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WIP: Using Machine Learning to Automate Coding of Student 

Explanations to Challenging Mechanics Concept Questions 
 

Introduction 

This work-in-progress paper describes a collaborative effort between engineering education and 

machine learning researchers to automate analysis of written responses to conceptually 

challenging questions in mechanics. These qualitative questions are often used in large STEM 

classes to support active learning pedagogies; they require minimum calculations and focus on 

the application of underlying physical phenomena to various situations. Active learning 

pedagogies using this type of questions has been demonstrated to increase student achievement 

(Freeman et al., 2014; Hake, 1998) and engagement (Deslauriers, et al., 2011) of all students 

(Haak et al., 2011).  

 

To emphasize reasoning and sense-making, we use the Concept Warehouse (Koretsky et al., 

2014), an audience response system where students provide written justifications to concept 

questions. Written justifications better prepare students for discussions with peers and in the 

whole class and can also improve students’ answer choices (Koretsky et al., 2016a, 2016b). In 

addition to their use as a tool to foster learning, written explanations can also provide valuable 

information to concurrently assess that learning (Koretsky and Magana, 2019). However, in 

practice, there has been limited deployment of written justifications with concept questions, in 

part, because they provide a daunting amount of information for instructors to process and for 

researchers to analyze. 

 

In this study, we describe the initial evaluation of large pre-trained generative sequence-to-

sequence language models (Raffel et al., 2019; Brown et al., 2020) to automate the laborious 

coding process of student written responses. Adaptation of machine learning algorithms in this 

context is challenging since each question targets specific concepts which elicit their own unique 

reasoning processes. This exploratory project seeks to utilize responses collected through the 

Concept Warehouse to identify viable strategies for adapting machine learning to support 

instructors and researchers in identifying salient aspects of student thinking and understanding 

with these conceptually challenging questions. 

 

Machine Learning of Constructed Responses  

Machine learning has been leveraged in a number of educational applications (Zhai et al., 2020b, 

Zhai et al., 2021a, Burstein et al., 2020, Burstein et al., 2021), including analyzing constructed 

responses (short text) and essays (long text), diagnostic reasoning (Schulz et al., 2019), and 

studying learning processes through simulation and educational games (Zhai et al 2020b). In 

supervised learning, the machine learning model is trained using a training set (coded data) and 

is evaluated on a test set (uncoded data).  SVM, Naive-Bayes, Random Forest and Logistic 

Regression have been most commonly used for constructed-response assessments in STEM 

(Zhai et al., 2021, Zhai  et al., 2020a, Mao et al, 2018, Yik et al, 2021, Jescovitch et al., 2021, 

Rosenberg, 2021). Many studies also applied ensemble techniques like bagging, boosting on 

various text classification machine learning models to study student responses (Bertolini et al., 

2021, Zhai et al., 2020a). Several studies have also used neural network models (Jiang et al., 

2020; Luan et al., 2021; Rosenberg, 2021). However, to our knowledge, only a few studies for 



educational applications in general have leveraged Transformer-based machine learning models 

(Vaswani et al., 2017, Devlin et al., 2018, Raffel et al., 2019, Brown et al., 2020). And none of 

the work used these models for assessing constructed responses of STEM students.  

 

Transformer models, the current state of the art in natural language processing (NLP), are 

attention-based multi-layer neural networks pre-trained on large amounts of free text. The pre-

training process uses a language modeling objective, i.e. the model is asked to predict a word or 

token, given other words in contexts. Such models are then fine-tuned on specific language tasks, 

or are used out of the box for in-context learning, where the model is queried with a prompt and 

asked to generate some text along with its interpretation. These models typically use a large 

amount of trainable parameters, ranging between a hundred million and a hundred billion, with 

larger models capable of more sophisticated prompted in-context learning.   

 

While earlier studies required two to ten human coders to annotate 50 to 1000 samples of the 

data (Haudek et al., 2021, Mao et al., 2018, Jescovitch et al., 2021, Maestrales et al., 2021), the 

current state-of-the-art NLP models that leverage transfer learning can require substantially 

fewer annotated samples for fine-tuning and only a few annotated examples for in-context 

learning. In the present work, we leverage these capabilities and investigate the amount of 

annotated data needed to automatically analyze students’ constructive responses of complex 

conceptual questions. 

 

Methods 

Context and setting 

This study occurs in the context of a larger investigation which studies the propagation of the 

Concept Warehouse to mechanics courses in a diverse set of two- and four- year institutions 

(Koretsky et al., 2019; Nolen & Koretsky, 2020). Such service-oriented mechanics courses build 

foundational skills for upper-level engineering courses and develop students’ problem-solving 

capabilities. The participants were consenting students from statics courses at different 

institutions. The instructors used the Concept Warehouse as part of their active learning course 

delivery. Eight questions were delivered by the participating instructors in Fall 2021. All 

questions are single correct-choice, qualitative conceptually challenging problems with little to 

no calculation involved. They all test the application of critical statics concepts to physical 

systems.  The incorrect multiple-choice responses (distractors) are all conceptually significant, 

providing students the opportunity to carefully reason through the questions. The range correct 

from the eight questions (31% - 58.6%) indicates these questions are conceptually challenging 

for students. Thus, the associated written explanations are good candidates for machine learning 

analysis to reveal student reasoning.  

 

Qualitative analysis 

For the preliminary analysis reported here, one question, CW5703 - shown in Figure 1, was used 

for initial manual coding and machine learning coding. Using a combination of a priori and 

emergent approaches described in Creswell & Poth (2018), a coding scheme was developed to 

classify elements of student explanations and provide categories to train the machine learning 

algorithms. These elements were used to construct narratives of students’ reasoning processes 

particular to each question or isomorphic question pair. The final code categories for question 

CW5703 are shown in Appendix A.1 



 

 
Figure 1.  Student view of a sample statics concept question (CW5703) used in this study. 

Students need to select an answer choice and justify their choice in writing.  

 

Machine Learning 

The machine learning task was formulated as a sequence labeling problem where the source is a 

student written explanation and the target is the human-coded response. INCEpTION (Klie et al., 

2018) was used to translate manual coding to test spans in a tsv format for use in algorithm 

training. Transfer learning via fine-tuning and in-context learning techniques were used to 

respond to a prompt containing coding examples. Initial experimentation was carried out using 

Text-to-Text Transformer (T5) (Raffel et al., 2019) with fine-tuning employing Huggingface’s 

transformer library and GPT3 (Brown et al., 2020) with in-context learning utilizing OpenAI 

GPT3 API. Experiments with T5 followed a prompt format from Raffel et al. (2019) with 

alterations that include an instruction sentence and prompt keywords. Examples of the 

instruction sentence and prompt keywords are shown in Appendix A2.1. In T5, every text 

processing task is reformatted as a text-to-text problem i.e. taking in a text as input and 

producing a new text as output. In our preliminary study, we reformatted our task into a text-to-

text format and fine-tuned T5-base (220M parameters) and T5-large (770M parameters) with 20 

to 240 human coded responses.  



 

Experimentation with GPT-3 followed prompt instruction from Brown et al. (2020) and does not 

include fine-turning. It involved the use of the GPT3-davinci-instruct (175 billion parameters) 

model which is the biggest model available that also works best with these kinds of instruction 

prompts. Two formats were used to support in-context learning and annotate several answers at 

once. The first format utilized an individual response and its annotation and the second format 

used group responses and group annotations. Examples of the prompt keywords are shown in 

Appendix A2.2. 

 

Preliminary Results 

After iteratively refining manual coding of student explanations, a narrative of students’ 

reasoning processes was created that led to categorization according to three main, sequential 

cognitive processes: identification, comparison, and inference. Table A1 in Appendix A.1 shows 

the three processes, the 11 code categories that resulted, and some common language used to 

describe these concepts. Once all hand-coded spans were translated via INCEpTION, the 

machine learning models were run for both a training set and testing set. An example from the 

test set is shown in Table 1, with the results from various models. For this case, the models 

shown in Table 1 all identified the first two codes correctly, while the last two codes were only 

correctly identified by the T5 base models.  

 

Table 1:  Example of human-coded example (ground truth) with outputs from 3 out of 8 machine 

learning models run in initial experimentation. All codes are in red. 
ground truth gpt3-davinci-instruct ft_large_ft_150 t5_base_ft_200 

Max static friction is 14 N 

<Identification> <Static 

Friction Initial> so the box 

remains at rest <Inference> 

<Box Movement>. It will 

perfectly match the force of 

10N <Inference> 

<Newton's Laws> 

Max static friction is 14 N 

<Identification><Static 

Friction Initial>, so the box 

remains at rest 

<Inference><Box 

Movement>. It will 

perfectly match the force of 

10N <Comparison><Static 

Friction to Applied Force>. 

Max static friction is 14 N 

Identification> Static 

Friction Initial> so the box 

remains at rest. Inference> 

Box Movement> It will 

perfectly match the force of 

10N. Inference> Newton's 

Laws> 

Max static friction is 14 N 

Identification> Static 

Friction Initial> so the box 

remains at rest. Inference> 

Box Movement> It will 

perfectly match the force of 

10N. Inference> Newton's 

Laws> 

 

Overall, 290 responses were manually coded. To investigate which model performed the best, we 

evaluated model outputs for 50 held-out responses in comparison to the human-coded “ground 

truth.” Table 2 shows results obtained with T5 and GPT3.  We report precision, recall and F1 

score for model-generated outputs. Precision is the percentage of correct model-generated codes, 

relative to the total number of model-generated codes. Recall is the percentage of human codes 

which the model was able to generate correctly. The F1 score is the harmonic mean of precision 

and recall. Ground truth is comprised of 175 human-assigned codes with 50 codes held-out for 

evaluation. T5-large fine-tuned on 150 samples performed best, with an F1 score of 0.73. T5-

base fine-tuned on 240 codes had recall comparable to T5-large and second best F1 score, but 

had low precision. To gain further insight into the successes and failures of each model, we 

manually analyzed model-generated codes that did not match ground truth to determine what 

percentage of these codes in fact made sense.  The breakdown between reasonable and 

meaningless model-generated codes is shown in columns 7 (“Misses but makes sense”) and 8 

(“Does not make sense”) in Table 2. While GPT3 did not match as many ground truth responses 

as t5-large, in many cases, it generated meaningful responses. In fact, responses generated by 



GPT3 turned out to be more creative and generated some new codes which were not present in 

the in-context examples, while T5 generated codes very similar or close to that of the fine-tuning 

dataset. Note that GPT3 also over-generated annotations, which explains the negative number of 

missed codes in the last column (“Codes missed’). 

 

Table 2:  Comparison of ground truth and model-generated responses. Best result is in bold. 
Model Correct 

codes 
Total 

codes 
Precision  Recall F1 Misses but 

makes sense 
Does not 

make sense 
Codes 

missed 
Ground truth 175        
t5-base-f20 0 0 0 0 0 0 0 175 
t5-base-f50 40 49 0.82 0.23 0.36 2 7 126 
t5-base-f100 60 90 0.67 0.34 0.45 14 16 85 
t5-base-f150 80 92 0.87 0.46 0.60 7 5 83 
t5-base-f200 93 126 0.74 0.54 0.62 19 14 49 
t5-base-f240 105 133 0.79 0.60 0.68 14 14 42 
t5-large-f150 107 118 0.91 0.61 0.73 6 5 57 
gpt3-davinci-

Instruct 
89 189 0.47 0.51 0.49 52 48 -14 

*We use t5-base-fXXX to indicate that t5-base was fine-tuned with XXX examples. 

 

Implications 

Our work shows promise for further application of machine learning in education. We seek to 

further characterize the feasibility of integrating machine learning tools into the Concept 

Warehouse to support instruction and research and to address the challenges faced during these 

preliminary experiments. Some of these goals include fine-tuning minimum data size, testing the 

ability to transfer to isomorphic questions, determining accuracy ranges of machine learning, and 

developing an automatic evaluation method for machine coded responses.  

 

We envision that for instructors, such machine learning algorithms can enable processing of 

large amounts of data regarding student explanations to provide information on patterns, trends, 

and general ideas of student thinking that they could utilize in their instructional practices and 

pedagogical decision-making processes. For educational researchers, the machine learning 

algorithms could provide ways to determine the narrative of understanding students have in 

various institutional contexts at a scale not feasible with manual coding.  
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Appendix A: Manual and Machine Learning Coding Processes 

 

A.1 Manual Coding 

After several iterations of qualitative coding, the final reasoning categories and codes were 

developed. Table A1 also describes the definitions of these codes as well as some examples of 

common language students use to describe their reasoning.  

 

Table A1. Final list of categories and conceptual codes for CW5703. 
Reasoning 

Category Code Code Definition Common Language 

Identification 

Friction (General) 

student describes what it is qualitatively 

or quantitatively 

- Maximum Static Friction 

- Kinetic Friction 

- Normal Force (N) 

- Formulae: μ_kN ,μ_sN , etc. 
- Force 

- Friction 

Initial Assumptions 

Miscellaneous 

any other assumptions identified by the 

student in the beginning 

Kinetic Friction 

Initial 

student describes what it is qualitatively 

or quantitatively 

Normal Force 

student describes what it is qualitatively 

or quantitatively 

Static Friction Initial 

student describes what it is qualitatively 

or quantitatively 

Comparison 

Compare Kinetic 

Friction Force to 

Applied Friction 

Force 

Student makes clear that they take the 

concept of kinetic frictional force and 

compare it to the applied force. 

- force applied is 

less/more/higher/lower 

- force has not broken the 

static friction barrier 

- P is not large enough to 

overcome 

- P is less than the maximum 

force of static friction 

- maximum static friction 

force is larger/higher than 10 

N/P 

Compare Static 

Friction Force to 

Applied Friction 

Force 

Student makes clear that they take the 

concept of static frictional force and 

compare it to the applied force. 

Solve for Own 

Coefficient of 

Friction 

Student uses a coefficient they calculate 

and use the parameter for comparison 

Inference 
Box Movement 

Student explicitly states what will or will 

not happen to the box. 

- the block is not in motion 

- the block won't slide 

- push back the same amount 

- the frictional force is only 

10 N 

- equal and opposite 

- friction force and P must be 

equal 

- maintain static equilibrium 
Application of 

Newton's Laws 

Student either quantifies the force on the 

box as 10 N or mentions the concepts of 

“static equilibrium” and needing the 

push/pull forces to be equal 

 Uncertainty   

 

 

  



A.2 Machine Learning 

A.2.1 T5 Instruction Format and Prompts 

The T5 model was used to support machine learning via fine-tuning and in-context learning. We 

largely used the input prompt formats described by Raffel et al. (2019). However, some 

alterations were made to better fit the nature of the student explanations. This included adding 

instruction keywords and prompt keywords to better have the model understand the task.  This 

input format is shown below with the added source prompts in blue and manual coding in red. 

 

Source : “Given the question, annotate the answer. question: Force P = 10 N is applied to the 

block of mass m = 5 kg on a horizontal rough surface with μs = 0.3 and μk = 0.25. If g = 9.81 
m/s2, what is the force of friction on the block?. answer: The maximum force of static friction 

(.3*5*9.81) is larger than the applied force in the x direction. This means that the force of static 
friction will be equal and opposite to the applied forces x component.” 

Target : “The maximum force of static friction ( .3 * 5 * 9.81 ) <Identification> <Static Friction 
Initial> is larger than the applied force in the x direction . <Comparison> <Static Friction to 
Applied Force> force of static friction will be equal and opposite to the applied forces x 

component . <Inference> <Newton's Laws>” 

 

A.2.2 GPT-3 Instruction Format and Prompts 

 

Inputs for the GPT-3 analysis were done in a different manner than T5. This was done to support 

both individual and group analysis of the text. The prompt and inputs to the algorithm are 

modeled below with instruction in purple, individual format in orange, and group format in 

blue. The prompt included four examples in individual format and four in group format.  

 

“Instructions: Given the question and answers, annotate the span of the answers. The 

annotation should be wrapped within <> brackets .  Each sentence can have a maximum of 3 

annotations. Question: Force P = 10 N is applied to the block of mass m = 5 kg on a horizontal 

rough surface with μs = 0.3 and μk = 0.25. If g = 9.81 m/s2, what is the force of friction on the 
block?. 

### 

Individual 
Answer: Because friction is only as much as is needed to keep the box at rest when using static 

friction. 

Annotation : Because friction is only as much <Inference><Newton's Laws>, is needed to keep 
the box at rest <Inference><Box Movement>, when using static friction <Identification><Static 
Friction Initial>. 
### 

…. 

### 

Group 

Answer Text 

1.Answer: Newton's third law states that for every action, there is a reaction. In this case, a force 
of 14.7N is required to overcome static fricition which it doesn't because there is only a 10N 

force acting on it. So there is another 10N frictional force reacting to the force P. 

2.Answer:  Fs max would be 14.715 N (0.3*9.81*5), which is greater than the applied force. 



Therefore, the box will remain at rest, and the friction force would be equal to the applied force. 

…. 

Annotations 

1.Annotation: Newton's third law states that for every action , there is a reaction . <Inference> 
<Box Movement> a force of 14.7N <Identification> <Static Friction Initial> is required to 
overcome static fricition which it doesn't because there is only a 10N force acting on it . 
<Comparison> <Static Friction to Applied Force> So there is another 10N frictional force 
reacting to the force P <Comparison> <Static Friction to Applied Force>. 

2.Annotation: Fs max would be 14.715 N ( 0.3 * 9.81 * 5 ) <Identification> <Static Friction 
Initial> which is greater than the applied force . <Comparison> <Static Friction to Applied 
Force> the box will remain at rest <Inference> <Box Movement> the friction force. 

… 

 


