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WIP: Using Machine Learning to Automate Coding of Student
Explanations to Challenging Mechanics Concept Questions

Introduction

This work-in-progress paper describes a collaborative effort between engineering education and
machine learning researchers to automate analysis of written responses to conceptually
challenging questions in mechanics. These qualitative questions are often used in large STEM
classes to support active learning pedagogies; they require minimum calculations and focus on
the application of underlying physical phenomena to various situations. Active learning
pedagogies using this type of questions has been demonstrated to increase student achievement
(Freeman et al., 2014; Hake, 1998) and engagement (Deslauriers, et al., 2011) of all students
(Haak et al., 2011).

To emphasize reasoning and sense-making, we use the Concept Warehouse (Koretsky et al.,
2014), an audience response system where students provide written justifications to concept
questions. Written justifications better prepare students for discussions with peers and in the
whole class and can also improve students’ answer choices (Koretsky et al., 2016a, 2016b). In
addition to their use as a tool to foster learning, written explanations can also provide valuable
information to concurrently assess that learning (Koretsky and Magana, 2019). However, in
practice, there has been limited deployment of written justifications with concept questions, in
part, because they provide a daunting amount of information for instructors to process and for
researchers to analyze.

In this study, we describe the initial evaluation of large pre-trained generative sequence-to-
sequence language models (Raffel et al., 2019; Brown et al., 2020) to automate the laborious
coding process of student written responses. Adaptation of machine learning algorithms in this
context is challenging since each question targets specific concepts which elicit their own unique
reasoning processes. This exploratory project seeks to utilize responses collected through the
Concept Warehouse to identify viable strategies for adapting machine learning to support
instructors and researchers in identifying salient aspects of student thinking and understanding
with these conceptually challenging questions.

Machine Learning of Constructed Responses

Machine learning has been leveraged in a number of educational applications (Zhai et al., 2020b,
Zhai et al., 2021a, Burstein et al., 2020, Burstein et al., 2021), including analyzing constructed
responses (short text) and essays (long text), diagnostic reasoning (Schulz et al., 2019), and
studying learning processes through simulation and educational games (Zhai et al 2020b). In
supervised learning, the machine learning model is trained using a training set (coded data) and
is evaluated on a test set (uncoded data). SVM, Naive-Bayes, Random Forest and Logistic
Regression have been most commonly used for constructed-response assessments in STEM
(Zhai et al., 2021, Zhai et al., 2020a, Mao et al, 2018, Yik et al, 2021, Jescovitch et al., 2021,
Rosenberg, 2021). Many studies also applied ensemble techniques like bagging, boosting on
various text classification machine learning models to study student responses (Bertolini et al.,
2021, Zhai et al., 2020a). Several studies have also used neural network models (Jiang et al.,
2020; Luan et al., 2021; Rosenberg, 2021). However, to our knowledge, only a few studies for



educational applications in general have leveraged Transformer-based machine learning models
(Vaswani et al., 2017, Devlin et al., 2018, Raffel et al., 2019, Brown et al., 2020). And none of
the work used these models for assessing constructed responses of STEM students.

Transformer models, the current state of the art in natural language processing (NLP), are
attention-based multi-layer neural networks pre-trained on large amounts of free text. The pre-
training process uses a language modeling objective, i.e. the model is asked to predict a word or
token, given other words in contexts. Such models are then fine-tuned on specific language tasks,
or are used out of the box for in-context learning, where the model is queried with a prompt and
asked to generate some text along with its interpretation. These models typically use a large
amount of trainable parameters, ranging between a hundred million and a hundred billion, with
larger models capable of more sophisticated prompted in-context learning.

While earlier studies required two to ten human coders to annotate 50 to 1000 samples of the
data (Haudek et al., 2021, Mao et al., 2018, Jescovitch et al., 2021, Maestrales et al., 2021), the
current state-of-the-art NLP models that leverage transfer learning can require substantially
fewer annotated samples for fine-tuning and only a few annotated examples for in-context
learning. In the present work, we leverage these capabilities and investigate the amount of
annotated data needed to automatically analyze students’ constructive responses of complex
conceptual questions.

Methods

Context and setting

This study occurs in the context of a larger investigation which studies the propagation of the
Concept Warehouse to mechanics courses in a diverse set of two- and four- year institutions
(Koretsky et al., 2019; Nolen & Koretsky, 2020). Such service-oriented mechanics courses build
foundational skills for upper-level engineering courses and develop students’ problem-solving
capabilities. The participants were consenting students from statics courses at different
institutions. The instructors used the Concept Warehouse as part of their active learning course
delivery. Eight questions were delivered by the participating instructors in Fall 2021. All
questions are single correct-choice, qualitative conceptually challenging problems with little to
no calculation involved. They all test the application of critical statics concepts to physical
systems. The incorrect multiple-choice responses (distractors) are all conceptually significant,
providing students the opportunity to carefully reason through the questions. The range correct
from the eight questions (31% - 58.6%) indicates these questions are conceptually challenging
for students. Thus, the associated written explanations are good candidates for machine learning
analysis to reveal student reasoning.

Qualitative analysis

For the preliminary analysis reported here, one question, CW5703 - shown in Figure 1, was used
for initial manual coding and machine learning coding. Using a combination of a priori and
emergent approaches described in Creswell & Poth (2018), a coding scheme was developed to
classify elements of student explanations and provide categories to train the machine learning
algorithms. These elements were used to construct narratives of students’ reasoning processes
particular to each question or isomorphic question pair. The final code categories for question
CW5703 are shown in Appendix A.1



Force P = 10 N is applied to the block of mass m=5 kg on a horizontal rough surface with f£s. = 0.3 and Mk = 0.25.

If g= 9.81 m/s? , what is the force of friction on the block?
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Figure 1. Student view of a sample statics concept question (CW5703) used in this study.
Students need to select an answer choice and justify their choice in writing.

Machine Learning

The machine learning task was formulated as a sequence labeling problem where the source is a
student written explanation and the target is the human-coded response. INCEpTION (Klie et al.,
2018) was used to translate manual coding to test spans in a tsv format for use in algorithm
training. Transfer learning via fine-tuning and in-context learning techniques were used to
respond to a prompt containing coding examples. Initial experimentation was carried out using
Text-to-Text Transformer (T5) (Raffel et al., 2019) with fine-tuning employing Huggingface’s
transformer library and GPT3 (Brown et al., 2020) with in-context learning utilizing OpenAl
GPT3 API. Experiments with T5 followed a prompt format from Raffel et al. (2019) with
alterations that include an instruction sentence and prompt keywords. Examples of the
instruction sentence and prompt keywords are shown in Appendix A2.1. In TS, every text
processing task is reformatted as a text-to-text problem i.e. taking in a text as input and
producing a new text as output. In our preliminary study, we reformatted our task into a text-to-
text format and fine-tuned T5-base (220M parameters) and T5-large (770M parameters) with 20
to 240 human coded responses.



Experimentation with GPT-3 followed prompt instruction from Brown et al. (2020) and does not
include fine-turning. It involved the use of the GPT3-davinci-instruct (175 billion parameters)
model which is the biggest model available that also works best with these kinds of instruction
prompts. Two formats were used to support in-context learning and annotate several answers at
once. The first format utilized an individual response and its annotation and the second format
used group responses and group annotations. Examples of the prompt keywords are shown in
Appendix A2.2.

Preliminary Results

After iteratively refining manual coding of student explanations, a narrative of students’
reasoning processes was created that led to categorization according to three main, sequential
cognitive processes: identification, comparison, and inference. Table Al in Appendix A.1 shows
the three processes, the 11 code categories that resulted, and some common language used to
describe these concepts. Once all hand-coded spans were translated via INCEpTION, the
machine learning models were run for both a training set and testing set. An example from the
test set is shown in Table 1, with the results from various models. For this case, the models
shown in Table 1 all identified the first two codes correctly, while the last two codes were only
correctly identified by the T5 base models.

Table 1: Example of human-coded example (ground truth) with outputs from 3 out of 8 machine
learning models run in initial experimentation. All codes are in red.

ground truth | gpt3-davinci-instruct | ft_large ft 150 tS_base_ft 200
Max static friction is 14 N Max static friction is 14 N Max static friction is 14 N Max static friction is 14 N
<Identification> <Static <Identification><Static Identification> Static Identification> Static
Friction Initial> so the box Friction Initial>, so the box Friction Initial> so the box Friction Initial> so the box
remains at rest <Inference> remains at rest remains at rest. Inference> remains at rest. Inference>
<Box Movement>. It will  <Inference><Box Box Movement> It will Box Movement> It will
perfectly match the force of Movement>. It will perfectly match the force of perfectly match the force of
10N <Inference> perfectly match the force of 10N. Inference> Newton's  10N. Inference> Newton's
<Newton's Laws> 10N <Comparison><Static ' Laws> Laws>

Friction to Applied Force>.

Overall, 290 responses were manually coded. To investigate which model performed the best, we
evaluated model outputs for 50 held-out responses in comparison to the human-coded “ground
truth.” Table 2 shows results obtained with TS and GPT3. We report precision, recall and F1
score for model-generated outputs. Precision is the percentage of correct model-generated codes,
relative to the total number of model-generated codes. Recall is the percentage of human codes
which the model was able to generate correctly. The F1 score is the harmonic mean of precision
and recall. Ground truth is comprised of 175 human-assigned codes with 50 codes held-out for
evaluation. T5-large fine-tuned on 150 samples performed best, with an F1 score of 0.73. T5-
base fine-tuned on 240 codes had recall comparable to T5-large and second best F1 score, but
had low precision. To gain further insight into the successes and failures of each model, we
manually analyzed model-generated codes that did not match ground truth to determine what
percentage of these codes in fact made sense. The breakdown between reasonable and
meaningless model-generated codes is shown in columns 7 (“Misses but makes sense”) and 8
(“Does not make sense”) in Table 2. While GPT3 did not match as many ground truth responses
as t5-large, in many cases, it generated meaningful responses. In fact, responses generated by



GPT3 turned out to be more creative and generated some new codes which were not present in
the in-context examples, while TS5 generated codes very similar or close to that of the fine-tuning
dataset. Note that GPT3 also over-generated annotations, which explains the negative number of
missed codes in the last column (“Codes missed’).

Table 2: Comparison of ground truth and model-generated responses. Best result is in bold.

Model Correct | Total Precision | Recall | F1 Misses but Does not Codes
codes codes makes sense | make sense | missed
Ground truth 175
t5-base-f20 0 0 0 0 0 0 0 175
t5-base-f50 40 49 0.82 0.23 | 0.36 2 7 126
t5-base-f100 60 90 0.67 0.34 | 045 14 16 85
t5-base-f150 80 92 0.87 046 | 0.60 7 5 83
t5-base-f200 93 126 0.74 0.54 | 0.62 19 14 49
t5-base-240 105 133 0.79 0.60 | 0.68 14 14 42
t5-large-f150 107 118 0.91 0.61 | 0.73 6 5 57
gpt3-davinci- 89 189 0.47 0.51 | 0.49 52 48 -14
Instruct

*We use t5-base-fXXX to indicate that t5-base was fine-tuned with XXX examples.

Implications

Our work shows promise for further application of machine learning in education. We seek to
further characterize the feasibility of integrating machine learning tools into the Concept
Warehouse to support instruction and research and to address the challenges faced during these
preliminary experiments. Some of these goals include fine-tuning minimum data size, testing the
ability to transfer to isomorphic questions, determining accuracy ranges of machine learning, and
developing an automatic evaluation method for machine coded responses.

We envision that for instructors, such machine learning algorithms can enable processing of
large amounts of data regarding student explanations to provide information on patterns, trends,
and general ideas of student thinking that they could utilize in their instructional practices and
pedagogical decision-making processes. For educational researchers, the machine learning
algorithms could provide ways to determine the narrative of understanding students have in
various institutional contexts at a scale not feasible with manual coding.
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Appendix A: Manual and Machine Learning Coding Processes

A.1 Manual Coding

After several iterations of qualitative coding, the final reasoning categories and codes were
developed. Table A1 also describes the definitions of these codes as well as some examples of
common language students use to describe their reasoning.

Table Al. Final list of categories and conceptual codes for CW5703.

Reasoning
Category Code

Friction (General)

Initial Assumptions
Miscellaneous

Kinetic Friction

Identification Initial

Normal Force

Static Friction Initial

Compare Kinetic

Friction Force to

Applied Friction
Force

Compare Static
Friction Force to
Applied Friction

Force

Comparison

Solve for Own
Coefficient of
Friction

Box Movement
Inference

Application of
Newton's Laws

Uncertainty

Code Definition

student describes what it is qualitatively
or quantitatively

any other assumptions identified by the
student in the beginning

student describes what it is qualitatively
or quantitatively

student describes what it is qualitatively
or quantitatively

student describes what it is qualitatively
or quantitatively

Student makes clear that they take the
concept of kinetic frictional force and
compare it to the applied force.

Student makes clear that they take the
concept of static frictional force and
compare it to the applied force.

Student uses a coefficient they calculate
and use the parameter for comparison

Student explicitly states what will or will
not happen to the box.

Student either quantifies the force on the
box as 10 N or mentions the concepts of
“static equilibrium” and needing the
push/pull forces to be equal

Common Language

- Maximum Static Friction

- Kinetic Friction

- Normal Force (N)

- Formulae: p kN ,u sN, etc.
- Force

- Friction

- force applied is
less/more/higher/lower

- force has not broken the
static friction barrier

- P is not large enough to
overcome

- P is less than the maximum
force of static friction

- maximum static friction
force is larger/higher than 10
N/P

- the block is not in motion

- the block won't slide

- push back the same amount
- the frictional force is only
10N

- equal and opposite

- friction force and P must be
equal

- maintain static equilibrium



A.2 Machine Learning

A.2.1 TS Instruction Format and Prompts

The T5 model was used to support machine learning via fine-tuning and in-context learning. We
largely used the input prompt formats described by Raffel et al. (2019). However, some
alterations were made to better fit the nature of the student explanations. This included adding
instruction keywords and prompt keywords to better have the model understand the task. This
input format is shown below with the added source prompts in blue and manual coding in red.

Source : “Given the question, annotate the answer. question: Force P = 10 N is applied to the
block of mass m = 5 kg on a horizontal rough surface with us = 0.3 and uk = 0.25. If g = 9.81
m/s2, what is the force of friction on the block?. answer: The maximum force of static friction
(.3*5%*9.81) is larger than the applied force in the x direction. This means that the force of static
friction will be equal and opposite to the applied forces x component.”

Target : “The maximum force of static friction (.3 *5 * 9.81 ) <Identification> <Static Friction
Initial> is larger than the applied force in the x direction . <Comparison> <Static Friction to
Applied Force> force of static friction will be equal and opposite to the applied forces x
component . <Inference> <Newton's Laws>"

A.2.2 GPT-3 Instruction Format and Prompts

Inputs for the GPT-3 analysis were done in a different manner than T5. This was done to support
both individual and group analysis of the text. The prompt and inputs to the algorithm are
modeled below with instruction in purple, individual format in , and group format in
blue. The prompt included four examples in individual format and four in group format.

“Instructions: Given the question and answers, annotate the span of the answers. The
annotation should be wrapped within <> brackets . Each sentence can have a maximum of 3
annotations. Question: Force P = 10 N is applied to the block of mass m = 5 kg on a horizontal
rough surface with us = 0.3 and uk = 0.25. If g = 9.81 m/s2, what is the force of friction on the
block?.

HitH

Individual

HitH

HitH

Group

Answer Text

1. Answer: Newton's third law states that for every action, there is a reaction. In this case, a force
of 14.7N is required to overcome static fricition which it doesn't because there is only a 10N

force acting on it. So there is another 10N frictional force reacting to the force P.
2. Answer: Fs max would be 14.715 N (0.3*%9.81%*5), which is greater than the applied force.



Therefore, the box will remain at rest, and the friction force would be equal to the applied force.

Annotations

1.Annotation: Newton's third law states that for every action , there is a reaction . <Inference>
<Box Movement> a force of 14.7N <Identification> <Static Friction Initial> is required to
overcome static fricition which it doesn't because there is only a 10N force acting on it .
<Comparison> <Static Friction to Applied Force> So there is another 10N frictional force
reacting to the force P <Comparison> <Static Friction to Applied Force>.

2.Annotation: Fs max would be 14.715 N (0.3 * 9.81 * 5 ) <Identification> <Static Friction
Initial> which is greater than the applied force . <Comparison> <Static Friction to Applied
Force> the box will remain at rest <Inference> <Box Movement> the friction force.



