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Abstract

In clinical operations, teamwork can be the cru-
cial factor that determines the final outcome.
Prior studies have shown that sufficient col-
laboration is the key factor that determines
the outcome of an operation. To understand
how the team practices teamwork during the
operation, we collected CliniDial from simu-
lations of medical operations. CliniDial in-
cludes the audio data and its transcriptions,
the simulated physiology signals of the patient
manikins, and how the team operates from two
camera angles. We annotate behavior codes
following an existing framework to understand
the teamwork process for CliniDial. We pin-
point three main characteristics of our dataset,
including its label imbalances, rich and natu-
ral interactions, and multiple modalities, and
conduct experiments to test existing LLMs’ ca-
pabilities on handling data with these charac-
teristics. Experimental results show that Clini-
Dial poses significant challenges to the existing
models, inviting future effort on developing
methods that can deal with real-world clinical
data. We open-source the codebase at https:
//github.com/MichiganNLP/CliniDial."

1 Introduction

In clinical settings, teamwork is crucial for a suc-
cessful operation, and effective team collaboration
can improve the safety and well-being of the pa-
tients (Catchpole et al., 2008; Weaver et al., 2010;
Schmutz et al., 2019; Rosen et al., 2018). Failures
in teamwork and communication among healthcare
providers are a major contributing factor to the es-
timated 250,000 preventable deaths that occur in
the U.S. each year (Rosen et al., 2018; Makary and
Daniel, 2016). Breakdowns in areas like leadership,
situation awareness, decision-making and commu-
nication frequently underlie the many forms of
“Both senior authors contributed equally to this work.

"Due to ethical considerations, the text data and video
representations will be provided upon reasonable requests.

preventable patient harm, including hospital infec-
tions, falls, diagnostic errors and surgical mistakes
(Baker et al., 2005; Herzberg et al., 2019; Keers
et al., 2013). There can be 58% more deaths than
expected due to insufficient collaboration (Knaus
et al., 1986). Motivated by these statistics, in this
paper we model the communication between team
members as well as the data in the operation room
to detect the effective steps and interactions needed
for a successful procedure.

To understand how teamwork unfolds in the op-
erating room, we collected CliniDial from simula-
tions of medical operations. We collected the audio
data, simulated physical signals from the patient
manikins, as well as how the team operates from
two camera angles. We then annotated behavior
codes based on a team reflection behavior frame-
work (Schmutz et al., 2021) to understand how the
team members convey their objectives, strategies,
and actions during the operation. We provide initial
analysis of our dataset, and lay out potential direc-
tions in using our dataset. We hope researchers
can leverage our dataset creatively, and propose
methods to handle real-world clinical data.

In this paper, we pinpoint three main character-
istics of CliniDial, including its label imbalances,
rich and natural interactions, and multiple modal-
ities. Corresponding to each feature, we design
sets of experiments to investigate existing methods’
ability to deal with such data, including the Large
Language Models (LLMs) from GPT families and
the open-source Llama families. Experimental re-
sults show that CliniDial poses significant chal-
lenges to these methods. In addition, we invite
input from medical professionals to try to bridge
the current NLP fields with the real-world applica-
tions they expect (Appendix F).

In summary, our contributions are two folds:

1. We present CliniDial, a naturally emerged multi-
modal dialogue dataset for team reflection during
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Figure 1: An example of the labeled dialogue in the simulated operation. Two cameras capture the scenes from
two angles and two real-time monitoring systems provide the patient’s physiological signals. We only include the
trainee and the two supports in this example, as they are the only three people speaking during this time frame.

clinical operation.

2. We evaluate our dataset against various exist-
ing methods with different setups and provide
an analysis of their results. Our experimental
results reveal that our dataset poses significant
challenges to existing methods, urging method-
ology innovation in our NLP community.

2 How is CliniDial Different?

Our real-world setting distinguishes CliniDial from
existing datasets in various aspects. First, there are
significant label imbalances in the collected data.
Such label imbalances are less common in conven-
tional NLP datasets where researchers have some
levels of control over the data distribution by data
filtering or downsampling. However, since our dia-
logues occur naturally in the operation room, the
interlocutors are not tasked to generate dialogues
but rather to perform the clinical operation and take
care of the “patient” as a team. We do not pose any
constraints on how the team communicate, and we
observe that the amount of majority class labels sig-
nificantly outmatches the minority class labels. Sec-
ond, there are rich and natural interactions be-
tween the team members. Compared to the conven-
tional dialogue benchmarks (Budzianowski et al.,
2018) which typically contain 30 turns at most, the
dialogue in our collected dataset contains 311 turns
on average. Third, there are rich modalities in the
collected data. Compared to the conventional NLP
datasets with text modality (Chen et al., 2021) or
the conventional multimodal datasets which focus
on vision and text modalities (Tapaswi et al., 2016;

Lei et al., 2018; Castro et al., 2022), the data we
collect includes not only the dialogue, but also the
corresponding audio, the operation views from two
camera angles, and the physiological signals from
the “patient” aligned for each timestamp.

3 CliniDial Dataset

3.1 Data Descriptions

Scenarios. A team of board certified anesthesiol-
ogists together with support staff is tasked with the
intraoperative management of a 36-year-old female
who is undergoing a minimally invasive surgery
*. This scenario takes place in a simulated oper-
ating room where we present a mannequin as the
female patient and simulate her physiological sig-
nal changes from the backend. Specifically, the
patient develops malignant hyperthermia (MH; a
rare complication of general anesthesia that could
develop in any patient) as the simulated scenario
progresses. Many healthcare providers lack suffi-
cient clinical exposure to MH, potentially hindering
their ability to recognize, treat, and manage these
rare but severe cases effectively (Isaak and Stiegler,
2016). We want to stress that this is not a real oper-
ation, and the intent is to train medical trainees in
“near-life” surgical operations.

Roles. In the simulated operation, a confederate
plays the role of the surgeon. The trainee who
serves as the anesthesiologist is the main decision-

“The patient was diagnosed with acute cholangitis and is
undergoing laparoscopic cholecystectomy
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(b) Word cloud for frequent words.

Figure 2: Distribution of words uttered (a) and word
clouds for frequent words (b) by the support role. Fig-
ures 8 and 9 present the plots for all three roles.

maker *. The support participants are also trainees
who support an anesthesiologist. Appendix B pro-
vides additional details of the simulated operation
and the roles of the team members.

3.2 Labels

Table 5 provides the definitions of each label and
the corresponding examples. Following Schmutz
et al. (2021), we include three labels of “Seek”,
“Evaluate” and “Plan”. As our data is sourced from
clinical operations, we are interested in not only
how the teams engage in reflection or diagnostic
behaviors, but also how the team progresses from
diagnostic actions to interventions or implementa-
tion actions. Therefore, we assign an extra label
“Implement” to such behaviors. Appendix A pro-
vides additional details for each label. We describe
the details of our annotation in Appendix C.2.

3.3 Dataset Statistics and Analysis

Table 1 provides the overall statistics of our col-
lected dataset. In total, there are 2,279 utterances
in our dataset uttered by the support role, 1,808 by
the surgeon role, and 2,576 by the trainee role.

Dataset example. Figure 1 provides an example
of the annotated dialogue in the simulated opera-
tion. As aforementioned, we have transcripts of dif-

"This is because malignant hyperthermia is a body’s ad-
verse reaction to an anesthetic.

# Sessions 22

General # Participants / Session 6
# Turns 6.5k

Laneuage # Words  49.9k
guag # Turns / Session 311

# Words / Session 2.3k

Duration (min) / Session 19

Others # Camera Angles 2
# Physiological Signals 9

Table 1: Statistics of our collected dataset.

ferent roles in the operation, together with camera
views from two different angles, and the physiolog-
ical signals of the patient mannequin. We provide
additional examples in Figure 7 and dialogue snip-
pets in Table 7 in Appendix D.

Label distributions. Table 2 provides the total
and role-specific label counts. Figure 3 provides the
overall as well as role-specific label distributions.
Such role-specific label distributions reveal the in-
ternal collaboration and role-specific contributions
during the operation. We observe that, overall, the
majority of labels are “seek’” and “evaluate,” rather
than “implement” or “plan.” This highlights the
critical importance of communication and actively
assessing the current situation during real-world op-
erations. Breaking it down by role, the surgeon role
is most associated with the “seek’ task, which ac-
counts for 30.4% of their labels. This indicates that,
as the central figure in the operation, surgeons rely
heavily on support and collaboration from other
roles to fulfill their responsibilities effectively. Ad-
ditionally, the support role has the highest propor-
tion of “implement” labels (13.7%), which aligns
with their primary function of providing assistance
and executing essential procedures during the oper-
ation process.

Word analysis. Figure 2 provides the token dis-
tributions and word cloud for the support role. We
provide these plots for all three roles in Figures 8
and 9 in Appendix D.

In terms of the word distributions, we observe
that trainees and surgeons often use “thank you”,
while supports often use “alright” (Figure 8). This
demonstrates the interactions happening during
clinical operations, where there are such clues to
acknowledge the actions conducted by others. In
addition, such phrase usages reflect the role dif-
ference. Surgeons and trainees are the ones who
need help from the support in the operation pro-
cess, therefore they use “thank you” more often,



while the support’s primary job is to support oth-
ers, therefore there is more of “alright”. Apart
from these acknowledgment interactions, trainees
often use the phrase “CO2 up” and surgeon often
uses the phrase “gallbladder out”, which relate to
how they describe the situation or invite others’
help during the operation process. In terms of the
frequent words, we observe many terminologies
used by these roles. For instance, both support
and trainee roles frequently use the term “dantro-
lene” (Figure 9), a medication primarily used to
relax muscles, particularly in emergency settings
(Krause et al., 2004). Additionally, other medical
terms appear frequently, such as “abdomen” and
“gallbladder”, which refer to anatomical structures;
“septic”, which relates to a patient’s condition; and
“antibiotic”, which pertains to medication.

Camera view analysis. In addition, we provide
a few qualitative observations based on videos cap-
tured from the two camera angles. We observe the
local focus on surgeon actions. Most operational
actions occur within a localized region. For ex-
ample, as seen in the screenshots in Figure 1, the
surgeon’s body remains mostly stationary while
manipulating tools during the operation. In addi-
tion, we observe role-specific movement patterns.
Supports and trainees tend to move around the
room, creating distinct communication scenarios.
For instance, the support comes to the trainee to
explain the background information in Figure 7a.
In some scenes, the surgeon halts their operation
to look around and communicate with colleagues.
For instance, after talking to the trainee, the sup-
port moves to the doctor in the later scenes in Fig-
ure 7b. In other cases, the surgeon continues work-
ing while colleagues stop to seek information from
them. These contrasting behaviors can be interest-
ing clues to understanding role-specific dynamics,
and we plan to include additional examples of such
interactions in the final version. Our dataset poses
unique visual challenges in operation settings. The
people in the videos are different from those typ-
ically seen in everyday video datasets. As shown
in Figure 1, participants wear uniforms, hats, and
facial masks, which obscure facial expressions. For
example, in Figure 1, a human observer might eas-
ily infer that the surgeon is frowning while staring
at a monitor, even though most facial features are
obscured. However, such subtleties can pose chal-
lenges to the VLMs. We would be happy to learn if
you have suggestions for methods from the vision

Label None Seek Eval Impl Plan | All

Overall 3.7 1.3 0.8 0.6 03] 69
Support 1.0 0.4 0.2 0.3 0.1 1] 19
Trainee 1.2 0.4 0.4 0.2 0.1 | 22
Surgeon 0.7 0.5 0.3 0.1 0.1 ] 1.6

Table 2: Total and role-specific label counts (in k).

None Evaluate Plan
Seek Implement
9.0 11.9 13.8
" N 9.8
Lo 20.8
55.2 52.5
(a) Overall. (b) Support.
7.1 15.8
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(c) Trainee. (d) Surgeon.

Figure 3: Overall label distribution and role-specific
label distributions. The numbers on the pie charts repre-
sent percentage values.

community that could help us further analyze the
visual information in our dataset.

Appendix C provides additional information for
the dataset as well as the physiological signals in-
cluded. We apply ten-fold cross-validation on our
dataset and report the average macro and micro F1
scores in the following setups. For each fold, we
use 17, 2, and 3 sessions for training, validation,
and testing, respectively.

3.4 Potential Usage of CliniDial

In this paper, we present three case studies scru-
tinizing existing LLMs’ capabilities on handling
domain-specific data with specific characteristics
in Sections 4 to 6. We include two potential usages
of CliniDial and encourage future research in using
our dataset in creative ways.

Testing the Effectiveness of Existing Methods.
We present 6.9k examples of annotated examples



in CliniDial. In this paper, we take the first step
to test various methods including LLMs’ capabil-
ities in handling clinical data, especially on data
with imbalanced class distribution, conversational
nature, and multiple modalities. We highlight that
our annotated dataset can be a valuable source to
investigate the innate ability of LLMs in handling
real-world clinical data.

Understanding the Interaction Mechanisms in
Clinical Setups. As demonstrated in Section 3.3,
our dataset presents a valuable source of interac-
tions across different roles that happen in clinical
operations. There is rich domain jargon involved
such as “gallbladder”, “dantrolene”, and phrases
that are specific to the clinical operation setup, such
as “CO2 up”, etc. Moreover, there are interesting
phrase usage patterns during such interaction pro-
cesses. For instance, surgeons and trainees use
“thank you” often, while supports use “alright” of-
ten. Such language use patterns reflect what tasks
each role carries out during the clinical operations,
and how one role reacts to the requests or actions
of the others. Therefore, the dialogue interaction
in CliniDial can facilitate future research on under-
standing the interaction mechanisms in the clinical
operation.

Incorporated in LLM’s Training Loop. When
we collect the dataset, we have included the times-
tamps for different modalities as shown in Fig-
ure 1. Such timestamps can map information across
different modalities. For instance, given certain
frames from the videos, we can pinpoint the sen-
tence uttered by the surgeon and the supports cor-
respondingly. This mapping can enable LLM train-
ing objectives such as masking information in one
modality and then asking LLMs to predict the miss-
ing signals based on the information from all the
remaining modalities. We highlight that despite
the difficulty of the data collection process, Clini-
Dial includes 6.5k turns and 49.9k words in total.
Though such amount of data may not be sufficient
for pre-training from the scratch, researchers may
adopt our dataset for continual pre-training to fa-
cilitate models in clinical domains. In addition,
we present 6.9k examples annotated with labels,
which can serve as a valuable source in models’
supervised fine-tuning stage.

In the following sections, we present three case
studies revealing the challenges for existing meth-
ods including LL.Ms in dealing with our dataset.
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Figure 4: Comparison of macro F1 scores (F1 scores
averaged by class, on the left) and micro F1 scores (F1
scores averaged by instances, on the right) versus num-
ber of demonstrations (number of shots). We compare
both scores for the fine-tuned BERT},,. model, 0-shot
and few-shot prompting for LLMs.

4 Charactersitic I: Imbalanced Class
Distribution

Here we constrain our study within the text domain
for handling label imbalance.

4.1 Evaluation Setups

We directly fine-tune a BERT base (Devlin et al.,
2019) model to learn directly from the skewed data.
In addition, we prompt Llama 3 8B and 70B models
(abbreviated as Llama in figures) and GPT-4 and
GPT-40 with and without demonstrations. Specifi-
cally, we use the following prompt to provide the
list of all possible labels:

In the classification task, there are 5 labels:
[Seek, Evaluate, Plan, Implement, None].
Here are the details for each label:
[Description of each label]
Fill in the blanks:
Output in the format of {

“Sentence”: <SENTENCE>,

“Label”: ,

In the few-shot settings, we provide correspond-
ing examples along with the label definitions to
the models. Table 5 in Appendix A provides la-
bels, their corresponding definitions, and examples.



We adapt the definition from the corresponding
information provided in the annotator guidelines.
“Examples” provides the demonstrations of exam-
ples sourced from the dataset. We use this prompt
for the prompting experiments in Sections 4 to 6.
Appendix E provides additional baseline models
and their results. We extract the label from the
JSON output of the model to calculate the macro
F1 scores (F1 scores averaged by class) and the
micro F1 scores (F1 scores averaged by instances).

4.2 Discussions

Tuning-based method. Figure 4 compares the
F1 scores averaged by class (macro F1 scores) and
F1 scores averaged by instances (micro F1 scores).
Though the fine-tuned BERTy,,5c model can achieve
the highest micro F1 score of 66.6%, it yields the
macro F1 score of 48.6%, which is much lower
compared to its micro F1 score, and is comparable
to GPT-40’s macro F1 score at 0-shot (48.3%) or
5-shot (51.1%). This suggests that tuning-based
methods bias the model to better learn the majority
class, while the LLMs with a few demonstrations
from each class do not suffer from the performance
disparity between the macro and micro F1 scores.

Prompting-based method. There is a signifi-
cant performance boost for Llama 8B from 0-shot,
achieving a macro F1 score of 22.7% to 1-shot,
achieving a macro F1 score of 37.0%, suggesting
even a single example can guide smaller LLMs
to better reason. However, when we increase the
number of demonstrations, the Llama 8B model
experiences a performance decline, from a macro
F1 score of 37.0% at 1-shot to 34.7% at 3-shot and
32.7% at 5-shot. In contrast, there is slight per-
formance improvement for the Llama 70B model
when we increase the number of demonstrations,
from a macro F1 score of 43.7% at O-shot, to 46.0%
at 1-shot, 46.5% at 3-shot and 48.2% at 5-shot. We
attribute such a phenomenon to the limited innate
capabilities of Llama 8B model, as the smaller
scale model may not capture the underlying knowl-
edge from a few demonstrations, instead it may be
distracted by the longer input when we increase
the number of demonstrations. Moreover, there is
only slight performance improvement for Llama
70B and GPT models when we increase the number
of demonstrations. For the Llama 70B model, its
macro F1 score improves from 46.0% at 1-shot to
48.2% at 5-shot. For the GPT-4 model, its macro
F1 score remains around 47% when we increase

the shot number from 1 to 5, while for GPT-40
model, its macro F1 score improves from 47.3%
at 1-shot to 51.1% at 5-shot. We hypothesize that
the real-world nature of our dataset leads to diverse
dialogue patterns, making a few demonstrations
insufficient for the model to cover all scenarios.

5 Charactersitic II: Conversational
Nature

As discussed in Section 3.3, CliniDial involves
rich interactions among people where they actively
communicate information in the operation process.
Hence, an ideal model would leverage the context
information of the interaction.

5.1 Evaluation Setups

We take the best performed closed-source LLM,
GPT-40, and the best performed open-source LLM,
Llama 70B from Figure 4. We then prompt them
with one turn both before and after the current
round (context size of 3 in Figure 5) or two turns
before and after the current turn (context size of
5 in Figure 5). Specifically, we insert the follow-
ing additional prompt into the prompt we use in
Section 4 after the label descriptions:

Additional Prompt

For the dialogue:
<CONTEXT BEFORE>
<ROLE>: <SENTENCE>
<CONTEXT AFTER>

In the prompt, <CONTEXT BEFORE> and
<CONTEXT AFTER> correspond to the turns
before the current utterance and the turns after,
and the model needs to assign a label for <SEN-
TENCE>. In both situations, we report the perfor-
mance by providing no demonstration (0-shot) or a
single demonstration (1-shot).

5.2 Discussions

Figure 5 reports the performance comparison
across different settings. For GPT-40, we observe
a performance boost when we include the inter-
actions. For instance, under the 1-shot setup, the
GPT-40 model’s macro F1 score improves from
47.3% to 49.8% and micro F1 scores improve from
55.0% to 58.0% when we increase the context size
from 1 to 3. However, when we further increase the
context size to 5, it suffers a performance decline
compared to the context size of 3, but still out-
performs the case when the context size is 1. This
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Figure 5: Comparison of macro F1 scores (F1 scores
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the context size (x-axis). For instance, “3” on x-axis
represents a context of size “3”, where we include one
turn both before and after the current turn in our prompt
to the LLM.

indicates that context can help models better reason
the target sentence, but when too much context is
provided, the information may be diluted and is less
helpful. In contrast, providing demonstrations and
increasing context size negatively impact Llama
3’s performance. Under the 1-shot setup, Llama
3’s macro F1 score drops significantly, from 46.0%
to 40.9% when the context size increases from 1
to 3, and further to 36.4 when the context size in-
creases from 3 to 5. We attribute this performance
decline to the increased input length. On average,
including context information and one demonstra-
tion results in an input length of approximately
1,000 tokens per example, utilizing one-eighth of
Llama 3’s 8k context window. We hypothesize that
Llama 3, with its smaller context window, struggles
to process such long inputs effectively, consistent
with findings by He et al. (2024). In contrast, GPT-
40, equipped with a much larger context window
of 128K, is better suited to handle input lengths of
this magnitude.

6 Charactersitic III: Multimodality
Beyond Text and Vision

6.1 Evaluation Setups

We evaluate the GPT-40 model, a multimodal end-
to-end LLM with different modalities as the input,
including feeding pure text (T), text and the op-
eration video from two angles (+V), text and the

60+ 601 56.4
52.1 929
50.0
501482468, 469 504 482
49107 o

40 40

30+ 301

20+ 201

10+ 10

0 0
T T+V T+P

T + Vverbalize B T+ Pyerpalize

Figure 6: Comparison of macro F1 scores (F1 scores
averaged by class, on the left) and micro F1 scores (F1
scores averaged by instances, on the right) when we pass
in different modalities. “T” standars for text-only, “V”,
“P” standard for visual signals and physiology signals,
respectively. “T + Vyerbatize” and “T + Pyerpalize” Stand
for verbalizing the content by GPT-4o first, and then
pass the text description with the other instructions to
the GPT-40 model.

physiology signals (+P). In addition, we try to let
GPT-4o first verbalize what happens in the camera
views or the physiological signals by prompting:

Prompt for Verbalization

The video frames show the [operation scene
for/ physiological signal changes from] this
patient. Please describe what happens in a
few sentences.

After we acquire the verbalized descriptions, we
feed the following description after the label defini-
tions we use in the prompt in Section 4.

Description

Here is the description for what happens on
the scene: <DESCRIPTION>

6.2 Discussion

From Figure 6, we can see that GPT-4o fails to
leverage the visual or the physiological signals ef-
fectively. When we add the visual scene input di-
rectly, the model’s macro F1 score decreases from
48.2% (text-only) to 46.8%, and when we add the
screenshot of the physiological signals directly, the
model’s macro F1 score decreases to 44.9%. This
demonstrates that domain-specific data from modal-
ities other than text pose significant challenge to ad-
vanced LLMs like GPT-40. Specifically, for the op-



The video frames show a surgical operation taking place in an operating room. In both frames, the
surgical team, including at least two members dressed in blue sterile gowns and gloves, is actively

engaged in a procedure. The patient is lying on the operating table, partially covered by surgical

Vserbalized drapes. A bright surgical light illuminates the operative field, and an anesthesia machine and monitoring
equipment are visible nearby. The scene appears to be well-organized, with a focus on maintaining a
sterile environment.

The patient is on mechanical ventilation (SIMV VCV mode) with normal ventilator settings. However,

Pyerbalizea  there is a warning for high EtCO2 (87 mmHg), indicating hypoventilation or CO2 retention. Oxygen

saturation is 99%, and heart rate is 64 bpm—stable but concerning for rising CO3 levels.

Table 3: An example of Vyerbalized @aNd Pyerbalizea corresponding to the scenes in Figure 1. The model incorrectly
assigns the value of 64 to heart rate, which is the Et value instead.

eration scenes and physiological signals in Figure 1,
while a trained medical professional may under-
stand the situation and read the monitor correctly,
we hypothesize that the dark scene of the camera
and the strong light focusing on the patient’s ab-
domen area may pose challenges to LLMs in their
reasoning process. Moreover, since there would not
be too many scenes online corresponding to physio-
logical signals, GPT-40 may have not encountered
such data in its pre-training process, leading to its
limited capabilities to process it. When the physio-
logical signals are verbalized instead of presented
as images, GPT-40 experiences an additional 2%
performance drop. This highlights the challenges
of incorporating physiological data into model’s
reasoning process, as the errors accumulate during
the two-step process of first verbalizing the data
and then reasoning over the verbalized context. In
contrast, when we verbalize the visual scenes, GPT-
4o performs comparably (46.9% versus 46.8% for
macro F1 score) to when we pass the visual scenes
directly. This indicates that GPT-4o0 can better han-
dle text-based representations of visual information
than it can with text-based representations of phys-
iological signals. We attribute this to GPT-40’s
lack of domain-specific knowledge, unlike visual
scenes, interpreting physiological signals requires
more specialized expertise.

Case Study. We present an example of Vyerpalized
and Pyerpalizea corresponding to the scenes in Fig-
ure 1 in Table 3. For Vyerpalized, the model describes
the scenes accurately. However, the model hallu-
cinates in the Pyepalized- In Table 3, 64 is not the
heart rate, instead, it is the Et value for the gases.
We believe that this is an important direction for
future research to make models correctly reason
the situations, especially in a high-stakes domain
such as clinical operations.

7 Related Work

Multimodal Datasets. Recent years have wit-
nessed significant advancement of multimodal
large language models (MLLMs) (Achiam et al.,
2023; Liu et al., 2024) that typically involves vision
and text capabilities. These MLLMs have demon-
strated impressive performance on various visual
benchmarks such as visual recognition (Zhang
et al., 2024), video understanding (Xu et al., 2021),
3D understanding (Hong et al., 2023) and beyond.
Researchers have proposed various vision and text
benchmarks to investigate the capabilities of these
MLLMs, including captioning tasks such as MS-
COCO (Lin et al., 2014) and Flickr30K (Plum-
mer et al., 2015) for image captioning, and MSVD
(Chen and Dolan, 2011) for video captioning, ques-
tion answering tasks such as VQA (Antol et al.,
2015) for image question answering and MSVD-
QA (Xu et al., 2017) for video question answering.
Recently, there is a shift of interest in proposing
more nuanced and culturally diverse benchmarks.
For instance, WildQA proposes video QA dataset
on scenes in the wild (Castro et al., 2022), Ego4D
proposes various visual tasks from the egocentric
viewpoint (Grauman et al., 2022), CVQA investi-
gates into the culturally diverse multilingual visual
question answering (Romero et al., 2024). In addi-
tion, researchers have proposed datasets involving
other modalities, such the Touch and Go dataset
on tactile (Yang et al., 2022), MMAU on audio
understanding (Sakshi et al., 2024). To the best of
our knowledge, we are the first to propose a dataset
that includes the physiological signals. Moreover,
we provide timestamps for the utterances, which
allows researchers to align the text data with video
frames and the physiological signals.

Datasets in Clinical Domains. There has been
interdisciplinary research between NLP and clini-
cal or medical domains (Spasic et al., 2020). For in-



stance, researchers have leveraged natural language
generation methods to generate medical reports or
summaries (Song et al., 2020; Papadopoulos Ko-
rfiatis et al., 2022; Ben Abacha et al., 2023), un-
derstanding the medical consultant process (Chen
et al., 2023). However, most of these existing
datasets focus on the consultant process in the clin-
ical setup. We highlight that CliniDial focuses on
the conversation during clinical operations, which
possess significant domain-specific features as dis-
cussed in Section 3.3. We hope CliniDial can fa-
cilitate future NLP research into understanding the
complex clinical operation scenarios.

8 Conclusion

In this paper, we introduced CliniDial, a naturally
emerged multimodal dialogue dataset collected
from clinical operations. Unlike existing bench-
marks, CliniDial addresses real-world complexities
such as imbalanced label distributions, rich team
interactions, and multiple data modalities. Through
studies on three key characteristics of our dataset,
we found that the best-performing model achieves a
macro F1 score of only 51.09, indicating significant
room for improvement. This performance suggests
that existing methods struggle on CliniDial, partic-
ularly in handling imbalanced class distributions,
leveraging conversational context, and integrating
domain-specific multimodal signals. These lim-
itations highlight the gap between existing NLP
methods and the demands of real-world clinical ap-
plications. We hope CliniDial can bridge the gap
between advancements in our community and real-
world clinical applications. We encourage future
research efforts to develop domain-adaptive NLP
techniques, improve multimodal fusion strategies,
and eventually address the challenges of real-world
applications.

Limitations and Future Directions

Simulation Setup. The clinical operation de-
scribed in the study is simulated, so it is likely
that the dialogue between the anesthesiologists and
support staff lacks the sense of urgency present in
a real medical setting. In real-life clinical environ-
ments, time pressure, high-stress situations, and
the need for quick decision-making usually shape
the communication dynamics. This distinction is
important to consider when analyzing the dialogue,
as the lack of urgency might influence both the
content and the tone of communication.

However, to the best of our knowledge, we are
the first to study such a medical operation scenario,
even in a simulated operation process. In fact, it
would be nearly impossible to collect the real emer-
gency operation recordings due to ethical and legal
considerations. These simulations are the typical
training that medical professionals rely on, and to
the best of our knowledge, the best possible way to
collect such data.

Scope of the Data. We want to emphasize the
difficulty of setting up the real-world clinical oper-
ation environment, recruiting people to participate,
collecting the data. Although the dataset is col-
lected mainly on 22 clinical operation sessions, we
note that there are 6.5k turns and 49.9k words in
total in CliniDial.

Scope of the Analysis. We provide various anal-
yses on our dataset in Section 3 and highlight how
our dataset is different from the existing bench-
marks in Section 2. In addition, we discuss the
potential future directions that researchers may ex-
plore in Section 3. Furthermore, we study the three
characteristics of our dataset and provide the per-
formance of popular NLP methods with respect to
each of them. However, due to the scope of this
study, we cannot evaluate every possible method
and would like to invite future efforts on a com-
prehensive evaluation of NLP methods on clinical
data. For instance, our dataset can be leveraged
to answer questions such as ‘“are there sequences
of labels that occur frequently in the corpus?”’ We
encourage future efforts on a more in-depth explo-
ration that might reveal underlying structures or
recurring communication patterns in the dialogues
between anesthesiologists and support staff, and
provide a richer understanding of the linguistic dy-
namics.

Scope of the Experiments. We encourage future
efforts to investigate the low F1 scores for the ex-
isting LLMs. For instance, prompting methods
such as chain of thought (CoT) prompting could
be tested to check whether they could enhance the
LLM'’s performance and lead to a higher F1 score,
which can lead to a more reliable approach for ana-
lyzing clinical dialogues. In this paper, we did not
include analyses of the audio setting. Audio char-
acteristics can provide additional insights into the
emotional state, stress, urgency, or intent behind
the spoken words, offering a better understanding
of what’s really going on. We leave the exploration



of models fine-tuned with medical expertise to fu-
ture study. To the best of our knowledge, there
are no specific LLMs targeting clinical operation
setup.

Ethics Statement

We note that the study was approved by the Insti-
tutional Review Board. Since the data from the
two cameras may reveal the identity of the team,
we may not release the camera data. We are con-
sidering to release an anonymized version of the
dialogue transcription to facilitate future research
on clinical NLP. We expect researchers to continue
building new algorithms and methods on top of this
clinical dataset.
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Labels Behavior Subcodes

Seck Actlvely_ inviting input
Expressing uncertainty
Stating a working hypothesis
Recapping

Evaluate Explicitly assessing the situation

Reasoning

Plan Stating plans and priorities

Implement Stating one’s ongoing actions

Designating tasks

Table 4: Behavior subcodes corresponding to each of
our labels. We follow the definition from Schmutz et al.
(2021) to determine the subcodes for “Seek”, “Evalu-
ate”, and “Plan”. We add another label of “Implement”
given the characteristics of our data source.

A Label Details

Table 4 provides an overview of the behavior sub-
codes for each label. Table 5 provides the compre-
hensive definition and examples corresponding to
each label.

Seek includes:

* the action of actively inviting the team mem-
bers to provide information and share ideas
about the current event.

* expressing uncertainty with an implicit invita-
tion to share information.

Evaluate includes:

* a clear formulation of a working hypothesis
or diagnosis about the current situation.

* bringing together various pieces of informa-
tion and providing a summary.

* providing an explicit judgment, giving value
to a certain process, information, or strategy.
This can be the process of evaluating infor-
mation that has been gained through seeking
information.

* explaining why certain things are more impor-
tant, or why a specific behavior needs to be
done.

Plan refers to laying out the course of action for
the next few minutes that needs to contain at least
two actions.

Implementation refers to stating the member is
conducting the task or delegates a task to another
team member.

B Scenario Details

The role of primary anesthesiologist was played by
one of the course participants. The surgeon and
secondary anesthesiologist (assistant) were played
by other course participants. The role of surgeon
served as a confederate along with the course in-
structors. The scenario begins with the primary
anesthesiologist taking over the case from one of
the course instructors. The patient is receiving
general anesthesia and the procedure has already
begun. The procedure is complicated by surgical
difficulties resulting in the surgeon requesting addi-
tional muscle relaxants and increased insufflation
pressures. There is also concern that the patient is
developing sepsis given the significant gallbladder
infection. The patient develops malignant hyper-
thermia (MH) as the simulated scenario progresses.
The primary anesthesiologist must recognize this
and begin appropriate treatment. Treatment algo-
rithms for MH are well-known and broadly avail-
able (Hopkins et al., 2020; Rosenberg et al., 2020).
Definitive treatment includes stopping the trigger-
ing agents, administering dantrolene, and support-
ive care.

C Dataset Information

The total number of anesthesiologists studied was
22; 15(68%) males and 7(32%) females. As part
of the Maintenance of Certification in Anesthesiol-
ogy (MOCAO®©), anesthesiologists who were board
certified after 2000 were required to participate in
a simulation course at a simulation center. The
participants were board certified anesthesiologists
who attended a simulation course at a midwestern
academic medical center over a 5 year period. Date
of initial certification was obtained from the Amer-
ican Board of Anesthesiologists (ABA) Physician
Directory. The study was approved by the Institu-
tional Review Board.

C.1 Physiological Signals

The physiological signals in our dataset include:

SpO2 refers to Peripheral Oxygen Saturation
which measures the oxygen saturation level in the
blood. Such signal is typically measured through a
pulse oximeter.

ECG II refers to Electrocardiogram Lead II
which represents the electrical activity of the heart
as measured by electrodes placed on the body.



Label Seek
Definition  All statements that request information from the team about the current event and invite team members to
provide information and share ideas; Inquiring for further information. Or expressions of uncertainty with
an implicit invitation to share information. Tone of voice; Content of what is being said (questioning the
information; Unsure). In response to clarify something.
Examples Is there anything we are missing? Is there anything else we should be doing?
What is the plan afterwards?
Label Plan
Definition = Laying out the course of action for the next few minutes. Needs to contain at least 2 actions to show a
sequence of actions.
Examples Once MH is recognized: Going to stop the agent and go up on flows.
Label Evaluate
Definition Clear formulation of a working hypothesis or diagnosis about the current situation, or various pieces
of information are brought together and a summary is provided; Recapping lab results (does not have
to be new information); Providing an explicit judgment for something, give value to a certain process,
information or strategy ...
Examples  That’s a nasty gallbladder.
Label Implement
Definition  Stating one’s ongoing actions or designating tasks.
Example  Yes. Yes. Pushing. Pushing. Pushed.
Label None
Definition = None of the other labels apply here.
Examples  Okay.

Table 5: Examples of the labels, their definitions, and corresponding utterances in our dataset. We omit part of the
definitions for the label “Evaluate”. Appendix A provides additional details of each label.

APB refers to Arterial Blood Pressure which rep-
resents the pressure exerted by blood on the walls
of the arteries during the cardiac cycle.

HR refers to Heart Rate which indicates the num-
ber of heartbeats per minute.

NIBP refers to Non-Invasive Blood Pressure
which measures blood pressure without the need to
insert instruments into the body.

Temperature represents the body’s temperature
and is often measured using a thermometer.

Respiratory Waveform
inhalation and exhalation.

represents the pattern of

CO; means Carbon Dioxide which typically
refers to end-tidal COq, which represents the con-
centration of carbon dioxide at the end of an ex-
haled breath.

IBP refers to Invasive Blood Pressure which mea-
sures blood pressure using invasive techniques, typ-
ically involving a catheter inserted into an artery or
vein.

C.2 Annotation Details

Two researchers coded six out of 22 randomly se-
lected data files. The researchers discussed find-
ings and resolved discrepancies through the pro-

cess of social moderation. They achieved a Co-
hen’s kappa score of 0.73 on the six files. The
two researchers then independently annotated the
remaining dataset.

D Dataset Analysis

Figure 7 provides two additional examples of the
dialogues in our dataset. Table 7 provides dialogue
snippets in our dataset. Figure 8 provides the word
distributions for the three roles, respectively. Fig-
ure 9 provides the most frequent words uttered by
the three roles, respectively.

Specific word use. Table 6 provides the word
counts for “dantrolene”, we find that its frequency
varies significantly. In one session, it appears 31
times, while in another, it occurs only once through-
out the entire operation. This variability suggests
that certain medical terms naturally appear more
frequently in specific cases rather than uniformly
across all procedures. Therefore, the presence of
“dantrolene” does not indicate a dataset bias toward
specific procedures but rather reflects real-world
variations in clinical practice.

E More Details about the Methods

In addition to the methods in Section 4, we have
a majority vote baseline model which always pre-
dicts the major class. As expected, it reaches a



e
L

What do we got going on?
(Seek: Actively

Trainee o
inviting input)

[ have a 38 year old morbidly obese lady presented
with hyper-cholangitis in the ER. White count of 18.
They presented for emergent laparoscopical

cholecystectomy. .... She did fine.

Support 1

(Evaluate: Rcapping)

00:06 00:07

00:39

(a) An example happens at the beginning of the operation, when the trainee seeks background information and the

support provides such information to the trainee.

Can you grab me some irrigation please?

Surgeon

(Plan: Stating plans and priorities)

Support 2

2:30

Yes. Doctor
(Implementation)

2:32 2:33

(b) An example happens when the surgeon is conducting the operation, when the surgeon pauses and asks for
support, and the support helps the surgeon to grab the irrigation.

Figure 7: Additional examples of the labeled dialogue in the simulated operation.

decent micro F1 score (55.63) due to the class
imbalance, while a much lower macro F1 score
(14.01). In addition, we test two non-deep learning
methods such as RUSBoost (Seiffert et al., 2009)
and SMOTE (Chawla et al., 2002) algorithm which
is specifically designed to address class imbalance.
However, these pre-deep learning methods attains
24.21 and 32.32 macro F1 scores, much worse
than simply tuning BERT},5e model or prompting
LLMs.

F What Do Medical Professionals Expect
from NLP?

We are also interested to see how the medical pro-
fessionals would view the results we get by em-

ploying these current NLP methods. Therefore, we
invite feedbacks from a medical professional who
has been working in the domain for over a decade.
Here are what we get:

1. They see a great opportunity to apply these
LLMs on behavioral evaluation in the medical
domain. They point out that the current evalua-
tion practices in medical domains have signifi-
cant limitations (Kolbe and Boos, 2019; Klonek
et al., 2019; Stevenson et al., 2022), which typ-
ically are labor-intensive and prone to personal
biases and errors. They expect NLPers to de-
velop consistent, reliable evaluation protocol to
give feedback to the healthcare professionals.



Session ID  Counts

1 8
2 12
3 10
4 10
5 8
6 31
7 9
8 18
9 14
10 16
11 3
12 4
13 13
14 31
15 20
16 17
17 13
18 3
19 6
20 19
21 1
22 12

Table 6: Word counts for “dantrolene” in the 22 ses-
sions. We note that all the sessions last around the same.
For instance, session 21 (“dantrolene” appears once)
lasts for 20:03 minutes, while session 14 (“dantrolene”
appears 31 times) lasts for 19:06 minutes.

2. They expect a protocol that can take multimodal
input into consideration including the team dia-
logue, patient vitals, and procedure videos. We
note that this is one of the characteristics for
CliniDial. They also hope the NLP system could
pinpoint specific teamwork deficiencies in the
process.

3. They also point out the related NLP methods that
they find useful in their domain. For instance, in-
tent classification, dialogue summarization, and
multimodal reasoning works from NLP can pro-
vide quantifiable insights into teamwork dynam-
ics and communication patterns in multimodal
clinical data (Zhang et al., 2018; Allen et al.,
2021; Lehmann-Willenbrock and Hung, 2023;
Hung et al., 2024). We note that CliniDial con-
tain rich conversational data.
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Figure 8: Distributions of words uttered from different

roles in CliniDial.



Dialogue Snippet 1

Support 3 So currently their recommendations are to not change the machine. Do you want to put the patient back on
the vent and free up your hands?
Trainee Sure. Okay. If that’s the recommendation. Absolutely. Great so next thing insulin, glucose, calcium.
Support 2 The ICU is calling.
Trainee Okay. Okay
Support 1 They’re kinda just getting started.
Dialogue Snippet 2
Support 3 Do you want to monitor her end-tidal with this?
Trainee That would be great?
Support 3 I gave 250 milligrams of the dantrolene.
Trainee Okay. Good.
Support 2 Here’s the cold saline. I gotta go get the ice, okay?
Surgeon Thank you, Matt.
Trainee Dantrolene is in. We’re going to cool the patient. The other thing is if we could.
Dialogue Snippet 3
Trainee You’ve given how much neo?
Support 1 I’ve given probably- this really started maybe a few minutes ago- probably getting like 500mics.
Trainee Was she responding to it?
Support 1 She’s responded a little bit. It’s just kinda kept her around here but I think just because of the nausea,
vomiting, and sepsis issue.
Trainee Okay.
Support 1 36 year old lady who presented to the ER today with abdominal pain, nausea, vomiting. She was diagnosed

with acute cholecystitis. They’re afraid she’s becoming septic.

Table 7: Examples of the dialogues in CliniDial.
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Figure 9: Word cloud plots for frequent words uttered
by different roles involved in CliniDial.
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