of a collection 11 of pairs of vertices, and, for every pair (a,b) € Il, a value D(a,b) > 0,

that we refer to as the demand between a and b. We say that a demand D = (H, {D(a, b)}(a,b)en> is w-restricted,

if, for every vertex v € V, the total demand between all pairs in 11 that contain v is at most w(v). When w = A
for an integer A, we may sometimes refer to a w-resticted demand as a A-restricted demand.

The support of the demand D = (H7 {D(a,b)}(a b)eH) s the set of all vertices participating in the pairs in II.
We say that the demand is between two pairs A, B CV of subsets of vertices of G, if 1 C A x B.

DEFINITION 2.3. (ROUTING OF A DEMAND) Let G = (V, E) be a graph, and let D = (H, {D(a»b)}(a,b)en) be

a demand in G. For every pair (a,b) € II, let P, denote the collection of all a-b paths in G. A fractional
routing, or just a routing, of the demand D, is a flow f, that assigns non-zero values f(P) > 0 only to flow-paths
Pe U(a,b)eH Pap, such that, for all (a,b) € II, ZPEPa,b f(P) = D(a,b). The routing is defined by only specifying
values f(P) that are non-zero. The congestion of the routing is the congestion caused by the flow f in G. We
say that the routing is over paths of length at most d, if every flow-path P with f(P) > 0 has length at most d.
If, for every path P, f(P) € {0,1}, then we say that the routing is integral. In this case, we may represent the
routing as a collection of paths Q@ = {P | f(P) =1}
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2.3 Routers A central object that we use is routers. Routers were introduced in [HHT24] as an object that is
closely related to bounded-hop expanders. As we show below, routers are also closely related to the well-connected
graphs, that were introduced in [Chu23]. The definition below slightly generalizes the definition of [HHT24].

DEFINITION 2.4. ((w,d,n)-ROUTER.) Let G = (V, E) be a graph, let W be a weighting of its vertices, and let
S CV be a subset of vertices of G. Additionally, let d,n > 1 be parameters. We say that G is a (w,d,n)-router
for the set S of supported vertices, if every w-restricted demand D defined over the vertices of S can be routed
with congestion at most n in G, via paths of length at most d.

We note that the inclusion of the set S of supported vertices in the above definition may seem redundant, since
we could simply set the weight of each such vertex to 0, without the need to include the vertices of S in the
definition. However, supported vertices will be useful when we consider special vertex weighings, such as A for
A € R>?, and deg;.

2.4 Well-Connected Graphs and their Relationship to Routers We employ well-connected graphs, that
were introduced in [Chu23]. We start with a formal definition of such graphs, which is identical to that from
[Chu23].

DEFINITION 2.5. (WELL-CONNECTED GRAPH) Given an n-vertex graph G, a set S of its vertices called
supported vertices, and parameters n,d > 0, we say that graph G is (d,n)-well-connected with respect to S,
if, for every pair A, B C S of disjoint equal-cardinality subsets of supported vertices, there is a collection P of
paths in G, that connect every vertex of A to a distinct vertex of B, such that the length of each path in P is at
most d, and every edge of G participates in at most n paths in P.

For intuition, it may be convenient to think of d = 2P°W(1/9) = nO©) and |S| > |V(G)| — n'~¢, for some
precision parameter 0 < € < 1.

2.4.1 The Relationship between Routers and Well-Connected Graphs The notion of routers is closely
related to the notion of well-connected graphs. It is immediate to see that, if G is a (@, d, n)-router with respect
to any set S of supported vertices, for any vertex weighting @ where w(v) > 1 for all v € V(G) \ S, then G is
(d, n)-well-connected with respect to S.

For the connection in the opposite direction, at the first glance, it appears that the notion of well-connected
graphs is weaker, for two reasons. The first reason is that, from the definition, well-connected graphs only provide
routings between pairs A, B of vertex subsets, and it appears that one cannot control the specific pairs that are
being routed. The second reason is that they only guarantee the routing of |A| = |B| flow units from A to B,
which roughly corresponds to routing with vertex weighting A where A = 1. We first address the former issue,
and show, in the following claim, that in fact a (d,n)-well-connected graph is a sufficiently strong router. We do
not use this claim directly, but we feel that it is useful in that it illuminates the relationship between these two
objects. The proof of the claim is deferred to the full version of the paper.

CrAamM 2.1. Let G be an n-vertex graph, and assume that it is a (d,n)-well-connected graph with respect to a set
S of supported vertices. Then for all 1 < k <logn, G is a (1,d',n')-router with respect to S, for d = 512k - d
and ' = (27 - kdn'/*1og? n) .

There are three approaches to address the second issue that is raised above — namely, that the routing guarantees
provided by well-connected graphs correspond to vertex weighting w(v) = 1 for all vertices v. The first approach
has to do with the manner in which well-connected graphs are used. Most if not all applications of such graphs
known today construct a well-connected graph W that is embedded into a given input graph G via the distanced-
matching game, that can be thought of as the analogue of the cut-matching game for constructing a well-connected
graph. From the construction, graph W has a rather low degree, so it can be thought of as providing routing
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for the weighting degy, of its vertices. Moreover, in the typical application of well-connected graphs as described
above, the embedding of W into G is usually then used as a certificate that G itself is a well-connected graph,
and is thus a router with respect to vertex weighting w(v) = 1 for all vertices v, from Claim 2.1. In order to
obtain a router certificate for a general weighting @ of the vertices of G, we can construct a larger graph W,
containing ZUGV(G) w(v) vertices, and then embed it into G via the distanced-matching game, where, for every
vertex v € V(G), we embed w(v) vertices of W into v. Such an embedding would then serve as a certificate
that G is a router for the vertex weighting w. The second approach is that, given any graph H with arbitrary
integral vertex weighing w, we can obtain a new graph H’ via the following simple transformation: for every
vertex v € V(H), add a new collection T'(v) of w(v) vertices to the graph, connecting them to v with new edges.
Let S = UUEV( H) T(v). Then if graph H’ is well-connected with respect to the set S of supported vertices, the
original graph H is a router with respect to vertex weighing w. Lastly, the third approach is to generalize the
definition of well-connected graphs directly to arbitrary vertex weighting. In view of the first two approaches, it
is not clear to us if such a generalization provides an additional value.

2.5 Length-Constrained Expanders Length-constrained expanders were initially introduced in [HRG22] as
a generalization of the standard notion of expanders, that allows routing via paths of sublogarithmic length;
this was also the main motivation behind the well-connected graphs introduced in [Chu23]. We do not use
length-constrained expanders directly (except that we use routers that can be viewed as bounded-diameter length-
constrained expaners). We provide a short discussion here for completeness.

Consider any graph G, and a demand D = (H7 {D(a, b)}(a,b)en> for G. We say that the demand is h-length if, for

every pair (a,b) € II of vertices, distg(a,b) < h. The following description of length-constrained expanders follows
the summary in [HHG22]. The formal definition of (h,s)-length p-expanders relies on the notion of so-called
“moving cuts”, and can be found in [HRG22]. Instead, as in prior work on graph spanners (e.g., [HHT23] and
[BHP24]), we use the more convenient routing characterization of length-constrained expanders. Informally, up
to a constant factor in the length parameter, and a poly-logarithmic factor in the congestion parameter, a graph
G is an (h, s)-hop ¢-expander for a vertex weighing w, if any h-length w-bounded demand D can be routed
in G via paths of length at most (s - h), with congestion at most roughly %. The precise characterization of
length-constrained expanders in terms of routing appers in the following theorem.

THEOREM 2.1. (THEOREM 5.17 oF [HHT24]) Let G be a graph, let W be a weighting of its vertices, and let
h>1, p<1, and s > 1 be parameters. Then:

1. if G is an (h, s)-length p-expander for vertex weighting w, then every h-length w-restricted demand D can
be routed in G via paths of length at most (s - h), with congestion O (%); and

2. if G is not an (h, s)-length @-expander for vertex weighting w, then there is some h-length W-bounded demand
D that cannot be routed in G via paths of length at most (5 - h) with congestion at most i,

The next claim summarizes the connection between routers and length-constrained expanders that was shown by
[HRG22, HHT24], and also follows from Theorem 2.1.

CLAIM 2.2. (IMMEDIATE FROM LEMMA 5.24 IN [HHT24]) IfG is an (h, s)-length p-expander for vertex weight-
ing W with diam(G) < h, then G is a (@, hs, O (%))—muter for the set S = V(G) of supported vertices. Con-
versely, if an G is a graph of diameter at most h that is not an (h, s)-length p-expander for vertexr weighting w,

then G is not a (E, %, 0] (%))-muter.
@

To summarize, one can intuitively think of a (deg, d,n)-router as being roughly equivalent to a bounded-diameter
length-constrained ¢-expander, where ¢ = ©(1/7), and the bound on the diameter is roughly d.
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2.6 The Online-Batch Dynamic Model and Deamortization Our algorithm uses the by now standard
online-batch dynamic model, and a reduction from this model to the standard dynamic model with bounded
worst-case update time, that was formalized in [JS22]. Much of the exposition in this subsection is borrowed from
Section 10.1 of [JS22]

We assume that we are given two main parameters: batch number o and sensitivity parameter w. We let DS be
a data stucture that we would like to maintain for an input graph G undergoing updates. A dynamic algorithm
for maintaining DS in the online-batch dynamic model consists of o + 1 phases ®g, ..., P,, where &y is the
preprocessing, or the initialization phase, and ®4,..., P, are regular phases. For all 1 < i < ¢, at the beginning
of Phase ®;, the algorithm is given the ith batch II; of updates to graph G; in our case, all updates are insertions
and deletions of edges to and from G. The number of such updates in each batch IT; must be bounded by w. The
algorithm is required to maintain the data structure DS, so that, at the end of the Oth phase, the data structure
DS that it obtains correctly corresponds to the initial graph G(©. Additionally, for all 1 < i < o, the data
structure DS that the algorithm obtains at the end of Phase ®; must correctly correspond to the graph G, that
is obtained from the initial graph G(?), after the sequence II; o - - - o II; of updates is applied to it. The algorithm
has amortized time ¢, if, for all 1 <14 < o, the running time of the algorithm during Phase ®; is bounded by ¢-|II;].
Here, ¢ is allowed to be some function of the graph parameters, such as, for example, n¢, where n = |V(G)|, and
€ a given parameter.

The following lemma was formally proved in [JS22], and is implied by the previous work of [NSWN17]. We provide
a slightly simplified version of the lemma that is sufficient for us.

LEMMA 2.1. (LEMMA 10.1 IN [JS22]; SEE ALSO SECTION 5 IN [NSWN17]) Let G be a graph undergoing batch
updates, and let 0 > 0 and w > 2 - 67 be parameters. Assume that there is an algorithm in the batch update
model with batch number o and sensitivity parameter w, that maintains some data structure DS for G, whose
preprocessing time is Ty, and amortized update time is T', where both Ty and T’ are functions that map some
graph measure (e.g. |E(G)| or |V(G)|) to non-negative numbers.

Then there is a dynamic algorithm, with preprocessing time O (20(") ~T0), and worst case update time
(0] (4" . (% +w'/7 . T’)), that maintains a set of O(2°(7)) instances of the data structure DS, such that, after
each update, the algorithm indicates one of the maintained instances of the data structure as the “current” one.
The current instance of data structure DS satisfies the following conditions:

o it is up-to-date with respect to the current graph; and

e the online-batch update algorithm was executed at most o times on it, with each update batch size at most
w.

3 Low-Diameter Router Decomposition

In this section we formally define one of our main combinatorial objects — a Low-Diameter Router Decomposition,
that, for conciseness, we refer to as “Router Decomposition”. We then provide the statement of our main technical
result, namely, an algorithm that maintains such a decomposition in the online-batch dynamic model, and show
that the proof of Theorem 1.3 follows from it. We complete the proof of the main technical result in Sections 4-8.
We start with a formal definition of a router decomposition.

DEFINITION 3.1. (ROUTER DECOMPOSITION OF A GRAPH) Let G be a simple graph, and let A*.d, 7 and p be
non-negative parameters. A router decomosition of G with parameters A*,d, 7 and p consists of the following
ingredients:

e a collection C of subgraphs of G called clusters with ) .o [V(C)| < p-|V(G)|, such that every cluster C € C

is a (Tegc,d, 7)-router with respect to the set V(C) of supported vertices, and every edge of G lies in at
most one cluster C' € C; and
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o for every cluster C' € C, a subgraph C' C C with V(C') = V(C), such that C" is a (A", d,7)-router for the
set V(C) of supported vertices, and Yoo |[E(C')] < p- A* - [V(G)].

We denote by B = E(G) \ (Ugec E(C)) the set of all edges of G that do not lie in any cluster of C.

We note that generally we will ensure that |E9°!| is sufficiently small in a router decomposition. The following
theorem summarizes our main technical result, and a significant part of the paper is devoted to proving it.

THEOREM 3.1. There is a deterministic algorithm, that receives as input a parameter n that is greater than a

large enough constant, and additional parameters 512 < k < (log n)1/49, % <i< 4(1)—0 such that % 18 an integer,

A*, and A, such that n*®/F < A* < ﬁkz <n holds. The algorithm is also given as input a simple graph G with
n
16/k

[V(G)| < n, such that, initially, all vertex degrees in G are at most A -n Lastly, the algorithm receives k
online batches my,...,m of updates to graph G, where for 1 < i < k, the ith batch m; is a collection of at most
A -n edges that are deleted from G.

The algorithm maintains a router decomposition (C, {Cl}cec) of the graph G, for parameters A*, d= k19-20(1/56),
7 =n'"* and p = n?/%. After the initialization, |[E®| < |V(G)|- A - n2/*? holds, and, for all 1 < i <k, at
most | - n7/k edges may be added to E° while processing the batch w;. For all 1 < i < k, after the ith batch
of updates 1is received, the clusters C € C may only be updated by removing some of their edges (which are then
added to E9°') and some of their vertices. The corresponding graphs C' C C may be updated by removing or
inserting edges into them, and by removing vertices from them. Additionally, clusters of C that become empty are
removed from C. These are the only updates to the router decomposition. The initialization time of the algorithm
is O ((nA)1+O(5)), and for all 1 < i < k, the time required to process the ith update batch m; is bounded by

o) (|7r1| 'no(l/kz)) The total number of edges inserted into or deleted from all subgraphs in {C'| C € C} while

batch m; is processed is at most O (|7rl| ~no(1/k2)),

We will prove Theorem 3.1 in Sections 4-8. In the remainder of this section, we complete the proof of Theorem 1.3
using it. We start with the following corollary of Theorem 3.1, that can be thought of as an analogue of our main
technical result — Theorem 1.3, for the online-batch dynamic model. The proof of the corollary is deferred to the
full version of the paper.

COROLLARY 3.1. There is a deterministic algorithm, that receives as input a simple n-vertex graph G, where n
is greater than a large enough constant, and additional parameters 512 < k < (log n)1/49, % <d< ﬁ such that
% is an integer, and A* > n'®/% . Lastly, the algorithm receives k online batches my,. .., 7 of updates to graph G,
where for 1 < i < k, the ith batch m; is a collection of edge insertions and deletions for G; graph G is guaranteed
to remain simple throughout the update sequence.

The algorithm maintains a router decomposition (C, {C'}Cec) of the graph G, for parameters A*, d = k19~20(1/56),
7 =n""% and p = n°/%) such that |Edel| < ntTOA/K) L A* holds. The algorithm also maintains a graph H
with V(H) = V(G) and E(H) = E U (Ugee E(C")), with |E(H)| < n'TOW/R) . A* | The initialization time of
the algorithm is O (mHO(‘”), where m is the initial number of edges and vertices in G. For all 1 < i < k, the
time required to process the ith update batch m; is bounded by O (|7rl| _n0(6)>_ The number of edge insertions and
deletions that graph H undergoes while batch m; is processed is bounded by O (\m\ ~no(1/k)).

We are now ready to complete the proof of Theorem 1.3. Let G be an initial graph with n vertices and no edges,
that undergoes an online sequence of at most n? edge deletions and insertions, such that G remains a simple graph
throughout the update sequence. We can assume w.l.o.g. that n is greater than a sufficiently large constant, since,
if it is not the case, we can simply increase it, and add some dummy vertices to G. We also assume that we are
given parameters 512 < k < (logn)'/4°, % <i< ﬁ such that % is an integer, and A* > n'9/F (if n was initially
too small, then A* may need to be increased to accommodate the increase in n).
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Notice that the algorithm from Corollary 3.1 allows us to maintain the collection C of edge-disjoint clusters of G,
the subgraphs C’ C C for all clusters C € C, and the graph H with all required properties, in the online-batch
dynamic model, with batch number & and sensitivity parameter w = n2. The initialization time of the algorithm
is bounded by O(n2+0(5)), and, for all 1 < ¢ < k, the time required to process the ith batch m; of updates is
bounded by O(|m;|) - n®®). We denote the data structure maintained by the algorithm from Corollary 3.1 by DS.

From Lemma 2.1, we then obtain an algorithm that maintains the collection C of clusters, and, for every cluster
C € C, a subgraph ¢’ C C with all required properties, whose worst-case update time is O (2O(k) . (no(“l/k))) <
O (no(‘s)) (since 20(k) < nOQ/K) a5 k < (log n)1/49, and 6 > 1/k).

The only subtlety is in maintaining the graph H, so that, after each update to graph G, graph H undergoes at
most n?1/%) updates. The reason is that the algorithm from Lemma 2.1 can be thought of as maintaining, at all
times, 3% different instances of data structure DS, each of which is associated with a different graph H. At any
given time, the algorithm indicates which of the data structures is up to date. However, following a single update
to a graph G, the algorithm may decide to switch the designated current data structure, which may lead to a
large number of changes in the graph H. In order to overcome this difficulty, we will simply include in our final
sparsifier H* the edges of all graphs H that are maintained by all copies of data structure DS, but we explicitly
exclude edges that have been deleted from G.

We now provide more details of the algorithm from Lemma 2.1, and the algorithm for maintaining the final graph
H*. Tt is convenient to think of the algorithm from Lemma 2.1 as consisting of k + 1 levels, which are associated
with a hierarchical partition of the time line into intervals. Let T be the time horizon of the algorithm. We
first partition T into consecutive intervals of length w each, and denote the resulting collection of intervals by
To; we refer to these intervals as level-0 intervals. We can think of the level-0 algorithm as having 3*1 copies of
data structure DS from Corollary 3.1, that are partitioned into 3 groups Gi,Gs,Gs. Each group G, contains 3*
identical copies of data structure DS. For each interval I € Z;, every data structure DS is in one of the following
three states: (i) preparation: given some initial graph G’ at the beginning of interval I, the data structure needs
to initialize the algorithm from Corollary 3.1 for graph G’, during the first half of interval I; or (ii) active: the
data structure will be used, during time interval I, by data structures from levels 1,..., k; or (iii) rollback: we
can think of this part as “undoing” all computation that has been done during the preparation step. If data
structure DS is active during interval I, then it is in preparation state during the preceding interval, and in the
rollback state during the following interval. Moreover, all data structures in a single group G, are always in the
same state, and exactly one group is active during each interval I € Z;. Recall that the time to initialize the
data structure DS is bounded by n?t©(®) and during this time the initial graph Hps, that contains all edges of
B and (Joee E(C') is constructed. We can think of the construction of the graph Hps as being stretched over
the course of the first half of a single level-0 interval when the data structure is in the preparation state, where
we start with Hps containing no edges, and then insert at most n®(/¥) edges into Hps per time unit. Then
during the rollback state, we will delete the edges from Hps, at the rate of n@(1/%) edge deletions per time unit,
until no edges remain in Hps. We define the level-0 graph H° to contain the edges of all graphs Hps, for all
level-0 data structures DS, excluding the edges that no longer lie in G. Note that graph H° undergoes at most
nOW/k) . 90(k) < pOU/k) ypdates per time unit.

Consider now some integer 1 < j < k, and some level-(j — 1) interval I. This interval is partitioned into {nQ/ k

level-j intervals of identical length; we denote the length of each such interval by L;. Moreover, there are 38177
identical copies of data structure DS that are active during time interval I. Each of these copies is obtained
by applying the algorithm from Corollary 3.1 to some initial graph G, which then undergoes j — 1 batches of
updates. These copies are in turn partitioned into 3 groups G, G3, G, each of which contains 3%=J identical copes
of the data structure. For each level-; interval I’ C I, each such data structure is in one of the following three
states: (i) preparation: the data structure is processing the jth batch of updates, whose size is at most 4L; -n2/k
and the processing needs to complete by the middle of interval I’; (ii) active: the data structure is ready to be
used by levels j 4+ 1,...k; and (iii) rollback: we undo the changes that the data structure underwent during the
preparation state. As before, if data structure DS is active during a level-j interval I, then it is in preparation
state in the preceding interval, and in rollback state during the subsequent interval. Consider now any copy DS
of the data structure, and suppose it is in preparation state during the level-; interval I’. Recall that the length
of the interval is denoted by L;, and the length of the update batch to the data structure is at most 4L - n2/k.
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During this update sequence, the graph Hps associated with the data structure undergoes at most L; - nO/k)
edge insertions and deletions. We think of these updates as being spread over the course of interval I, so graph
Hps undergoes at most n®1/%) updates per time unit. During the following rollback stage, we undo the changes
that graph Hps underwent during the preparation stage, with the graph undergoing at most n®/%) updates
per time unit. We now define the level-j graph HJ to be the union of all graphs Hps for all data structures
DS € G UD5 UDS, but we do not include in H? edges that have been deleted from G. As before, graph H’
undergoes at most n@1/k) . 20(k) < pOU/k) ypdates per time unit.

We let j* < k — 1 be smallest integer, such that level-j* time intervals have length at most n?/* each. In this
case, we think of level-(j* 4+ 1) time intervals as consisting of a single time slot each. For each level-(j* + 1)
time interval I = {7}, there is at least one data structure DS, that is up to date with respect to the graph G at
time 7. This is the data structure that the algorithm from Lemma 2.1 considers as current. The corresponding
graph Hps must then be contained in the graph H* = HOU-..U H7 *1 that our algorithm maintains. From our
discussion, graph H* undergoes at most n°(1/¥) edge insertions or deletions per time unit. Since the algorithm
from Corollary 3.1 ensures that each graph H maintained by a copy of the data structure contains at most
ptTOW/K) . A* edges, and since, at all times, our graph H* is contained in the union of at most 2°*) such graphs,
we get that |E(H*)| < 200) . pl+O0/k) - A% < pl+OQ/EK) . A* holds. This completes the proof of Theorem 1.3.

In the remainder of this paper we prove Theorem 3.1. We start by providing the main tools that we use in the
proof of the theorem.

4 First Tool: a Nice Router and its Pruning

In this section we provide an explicit construction of a router, and provide an algorithm for pruning this router.
We show that the graph remains a router even after pruning.

4.1 Construction of a Nice Router Graph We assume that we are given three integral parameters: k > 256,
N > k% and A > 4k®. We sometimes refer to A the target degree. We now describe a construction of a
corresponding router, that we denote by W,iv A To avoid clatter, in the remainder of this section, we assume
that N and A are fixed, and we do not include them in superscripts, so in this section we denote graph Wév B by
Wi. The construction of graph Wy, is recursive. We start by constructing a graph Wi, and then, for 1 < i < k,
we construct graph W; by combining N copies of graph W;_;. Parameters N and A remain unchanged for these
graphs.

Graph W, — a High Level View. Consider an integer 1 < i < k. We now provide a high-level description
of graph W; = (V;, E;). The set V; contains exactly N* vertices, and it is partitioned into two subsets: set V;°
of N*~! vertices called center vertices, and set V¥ = V; \ V¢ of remaining vertices, called leaf vertices. The set
E(W;) of edges of the graph is partitioned into i subsets Ei, ..., E!, where for 1 < z < i, we refer to the edges of
E! as level-z edges. If we let H, = G;[E!] be the subgraph of G; induced by the set E? of level-z edges, and denote
by R. the collection of the connected components of H,, then each such connected component C' € R, contains
exactly N vertices, out of which exactly one is a center vertex. Additionally, if we let S be a star defined over
the vertices of C, whose center is the unique vertex of V(C) NV, then C can be obtained from S by replacing
every edge of S with A parallel copies (we refer to these copies as a bundle; the edges of S are referred to as
superedges). We denote by S, a collection of star graphs that contains, for every connected component C' € R,
the corresponding star graph S on V(C) (without the parallel edges). Note that every edge in W; connects a leaf
vertex to a center vertex. We now describe the construction of the graph W; in more detail. The construction is
recursive, from smaller to larger values of 1.

Graph Wj. The set of vertices of the graph Wy is Vi = {v1,...,vn}, where vertex vy is the center vertex, and
vertices va, . .., vy are leaf vertices. In other words, Vi* = {v1}, and V{ = {vs,...,vn}. Let S be a star defined on
the vertices of V1, whose center is vertex vy, and leaves are vs,...,vy. Graph W7 is obtained from S by replacing

every edge of S with a collection of A parallel edges. All edges of W; belong to level 1, so E(W;) = Ei. The
collection &; of level-1 stars contains a single star S.
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Graph W, for ¢ > 1. We assume that we are given an integer ¢ > 1, and that we have already defined the graph
W;_1. We now describe the construction of graph W;.

We start by creating N copies of graph W;_1, that we denote by C1,...,Cn. Werefer to C1,...,Cy as level-(i—1)
clusters. We let the set V; of vertices of W, be U;\f:l V(Cj). Forall 1 < j < N, if v € V(C;) is a center vertex
for C}, then it becomes a center vertex for W;, and otherwise it becomes a leaf vertex for W;. Recall that, for all
1 <j <N, |V(Cj)| = N*!, and the number of center vertices in C; is N*~2. Therefore, we get that |V;| = N*
and the number of center vertices in W; is N~!, as required.

For all 1 <4’ < i, the set EY, of level-i’ edges of W; is the union of the sets of level-i’ edges of C1,...,Cy. It now
remains to define the set E! of level-i edges for graph W;. In order to do so, we construct a collection S; of N*~!
disjoint stars, where each star S € S; contains exactly one vertex from each of the clusters Ci,...,Cy, and the
center of the star lies in V. The set E} of level-i edges is then obtained by replacing each edge e € |Jgo s, B(9)
with A parallel edges. We omit the details of the construction of the collection S; of stars with the above
properties; they can be found in the full version of the paper.

Consider now the level-k graph Wj,. For all 1 < i < k, graph W), contains N*~* copies of the level-i graph W;. We
let C; denote the partition of the vertices of W} defined by these copies of W;. We refer to C; as level-i clustering,
and we refer to each subgraph C' € C; as a level-i cluster. Notice that for all 1 < i < k, each level-i cluster is
contained in a single level-(¢ 4+ 1) cluster, and moreover, each level-(i 4 1) cluster contains the union of exactly N
level-i clusters. There is a single level-k cluster, containing all vertices of Wj. From our construction, it is easy
to verify that, for all 1 < i < k, if we denote by H; = W}[E¥] the subgraph of W}, induced by the level-i edges,
then there is a collection S; of N*~! disjoint star graphs, where each star S € S; has N vertices, and the center
of S lies in W, such that the set E¥ of edges can be obtained from E! = J ses, E(S), by replacing each edge
e € B! with A parallel edges. We refer to the set S; of stars as level-i stars. Lastly, note that for all 1 < i <k,
the number of level-i superedges in W}, is at most N*, and |E¥| < A - N*. Overall, W}, contains at most k - N*
superedges, and |E(W},)| < k- A - N*. Moreover, the degree of every vertex in Wy, is at least A -k, and the degree
of every leaf vertex is exactly A - k.

We do not directly prove that the graph Wy is a router. Instead, we first define properly pruned subgraphs of
Wi, and we prove that each such graph is a router.

4.2 Properly Pruned Subgraphs of W, For all 1 < i < k, we now define the notion of a properly pruned
subgraph of W;. We then show that any A-restricted demand can be routed with low congestion on paths of
length O(k?) in a properly pruned subgraph of Wj.

DEFINITION 4.1. For 1 < i < k, a subgraph W C W; is a properly pruned subgraph of W; with respect to sets
Ui,Us,...,U; CV(W;) of its vertices, where Uy C U;—q C --- C Uy, if the following hold:
P1. for every level 1 < i’ <, for every leaf vertex v € V!

o ifve Uy, then at least [A/2] level-i’ edges that are incident to v in W; lie in W (recall that all these
edges must be parallel edges that correspond to the unique level-i’ superedge that is incident to v);

e otherwise, W; contains no level-i’ edges that are incident to v;

P2. for each level 1 < i’ <, for every center vertex v € V¢, if we denote by S € S; the unique level-i’ star for
which v serves as a center, then:

o ifve Uy, then at least N - (1 — %) leaf vertices of S lie in Uy (and we say that star S survives in this
case);

o otherwise, no leaf vertices of S lie in Uy (and we say that star S is destroyed);
P3. V(W) =U;; and
Pj. for every level 1 < ' < 1, for every level-i' cluster C € Cy of W;, either V(C)NUy = 0 (in which case

we say that cluster C' is destroyed), or at least G vertices of C lie in Uy41 (and we say that cluster C
survives ).
805 Copyright © 2025 by SIAM

Unauthorized reproduction of this article is prohibited



Downloaded 06/16/25 to 98.227.190.22 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4.3 Routing in Properly Pruned Subgraphs of W), The following theorem, whose proof is deferred to the
full version of the paper, shows that a properly pruned subgraph of W}, is a good router.

THEOREM 4.1. Let W be a properly pruned subgraph of Wy, with respect to sets Uy, ..., Uy of its vertices, and
let D = (H, {D(a7b)}(a’b)en) be a k%-restricted demand for W. Then there is a fractional routing of D in W

with no edge-congestion, such that every flow-path P with f(P) > 0 has length at most 20k®. Moreover, there is
an algorithm, that, given the graph W, the sets Uq,...,Uy of its vertices, and the demand D, computes such a
routing in time O (k* - A+ N - (N* + [II])).

4.4 Efficient Pruning of Graph W In this subsection we provide an algorithm to efficiently prune the graph
W,iv ’A, as it undergoes an online sequence of edge deletions. In order to motivate the model that we use in this
section, we note that our approach for proving Theorem 3.1 uses the online-batch dynamic update model (see
Section 2.6). Intuitively, during initialization, we will construct an initial clustering C of the input graph G, and,
for every cluster C' € C, we will compute an embedding of a graph W,iv ’A, for suitably chosen parameters N and
A, into C. In order to ensure that C' has strong routing properties, we need to ensure that every vertex of C
participates in the embeddings of many edges of W,ﬁv 2 Recall that in the online-batch dynamic update model,
the algorithm receives updates in o batches my,...,7,. In our case, we will use ¢ = k, and the only type of
updates we will need to process is the deletion of edges from the input graph. Consider now some cluster C', and
let E' be the set of edges deleted from C in a single batch 7;. Then every edge e € E(WéV *2) whose embedding
path contains an edge from E’ needs to be deleted from W,iv 2 In order to ensure that we obtain a properly
pruned subgraph W C W,iv ’A, we may delete some additional edges from W. As the result of these deletions,
it is possible that, for some vertices v € V(C), the number of edges e € E(W) whose embedding path contains
v becomes too small. When this happens, we need to delete v from C, and we need to further delete all edges
e € E(W), whose embedding path uses v, from W. This, in turn, may trigger another round of pruning, and
so on. Therefore, even though our algorithm for maintaining a router decomposition works in the online-batch
dynamic model, the input to the pruning algorithm does not arrive in batches. Instead, we partition the timeline
into phases ®g, ..., ®,. Phase @ is special and is only used during initialization, while phases ®1,..., ®; can be
thought of as corresponding to the batches my, ..., 7, of updates to the router decomposition algorithm. For all
1 < 7 < k, the pruning algorithm receives as input an online sequence E. of edges that are deleted from W,iv A
over the course of the phase ®.. We emphasize that these edges do not arrive simultaneously, but rather their
arrival occurs over the course of the phase ®... Intuitively, the algorithm needs to maintain subsets Uy, ..., Uy of
vertices of W,iV’A with Uy, C --- C -.. Uy, and a subgraph W C WéV’A, such that, at all times, W is a properly
pruned subgraph of W,ﬁv’A with respect to Uy, ...,U,. We require that, for all 0 < 7 < k, the total number of
vertices deleted from Uy over the course of the phase is not much larger than |E.|/A, and the total number of
edges deleted from W over the course of the phase is not much larger than |E.|. We now define a new problem,
that we call NiceRouterPruning, which abstracts our pruning algorithm.

DEFINITION 4.2. (THE NiceRouterPruning PROBLEM) The input to the NiceRouterPruning problem consists of
parameters k > 256, N > k3 and A > 4k?, and an online sequence ey, ... e, of edge deletions from the
corresponding graph Wy = WéV’A. We denote the resulting dynamic graph by H, so H®) = Wy, and, for t > 0,
H® = HON\ {eg,... e}

The algorithm for the problem is required to maintain subsets Uy, ..., Uy of vertices of H with Uy C --- C Uy,
and a subgraph W C H for which the following properties hold:

o for all 1 <i <k, at the beginning of the algorithm, U; = V(Wy), and, as the algorithm progresses, vertices
may be deleted from U;, but no vertices may be inserted into U;;

e at all times, W must be a properly pruned subgraph of Wy with respect to the current sets Uy,...,Uy; and

e the only changes that W undergoes over time is edge- and vertex-deletions.
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The algorithm’s timeline is partitioned into k + 1 phases ®g, P1, ..., Py, and the algorithm is notified when a new
phase starts. For all1 < 1 <k, if we denote by E. the sequence of edge deletions from Wy, that algorithm receives
as input during the phase ®,, then it is guaranteed that |E)| < X k4k , and, for all 1 <7 <k, |EL| < %. We
require that, for all 0 < 7 < k, the total number of vertices deleted from Uy over the course of phase ®. is at most

% - k*  and the total number of edges deleted from W over the course of phase ®, is at most |EL| - k7™*+3.

The following theorem, whose proof is deferred to the full version of the paper, provides an efficient algorithm for
the NiceRouterPruning problem.

THEOREM 4.2. (ALGORITHM FOR NiceRouterPruning) There is a  deterministic  algorithm  for  the
NiceRouterPruning problem, whose initialization time is O(k® - N¥), and the running time of each phase

®,, for 0 <7 <k, is bounded by O (|EL| - kKO%)).

5 Second Tool: Embedding a Nice Router

One of the main notions that we use in this section is that of a scattered graph, that we define next.

DEFINITION 5.1. (SCATTERED GRAPH.) Let G be a graph, and let d > 1 and 0 < € < 1 be parameters. We say
that G is (d,e€)-scattered if, for every vertex v € V(G), |Bg(v,d)| < |V(G)|}¢.

Next, we provide a simple algorithm, that, given a graph G and parameters d and e, either correctly establishes
that G is (d, €)-scattered, or computes a vertex v € V(G), such that |Bg(v,4d/€¢)| > |V (G)|'~¢. The proof follows
standard techniques and is deferred to the full version of the paper.

CLAIM 5.1. There is an algorithm, that, given an n-vertex graph G and parameters d > 1 and 0 < € < 1, either
correctly establishes that G is (d, €)-scattered, or computes a vertexv € V(G), such that |Bg(v,4d/e)| > |V(G)|* <.
The running time of the algorithm is O(m**€), where m = |E(G)|.

Next, we define a new problem, that we call EmbedOrScatter. The input to the problem consists of an n-vertex
graph G, and parameters A and k. Additionally, we are given a distance parameter d, and a congestion parameter
7. The goal of the algorithm is to either (i) compute an embedding of graph W,ﬁv A into @ via paths whose length
is not much larger than d, that cause congestion at most 1, where parameter N is chosen so that N* > n!=2/k;
or (ii) compute a set E’ of at most 2An edges of G, such that G\ E’ is (d,1/k)-scattered. In the former case,
we also allow the algorithm to compute a small subset F' C E(W,ﬁv ’A) of edges, that we call fake edges, for which
the algorithm does not need to provide an embedding. In addition to the above input, the algorithm is given a
parameter 0 < § < 1, that will determine the tradeoff between the lengths of the embedding paths (which will be
bounded by d - k - 20(1/56)), and the running time of the algorithm (that will depend on m?®, where m = |E(G)]).
We now provide a formal definition of the EmbedOrScatter problem.

DEFINITION 5.2. (EmbedOrScatter PROBLEM) The input to the EmbedOrScatter problem is a simple n-vertex
graph G with no isolated vertices, and parameters 16 < A <n,d>1,2 <k < (log n)1/3, and W <0< ﬁ,

such that 1/6 is an integer. We require that n is sufficiently large, so that v/logn > 100loglogn holds. Let
N = |nV/k=Y* | and let n=ntk.d.k%. 2¢/9° for a large enough constant c. The output of the problem is one
of the following:

e cither a collection F C E(W ) of at most (512k 4k edges ofW A (that we call fake edges), together with
an embedding of W,ﬁv’A \ F' into G via paths of length at most d - k - 20(1/3°) that cause congestion at most
n; or

e a subset E' of at most 2nAA edges, such that G\ E’ is (d,1/k)-scattered.
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In the following theorem, whose proof is deferred to the full version of the problem, we provide an algorithm for
the EmbedOrScatter problem.

THEOREM 5.1. There is a deterministic algorithm for the EmbedOrScatter problem, whose running time on input
(G,Ak,d,n,0) is at most O (mHO(‘s“/’“) d? - 20(1/56)>, where m = |E(G)|.

6 Third Tool: Router Witness

In this section we show that an embedding of a nice router W,ﬁv A into a graph C can be used to certify that the
graph C' is a strong router, and also provide an algorithm to compute a sparse subgraph of C' that is a strong
enough router. We start with the following lemma, whose proof is deferred to the full version of the paper.

LEMMA 6.1. Let C be a graph, and let « > 1,A > 1 be parameters such that, for every vertex v € V(C),
deg(v) < a- A. Assume that we are given a graph W, that is a properly pruned subgraph of W,iV’A, for some
parameters N and k, and an embedding P of W into C wvia paths of length at most d*, that cause congestion at
most n*. Assume further that every vertex v € V(C) lies on at least % paths in P. Then C is a (dege, d, 7)-router

with respect to the set V(C) of its vertices, where d = 22d* - kY, and i = 2a- B - kAR d* pr.

Recall that a Router Decomposition requires that, for every cluster C' € C, we provide a subgraph C’/ C C with
V(C') = V(C) and |E(C")] < A* - |V(C)|, such that C' is a (A", d,7j)-router for the set V(C) of supported
vertices. We next describe how C’ is constructed, and how we certify that it is indeed a router with required
properties. We will call C” a sparsified router.

6.1 A Sparsified Router In this subsection we assume that we are given a simple graph C, together with
parameters 1 < A* < A. Assume further that we are given another graph W, that is a properly pruned subgraph
of W,iv ’A, for some parameters N and k, together with an embedding P of W into C via paths of length at most

d*, that cause congestion at most n*, such that every vertex v € V(C) lies on at least {A—J paths in P. Finally,

2kd*
assume that A* > 2kd*.

We use a parameter A’ = L%J . In order to construct a sparsified router C’ for C, we select, for every superedge

(u,v) of W, an arbitrary collection E'(u,v) C E(W) of A’ parallel edges (recall that, from Definition 4.1, graph
W’ must contain at least % > %* > A’ such parallel edges). Let W' C W be the graph obtained from W by
including, for every superedge (u,v) of W, only the edges of E'(u,v). Additionally, for every vertex v € V(C),
we select an arbitrary subset P(v) C P of A’ paths that contain v, such that every leaf vertex u € V(W) serves
as an endpoint in at most - A’ paths in the multiset Uvev(c) P(v), for some parameter +.

We let ¢’ C C be the simple graph obtained by taking the union of all paths in UUEV(C) P(v), and all paths of
P that serve as embedding paths for the edges in E(W’). The following observation summarizes the properties
of C'. The proof is deferred to the full version of the paper.

OBSERVATION 6.1. Graph C' is a (A", d, i )-router with respect to the set V(C') of supported vertices, where
d=22d" - k*, and ij = 8y(d*)? - n* - k***+L. Moreover, |E(C")| < |[V(C)| - A*.

7 Fourth Tool: Decremental Low-Diameter Clustering

7.1 Problem Definition We assume that we are given an undirected n-vertex graph G that undergoes an
online adversarial sequence of edge deletions. We are also given a parameter 1 < k < logn, and we use another
parameter d = 4k3. We will sometimes refer to subgraphs of G as clusters. Next, we need the definition of a
settled cluster, and of a valid clustering.

DEFINITION 7.1. (SETTLED CLUSTER) We say that a cluster C C G is settled, if either |V (C)| < n'/*; or there
is a vertex v € V(C), such that |Bc(v,d)| > [V(C)[*=Y*. A cluster that is not settled is called unsettled.
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DEFINITION 7.2. (VALID CLUSTERING) A walid clustering is a collection C of clusters of G, such that:

o cvery cluster C € C is settled; and

e cvery edge in the current graph G lies in exactly one of the sets {E(C)}occ-
We are now ready to define the Decremental Low-Diameter Clustering problem.

DEFINITION 7.3. (LOW-DIAMETER CLUSTERING PROBLEM) In the Decremental Low-Diameter Clustering prob-
lem, the input is a simple n-vertex graph G, and a parameter 1 < k < logn. Let d = 4k3. At the beginning of the
algorithm, an initial valid clustering C of the initial graph G must be produced by the algorithm. Qwver the course
of the algorithm, the adversary maintains a partition of the set C of clusters into two subsets: set C! of inactive
clusters, and set C* of active clusters. Once a cluster C € C is added to C', it may no longer be modified, and it
remains in C1 until the end of the algorithm. Immediately after the initialization, C* = C and C' = 0 holds.

The algorithm proceeds over a number of phases. At the beginning of every phase, the adversary may delete some
edges and vertices from some of the clusters in C*, and move some clusters from C4 to C!, after which every
cluster that remains in C* is guaranteed to become unsettled.

The algorithm is then required to update the current clustering, via a sequence of cluster splitting operations,
defined as follows. In every cluster splitting operation, we start with a cluster C € C4, and a vertez-induced
subgraph C' C C with |[V(C")| < |V(C)|*~Y*. Cluster C' is then added to C and C* as a new cluster, and the
edges of E(C") are deleted from C. Additionally, some vertices that have become isolated in C can be deleted from
C. At the end of the phase, all clusters in C* must be settled.

For every vertex v, let n, be the total number of clusters to which v ever belonged over the course of the algorithm.

Then we additionally require that Z'UEV Ny < otk polds.

The main result of the current section is an algorithm for the Low-Diameter Clustering problem, that is
summarized in the following theorem; we note that the algorithm relies on the standard ball-growing technique,
and a standard approach for computing neighborhood covers. The proof of the theorem is deferred to the full
version of the paper.

THEOREM 7.1. There is a deterministic algorithm for the Low-Diameter Clustering problem, such that, if m is

the number of edges in the initial gg"aph G, then the running time of the initialization, and the running time of
each phase is bounded by O(m**+1/F"),

8 Combining All Tools: the Proof of Theorem 3.1

In this section we complete the prooof of Theorem 3.1 by combining the tools presented in Sections 4-7.

In order to simplify the notation in this subsection, we call a graph G and parameters n, k,d§, A and A* that
satisfy the conditions of Theorem 3.1 (except for the constraint on vertex degrees in G) as “valid input graph and
parameters”. For completeness we define them below.

DEFINITION 8.1. (VALID INPUT GRAPH AND PARAMETERS) Assume that we are given a parameter n, that is
greater than a large enough constant, and additional parameters 512 < k < (log n)1/49, % <6< ﬁ such that %
is an integer, A*, and A, such that n'®/F < A* < nSL/\‘kQ < n holds. Lastly, assume that we are given a simple
graph G with |V (G)| < n. We refer to a graph G and parameters n, k, 6, A, A* that satisfy these constraints as a
valid input graph G with valid input parameters n, k,d, A and A*.

Throughout, we use a large enough constant ¢ from from the definition of the EmbedOrScatter problem (see
Definition 5.2). Given a valid input graph G with valid input parameters n, k, §, A and A*, we define additional
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parameters d* = k'0 - 2“‘/56, nt = ¢/ . fack® . nl/kz, and k = k2. Note that, if n, k,d, A and A* are valid input

parameters, then, since k < (logn)'/% holds, we get that k% < 12%0”, and so:

(8.1) 2k < /K

Additionally, since n is sufficiently large, and k* < logn holds, we can assume that ck*® < c(logn)**/*? < logn

holds, and so ek < n. Therefore:

(8.2) 2ek! < /K

Lastly, since § > 1/k, and from the definitions d* = k10 - 2¢/%° and n* = 2¢/° . k4k” . p1/k*  we get that:

(8.3) 0t dt = 92¢/6° | ks;ck? .n1/k2 < 9dck® .nl/k2 < n2/k2.

The proof of Theorem 3.1 consits of two parts. In the first part, we provide an algorithm that maintains the
collection C of edge-disjoint clusters of G, such that every cluster C' € C is a (degc, d, 7])-router with respect to the
set V(C) of supported vertices. The second part provides an algorithm that, for every cluster C' € C, maintains a
subgraph ¢’ C C with V(C”) = V(C), such that C" is a (A", d, fj)-router for the set V(C) of supported vertices,
and |E(C")| < A* - |[V(C)].

8.1 Part 1: Maintaining the Clustering C In this subsection we provide an algorithm that maintains a
collection C of edge-disjoint clusters of G, such that every cluster C' € C is a (deg, d*, n*)-router with respect to
the set V(C) of supported vertices. A central notion that we use in this part is a router certificate, that we define
next.

DEFINITION 8.2. (ROUTER CERTIFICATE) Let G be a walid input graph, and let n,k,0,A and A* be the
corresponding valid input parameters. Let d* = k0 - 20/‘56, n* = 2¢/0% . JAck” -nl/k2, and k = k%. For a given
subgraph (cluster) C C G, a router certificate for C' consists of:

e a graph W¢, that is a properly pruned subgraph of WéVC’A for some parameter % . |V(C’)\1/’%*1/’%2 < N¢ <
@V (C))H*, and

e an embedding Po of W into C via paths of length at most d* that cause congestion at most n*, such that
every edge e € E(C) lies on some path in Pc, and every vertex v € V(C) participates in at least paths
m Pc.

4/k2

Moreover, graph We must be obtained from Wfivc’A by applying the algorithm from Theorem 4.2 for the

k
NiceRouterPruning problem to it, after a single phase ®o of updates, consisting of at most N4 edge deletions.

2k4k
Next, we describe the initialization step, in which we construct an initial clustering C, and, for every cluster
C € C, we construct a router certificate (lev C’A7 WC,PC). Intuitively, from Lemma 6.1, the existence of the
router certificate for each such cluster C' proves that C'is a (deg, d, 7))-router, for appropriately chosen parameters
d and 7). Later, we describe an algorithm that maintains the clusters in C as the graph G undergoes k batches
of edge deletions. For each cluster C' € C, the algorithm will also maintain a subgraph Wz C Wi, such that,
for every vertex v that remains in C, the number of the embedding paths paths in {P( )EPc|ee E(WC)}

that contain v is sufficiently large. Again, from Lemma 6.1, this is sufficient in order to ensure that each cluster
C € C remains a (deg, d 77)-router, for appropriately chosen parameters d and 7. We now provide the algorithm
to initialize the clustering C, and to compute an initial router certificate for every cluster C € C.
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8.1.1 Initialization: Constructing the Clustering and Router Certificates The algorithm for the first
part of the initialization is summarized in the following theorem, whose proof is deferred to the full version of the

paper.

THEOREM 8.1. There is a deterministic algorithm, that receives as input a valid input graph G together with valid
input parameters n,k, 5, A and A*, such that, for every vertex v € V(G), deg(v) < A -n'®/*. The algorithm
computes a collection C of subgraphs of G called clusters that are disjoint in their edges but may share vertices,

with Y cee [V(C)| < n'T2Y/% For every cluster C € C, it also computes a router certificate (WNC’ WC,PC)

If we denote by E% = E(G) \ (Ugec E(C)), then the algorithm guarantees that |[E| < |V (G)|- A - n? /¥ The

running time of the algorithm is O ((TLA)1+O(5)).

Recall that, from the definition of a router certificate, for every cluster C' € C, our algorithm initializes the
algorithm from Theorem 4.2 for the NiceRouterPruning problem on graph We = WéVC’A, that we denote by Ac.
During the phase ®(, Algorithm A¢ performs an initial pruning of We, and the resulting graph serves as the
router certificate for C'. After the initialization step, as our algorithm receives batches 71, ..., 7 of edge deletions
for graph G, we may delete additional edges from W, over the course of k phases ®1,..., @, that correspond
to the above batches of updates to G. We will employ the same algorithm A¢, that was initialized as part of
the algorithm in Theorem 8.1, in order to implement the additional pruning of graph W over the course of the
phases ®1,..., P

8.1.2 Updating the Clusters and the Router Certificates In this subsection we provide an algorithm for
maintaining the clustering C. For every cluster C' € C, for all 1 < i < k, the algorithm updates the cluster C
and the corresponding graph W¢ following the batch 7 = m; N E(C) of edge deletions from C. The algorithm
for updating a single cluster C' € C is summarized in the following theorem, whose proof is deferred to the full
version of the paper. For simplicity, in the theorem, we denote ¢ by ;. We note that the theorem statement
requires that ‘71’10 | is sufficiently small; whenever this is not the case, we will destroy the cluster completely, and
move all its edges to Fd°l,

THEOREM 8.2. There is a deterministic algorithm, whose input consists of:

e q valid input graph G together with valid input parameters n, k,d, A and A*, such that all vertex degrees in
G are at most A - n26/k;

e q subgraph C C G called a cluster, together with a router certificate (Wij\Z“A7 WC,PC) for C;

o for every edge e € E(C), a list L(e) of all edges é € E(W¢), whose embedding path P(é) € Po contains e;
and

e for every vertex v € V(C), the number n, of paths in Pc containing v.

Recall that, from the definition of the router certiciate, graph We must be obtained from Wwhe-Aa by applying
the algorithm Ac from Theorem 4.2 for the NiceRouterPruning problem to it, after a single phase ®y of updates,

consisting of at most X 4k edge deletions. We assume that our algorithm is also given access to Algorithm Ac,
including its inner state, at the end of Phase ®y. The algorithm also receives as input k online batches 7y, ..., T
of edge deletions from C, where, for all 1 < i <k, |m| < wveina,

n5/k?

The algorithm maintains, at all times, a graph CCCanda graph We C We, that is a properly pruned subgraph
of WNC A Initially, C =C and We = We hold, and the only changes that graphs C and We undergo is the

deletion of some of their edges and vertices over time. Throughout, we denote by Pc = { (e) | e€ E(WC)} the
embedding of the current graph We into C, where the embedding paths P(e) do not change over the course of the
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algorithm. The algorithm guarantees that, at all times, for every edge e € E(WC), its embedding path P(e) € Po
is contained in the current graph C'; for every edge e’ € E(C), some path in Pc contains e; and for every vertex
v € V(C), at least nﬁ% paths in Pc contain v. Lastly, the algorithm ensures that, for all 1 < ¢ < k, at most

5/k?

|70;| - edges are deleted from C, and at most |70; - n3/k? edges are deleted from We while processing batch ;.

For all 1 < i <k, the time required to process batch m; is at most O <|7T1| -no(l/k2)>.

8.1.3 Part 1: Summary The following corollary easily follows from Theorem 8.1 and Theorem 8.2, and it
summarizes our algorithm for maintaining the clustering C, and, for every cluster C' € C, the corresponding graph
We, along with its embedding into C'. We defer the proof to the full version of the paper.

COROLLARY 8.1. There is a deterministic algorithm, that receives as input a valid input graph G together with
valid input parameters n, k, 8, A and A*, such that, for every vertex v € V(G), degs(v) < A-n'S/*. The algorithm
also receives k online batches w1, ..., m of updates to graph G, where for 1 <i < k, the ith batch 7; is a collection
of at most A -n edges that are deleted from G.

The algorithm maintains a collection C of subgraphs of G called clusters, with ) ... |V(C)| < n1+20/k " such that

every cluster C' € C is a (d?ng (i, ﬁ) -router with respect to the set V(C) of supported vertices, for d < 2k'8. 9¢/4°

and 7 < n'"/* | and every edge of G lies in at most one cluster C € C. The algorithm also maintains, for every

cluster C € C, a graph W¢, that is a properly pruned subgraph of W,gc’A, for some pammeter N¢, and an
embedding Pc of We into C' via paths of length at most d* that cause congestion at most n*, such that every
vertex of C belongs to at least 6/k2 of the paths in Pc at all times. After the clustering C is initialized, for
every cluster C € C, the only changes that C' and W may undergo are the deletions of some of their edges and
vertices; for every edge e that remains in Wg, its embedding path P(e) € Pc cannot change after the initialization.
Moreover, for all 1 < ¢ < k, if we denote by 7ric = m; N E(C), then the number of edges deleted from C while
processing the batch m; is at most |7rlc| /% The only additional change that the clustering C may undergo after
its initializaition is the deletion of empty clusters from C.

Throughout, we denote by B4 = E(G)\ (Ugec E(C)). At the beginning of the algorithm, after the initialiation,
|Edel < V(G)|- A - n?/¥* holds, and after that edges may only be added to E%'. For all 1 < i < k, the number

of edges added to E' while processing batch m; is bounded by || - nT/R,

The initialization time of the algorithm is O ((nA)1+O(5)), and for all 1 < i <k, the time required to process the
ith update batch m; is bounded by O (|7Ti| ~n0(1/k2)>.

8.2 Part 2 of the Algorithm: Maintaining the Subgraphs C’ C C In order to complete the proof of
Theorem 3.1, it remains to provide an algorithm that maintains, for every cluster C' € C, a subgraph C’ C C
with V(C') = V(C) and |E(C")] < A*-|V(C)], such that C’ is a (Z*,ci ﬁ)—router for the set V(C) of supported
edges.

A*

Throughout, we use the parameter A’ = {WJ Recall that the algorithm from Corollary 8.1 maintains, for

every cluster C' € C, a graph W, that is a properly pruned subgraph of WgC’A, for some parameter N¢, and an
embedding Pc of W into C via paths of length at most d* that cause congestion at most n*, such that every
vertex of C' belongs to at least —== of the paths in Po at all times. Notice that:

AI:{AJ<A< A

G/k

2k2dx | — n8/k* — 92k . p6/k2’

from the definition of valid input parameters, and since 28 < n!/ k2

Consider now some cluster C € C. For every vertex v € V(C), let Pc(v) C Pc denote the set of all embedding
paths that contain v. Consider now some path P € P (v), and recall that P must be an embedding path of some
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edge e € E(W¢), so P = P(e). Recall that one of the endpoints of e must be a leaf vertex of W¢; we call it the
distinguished endpoint of P. We denote by Uq(v) the multiset of leaf vertices of W that serve as distiguished
endpoints of the paths in P (v). Lastly, consider the bipartite graph R = (A, B, E), where A = V(C), and B
contains all leaf vertices of W (so a vertex v € V(C') may lie in both A and B; we will refer to these vertices as
“the copy of v in A” and “the copy of v in B”.). For every vertex v € V(C), for each vertex u multiset Uc(v),
we include an edge connecting a copy of v in A to a copy of u in B in E. Recall that, for every vertex u € Ux(v),
there is a distinct path P € Pg(v), such that u is the distinguished endpoint of P. We will say that the new edge
represents the path P.

Additional Data Structures. We fix again a cluster C' € C. Throughout the algorithm, for every vertex
v € V(C), we maintain the set Uc(v) of leaf vertices of W explicitly. Additionally, we maintain the set P (v)
of paths implicitly, as follows: for every vertex u € Ugx(v), we maintain a pointer from the copy of u in Ug(v) to
the edge e € E(W¢), such that u serves as the distinguished endpoint of the path P(e) € P (v) (if several copies
of w lie in U (v), then we associate each copy with a distinct path in Pe(v), and maintain a pointer from each
copy of u in Ug(v) to the corresponding edge of W¢). We also explicitly maintain the bipartite graph Re.

Recall that our algorithm from Part 1 maintains, for every large cluster C' € C and vertex v € V(C'), the counter
ny, = |Pc(v)|. The counter is maintained in a straightforward manner: during the initialization step, for every
edge e € F(W¢), we inspect all vertices lying on path P(e) and update their counters n,. At this time, we can
also construct the sets Ug(v) of vertices for all v € V(C'), together with the pointers from every vertex u € U (v)
to the corresponding edge of W, without increasing the asymptotic running time of the initialization algorithm.
We can also initialize the graph R within this running time.

During the update steps, whenever an edge e is deleted from graph W, we inspect every vertex v € V(P(e)),
and we decrease the corresponding counter n,. During this time, we can also update the list Ugs(v) for each
such vertex v with the deletion of this edge, and delete the edge connecting v to the distinguished endpoint of
P(e) from graph R¢. All this can be done without increasing the asymptotic running time of the algorithm for
processing each batch 7ric of updates to cluster C'. The main result of the current subsection is summarized in
the following claim, whose proof is deferred to the full version of the paper.

CrLAM 8.1. There is a deterministic algorithm, that, given an access to the adjacency-list representation of the
graph Rc, maintains, for every vertex v € V(C'), a subset U, (v) € Uc(v) of vertices, whose cardinality is between
A and A" - YR gt gl times, such that, for every leaf vertex x of We, the total number of times that © appears
in the sets {UL(v) | v € V(C)} is at most v - A', where v = n'/*. The initialization time of the algorithm is
O([V(O)| - A -nPU/R) and, for all 1 < i < k, the time required for updates following the processing of batch ©&
of edge deletions to graph C' is bounded by O (|7TZC| -no(l/kz)).

We are now ready to comlete the proof of Theorem 3.1. We fix a cluster C € C, and provide an algorithm for
maintaining the corresponding graph C’ C C. We first define the graph C’ and prove that it must be a (Z*, (Z, ﬁ)—

router for the set V(C) of supported edges, and that |E(C")] < A* - |V(C)|. Later, we provide an algorithm for
maintaining C’.

Definition of Graph C’. Recall that the algorithm from Claim 8.1 maintains, for every vertex v € V(C'), a subset
UL(v) € Uc(v) of vertices, whose cardinality is between A’ and A’ - n!Y/%* at all times. We let U%(v) € Ub(v)
be an arbitray subset of A’ such vertices, and we let Q¢ (v) C Pc(v) be the set of paths that correspond to these
vertices, so that [Qc(v)| = A”. Let Q¢ = U, ey (o) Qo(v). Notice that, from Claim 8.1, every leaf vertex of W¢
serves as an endpoint in at most v - A’ paths in Q¢. Additionally, for every superedge e = (a,b) of W¢, we
select an arbitrary collection E’(a,b) of A’ parallel edges (a,b) (since W¢ remains a properly pruned subgraph
of Wé\zfc’A, the number of parallel edges (a,b) must be at least {%1 > A’). We let Qf be the set of paths that
contains, for every superedge (a,b) of W¢, for every edge e € E'(a,b), the embedding path P(e) € Po. We let
C" be the multigraph, obtained by taking the union of all paths in set Q¢ U Qf, and we let C’ C C' be the
corresponding simple graph, obtained from C” by deleting parallel edges. Recall that, from the definition of valid
input parameters, A* > n'8/% > 2k2d* (from Inequality 8.3) must hold. From Observation 6.1, we conclude that
|E(C")| < |V(C)|-A*, and that graph C” is a (A", d, if')-router with respect to the set V (C") of supported vertices,
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where:

d=22d" - kS < k0. 2/,

since d* = k10 .2¢/%°: and

i=89(d")” " kY <7/,

since v = n'/* - d* < n?* from Inequality 8.3; and k** < n'/** from Inequality 8.1. Since . [V(C)| <
n!20/k we get that > oo [E(C)] < Y pee IV(C)] - A* < n+20/k . A% as required. It is now enough to provide
an algorithm for maintaining the graph C’.

Maintaining the Graph C’. Recall that the algorithm from Claim 8.1 maintains, for every vertex v € V(C), a
subset Ul (v) C Uc(v) of vertices, whose cardinality is between A’ and A’-n!'/ ** at all times, such that, for every
leaf vertex = of W, the total number of times that = appears in the sets {U5(v) | v € V(C)} is at most - A'.
Once the subset U/, (v) is initialized, the algorithm may modify it arbitrarily, that is, vertices may be both added
to, and deleted from the set U/ (v). We assume w.l.o.g. that the algorithm maintains an ordered list Le(v) of all
vertices in U/ (v), so that, when a new vertex is added to U/ (v), it is added to the end of the list. Throughout the
algorithm, we then let U:(v) be the collection of the first A’ vertices that lie in list Lo (v). As before, we denote
by Qc(v) € Pc(v) all paths corresponding to the vertices of U/ (v), and we denote by Q¢ = UUEV(C) Qc(v). For
every superedge (u,v) of W¢, we also assume that the parallel edges of W corresponding to (u,v) are stored
in an ordered list L (u,v). Recall that, as the algorithm progresses, edges may only be deleted from Li (u,v).
Throughout the algorithm, we will let E’(u,v) be the set of the first A’ edges in list L (u,v). As before, we
denote by Qf the set of paths that contains, for each superedge (a,b) of W¢, for every edge e € E’'(a,b), the
embedding path P(e) € Po. As before, multigraph graph C” is obtained by taking the union of all paths in
Q¢ U Qf while keeping parallel edges, and graph C” is the simple graph obtained from C” by removing parallel
edges. We denote by Uf = Uvev(c) Ul (v), and by E the union of the sets E'(a,b) of edges of W¢, for all

superedges (a, b) of We.

At the beginning of the algorithm, once the data structures from Part 1 and from Claim 8.1 are initialized, we
can compute, for every cluster C' € C, the initial sets U/%(v) of vertices for all v € V(C'), and sets E’(a,b) of edges
for each superedge (a,b) of the initial graph W¢, in time that is asymptotically bounded by the time required to
initialize the data structures from Part 1 (that include graph W¢), and the data structures from Claim 8.1 (that
include sets U/, (v) of vertices for all v € V(C)). The time required for this computation is then bounded by:

T=0 ((nA)H-O(é) + Z V()| A- no(l/k)> <0 <(nA)1+O(6+l/k)> <0 ((nA)1+O(5)) 7
cec

since Yo [V(O)] < |[V(G)[*29/% must hold, and § > 1/k. Since, for every cluster C' € C, the length of every

path in P¢ is bounded by d* < n?/ k? (from Inequality 8.3), the time required to compute the graphs C" and C’,
for all C € C is then bounded by:

O (d" - (|U*(O)| + |EL|) <O(T-d*) <O ((nA)1+O(6+1/k)) <0 ((nA)H-O(é)) _

Therefore, the initialiation time of both Part 1 and Part 2 of our algorithm is bounded by O ((nA)+0©)).

Consider now some integer 1 < i < k, and the batch m; of edge deletions. Once the algorithm from Part 1 finishes
processing the batch 7;, for some clusters C' € C, some of the edges may be deleted from graph We. If (a,b)
is a superedge of graph W, and if the number of parallel edges (a,b) deleted from W that lie in set E'(a,b)
is mqp, then we add mg; new edges from the list L, (a,b), to set E’(a,b), so that E’(a,b) contains the first
A’ edges in list Ly, (a,b). For each edge e of the original set E’(a,b) that was deleted from W, for every edge

!

e = (z,y) € E(P(e)), we delete ¢’ from C”, and, if no edges (x,y) remain in C”, then we delete edge (z,y) from
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C" as well. Next, for every edge e that was just added to E’(a,b), we consider every edge €' = (z,y) € P(e). We
add €’ to graph C”, and, if no other edges (z,y) currently lie in C”, then we add edge (z,y) to C" as well. Tt is
easy to verify that, if T; is the time that the algorithm from Part 1 spends on processing batch 7;, then all the
above updates, for all clusters C' € C, can be done in time O(T; - d*) < O(T; - nz/kz).

Consider now a cluster C' € C, and denote by 7¢ = E(C) N 7;. Once the algorithm from Claim 8.1 processes
the batch 7¢, we consider every vertex v € V(C), for which at least one vertex that lies in U/ (v) was deleted
from U (v). Let no(v) be the number of such vertices. First, for every vertex u € Ufi(v) that was deleted from
U (v), we delete u from Ul (v) as well. We then consider the path @ of Q¢ (v) that corresponds to vertex u. For
every edge e/ = (z,y) of Q, we delete e’ from C”, and, if no other edges (z,y) remain in C”, then we delete edge
(z,y) from C’ as well. Next, we add nc(v) vertices from list Lo (v) to Ul (v), so that Ul (v) contains the first A’
vertices from list Lo (v). For each such newly added vertex w, we consider the path @ of Q¢ (v) corresponding
to u. For every edge ¢ = (x,y) of Q, we add €’ to C”, and, if no other edges (z,y) lie in C”, then we add edge
(z,y) to C" as well. Note that the time required to perform these updates a cluster C' € C is bounded by:

0 Z ne(v) - d*

veV(C)

For every cluster C' € C, the algoritm from Claim 8.1 must spend at least (2 (ZUEV(C) ne (v)) time on updating

the sets UL (v) of vertices for all v € V(C). Therefore, if T denotes the time that the algorithm from Claim 8.1
spends on processing the batch 7ric of updates, then the time required to update the sets U/.(v) of vertices for all

v € V(C), and to update the graph C” accordingly, is bounded by O (T¢ - d*) < O (TZC -n?/ k2>, from Inequality

8.3. Since, from Claim 8.1, for every cluster C € C, TC < O (|7rlc\ . no(l/kQ)), and since the time required for the

O(1/k?)

algorithm from Part 1 to process the batch m; of updates is O (|7r2| ‘n ), we get that the total time required

for processing the batch 7; of updates, for both parts of our algorithm, is bounded by:
O (|7ri| .no(l/kQ)) + Z 19) (|7T1C| .no(l/k2)) <0 (Iml ,n0(1/1€2)> .
cec

It is easy to verify that the total number of all edges that were deleted from or inserted into the graphs in
{C'| C € C} is also bounded by O (|m| .n0<1/’<2>).

9 Applications to (Fault-Tolerant) Graph Sparsification

Consider a simple graph G, and a router decomosition (C, {C/}CEC) of G with parameters A*,J,ﬁ and p (see
Definition 3.1). Recall that the decomposition ensures that, for every cluster C € C, the corresponding subgraph
C"CCisa (Z*,J, 7])-router, for the set V(C) of supported vertices. Also recall that we have denoted by
Bt = E(G)\ (Ugec E(C)) — the set of edges that do not lie in any cluster of the decomposition. Consider
the graph H’, whose vertex set is V(G), and edge set is E4°! U (UCeC E(C’)), and recall that the algorithm
from Theorem 1.3 maintains a graph H with H’ C H. In this section, we explore various properties of the
graph H’, that imply that the graph H itself has many useful properties as well. This, in turn, implies our
results for constructing and maintaining spanners, fault-tolerant spanners with respect to bounded-degree faults,
low-congestion spanners, and connectivity certificates. We start with discussing general dynamic spanners and
low-congestion spanners.

9.1 Dynamic Spanners and Low-Congestion Spanners

Dynamic Spanners. Let G be a simple n-vertex graph, and let R = (C,{C"}cec) be a router decomposition of
G with parameters A*, d, 7 and p. Consider the corresponding graph H’ whose vertex set is V(G), and edge set

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

815



Downloaded 06/16/25 to 98.227.190.22 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

is B'U (Ugee E(C")), where B4 = E(G)\ (Ugee E(C)). In the following observation, whose proof is deferred

to the full version of the paper, we show that H' is a d-spanner.
OBSERVATION 9.1. The graph H' is d-spanner.

By combining Theorem 1.3 with Observation 9.1, we obtain the following immediate corollary, whose proof is
deferred to the full version of the paper.

COROLLARY 9.1. There is a deterministic algorithm, whose input is a graph G with n vertices and no edges, that
undergoes an online sequence of at most n? edge deletions and insertions, such that G remains a simple graph
throughout the update sequence. Each edge inserted into G has an integral length {(e) € {1,...,L}. Additionally,
the algorithm is given parameters 512 < k < (log n)1/49 and % <6< ﬁ such that % is an integer. The algorithm
maintains a subgraph H C G with V(H) = V(G) and |E(H)| < O (n'*9/® log L), such that H is a k'-spanner
for G, for k' = k9. 20(1/5°) | The worst-case update time of the algorithm is n°©®) per operation, and the number
of edge insertions and deletions that graph H undergoes after each update to G is bounded by n®/%)

Low-Congestion Spanners. We formalize the notion of low-congestion spanners, that was implicitly introduced
by Chen et al. [CKL'22]. The new notion views a spanner H of G as a sparse subgraphs of G, with the additional
property that G can be embedded into H with low congestion and path length bounds. Notice that, if we use
the standard notion of a t-spanner H of G, then G can be embedded into H via paths of length at most ¢, but
the congestion of the embedding may be as large as |F(G)|. Low-congestion spanners aim at optimizing the
length and the congestion parameters of this embedding simultaneously. We now provide a formal definition of
low-congestion spanners.

DEFINITION 9.1. (LOW-CONGESTION SPANNERS) Let G be a graph, let H C G be a subgraph of G with
V(H) = V(G), and let d,n > 0 be parameters. We say that H is a (d,n)-low congestion spanner for G, if
there is an embedding Q@ = {Q(e) | e € E(G)} of G into H, such that the length of every path in R is a most d,
and the paths in R cause congestion at most 1.

We note that low-congestion spanners can also be defined with respect to vertex congestion, and it is the spanners
of the latter kind that were considered by [vdBCK*23]. Their algorithm maintains such a spanner H for a
dynamic n-vertex graph G, with |E(H)| < O(n'*t°(), together with the embedding Q of G into H, such that the
lengths of the embedding paths are bounded by d = n°")| and vertex-congestion of the embedding Q is bounded
by n = ne® . max,cy (c) {degg(v)}. The amortized update time and recourse bounds are ne@.

We use the following simple lemma, whose proof is deferred to the full version of the paper.

LEMMA 9.1. Let G be an n-vertex graph, and let R = (C,{C'}cec) be a router decomposition of G with parameters
A* d, 1 and p. Then for every cluster C € C, there is an embedding Q¢ of C into C' via paths of length at most

d, that cause congestion at most n = max {%‘T"(C), 16log n}, where Amax(C) is the mazimum vertex degree
in C.

We obtain the following immediate corollary of Lemma 9.1, whose proof is deferred to the full version of the
paper.

COROLLARY 9.2. Let G be an n-vertex graph, and let R = (C,{C'}cec) be a router decomposition of G with
parameters A*,d, 7 and p. Consider the corresponding graph H' whose vertex set is V(G), and edge set is
E® U (Ugec E(C")), where B4 = E(G)\ (Ugec E(C)). Then graph H' is an (d,n)-low congestion spanner for

G, where n = max{%‘f*(@, 16 log n}, and Amax(G) is the mazimum vertex degree in G.
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Finally, by combining Theorem 1.3 with Corollary 9.2, we obtain the following immediate corollary; the proof is
essentially identical to the proof of Corollary 9.1 and is omitted here.

COROLLARY 9.3. There is a deterministic algorithm, whose input is a graph G with n vertices and no edges, that
undergoes an online sequence of at most n? edge deletions and insertions, such that G remains a simple graph
throughout the update sequence. Each edge inserted into G has an integral length ((e) € {1,...,L}. Additionally,
the algorithm is given parameters 512 < k < (log n)1/49, % <d< ﬁ such that % is an integer, and A > n?0/k,
The algorithm maintains a subgraph H C G with V(H) =V(G) and |E(H)| < O (nl"’o(l/k) A -log L), such that
H is a (K',n)-low-congestion spanner for G, for k' = k19 . 200/%°) gnd y < nOQ/k) . A""“T"(G), where Apax(G) is

0(9)

the mazimum degree in G. The worst-case update time of the algorithm is n per operation, and the number
O(1/k)

of edge insertions and deletions that graph H undergoes after each update to G is bounded by n .

9.2 Dynamic Fault-Tolerant Spanners and Connectivity Certificates In this subsection we provide a
key observation that routers with a sufficiently large minimum degree are inherently resilient to edge failures. We
then show that, by setting the parameter A in Theorem 1.3 appropriately, we can ensure that the resulting graph
H is resilient to bounded-degree faults. Lastly, we prove that H can be used as a connectivity certificate.

9.2.1 Resilience of Routers to Bounded-Degree Faults Let G be a graph, and let F' be a subset of edges
of G (edge faults). We denote by deg(F') the maximum, over all vertices of v, of the number of edges in F' that
are incident to v. We say that a set F of edges is an f-BD faulty set, if deg(F) < f. Recall that a graph G is a
(A, d,n)-router for the set V(G) of supported vertices, if every A-restricted demand D over V(G) can be routed
with congestion at most 7 in G, via paths of length at most d. In this subsection we show that routers are resilient
to bounded-degree faults, in the sense that G \ F remains a router, albeit with slightly weaker parameters. The
main result of this subsection is summarized in the following theorem, whose proof is deferred to the full version
of the paper.

THEOREM 9.1. Let G be an n-vertex graph, and let f,k,d>0,1<n< n? and A > 32f - n'/* . be parameters.
Assume further that G is a (A,d,n)-router with respect to the set V(G) of supported vertices. Then for every
f-BD faulty set FF C E(G) of edges, graph G\ F is a (A,O(k) - d,O0(k) - n)-router for the set V(G) of supported
vertices.

The above theorem should be compared to the resilience of length-constrained expanders against f-BD faults,
that was established in [BDR22|. Specifically, they show in Theorem 1.2 of [BDR22] that, if G is an n-vertex
(h, s)-length @-expander with minimum degree Q(fn¢/y), then, for any f-BD faulty set F C E(G) of edges, the
graph G\ F is an (hs)'/¢-spanner of G; in other words, the distances in G'\ F may grow by at most factor (hs)'/<.
It then follows that the f-FD spanners obtained by [BDR22] via LC-expanders have size O(f-n'T1/¥) and stretch
t = kO) . The question of improving the exponential dependence of the stretch on k, while preserving the size
of the spanner was left open in [BDR22] (see Theorem 1.14 therein), and this improvement would immediately
imply stronger bounds for f-FD spanners. We resolve this open problem in Theorem 9.1, for the case of where
the LC-expander has a bounded diameter (that is, it is a router).

9.2.2 From Router Decomposition to Fault Tolerant Spanners

Fault-Tolerant Spanners. Recall that for a graph G, a stretch parameter k£ > 1, and an integer fault parameter
f > 1, an f-FT k-spanner of G is a subgraph H C @ satisfying that, for every subset FF C E(G) of at most f
edges, H \ F' is a k-spanner for G\ F'.

Very recently, Bodwin, Haeupler and Parter [BHP24] introduced a considerably stronger notion of fault-tolerance,
where only the degree of the faulty edge set, rather than its cardinality, is restricted. For a subset F' C E(G) of
faulty edges, its faulty-degree deg(F') is the maximum, over all vertices v, of the number of edges of F' incident to
v. For example, if F' is a matching, then deg(F) = 1, while |F| may be as large as n/2. This naturally leads to
the definition of faulty-degree spanners.
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DEFINITION 9.2. (FAULTY-DEGREE SPANNERS) [BHP2/] Let G be a graph and let H C G be a subgraph of G with
V(H) = V(G). For parameters | and k > 0, we say that H is an f-faulty-degree (FD) k-spanner for G if, for every
subset F' C E(G) of edges with deg(F) < f, for every pair u,v of vertices of G, distg\ p(u,v) < k - distgy p(u, v)
holds.

In the following observation, whose proof is deferred to the full version of the paper, we show that, if H' is a graph
obtained from a router decomposition of the graph G as before, then it is an f-FD k’-spanner, for appropriately
chosen parameters f and k'.

OBSERVATION 9.2. (FROM ROUTER DECOMPOSITION TO f-FD SPANNERS) Let G be an n-vertex graph, and let
kK'>0 and f € {1,...,n} be parameters. Let R = (C,{C"}cec) be a router decomposition of G with parameters
d,1<f<n? A*>32-f-7- n/*  and p. Consider the corresponding graph H' whose vertex set is V(G), and
edge set is B U (Upee E(C")), where B4 = E(G) \ (Ucec E(C)). Then H' is an f-FD O(d - k)-spanner.

Fault-Tolerant Low-Congestion Spanners. Finally, we show the strongest property of subgraph H main-
tained by the algorithm from Theorem 1.3. We will use the fact that routers retain their routing properties (with
a small loss), to show that H is a fault-tolerant low-congestion spanner even against bounded degree faults. We
start by formally defining the latter notion.

DEFINITION 9.3. (FAULT-TOLERANT LOW-CONGESTION SPANNERS) Let G be a graph, let H C G be a subgraph
of G, and let f,d and n be parameters. We say that H is an f-FT (d,n)-low congestion spanner if, for every
subset F' C E(G) of edges with |F| < f, graph G\ F embeds into H \ F via paths of length at most d, with
congestion at most . Similarly, H is an f-FD (d,n)-low congestion spanner if the above holds for every subset
F C E(G) of edges with deg(F) < f.

In the following observation, whose proof is deferred to the full version of the paper, we show that the graph
H’ obtained from a router decomposition of G with an appropriately chosen parameter f must be an f-FD
low-congestion spanner.

OBSERVATION 9.3. (FROM ROUTER DECOMPOSITION TO f-FD LOW-CONGESTION SPANNERS) Let G be an n-
vertex graph, and let k' > 0 and f € {1,...,n} be parameters. Let R = (C,{C"}cec) be a router decomposition
of G with parameters d, 1 <7 <n?, A*>32-f-7- n/* . and p. Consider the corresponding graph H' whose
vertez set is V(G), and edge set is B U (Upee E(C)), where B4 = E(G) \ (Ugec E(C)). Then H' is an

f-FD (d,n)-low congestion spanner for d = O(k’ - d) and 17 = max q O M ,16logn ¢, where Apax(G
A

is maximum vertex degree in G.
Finally, we obtain the following analogue of Corollaries 9.1 and 9.3 for f-FD low-congestion spanners.

COROLLARY 9.4. There is a deterministic algorithm, whose input is a graph G with n vertices and no edges, that
undergoes an online sequence of at most n? edge deletions and insertions, such that G remains a simple graph
throughout the update sequence. Each edge inserted into G has an integral length €(e) € {1,...,L}. Additionally,
the algorithm is given parameters 512 < k < (log n)1/49, % <6< Wlo such that % is an integer, f € {1,...,n},
and A > f-n/* for a large enough constant c. The algorithm maintains a subgraph H C G with V(H) = V(G)
and |[E(H)| < O (n1+0(1/k) -A-logL), such that H is an a f-FD (d,n)-low congestion spanner for G, for
d < poly(k) - 20(1/5°) and n < nO0/k) . A‘“’“‘T"(G), where Apax(G) is the mazimum degree in G. The worst-case
update time of the algorithm is n°®) per operation, and the number of edge insertions and deletions that graph

H undergoes after each update to G is bounded by n©1/k).

In order to prove the corollary, we use the algorithm from Corollary 9.3. By using Observation 9.3 with parameter
k' replaced with k, it is easy to verify that the graph H that the algorithm maintains has all required properties.
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Dynamic Connectivity Certificates. The notion of connectivity certificates was introduced by [NI92]. For a
graph G = (V, E) and integer f € {1,...,n}, an f-connectivity certificate is a subgraph H C G with the following
property: for every pair u,v € V of vertices, for every subset F' C E of at most f edges, u and v are connected
in H \ F if and only if they are connected in G \ F. The recent work of [BHP24] introduced a stronger notion of
f-FD connectivity certificate: a subgraph H C G that satisfies the above requirement for any subset F' C F of
edges deg(F') < f. It is well known that any n-vertex graph admits an f-connectivity certificate containing O(fn)
edges, and such certificates can be computed in linear time in the static setting. Using expander decompositions
and expander routing, [BHP24] presented an algorithm that constructs an f-FD connectivity certificates with
6( fn) edges, which is nearly tight, in polynomial time.

Clearly, if a graph H is an f-FD (d, n)-low congestion spanner for G, for any parameters d and 7, then H is an
f-FD connectivity certificate an and f-connectivity certificate for G as well. Therefore, by using the algorithm
from Corollary 9.4 with a parameter A = f-n?1/®) and § = £, we get that the graph H that the algorithm
maintains has |[E(H)| < O (f - n'*9(/M) and it is an f-FD connectivity certificate for G. The algorithm has
nPW/k) worst-case update time and n®/¥) recourse. Note that both of the latter quantities are independent
of f. To the best of our knowledge, all previous dynamic algorithms for (the classical notion of) f-connectivity
certificates had a worst-case update time with a polynomial dependency on f. Therefore, for high values of the
parameter f, we obtain a faster algorithm.
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