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Abstract. Accurate reconstruction of complex dynamic scenes from just a sin-
gle viewpoint continues to be a challenging task in computer vision. Current
dynamic novel view synthesis methods typically require videos from many di!er-
ent camera viewpoints, necessitating careful recording setups, and significantly
restricting their utility in the wild as well as in terms of embodied AI applica-
tions. In this paper, we propose GCD, a controllable monocular dynamic view
synthesis pipeline that leverages large-scale di!usion priors to, given a video
of any scene, generate a synchronous video from any other chosen perspective,
conditioned on a set of relative camera pose parameters. Our model does not
require depth as input, and does not explicitly model 3D scene geometry, in-
stead performing end-to-end video-to-video translation in order to achieve its
goal e"ciently. Despite being trained on synthetic multi-view video data only,
zero-shot real-world generalization experiments show promising results in multi-
ple domains, including robotics, object permanence, and driving environments.
We believe our framework can potentially unlock powerful applications in rich
dynamic scene understanding, perception for robotics, and interactive 3D video
viewing experiences for virtual reality.

1 Introduction

Video generation has made tremendous progress in recent years. Results from Sora [7],
OpenAI’s recently released text-to-video generation model, have shown that generating
a high-quality video as long as one minute is possible. Following the scaling curve, video
models will most likely continue to improve in many aspects. However, one essential
capability is still missing from these video models to be useful for many downstream
applications – the ability to generate the same dynamic scene from an arbitrary camera
perspective based on an existing video.

In this paper, we aim to tackle the problem of dynamic novel view synthesis (DVS)
– given a video of a dynamic scene, we aim to generate a video of the same scene from
another viewpoint. Once we develop a solution for this problem, we can leverage it for
several impactful use cases, such as generating novel views of a live street scenario based
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Fig. 1: Spatial video translation of dynamic scenes. Given a single RGB video, we
propose a method that is capable of imagining what that scene would look like from another
viewpoint. Even for extreme camera transformations with large angles, our approach synthe-
sizes videos with rich visual details that are consistent with the input, demonstrating advanced
spatiotemporal reasoning capabilities.

on cameras mounted on an autonomous vehicle; seeing a cluttered environment from a
di!erent viewpoint while a robot is performing dexterous manipulations; enabling geo-
metrically consistent video passthrough for mixed reality [81]; and immersively reliving
videos recorded in the past from di!erent viewing angles.

However, this task is naturally extremely ill-posed and challenging. While yielding
promising results, prior works typically addressed it by assuming either that contempo-
raneous multi-viewpoint video is available [38,47,73,78,83], and/or by imposing that the
relative camera viewpoint changes must be small (i.e. limited to just a handful of de-
grees) [33,71]. These restrictions make them vastly insu"cient for the aforementioned
applications, which require in-the-wild novel view synthesis pipelines with dramatic
camera viewpoint changes.

Free-viewpoint synthesis from a single video requires prior knowledge because it
is highly under-constrained. Modern video generative models, such as Stable Video
Di!usion [5], have learned rich priors for real-world dynamics, 3D geometry, and camera
motions, as they are trained on hundreds of millions of video clips from the Internet.



GCD: Extreme Monocular Dynamic Novel View Synthesis 3

In this work, we propose an approach to capitalize on these rich representations for the
task of DVS. We curate pairs of videos of dynamic scenes from simulation as training
data, and apply them to steer a pretrained video generative model towards the desired
behavior by means of finetuning.

Qualitative and quantitative results demonstrate that our model achieves state-of-
the-art results on the task of monocular DVS, and generalizes e!ectively to various out-
of-distribution scenes, including real-world driving videos, robot manipulation scenes,
and other in-the-wild videos with heavy occlusion patterns, as shown in Figure 1. Much
like a camera dolly in film-making [76], our approach essentially conceives a virtual
camera that can move around with up to six degrees of freedom, reveal significant
portions of the scene that are otherwise unseen, reconstruct hidden objects behind
occlusions, all within complex dynamic scenes, even when the contents are moving.

Our core contribution is the design and evaluation of a framework, Generative Cam-
era Dolly (GCD), for learning to generate videos from novel viewpoints of a dynamic
scene, using an end-to-end video-to-video neural network. Section 2 provides a brief
overview of related work. Section 3 introduces the approach including the model ar-
chitecture, and a description of how to achieve precise camera control within the video
di!usion model. Section 4 discusses training data, benchmarks, and task details. Sec-
tion 5 investigates important hyperparameter decisions with regard to the conceptual
implementation of camera control. Section 6 provides both quantitative and qualitative
evaluation of the system as well as several examples of our model generalizing to out-
of-distribution data. We believe the ability to perform free-viewpoint video synthesis
for a dynamic scene from one video will have a significant impact on 3D/4D computer
vision research, as well as other related areas, including content creation, AR/VR, and
robotics.

2 Related Work

Dynamic scene reconstruction. The landscape of dynamic scene novel view synthesis
has been primarily dominated by techniques that rely on multiple synchronized (i.e.
contemporaneous) input videos [2, 4, 8, 31, 47, 73, 83, 88], which limits their practical
usage in real-world scenarios. The emergence of Neural Radiance Fields (NeRF) [41]
has catalyzed a revolution in dynamic view synthesis, presenting state-of-the-art results
in this domain [14, 32, 43, 44, 48, 64, 80]. Most such methods represent scenes through
time-evolving NeRFs, for handling complicated, dynamic 3D scene motions in casual
videos, for example in neural scene flow fields [10,16,17,32,70,80].

A notable trend in recent advancements involves the synthesis of novel views from
a single camera perspective [17, 33, 71, 84]. DynIBaR adopts a volumetric image-based
rendering framework that, instead of encoding and compressing the entire scene within
a single representation (for example an MLP), aggregates features from nearby views
in a camera motion-aware manner, which enables synthesizing novel views for long
videos with uncontrolled camera paths [33]. DpDy leverages an image-based di!usion
model to iteratively distill knowledge coming from di!usion priors into a hybrid 4D
representation, consisting of a static and dynamic NeRF [71].
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It is worth noting that essentially all aforementioned methods optimize per-scene
representations independently of each other. Therefore, they are (1) largely unable to
share any knowledge between di!erent reconstructions, such as to generalize to unseen
environments; and (2) largely unable to infer or extrapolate from incomplete obser-
vations, such as to recover fully occluded regions. Moreover, failure modes are often
observed when the monocular input video lacks e!ective multi-view cues, for example
as enabled implicitly thanks to a moving, especially a fast-moving, camera [17]. Excep-
tions include [66], where dynamic scene completion is performed through a conditional
neural field based on a single, static RGB-D input video.

Video di!usion models. Recent work has rapidly improved the state of video generation
models. Most generative models focus on di!usion-based approaches [5,6,18,24,26,59],
though important exceptions exist, particularly with autoregressive training [75, 86].
Following recent work which shows image-based di!usion models can be re-purposed
for computer vision tasks including monocular depth estimation [55], 3D reconstruc-
tion [36] and amodal segmentation [42], our work adopts a public video di!usion model
for dynamic view synthesis. We rely on Stable Video Di!usion [5] as it generates high
quality videos, and provides a public image-to-video model checkpoint with code, al-
though our framework can generalize to any video generation approach.

3D and 4D generation. Most of the works enabling successful 3D generation via genera-
tive models hence rely on channelling the representational power of 2D di!usion models
towards a single 3D representation that is iteratively optimized over time, for example
through score distillation [46]. This multiview 2D-to-3D paradigm is exemplified by
many text-to-3D and image-to-3D works [11,23,27,34,36,45,46,68,72,74,79,89].

Emphasizing the temporal component, text-to-4D and image-to-4D papers have
begun appearing as well, although the results currently remain mostly limited to ani-
mations of single objects or animals [1, 35, 60, 90]. Video-to-4D, which is likely harder
because every frame of the observation must be respected, has remained less explored
so far. In [66], a video-to-4D scene reconstruction task and framework is proposed,
although the model requires depth input, and only works in narrow domains as it is
trained from scratch.

Object permanence and amodal completion. The problem of reasoning about the invis-
ible parts of a scene has been studied extensively in the literature, but so far almost
exclusively from an object-centric perspective. For example, in the image world, amodal
completion [15, 42, 87] studies the problem of reconstructing the occluded parts of an
object based on its visible parts and the scene context. However, these methods are
naturally restricted to partial occlusions. In contrast, for videos, some object track-
ing methods can capitalize on the temporal context to successfully reason about the
location [57,62,63] or even shape [67] of fully occluded instances.

While abstracting the full complexity of a dynamic scene into a compact set of
objects allows these methods to be relatively data- and compute-e"cient, it also limits
their applicability. In this work, we propose a more general approach that is capable
of revealing any parts of a scene, together with their dynamics, similar to [66]. This
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Fig. 2: Method. Our model, GCD, is an end-to-end video translation pipeline that maps an
input video from any viewpoint into an output video from any other perspective, with the
objective of respecting all objects and dynamics occurring within the observed dynamic scene,
and faithfully reconstructing the corresponding visual details from this novel viewpoint. The
relative camera extrinsics matrix ωE guides the relationship between the two camera poses.

includes not only occluded objects, but also ‘stu!’ regions [9], such as natural or man-
made surfaces, liquids, and so on.

We note that at least one concurrent work also tackles dynamic view synthesis: in
Exo2Ego [39], authors propose a framework that translates third-person (exocentric)
to first-person (egocentric) videos on a per-frame basis, incorporating priors for hand-
object interactions and focusing primarily on those scenarios.

3 Approach

First, we formally introduce the task of monocular dynamic novel view synthesis from
unconstrained video input. Let x → RT→H→W→3 be RGB frames captured from a
single camera perspective, that encode the visual observation of a dynamic scene of
interest. We denote its associated camera extrinsics matrix as Esrc → RT→4→4, and
define Edst → RT→4→4 to be the desired target camera extrinsics matrix over time. Our
model f is then tasked with predicting a video y → RT→H→W→3, that plausibly depicts
the same dynamic scene from the specified new viewpoint. For simplicity, and without
loss of generality, we assume that (1) the output video is temporally synchronized with
the input, and (2) the camera intrinsics matrix K → R3→3 stays constant over time as
well as across pose changes; notably, the virtual camera for y assumes the same focal
length as the actual camera does for x.

Since novel view synthesis is an inherently under-constrained, challenging problem,
our approach will use existing large-scale video generative models. Di!usion models
have been shown to excel at image-to-3D tasks [36, 37, 58, 79], justifying our attempt
to perform video-to-4D. Moreover, they have shown remarkable zero-shot abilities in
generating realistic, diverse videos from user-given text descriptions and/or initial
frames [3,5,26]. However, they are typically not trained to accept video as a condition-
ing signal, and fine-grained control over camera transformations is also not available
by default. To overcome these obstacles, we must make a few architectural changes.
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3.1 Camera viewpoint control

Given a single RGB video x of a dynamic scene, our goal is to synthesize another video
y of the scene from a di!erent viewpoint. Since large-scale video di!usion models have
been trained on hyper-scale data, their support of the natural video distribution most
likely covers a wide range of realistic scenes and viewpoints. To this end, given a dataset
of paired videos and their relative camera extrinsics ωE = {E↑1

src,t
·Edst,t}T↑1

t=0 → RT→4→4

over time, we teach a latent di!usion model f to learn controls over camera parameters
within any video x:

y = f (x,ωE) (1)

Specifically, we modify Stable Video Di!usion (SVD) to accept a new form of micro-
conditioning, a term coined in [5], which is designed for the purpose of communicating
low-dimensional metadata (such as the desired frame rate of the output video, and
the amount of optical flow) to the network. We decompose ωEt → SE(3) into a series
of camera rotation matrices Rt → SO(3) and translation matrices Tt → R3 over time,
project this flattened information through an MLP m, and add the resulting embedding
to the feature vectors at various convolutional layers placed throughout the network,
similarly to the concurrent work SV3D [68]. The di!usion timestep, FPS, and motion
strength are also passed to the network this way. To preserve the existing priors of SVD
as much as possible, we initialize the network weights based on the publicly available
image-to-video model checkpoint. The new embedder m that processes {(Rt, Tt)} is
randomly initialized with default parameters. After training the network end-to-end to
tackle this new task, the resulting model is capable of imagining unseen videos from
any chosen perspective, as illustrated in Figure 2 (high-level) and Figure 10 (detail).

3.2 Video conditioning

To accurately perform dynamic view synthesis, both low-level perception (to analyze
the visible geometry, shapes, appearance, etc.) and high-level understanding (to infer
the occluded regions, based on world knowledge as well as other observed frames) of the
input video is required. We adopt the same hybrid conditioning mechanism as SVD [5],
where the visual signal is processed in two ways. In case of image-to-video, the first
stream calculates the CLIP [49] embedding c(x0) of the incoming image to condition
the U-Net ε via cross-attention, and the second stream channel-concatenates the VAE-
encoded image x0 with all frames of the video sample ŷ that are being denoised.

We keep this mechanism almost entirely intact when moving from the pretraining
to the finetuning stage, but we propose to simply substitute the first frame x0 for the
entire input video x from the source viewpoint, such that the conditioning information
now becomes a function of time. This ensures that our model has the opportunity to
watch how the dynamic scene unfolds over time, and hence must learn to respect the
dynamics and physics of the objects within.

In architectural terms, the output sample ŷ has contemporaneous input frames from
x attached to it for every video timestamp t, such that at di!usion noise timestep u

during inference:
ŷ
u↑1 = wε (ŷ

u
↑ x,ωE)↓ (w ↓ 1)ε (ŷ

u
) , (2)



GCD: Extreme Monocular Dynamic Novel View Synthesis 7

Input Video Ours - Gradual
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Fig. 3: Qualitative ablation study results for Kubric-4D. We show inputs, predictions,
ablations, and ground truths. The input and output videos both consist of T = 14 frames, but
we show the first and last frame of the input video for conciseness, and only the last frame of
the output and target. Whereas the ablations tend to look blurry with incorrect shape and/or
appearance characteristics (especially for moving objects), our main model (gradual, max 90°,
finetuned) faithfully reconstructs the scene layout and dynamics from the input video. In
addition, it often hallucinates plausible backgrounds in unseen regions.

where w → [1,↔) is the guidance strength for classifier-free guidance [25]. The U-Net
ε accepts input feature maps of dimensionality 2D ↗ T ↗ H

F
↗ W

F
, where D and F are

the VAE embedding size and downsampling factor respectively, and produces output
feature maps of dimensionality D ↗ T ↗ H

F
↗ W

F
that represent a less noisy sample.

Note that the SVD architecture consists of a factorized 3D U-Net that interleaves
convolutional, spatial, and temporal blocks, of which the latter two establish corre-
spondences between features across locations (per frame), and across time (per spatial
position) respectively. Spatiotemporal attention can consequently take place between
all pairs of input and output frames, as well as any pair of regions within both videos.
Moreover, there are now T di!erent CLIP embeddings {c(xt)} that appropriately con-
dition the U-Net layers at each matching frame.

4 Datasets

While the availability of multi-view video data has been growing [13,19,20,30,50,51,56,
65,66,92], it is still relatively sparse compared to conventional image or video datasets.
In order to train and evaluate our model, we require a decent amount of multi-view
RGB videos from highly cluttered dynamic scenes. To this end, we contribute two
high-quality synthetic datasets, shown in Figures 3, 4, and 5 and briefly describe them
below.
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Fig. 4: Qualitative ablation study results for ParallelDomain-4D. We show inputs,
predictions, ablations, and ground truths for both visual and semantic scene completion. Our
model excels at recovering the top-down viewpoint with high accuracy in both modalities,
despite the heavy occlusion patterns that often occur in driving scenes. While the direct model
performs almost as well as the gradual one, it tends to introduce slightly more hallucination
and discoloration of objects.

4.1 Kubric-4D

We leverage the Kubric [21] simulator as our data source for generic multi-object inter-
action videos, carrying a high degree of visual detail and physical realism. Each scene
contains between 7 and 22 randomly sized objects in total, with roughly one-third
of them spawned in mid-air at the beginning of the video to encourage sophisticated
dynamics. Complicated occlusion patterns arise very frequently, making this dataset
highly challenging for accurate novel view synthesis. We generate 3,000 scenes of 60
frames each, at a frame rate of 24 FPS, with RGB-D data rendered from 16 virtual
cameras at a fixed set of poses.

Because the dynamic scene is su"ciently densely covered, we unproject all the pixels
from available viewpoints into a merged 3D point cloud per frame. As a form of data
augmentation, we then render them into videos from arbitrary viewpoints according
to camera trajectories that can be chosen and controllably sampled depending on the
exact training configuration.

4.2 ParallelDomain-4D

Since rich scene understanding and spatial reasoning skills are paramount for maxi-
mizing situational awareness in the context of driving, we employ the state-of-the-art
data generation service ParallelDomain to produce complex, highly photorealistic road
scenes. The videos depict driving scenarios covering a wide variety of locations, ve-
hicles, persons, tra"c situations, and weather conditions. Here, we have 1,533 scenes
available of 50 frames each, at a frame rate of 10 FPS, with high-quality annotations
for multiple modalities (RGB colors, semantic categories, instance IDs, etc.) along with
per-pixel ground truth depth rendered from 19 virtual cameras at a fixed set of poses.
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Variant PSNR
(all) →

SSIM
(all) →

LPIPS
(all) ↑

PSNR
(occ.) →

SSIM
(occ.) →

Ours (direct, max 90°, scratch) 15.96 0.450 0.575 15.85 0.470
Ours (direct, max 180, scratch) 14.71 0.426 0.611 15.15 0.458
Ours (gradual, max 90°, scratch) 16.92 0.486 0.542 16.59 0.494
Ours (gradual, max 180°, scratch) 16.63 0.479 0.552 16.34 0.491

Ours (direct, max 90°, finetuned) 17.23 0.494 0.507 16.69 0.492
Ours (direct, max 180°, finetuned) 16.65 0.471 0.529 16.18 0.470
Ours (gradual, max 90°, finetuned) 17.88 0.521 0.486 17.33 0.514
Ours (gradual, max 180°, finetuned) 17.81 0.521 0.488 17.20 0.515

Table 1: Ablation study results on Kubric. We evaluate various versions of our dynamic
view synthesis model on only the last frame for fairness, i.e. to ensure that the direct and
gradual trajectory models are spatially aligned. See Figure 3 for qualitative illustrations.

In our experiments, we train separate models for RGB view synthesis and semantic
view synthesis; the latter demonstrates that the predicted modality need not be the
same as the given modality.

Similarly as for Kubric-4D, we perform a unproject-and-reproject routine to turn
this multi-view video dataset into a pseudo-4D data source from which we can render
videos of the scene from arbitrary camera perspectives over time, within certain pre-
defined spatiotemporal bounds.

4.3 Task details

In our experiments, without loss of generality, we assume a static input camera pose
Psrc,4 and pick a target destination pose Pdst that we want the output camera to reach
at or before the end of the generated video. In general, P is a pose description that
can be defined in many ways, for example a set of spherical coordinates that represent
the camera position and look-at location, but (1) must allow for convex interpolation
(i.e. ϑP1 + (1 ↓ ϑ)P2 with ϑ → [0, 1] is valid), and (2) is connected to a valid 6-DoF
rigid body transformation E → SE(3) through the function g, i.e. E = g(P).

When training for the task of dynamic view synthesis on Kubric-4D, pairs of input
and output poses are randomly sampled within certain spherical coordinate bounds
(both in absolute terms and relative to each other), with the extra condition that they
are looking at the center of the 3D scene. Therefore, at inference time, there are three
e!ective degrees of freedom with regard to camera control, i.e. P → R3.

In case of ParallelDomain-4D, the input video and pose always correspond to the
ego vehicle’s forward-facing viewpoint, as if a sensor were mounted on the front of
the car. The output pose is a fixed top-down viewpoint with the ego vehicle at the
bottom center of the video, which enables gaining a much more detailed overview of
its surroundings.

4 This can always be achieved by defining the reference coordinate system to move along with
the recording camera.
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Variant PSNR
(all) →

SSIM
(all) →

LPIPS
(all) ↑

PSNR
(occ.) →

SSIM
(occ.) →

Ours (direct, scratch) 22.49 0.622 0.487 22.62 0.653
Ours (gradual, scratch) 22.73 0.632 0.467 22.76 0.664

Ours (direct, finetuned) 23.32 0.664 0.440 23.29 0.691
Ours (gradual, finetuned) 23.47 0.670 0.425 23.52 0.696

Table 2: Ablation study results on ParallelDomain in RGB space. We perform visual
scene completion, and evaluate various dynamic view synthesis models on only the last frame
for fairness, similarly to Table 1. See Figure 4 for qualitative illustrations.

Variant mIoU
(all) →

mIoU
(occ.) →

Ours (direct, from scratch) 31.2% 28.6%
Ours (gradual, from scratch) 34.4% 32.1%

Ours (direct, finetuned) 36.7% 35.4%
Ours (gradual, finetuned) 39.0% 37.7%

Table 3: Ablation study results on

ParallelDomain in semantic space.

We perform semantic completion of the
scene, again similarly to Table 1. See Fig-
ure 4 for qualitative illustrations.

5 Choice of camera trajectory

Our formulation of the dynamic view synthesis task in Section 3 is quite general, so
it is worth thinking about which specific instantiations of this conceptual framework
would be most e!ective in practice. Given arbitrary video inputs, our goal is to devise
a structured protocol for choosing relative camera trajectories that both maximize the
exploitation of knowledge contained within the pretrained SVD representation, as well
as enable a detailed understanding of the dynamic scene observed at inference time to
the fullest extent possible. Specifically, we wish to synthesize views that reach as far as
the opposite end of the scene, for example, by orbiting the azimuth angle ϖ up to 180°.
This is considerably more dramatic than what the state of the art in dynamic view
synthesis is typically capable of [10, 17, 33, 78], and allows us to reveal large, formerly
unseen portions of the surroundings.

However, it turns out that opposing forces are at play. On one hand, we wish to get
to the destination camera pose “as fast as possible” (because the scene could already
be evolving and changing over time as we are watching it). On the other hand, if the
output video moves away from the source viewpoint too quickly, we might risk incur-
ring a distribution misalignment due to the fact that the image-to-video SVD model
predominantly generates videos that start at nearly the exact same spatial perspective
as the given image. Moreover, the camera generally does not move much throughout
the video, typically performing only minor panning motions and/or mild rotations.

To resolve this concern, we translate it into three questions: (1) where should the
output pose start ; (2) how fast should it be taught to move in-between subsequent
frames; and (3) how much does finetuning, i.e. borrowing priors from SVD help (or
hurt) in each case, versus training an identical network from scratch? We investigate
this by running comparative studies on both the Kubric-4D and ParallelDomain-4D
datasets. For each tested scene, we fix a source pose Psrc and a destination pose Pdst,
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Method PSNR
(all) →

SSIM
(all) →

LPIPS
(all) ↑

PSNR
(occ.) →

SSIM
(occ.) →

HexPlane [10] 15.38 0.428 0.568 14.71 0.428
4D-GS [78] 14.92 0.388 0.584 14.55 0.392
DynIBaR [33] 12.86 0.356 0.646 12.78 0.358

Vanilla SVD [5] 13.85 0.312 0.556 13.66 0.326
ZeroNVS [54] 15.68 0.396 0.508 14.18 0.368

Ours 20.30 0.587 0.408 18.60 0.527

Reproject RGB-D* 12.51 0.537 0.416 - -

Table 4: Baseline comparison results on Kubric-4D. We evaluate gradual dynamic view
synthesis models on all 13 output frames, and with a single RGB video as input. We signifi-
cantly outperform all baselines for both visible and occluded pixels. *Uses privileged information,
i.e. can access the ground truth depth map from the input viewpoint.

following definitions in Section 4.3. Using Esrc,t = g(Psrc) and ϑ =
t

T↑1 → [0, 1], we
define gradual and direct trajectories as follows:

Edst,t =
{
g (ϑPdst + (1↓ ϑ)Psrc) , ↘t, if gradual
g (Pdst) , ↘t, if direct

(3)

In other words, gradual means that the virtual camera pose corresponding to the output
video linearly interpolates (in an intermediate description space, for example spherical
coordinates) between Psrc and Pdst from start to end, whereas direct implies that the
generated video directly adheres precisely to Pdst at every frame without interpolation.
For Kubric-4D, max 90° limits the relative horizontal (i.e. azimuth) angle variation
between input and output to ±90

↓ at training time (|ωϖ| ≃ 90
↓), whereas max 180°

e!ectively allows for synthesizing any 360°-surround viewpoint of the dynamic scene.
The results are shown in Tables 1, 2, and 3, and Figures 3 and 4. From this ablation

study, we observe with Kubric-4D that: (1) it is preferable to gradually interpolate from
source to destination pose than to immediately jump there (+1.17 dB average PSNR
improvement between direct and gradual); (2) there exists a trade-o! between the
range of camera transformations the model should be trained for, and how extreme
of a rotation one wishes to be able to achieve at most (+0.55 dB between max 180°
and max 90°); and (3) it is preferable to start from the SVD checkpoint that had been
trained on large-scale video rather than to train from random initialization, though not
by a particularly huge margin (+1.34 dB between scratch and finetuned).

We make consistent findings in the ParallelDomain-4D dataset, where gradual, fine-
tuned is the best model. For Kubric-4D, although gradual, max 90°, finetuned and
gradual, max 180°, finetuned are very close, we proceed with the former in all further
experiments, described below.

6 Experiments

In this section, we evaluate our monocular dynamic novel view synthesis framework. We
report numerical results on the test splits of our two in-domain datasets (Kubric-4D and
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Right: 45°
Up: 10°

Left: 15°

Fig. 5: Qualitative baseline comparison results for Kubric-4D. We show inputs, pre-
dictions, baselines, and ground truths. Compared to baselines, our results depict the scene
layout and dynamics under the desired novel viewpoints with reasonable accuracy overall and
much fewer flickering artefacts.

ParallelDomain-4D), comparing against several state-of-the-art baselines, but addition-
ally showcase promising qualitative results on in-the-wild videos from various domains.
For more results as well as animated visualizations, please see gcd.cs.columbia.edu.

6.1 Implementation details

Training. We adopt the SVD variant that predicts T = 14 frames, but due to computa-
tional constraints, we downscale the input and output resolution to W↗H = 384↗256.
This allows us to scale the batch size up to 56 when training with Kubric-4D on 7x
A100 GPUs with 80 GB VRAM each. We finetune all models for 10k iterations using
the Adam optimizer, which takes roughly 3 days. On ParallelDomain-4D, we instead
finetune models for 13k iterations with an e!ective batch size of 24 through a gradi-
ent accumulation factor of 4 on 3x A6000 GPUs with 48 GB VRAM each, which also
takes roughly 3 days. The network ε does not predict noise directly, instead adopting
v-parameterization for preconditioning [53].

Inference. We generate conditional samples from the resulting di!usion model by run-
ning the EDM sampler [28] for 25 steps. SVD originally employs classifier-free guid-
ance [25] at test time with a guidance strength w that linearly increases as a function
of the video frame index (not the di!usion timestep) from start to end within the
range [1, 2.5] by default [5], but we found better performance by adjusting this range
to [1, 1.5] instead. Producing one output video takes roughly 10 seconds.

https://gcd.cs.columbia.edu/
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Fig. 6: Qualitative real-world generalization results. We show inputs and predictions
on BridgeData V2 [69], TCOW Rubric [67], TRI-DDAD [22], and Berkeley DeepDrive [85].
Despite being trained on synthetic data alone, our approach show surprisingly strong gener-
alization skills to a variety of real-world scenarios. For example, on the top right, where a full
occlusion occurs around the middle of the video, our model faithfully predicts both the posi-
tion and appearance of the invisible duck at the last frame, demonstrating object permanence
capabilities.

Evaluation metrics. Following related work in novel view synthesis [29,33,36,40,54,71],
for predictions in RGB space, we evaluate PSNR, SSIM, and LPIPS scores and average
the results across both video frames and test examples. For semantic category predic-
tions, following conventions in semantic segmentation [12, 61, 82, 91], we first calculate
the average Intersection over Union (IoU) per category over the whole ParallelDomain
test set, and then report the mean IoU (mIoU) across the 10 most common categories.

Based on the ground truth depth information from the input viewpoint, it is also
possible to determine which pixels in the target viewpoint are visible or hidden. In ad-
dition to the regular metrics (“all”), we therefore spatially mask the videos to determine
metrics for occluded regions only (“occ.”), which the model essentially has to inpaint.

Method PSNR
(all) →

SSIM
(all) →

LPIPS
(all) ↑

PSNR
(occ.) →

SSIM
(occ.) →

Vanilla SVD [5] 12.88 0.400 0.658 13.96 0.466
ZeroNVS [54] 18.88 0.490 0.555 19.29 0.552

Ours 25.04 0.731 0.358 24.70 0.733

Reproject RGB-D* 17.66 0.459 0.441 - -

Table 5: Baseline comparison results on ParallelDomain in RGB space. We perform
visual scene completion, and evaluate gradual dynamic view synthesis on all 13 output frames,
and with a single RGB video as input. We significantly outperform all baselines for both visible
and occluded pixels. *Uses privileged information, i.e. can access the ground truth depth map from the
input viewpoint.



14 B. Van Hoorick et al.

Method mIoU
(all) →

mIoU
(occ.) →

Ours 43.4% 38.2%

Reproject Sem-D* 37.3% -

Table 6: Baseline comparison re-

sults on ParallelDomain in se-

mantic space. We perform seman-
tic completion of the scene, still based
on a single RGB video as input. *Uses
privileged information, i.e. can access the
ground truth depth map and ground truth
semantic category of all input pixels.

Even though our model accepts and predicts the same number of frames (T = 14),
the first output frame for the gradual camera trajectory models (described below) is
spatially aligned with the first input frame. This implies that it could in principle be
solved by copying its pixels (except if the task involves switching to another modality,
for example semantic category prediction), so we exclude the first frame from the
evaluation to avoid inflating the metrics, instead averaging only over the last T↓1 = 13

frames, which correspond to di!erent extrinsics.

6.2 Baselines

We compare our final models against the state-of-the-art dynamic view synthesis meth-
ods including HexPlane [10], 4D-GS [78] and DynIBaR [33], which all perform per-scene
optimization. While these baselines are capable of handling videos with higher reso-
lutions than ours, they are typically limited to much smaller camera angle changes in
the one- or low-number-of-views regime, and inference runtimes are many orders of
magnitude larger (e.g . hours vs. seconds).

In addition, we compare to two pretrained di!usion models Vanilla SVD [5] and
ZeroNVS [54] by adapting them for our task. For Vanilla SVD, we run the original
SVD model to generate videos based on the first input frame, without any changes or
finetuning. For ZeroNVS, which can generate novel views of scenes based on a single
image, we run it for all the input frames independently to obtain the output video.

Finally, we compare to a simple geometric baseline (Reproject RGB-D and Reproject
Sem-D), where we reproject pixels from input frames to target viewpoints using the
ground truth depth maps, switching to the appropriate modality as needed. Here, the
goal is to study how much information is contained within the input video itself, if
precise per-pixel depth values were fully known (which is often not the case).

All methods observe the same monocular input video, and are evaluated on the
exact same set of randomly sampled output camera trajectories for fairness.

6.3 Results

We report quantitative results in Tables 4, 5, and 6, and show qualitative results in
Figures 5 and 4. On both datasets, our model outperforms baseline methods by a
large margin. Per-scene optimization methods (e.g., HexPlane) fail to reconstruct the
4D scene representation from a single input view, and thus the rendered videos from
novel viewpoints have severe artifacts. Vanilla SVD is able to generate smooth videos
but fails to follow the desired camera trajectories, and does not incorporate content
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from later frames. ZeroNVS can synthesize plausible individual frames from specified
viewpoints, but the resulting videos are not temporally coherent and do not respect
the scene dynamics.

In contrast, our model mostly generates plausible videos that accurately depict the
complex scene geometry and motion under the desired novel viewpoint transformations.
We remark that the results are not perfect, as the correspondence of objects between
the input and generated output videos is not always very clear, and some rigid objects
tend to erroneously deform. However, the nature of the task is extremely challenging,
and we expect the potential visual quality and consistency of our framework to only
improve over time, e.g . when combined with better pretrained representations, more
compute, and more data.

Apart from the evaluation on in-domain datasets, we also showcase promising results
on real-world in-the-wild videos. As shown in Figure 6, our model sometimes generalizes
quite well to various domains including driving environments, daily indoor videos, and
robotic manipulation scenes.

7 Discussion

In this paper, we present a framework for dynamic novel view synthesis from a monocu-
lar video by finetuning a large-scale pretrained video di!usion model [5] on high-quality
synthetic data. While we show promising results on real-world in-the-wild videos, our
model still struggles on significantly out-of-distribution examples, e.g . videos with mov-
ing humans. Nevertheless, we believe this work delivers meaningful progress in terms of
gaining a rich, detailed understanding of 4D scenes, and takes a solid first step towards
enabling zero-shot dynamic view synthesis from a monocular video.
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Supplementary Material

A Overview

The appendix is structured as follows: in Section B, we analyze what the equivalent
number of source views given to HexPlane would have to be to match our method’s
performance, as well as our model’s metrics as a function of the geometric “di"culty”
of the camera controls. In Section C, we elaborate on implementation details in terms
of the model architecture, how training is done, how datasets are processed, how eval-
uations are performed, and how the baselines are adapted. In Section D, we discuss
failure cases. To view video visualizations of extra qualitative results, we recommend
viewing gcd.cs.columbia.edu in a modern web browser.

B More quantitative evaluations

B.1 Comparison to multi-view methods

Our method is able to synthesize novel views of a dynamic scene from just a single-
viewpoint input video. One other hand, the results from per-scene optimization meth-
ods (e.g., HexPlane [10]) get better with an increasing number of input views. A natural
question is that how many input views are needed for those methods in order to obtain
similar performance as compared to ours from a single view. We try to answer this

Fig. 7: Comparative study over number

of views. We plot the SSIM over the test set
as a function of the number of input views that
HexPlane uses for training. The numbers are
averaged over 20 scenes.

https://gcd.cs.columbia.edu/
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Fig. 8: Comparative study over camera

rotation magnitude in Kubric-4D. Note
that PSNR is measured at the last output
frame, because only then the desired horizon-
tal azimuth angle has been reached. We con-
clude that the main di"culty in performing
dynamic view synthesis comes from handling
roughly the first 80 degrees, after which the
performance stays mostly flat.

question by training HexPlane per scene with K training views (i.e., K input videos),
with K → {1, 4, 8, 16, 32}. As shown in Figure 7, our results (from a single input view)
give rise to even better quality than HexPlane’s results from 16 input views.

B.2 Error as a function of rotation angle

In Figure 8, we plot the average PSNR over the test set as a function of how significantly
the final destination (target) camera pose di!ers from the source (input) camera pose.
Specifically, we evaluate the Kubric-4D (gradual, max 180°, finetuned) model on a
sequence of horizontal rotations to the right of varying amounts between 0° and 180°.
The elevation angle ϱ is held constant at 10°, to encourage obstructed objects from the
input view, and the radius r at 15m.

x

y

z

r

θ
φ

(r, θ, φ)
Fig. 9: Spherical coordinate sys-

tem. Models trained on Kubric-4D ac-
cept an azimuth ε, elevation ϑ, and
radius r as input to condition the
video generation process. (Illustration
adapted from [77].)
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C Implementation details

C.1 Coordinate system

We use a spherical coordinate system, where (ϖ, ϱ, r) represents the azimuth angle,
elevation angle, and radial distance respectively. Note that as shown in Figure 9, ϱ is
the elevation angle as measured starting from the XY-plane, which is not the same as
the inclination angle as measured starting from the Z-axis.

C.2 Architecture

Figure 10 describes the model architecture in more detail. It is based on SVD [5],
which in turn is based on Video LDM [6], modified for camera pose conditioning. The
T = 14 CLIP embeddings are fed to the network via multiple spatial (S-Attn) and tem-
poral (T-Attn) cross-attention blocks throughout the network. Separately, the micro-
conditioning mechanism takes place to pass the embeddings of the di!usion timestep,
frame rate, camera transformation, motion bucket value, and conditioning augmenta-
tion strength to the network by summing it together with feature channels at various
residual blocks placed throughout the network, with additional linear projections in-
between to accommodate varying embedding sizes. Concretely, assuming the camera
always looks at the same location in 3D space for simplicity,5 the relative extrinsics
matrix ωE is parameterized and given as (ωϖ,ωϱ,ωr). The angles are subsequently
encoded with Fourier positional encoding before being embedded through an MLP.
Note that the input camera poses are not required to be known – only the desired
relative transformation should be given.

C.3 Data and training

In Kubric-4D, pairs of input and output video clips are always temporally synchro-
nized, but with T = 14 frame indices sampled randomly within the 60 available frames
from the dataset. The original FPS is 24, and since the frame stride is randomly uni-
formly sampled among {1, 2, 3, 4}, the actual FPS when finetuning therefore belongs to
{6, 8, 12, 24}. In ParallelDomain-4D, each scene has 50 frames available at 10 FPS, from
which we randomly subsample clips but only at a frame stride in {1, 2} determined by
a coin flip, which implies an FPS value in {5, 10}.

In Kubric-4D, the camera pose P = (ϖ, ϱ, r) respects the following bounds (both
across time and across input/output) with respect to the spherical coordinate sys-
tem: azimuth angle ϖ1...T → [0

↓
, 360

↓
], elevation angle ϱ1...T → [0

↓
, 50

↓
], radial dis-

tance r1...T → [12, 18].6 The target camera pose transformation for the default model
(max 90°) has a limited maximum transformation “strength” in the sense that from
5 This is (0, 0, 1), i.e. 1m above the center of the ground plane, in Kubric-4D.
6 Since the dataset is synthetic and the radius r does not have an inherent meaning, it is worth

nothing that the average diameter of an object is 1.88m, and that all objects are randomly
spawned within these bounds in Euclidean coordinates: x ↓ [↔7, 7], y ↓ [↔7, 7], z ↓ [0, 7]
(where Z is up).
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Fig. 10: Network architecture. Our model performs di!usion in latent space [35,52]. The
input video is encoded by a KL-VAE, and then channel-concatenated with the noisy sample.
At training time, the output video is estimated and supervised; at inference time, multiple
denoising steps are performed. In both cases, per-frame CLIP embeddings condition the U-
Net by means of cross-attention, and and other relevant pieces of information (frame rate,
desired camera pose transformation, and motion value) condition the U-Net by adding their
embeddings onto the feature vectors in-between convolutions.

start to end, the azimuth, elevation, and radius all vary within the following bounds:
|ωϖ| ≃ 90

↓
, |ωϱ| ≃ 30

↓
, |ωr| ≃ 3. The horizontal field of view is 53.1° everywhere.

For the more extreme view synthesis variant (max 180°), the bounds are: ϖ1...T →
[0

↓
, 360

↓
], ϱ1...T → [0

↓
, 90

↓
], r1...T → [12, 18], |ωϖ| ≃ 180

↓
, |ωϱ| ≃ 60

↓
, |ωr| ≃ 3.

The trajectories are typically uniformly sampled, except for the elevation angle ϱ;
in this case, uniform sampling for the starting point happens in terms of sin ϱ instead of
the angle ϱ directly. This is done in order to ensure an equal spread over (i.e. a uniform
distribution on the surface of) the (relevant subset of the) unit sphere. The input camera
extrinsics Esrc,t is static, and the output camera extrinsics Edst,t interpolates linearly
over time in pose description space, i.e. in spherical coordinates with ϑ =

t

T↑1 .
In ParallelDomain-4D, the source viewpoint is a forward-facing camera mounted

on the virtual ego car at a fixed position of (1.6, 0, 1.55) in 3D world space, where X
points forward and Z points up. For simplicity, the camera pose is not controllable in
the experiments described in our paper – instead, the destination viewpoint is fixed
at (↓8, 0, 8), looking forward and down at (5.6, 0, 1.55). To maximize the temporal
smoothness of the generated video, the camera trajectory is interpolated in Euclidean
space, not linearly but rather according to a sine wave function, i.e. following ϑ =

1↑cos( t
ω(T→1) )

2 , assuming t increases step-wise from 0 to T ↓ 1. The horizontal field of
view is 85° everywhere.

Early on in our experiments, we observed that synchronizing the motion bucket
value, which conditions the model, with the strength of the camera transformation leads
to better performance. Therefore, for Kubric-4D, we linearly scale this value along with
the magnitude of the relative camera rotation (specifically, the L2 norm of (ωϖ,ωϱ))
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where the minimum value corresponds to 0 and the maximum value corresponds to
255. This indication of camera motion hints the model that it should generate a video
with a high degree of optical flow when the relative angles are high and vice versa.

We keep conditioning augmentation [6] enabled with a noise strength of 0.02.

C.4 Loss

We apply a focal L2 loss function between the estimated and ground truth latent feature
maps, which focuses on the top fraction of embeddings incurring the biggest mismatch.
This fraction linearly decreases from 100% to 10% in the first 5000 iterations, and then
remains constant at 10%. In addition, for semantic completion in ParallelDomain-4D,
we weight the categories involving vehicles (i.e. Bus, Car, Caravan/RV, Construction-
Vehicle, Bicycle, Motorcycle, OwnCar, Truck, WheeledSlow) and people (i.e. Animal,
Bicyclist, Motorcyclist, OtherRider, Pedestrian) to be respectively 3↗ and 7↗ as im-
portant as other categories, by multiplying the loss values at the corresponding spatial
positions with the appropriate scaling factor before averaging. We observe that this
strategy tends to reduce false negative prediction rates, especially for visually smaller
objects occupying fewer pixels.

C.5 Evaluation

For each dataset separately, all models and all variants are evaluated on the same test
split. For each scene, we randomly sample a subclip within the available video with
T = 14 frames and a variable frame rate chosen within the same range as during
training time. Then, for Kubric-4D, four di!erent target camera poses (with angles
up to azimuth ±90

↓ for Kubric-4D) are randomly sampled once. To encourage di"cult
input videos with higher than average degrees of occlusion, we set the starting elevation
angle to be always ϱ1 = 5

↓, but all other angles are chosen randomly within the
same ranges as during training. These randomization parameters at test time are only
chosen once and then fixed across all evaluation experiments. We let probabilistic (i.e.
di!usion) models (Ours, Vanilla SVD, ZeroNVS) generate four samples for each of these
trajectories, averaging results, but the other methods (HexPlane, 4D-GS, DynIBaR)
are only executed once for each scene and for each set of output camera angles.

C.6 Baselines

Vanilla SVD [5]. Since Stable Video Di!usion’s last training stage involved finetuning
at a resolution of 1024 ↗ 576, and changing the resolution at test time gives rise to
artefacts, it is probably optimal to evaluate the model at its original resolution. We
center crop and resize all input images and target videos as needed to 1024↗576 when
evaluating this baseline. We keep the motion bucket at its default value of 127.

ZeroNVS [54]. Like Zero-1-to-3 [36], ZeroNVS was trained only on square images of
resolution 256 ↗ 256. Similarly to Vanilla SVD, we center crop and resize all input
and ground truth frames accordingly. Moreover, since ZeroNVS learns a scale-invariant
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Fig. 11: Failure cases. We show inputs and predictions of real-world examples. Since de-
formable objects are not present in our Kubric-4D finetuning set, our model occasionally
struggles with reconstructing their shape, appearance, and motion correctly. This can some-
times lead to objects becoming vague or blending in with each other. Similarly, videos in the
bottom two rows are possibly related to them bordering on being out-of-distribution with
respect to ParallelDomain-4D.

means of transforming camera poses in a way that depends on estimated depth maps,
the translation component of the relative camera extrinsics matrix E↑1

src
· Edst fed to the

model can incur variable meanings with respect to absolute 3D space depending on
the observed scene. A scale parameter is hence tuned visually for each video separately
until the output qualitatively aligns with the ground truth.

D Failure cases

Our model exhibits strong performance in many cases, but also fails to accurately
generalize to some real-world videos, especially those involving humans, animals, or
deformable objects. In Figure 11, we show representative failure cases. In (a), while
the general layout is somewhat preserved, the people themselves become blurry. In (b),
the robot arm gets cut o! when performing view synthesis from the top, presumably
because Kubric-4D does not contain robots or robotic motion patterns. In (c), the
model appears to be confused as to what the initial camera pose is, and interprets it
as a top-down rather than a sideways perspective of an aquarium, which leads to a
roll e!ect when rotating the azimuth. In (d), the highway sign gets missed. In (e), the
overpasses are not reconstructed, which seems to cause blurriness in the rest of the
prediction. In (f), (g), and (h), both shape and dynamics are not well-respected. In
(i), the perceived depth of the large blue truck is wrong. In (j), there are an unusually
large amount of pedestrians crossing the street, which the model groups into “cars”.
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