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Abstract. One of the challenges and a significant part of a protein structure’s 
prediction in three-dimensional space is a side chain prediction/packing. This 
area of research has a large importance, due to its various applications in protein 
design. In recent years, many methodologies and techniques have been crafted 
for side chain prediction such as DLPacker, FASPR, SCWRL4 and OPUS-Rota4. 
In this research, we address the problem from a different perspective. We em-
ployed a machine learning model to predict the side chain packing of protein 
molecules given only the Cα trace. We analyzed 32,000 protein molecules to ex-
tract important geometrical features that can distinguish between different orien-
tations of side chain rotamers. We designed and implemented a Random Forest 
model to tackle this problem. Given the accuracy of existing state-of-the-art ap-
proaches, our model represents an improvement. The results of our experiment 
show that Random Forest is highly effective, achieving a total average accuracy 
of 73.7% for proteins and 73.3% for individual amino acids. 

Keywords: Protein Structure, Side Chain Prediction, Protein Cα Trace, Side 
Chain Rotamer, Side Chain Packing.  

1 Introduction 

1.1 Problem Background 

Protein is a complex molecule that plays a fundamental function in our bodies. Proteins 
are composed of chains and molecules known as amino acids. (a.k.a. residues). In ad-
dition, all proteins consist of 20 varieties of amino acids which are made by carboxyl 
group (COOH), amine group (NH2), and side chain (R-group) [1]. These groups are 
molecules made of atoms. The carboxyl group and amine group form the backbone of 
the amino acids. Amino acids have the same backbone. What distinguishes one amino 
acid from another is the side chain. Each amino acid has the same atoms that form its 
side chain. However, side chain structural configuration can be different in orientation 
based on many factors. Each possible configuration is called rotamer. Rotamers can be 
defined using the dihedral angles, called chi angles, between the bonds formed by its 
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atoms. For instance, chi1 is the dihedral angle around the bond Cα-C³ and formed by 
the atoms: N - Cα - C³ – C´. The size of the side chain determines the number of chi 
angles defined for each rotamer. Some amino acids have no chi angles such as ALA 
and GLY and some others have chi angles ranging from 1 to 4. Fig. 1 shows three 
different configurations/rotamers for the side chain of amino acid ARG in protein ID: 
135L. For ARG 14, the four chi angles are: -68.5, 177.97, -99.71, and 120.57 respec-
tively. For ARG 68, the four chi angles are: 58.22, 166.56, 161.29, and 112.9 respec-
tively. Finally, for ARG 128, the four chi angles are: -71.46, -55.74, 104.76, and -
145.36 respectively. 

 

Fig. 1. Different rotamer configurations for amino acid ARG in protein ID: 135L 

The protein side chain is closely related to biological function [2], and therefore, an 
accurate structural determination of side chains is essential to serve the biological func-
tion. Predicting protein side chains is crucial because it gives an insight to the protein 
function [3]. Predicting side chain can be significant to serve several applications such 
as homology design, and protein modeling. These applications depend on protein side 
chain conformations prediction from its backbone structure and amino acid sequence 
(also called side chain packing) [4, 5]. 

1.2 Literature Review 

Side chain prediction is usually completed by searching for possible side chain confor-
mation and evaluating every backbone structure by using some scoring function. If we 
assume that a target protein's side chain is approximately similar, the search space can 
be significantly reduced. The accurate and fast side chain prediction is significant for 
protein prediction and design, either for ab initio protein structure or homology model-
ing.  

Recently, there are many methods and modeling techniques that have been devel-
oped, such as AlphaFold [6], AlphaFold2 [7], DLPACKER [8], SCWRL [9], OPUS-
Rota4 [10], FASPR [11], and AttnPacker [12]. However, protein side chain prediction 
remains a difficult challenge. Most of these methods place side chains in a fixed back-
bone, whether generated from simulations or from a parent structure. More accurate 
and faster methods for a side chain prediction of protein are still required. 

For the past 50 years, protein structural 3-D prediction has been a difficult and chal-
lenging task. Recently, some applications depended on AlphaFold. AlphaFold exceeds 
other techniques, especially at the 14th protein structure prediction Critical Assessment 
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with 95% Cα deviation residue for 87 proteins from 0.96Å [6, 13-16]. In addition, Al-
phaFold latest version supports machine learning and integrate biological and physical 
knowledge, which is helpful for deep learning algorithms to solve the problem of pro-
tein modeling [6]. Nonetheless, the performance of AlphaFold prediction is perfect for 
protein backbone, but not clear for side chains [17, 18].  

DLPacker [8] uses a Neural Network model to predict the side chain in three steps: 
an input generation, Neural Network model, and the side chain reconstruction. 
DLPacker brings the data entries from protein data bank (PDB), which are grouped 
together based on their similarity at 50% threshold. From all groups, DLPacker only 
selects a single structure that has the highest resolution and then reconstructs utilizing 
a PDB-redo algorithm [19]. DLPacker discards any groups with a resolution of less 
than 2.5Å. After defining an input box, each atom is packed on a network and divided 
into 28 channels. The channels are five channels (one channel for C, one channel for 
N, one channel for O, one channel for S, and one channel for other elements), 21 chan-
nels for amino acid types, one channel for a partial charge, and one channel for the 
label. The improvement is achieved with most of the amino acids. For instance, hydro-
phobic amino acids obtained the most improvement percentage, close to 50%. Other 
amino acids received about 20% improvement. 

SCWRL [9] is a method used to determine side chains of residues given the back-
bone. SCWRL is easy to use for seven reasons: 1) rotamer library for a new backbone. 
2) averaging through conformations samples for positions in a library. 3) hydrogen 
bonding function. 4) interaction of van der Waals forces between atomic potentials. 5) 
fast detection. 6) algorithm of tree decomposition. 7) all parameters optimization 
through determining interaction graph. Moreover, there are many versions of SCWRL, 
and the popular version is SCWRL 3 and SCWRL 4. In addition, SCWRL 4 improves 
prediction accuracy.  

OPUS-Rota [10] is an open-source tool which is considered an important method for 
side chains prediction. The first module is OPUS-RotaNN2. The second module is 
OPUS-RotaCM, where it calculates the orientation and distance between various resi-
due pair’s side chains. The third module is OPUS-Fold2, which guides side chain mod-
eling. The results of OPUS-Rota4 on side chain predictions are closer to native residues 
(i.e., RMSD 0.588 and 0.472) than AlphaFold2, while OPUS-Rota4 prediction was at 
RMSD values 0.535 and 0.407. 

FASPR [11] is one of the new methods used for predicting side chains. In FASPR, 
an input is the backbone of the protein and an optional amino acid sequence to super-
impose with the backbone. When comparing FASPR performance with other methods 
(i.e., SCWRL4, RASP, CISRR, and SCATD) on a dataset of 379 backbones, this 
method outperforms SCWRL 4, and CISRR. The prediction accuracy for FASPR was 
69.1% for each side chain. 

AttnPacker [12] is a recent deep learning method that directly predicts the coordi-
nates of side chain atoms. Unlike others, AttnPacker directly incorporates backbone 3D 
geometry to simultaneously compute all side-chain coordinates without delegating to a 
discrete rotamer library or performing expensive conformational search and sampling 
steps improving computation efficiency and decreasing inference time. 
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In this research, we are addressing the problem using Cα trace only. The advantage 
of using the Cα trace instead of using the full backbone atoms is the robustness and 
tolerance to the missing information. Many protein molecules are missing one or more 
atomic structural information. 30-40% of the determined protein models are missing at 
least one atom’s structural information or more [20]. Therefore, the accuracy of predic-
tion methods that use all atoms will be negatively impacted. 

2 Methodology 

This research's main goal is to build a machine learning (ML) model to predict protein’s 
side chain configuration using protein’s Cα trace only. The basic idea is to develop one 
model for each amino acid type and use these models collaboratively to predict pro-
tein’s side chains. Fig. 2 depicts the framework of our methodology we used to build 
our approach. 

 

 

Fig. 2. The framework of our model 

2.1 Rotamers Clustering 

In this research, we use backbone dependent library for training purposes for our model 
[21]. In backbone dependent library, the total number of rotamers available for each 
amino acid are different. For instance, ARG has 110,889 rotamers while ASP has 
12,321 rotamers. These rotamers are divided into groups based on statistical bins. A bin 
for a given phi and psi angle values are used to decide a group of rotamers that are 
common for such backbone configuration. There are 1,369 bins. 37 bins for phi against 
and 37 bins for psi ranges from -180 to 180 at 10 degrees step. For instance, if the value 
of phi is 85 and psi is -22, the chosen bin is (90, -20). Each bin recommends a group or 
common rotamers for this backbone configuration. Further, the number of rotamers in 
each bin’s group is different. The numbers range from 3 to 80 rotamers. When our 
initial machine learning model was developed, we used the number of the rotamer in 
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each group as a label to train the model. However, this numbering/labeling scheme 
confused our model. For example, in bin x of the amino acid ARG, there are 11 unique 
rotamers, which are numbered from 1 to 11. Similarly, for bin y, of the same amino 
acid, there are 15 rotamers labeled from 1 to 15. The rotamer 5 (for example) in bin x 
is not the same as rotamer 5 in bin y. On the other hand, when we analyzed the rotamers 
and their structures, we found that many of them are geometrically/structurally similar. 
Therefore, we applied a clustering approach to unify the labeling and group all similar 
rotamers in one label. After clustering, label i for any amino acid is the same across all 
bins.  

Table 1. The table shows our amino acids list, number of chi angles, total number of rotamers, 
and total number of clusters for each amino acid. 

AA Chi Rotamers Clusters AA Chi Rotamers Clusters 
ALA 0 0 0 LYS 4 110,889 82 

ARG 4 110,889 117 MET 3 36,963 13 

ASN 2 24,642 11 PHE 2 82,14 17 

ASP 2 12,321 5 PRO 2 2,738 3 

CYS 1 4,107 6 SER 1 4,107 5 

GLN 3 49,284 40 THR 1 4,107 3 

GLU 3 36,963 31 TRP 2 12,321 10 

GLY 0 0 0 TYR 2 8,214 16 

HIS 2 12,321 9 VAL 1 4,107 4 

ILE 2 12,321 6 LYS 4 110,889 17 

LEU 2 12,321 16 MET 3 36,963 13 

To unify labels for our machine learning model, we grouped our rotamers for each 
amino acid into clusters of rotamers that are structurally similar. For each amino acid, 
clustering is performed to group all similar roamers that are within a given arbitrary 
root mean square deviation (RMSD) threshold value. The given threshold is different 
for each amino acid based on the size of that amino acid. For instance, the threshold we 
used for amino acid ARG was 0.8 and LEU was 0.3. The clustering method we used to 
create clusters of rotamers for each amino acid is based on the frequently utilized mean-
shift algorithm in the field of machine learning. We start with one random rotamer from 
the library and create the first cluster. This rotamer is considered the mean/centroid of 
the cluster. For every new rotamer, we calculate the RMSD between this rotamer and 
the centroids of existing clusters. We add it to the closest cluster if the RMSD is within 
the threshold. Otherwise, a new cluster will be created and this rotamer will be added 
to it as its centroid. Every time a new rotamer is added to a cluster, the new centroid is 
re-calculated. Table 1 shows the list of amino acids, number of chi angles in each amino 
acid, total of rotamers for each amino acid, and the number of clusters after applying 
our clustering approach. Note that clusters of the same amino acids may have different 
sizes (i.e., number of rotamers). Fig.3 shows a sample consisting of 136 rotamers for 
GLN in one cluster that contains 1,356 rotamers at 0.3 RMSD cutoff (left), a sample of 
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137 rotamers for ARG in one cluster that contains 1,369 rotamers at 0.8 RMSD cutoff 
(middle), and a sample of 134 rotamers for PHE in one cluster that contains 1,337 ro-
tamers at 0.35 RMSD cutoff. From the figure we can see that some rotamers are struc-
turally aligned well when overlapped. 

 

Fig. 3. Samples of rotamers from clusters for residues GLN (left), ARG (middle), and PHE 
(right). The boxed part is the backbone. All rotamers are overlapped to show their similarities. 

2.2 Data Sets 

We collected data sets from PDB.  We utilized three protein lists from [22] (data not 
shown). Our data set consists of 32,000 PDB protein lists came with the maximum 
0.286 R - factor, 3.0 Å resolution or better collected from the three data sets such that 
only non-duplicate protein chains were extracted from the sets.  A total residue number 
of around 9.3 million (before data cleaning). 

Cleaning Data. In the process of preparing our dataset, we accurately cleaned the data 
to ensure its quality and reliability. This involved the removal of any redundant protein 
chains or chains with missing structural information, specifically focusing on Second-
ary Structure Elements (SSEs) and Cα coordinates. By eliminating these instances, we 
enhanced the dataset's integrity and consistency. After this data-cleaning process, we 
randomly picked approximately 3.7 million residues to form our final dataset, referred 
to as set D. This carefully culled step was essential in guaranteeing the robustness and 
suitability of our dataset for subsequent analyses and research endeavors. 

Dividing Dataset. We divided set D into two sets: the first set was used for training 
(called set T), and the second set was used for testing to report the accuracy of the model 
(we named this set A).  Set A includes two subsets, set A1 and set A2. Set A1 contains 
20 proteins which have 3,436 residues, we already removed it from the original set (D) 
and utilized it for testing. Set A2 contains 500 randomly chosen rotamers/side chain for 
each amino acid type. The total of A2 is 18,000 (ALA and GLY have no rotamers). 
Finally, the set T was chosen from sets D-A. Set T consists of around 3.6 residues. 
Moreover, Set T was divided randomly into 20% for validation (called Tv), and 80% 
for training (called Tt). 

Backbone 

Side chains 
(Rotamers) 
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2.3 Geometric Features 

Our ML model and algorithms are founded on geometric features that were gathered 
from protein structures, particularly Cα traces. We extracted the geometric features that 
we thought could distinguish between residues and side chains for every amino acid. 
Some of these features are inspired by [23-25]. The tentative total of features we had 
was 91 features. The work on features continued to be added, removed, and updated as 
needed. 

Feature Analysis. We analyzed all 91 features to select the best and most important 
features for our machine-learning model process to make the process more accurate. 
We utilized a "K-Means" algorithm to analyze our features, related to amino acids and 
their rotamers [26]. 

We used the K-Means clustering technique to accurately divide and arrange the data. 
By using a systematic methodology, we were able to precisely identify the 32 features 
that had the most influence. These features are crucial to our dataset, since they have a 
significant impact on forming our results and insights. Their significance is substantial, 
since they provide a comprehensive comprehension of the underlying patterns and 
trends inherent in our data. 

Best Feature Selection. We divided the 32 features into five categories. Each group 
provides a unique geometric perspective related to the side chain of protein. 

The first group set is torsion angles which is the intersection angle between two 
surfaces. Every surface has three Cα. A torsion angle (Tα) is a kind of dihedral angle. 
Moreover, the torsion angle describes the connection between two molecular segments 
through the link. The torsion angle is essential to understanding geometric conformation. 
We used the torsion angle for side chain prediction, and we calculated the torsion angle 
by utilizing four consecutive coordinates of Cα. The second group set is a set of 
triangular angles (Rα), which include three angle values. The third group is vector angles 
(Vα), which is an angle created between two vectors in Cα coordinates. The fourth group 
is Axis distances (Dα), the distance between two points’ projections on a virtual axis. 
We used (Dα) for residue (i) of interest, such as residues distance ( i - 1)  and ( i - 2) on 
the axis projection formed by the axis connecting residues (i-2) and (i+2). 

2.4 Random Forest and Tuning 

We developed 18 Random Forest (RF) models to predict the best side chain for each 
amino acid given a Cα backbone trace of a protein. Each amino acid type has its own 
model, and these models work together to predict side chains when work on an entire 
protein. Performance metrics across different amino acids were analyzed to determine 
the effectiveness of our RF model. The model was trained on a training set Tt, which 
constituted 80% of the data, and evaluated on a test set Tv, which constituted the re-
maining 20%. 

A RF algorithm is a strong ML technique, and it is applied for regression tasks and 
classification. RF algorithm belongs to a learning family group, where multiple 
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individual decision trees are included to form the powerful prediction model. RF mod-
els are familiar for their efficiency and ability to handle complex and big datasets, and 
it has high accuracy and flexibility against overfitting [27]. 

Parameter Tuning. We began by fine-tuning select hyperparameters within our model. 
This optimization aimed to identify the best set for our ML model to ensure optimal 
performance. Techniques such as grid search and random search were employed to sys-
tematically traverse through a range of values for each hyperparameter. 

Hyperparameter Tuning. In the realm of ML, hyperparameter tuning is an essential step 
to optimize the performance of algorithms. The parameters that define the model archi-
tecture, unlike the internal parameters learned during training, need to be set before 
training starts. For this study, a systematic approach was adopted to fine-tune the hy-
perparameters of the RF classifier. 

For the RF classifier, after an exhaustive search, the optimal parameters were iden-
tified as follows: a maximum tree depth of 40, a criterion of <gini,= and a maximum in 
features set into the square root of the total features. The search space for hyperparam-
eters was defined in two modes: a comprehensive set for production and a limited set 
for testing purposes, ensuring a balance between computational efficiency and model 
performance. 

Hyperparameter optimization. In the process of model selection and optimization, a 
systematic hyperparameter tuning was conducted for the RF algorithm. Utilizing a 5-
fold cross-validation approach, the RF model was subjected to nine distinct hyperpa-
rameter sets, leading to a total of 45 individual training runs. This rigorous tuning pro-
cess was instrumental in identifying the most optimal model configuration, ensuring 
robust and reliable performance in subsequent evaluations. 

Table 2. Random Forest model testing accuracy percentage for 20 proteins (Set A1). 

Protein ID Accuracy Protein ID Accuracy Protein ID Accuracy Protein ID Accuracy 
6XRR 87.4% 6QTB 76.6% 5KWM 73.1% 4NZR 67.5% 

2VN6 82.8% 2G6B 74.8% 3KRU 72.7% 3H9M 66.2% 

6WUD 81.7% 3EBV 70.4% 7RMN 72.3% 6I5S 65.3% 

6HC1 79.7% 8ERM 74.6% 4KH8 72.1% 7QZJ 64.9% 

3BM7 79.7% 3PAS 74.1% 6PBM 68.6% 1XRE 69.7% 

3 Experimental Results 

We evaluated the efficiency of our model by employing Set A. Set A is composed of 
two subsets, namely Set A1 and Set A2. Set A1 comprises 20 proteins, totaling 3,436 
amino acid residues. Set A2 comprises 500 randomly selected amino acids for each 
amino acid type, amounting to 18,000 residues. To assess the correctness of our model, 
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we conducted a comparison between the label of the predicted rotamer/cluster and the 
labeled rotamer in the native structure. A match between the anticipated native rotamer 
and the labeled rotamer was classified as a hit, whereas any other outcome was classi-
fied as a miss. Prior to implementing our model, the ground truth side chains were ex-
cluded from the native structures of the testing sets. 

The RF model had a significant overall average accuracy, highlighting its efficacy 
in predicting rotamers. When evaluated on set A1 of 20 proteins, the RF algorithm 
achieved an average accuracy rate of 73.7% (see Table 2). The RF method has proven 
to be effective for this prediction task, exhibiting a notable level of overall accuracy. 
Notable proteins with high testing accuracy include 6XRR (87.4%), 2VN6 (82.8%), 
6WUD (81.7%), 6HC1 (79.7%), and 3BM7 (79.7%). Moreover, conducting a more 
detailed analysis of specific components of chosen proteins unveiled diverse levels of 
precision. In the case of protein 6XRR, specific amino acids like THR, ILE and PRO 
demonstrated accuracies of the overall prediction due to the decent performance of our 
model with these amino acids as shown in Table 3, resulting in an overall accuracy of 
87.4%. On the other hand, protein 3H9M dominated by residues such as ARG, GLN, 
and HIS with accuracies of 51%, 62.4% and 69% respectively, resulting in a total ac-
curacy of 66.2%. These comprehensive assessments offer a sophisticated comprehen-
sion of the model's performance, examining it at the protein level. The accuracy of these 
proteins varies from 64.9% to 87.4%, with a mean accuracy of 73.7%. This suggests a 
robust performance by the model, especially for specific proteins. 

Table 3. The accuracy of the models on individual amino acids (Set A2) 

Amino Acid Accuracy Amino Acid Accuracy Amino Acid Accuracy 
MET  60.8% ILE  80.4% LEU  76.5% 

THR  88.6% PRO   84.5% ASN  77.7% 

LYS  70.2% ASP  80.6% HIS  69.0% 

TRP  72.4% SER  79.8% TYR  68.2% 

PHE  69.0% CYS  72.2% ARG  51.0% 

GLN  62.4% VAL  87.5% GLU   68.8% 

To have a more profound understanding of the model's performance, we analyzed 
the performance of our models at amino acids level. We assessed the effectiveness of 
our RF model by analyzing various important metrics, such as accuracy (see Table 3) 
and average RMSD between the native side chain and the predicted rotamer (see Fig. 
4). These metrics offer valuable information on the accuracy and uniformity of our 
predictions. 

The accuracy of predicting 500 individual amino acids varies considerably as listed 
in Table 3. THR demonstrates the highest accuracy at 88.6%, indicating extremely 
trustworthy predictions, while MET exhibits a lower accuracy of 60.8%. This was re-
flected on Table 3 as expected. Amino acids, with high prediction accuracy, positively 
impact the accuracy of proteins they dominate. On the contrary, if a protein is domi-
nated by low prediction accuracy amino acids, its overall accuracy is lower. 
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The average RMSD quantifies the average discrepancy between the predicted rota-
mer of the side chains and their ground truth structures. A smaller RMSD value signi-
fies a higher accuracy in the prediction. The distribution of RMSD as in Fig. 4 illustrates 
and reflects the performance of the RF model on various amino acids as found in Table 
3. For instance, the performance of THR is outstanding (i.e., 88.6% accuracy), with an 
average RMSD of 0.059 and a standard deviation of 0.048. This suggests that the model 
accurately and consistently predicts the side chain conformations of THR with high 
precision. Conversely, the performance of the model on amino acid like MET is lower 
(60.8%), with an average RMSD of 0.542 and a standard deviation of 0.220. This sug-
gests that there is greater variety in the prediction errors.  

 

 

Fig. 4. RMSD Distribution by Amino Acid 

4 Conclusion 

Proteins are complex molecules that play fundamental functions in our bodies. Proteins 
are composed of molecule blocks known as amino acids. The structure of amino acids 
can be divided into two parts: backbone and side chain. Amino acids share the same 
backbone structure. Amino acids differ because of the uniqueness of their side chains. 
The side chain of the same amino acid adopts different configurations (called rotamers) 
based on its location in the protein. Amino acids’ Side chains are closely related to 
biological functions, and therefore, an accurate prediction of the correct side chain is 
essential to serve the biological function. 
 To address the problem of predicting the side chains of a given Cα trace of a protein, 
we conducted a thorough investigation to find geometrical features that can be used to 
capture the local environment of a given amino acids that impacts the structure of its 
side chain. We introduced 91 features then analyze them and maintain the most 32 fea-
tures that play an important role in deciding the correct rotamer of a given amino acid. 
The features are used to build a Random Forest machine learning model to solve the 
problem.  The model was tested on two different sets. One set consists of 20 proteins 
and the other set consists of 18,000 individual amino acids. The actual results 
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unambiguously demonstrate that Random Forest regularly attained a high average ac-
curacy. Although Random Forest has demonstrated promising outcomes. The results of 
this study provide a strong basis for future efforts in predicting protein’s side chains. 
We are confident that using more sophisticated approaches and models can enhance the 
accuracy and practicality of our predictions. 
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